Jump to content

Exponential integral: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
m Duplicate word removed
 
(42 intermediate revisions by 27 users not shown)
Line 1: Line 1:
{{Use American English|date = January 2019}}
{{Short description|Special function defined by an integral}}
{{Short description|Special function defined by an integral}}
{{distinguish|text=[[List of integrals of exponential functions|other integrals]] of [[exponential function]]s}}
{{distinguish|text=[[List of integrals of exponential functions|other integrals]] of [[exponential function]]s}}
{{Use American English|date = January 2019}}
[[Image:Exponential integral.svg|300px|right|thumb| Plot of <math>E_1</math> function (top) and <math>\operatorname{Ei}</math> function (bottom).]]
[[File:Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]]In mathematics, the '''exponential integral''' Ei is a [[special function]] on the [[complex plane]].

In mathematics, the '''exponential integral''' Ei is a [[special function]] on the [[complex plane]].
It is defined as one particular [[definite integral]] of the ratio between an [[exponential function]] and its [[argument of a function|argument]].
It is defined as one particular [[definite integral]] of the ratio between an [[exponential function]] and its [[argument of a function|argument]].


Line 10: Line 8:
For real non-zero values of&nbsp;''x'', the exponential integral&nbsp;Ei(''x'') is defined as
For real non-zero values of&nbsp;''x'', the exponential integral&nbsp;Ei(''x'') is defined as


:<math> \operatorname{Ei}(x)=-\int_{-x}^{\infty}\frac{e^{-t}}t\,dt=\int_{-{\infty}}^{x}\frac{e^{t}}t\,dt.\,</math>
:<math> \operatorname{Ei}(x) = -\int_{-x}^\infty \frac{e^{-t}}t\,dt = \int_{-\infty}^x \frac{e^t}t\,dt.</math>


<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.7</ref>
The [[Risch algorithm]] shows that Ei is not an [[elementary function]]. The definition above can be used for positive values of&nbsp;''x'', but the integral has to be understood in terms of the [[Cauchy principal value]] due to the singularity of the integrand at zero.

For complex values of the argument, the definition becomes ambiguous due to [[branch points]] at 0 and <math>\infty</math>.<ref>Abramowitz and Stegun, p.&nbsp;228</ref> Instead of Ei, the following notation is used,<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.1</ref>

:<math>E_1(z) = \int_z^\infty \frac{e^{-t}}{t}\, dt,\qquad|{\rm Arg}(z)|<\pi</math>

(note that for positive values of&nbsp; ''x'', we have <math>-E_1(x) = \operatorname{Ei}(-x)</math>).

In general, a [[branch cut]] is taken on the negative real axis and ''E''<sub>1</sub> can be defined by [[analytic continuation]] elsewhere on the complex plane.

For positive values of the real part of <math>z</math>, this can be written<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.4 with ''n''&nbsp;=&nbsp;1</ref>
:<math>E_1(z) = \int_1^\infty \frac{e^{-tz}}{t}\, dt = \int_0^1 \frac{e^{-z/u}}{u}\, du ,\qquad \Re(z) \ge 0.</math>

The behaviour of ''E''<sub>1</sub> near the branch cut can be seen by the following relation:<ref>Abramowitz and Stegun, p.&nbsp;228, 5.1.7</ref>


:<math>\lim_{\delta\to0+} E_1(-x \pm i\delta) = -\operatorname{Ei}(x) \mp i\pi,\qquad x>0.</math>
:<math>\lim_{\delta\to0+} E_1(-x \pm i\delta) = -\operatorname{Ei}(x) \mp i\pi,\qquad x>0.</math>
Line 33: Line 18:


===Convergent series===
===Convergent series===
[[Image:Exponential integral.svg|300px|right|thumb| Plot of <math>E_1</math> function (top) and <math>\operatorname{Ei}</math> function (bottom).]]


For real or complex arguments off the negative real axis, <math>E_1(z)</math> can be expressed as<ref>Abramowitz and Stegun, p.&nbsp;229, 5.1.11</ref>
For real or complex arguments off the negative real axis, <math>E_1(z)</math> can be expressed as<ref>Abramowitz and Stegun, p.&nbsp;229, 5.1.11</ref>


:<math>E_1(z) =-\gamma-\ln z-\sum_{k=1}^{\infty}\frac{(-z)^k}{k\; k!} \qquad (|\operatorname{Arg}(z)| < \pi)</math>
:<math>E_1(z) = -\gamma - \ln z - \sum_{k=1}^{\infty} \frac{(-z)^k}{k\; k!} \qquad (\left| \operatorname{Arg}(z) \right| < \pi)</math>


where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. The sum converges for all complex <math>z</math>, and we take the usual value of the [[complex logarithm]] having a [[branch cut]] along the negative real axis.
where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. The sum converges for all complex <math>z</math>, and we take the usual value of the [[complex logarithm]] having a [[branch cut]] along the negative real axis.


This formula can be used to compute <math>E_1(x)</math> with floating point operations for real <math>x</math> between 0 and 2.5. For <math>x > 2.5</math>, the result is inaccurate due to [[loss of significance|cancellation]].
This formula can be used to compute <math>E_1(x)</math> with floating point operations for real <math>x</math> between 0 and 2.5. For <math>x > 2.5</math>, the result is inaccurate due to [[Catastrophic cancellation|cancellation]].


A faster converging series was found by [[Ramanujan]]:
A faster converging series was found by [[Ramanujan]]:<ref>Andrews and Berndt, p.&nbsp;130, 24.16</ref>


:<math>{\rm Ei} (x) = \gamma + \ln x + \exp{(x/2)} \sum_{n=1}^\infty \frac{ (-1)^{n-1} x^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1}</math>
:<math>{\rm Ei} (x) = \gamma + \ln x + \exp{(x/2)} \sum_{n=1}^\infty \frac{ (-1)^{n-1} x^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1}</math>

These alternating series can also be used to give good asymptotic bounds, e.g. {{Citation needed|reason=upper bound appears to be incorrect|date=June 2020}}:

:<math>1-\frac{3 x}{4}\le{\rm Ei} (x) - \gamma - \ln x \le 1-\frac{3 x}{4}+\frac{11 x^2}{36}</math>
for <math>x\ge 0</math>.


===Asymptotic (divergent) series===
===Asymptotic (divergent) series===
[[Image:AsymptoticExpansionE1.png|right|200px|thumb| Relative error of the asymptotic approximation for different number <math>~N~</math> of terms in the truncated sum]]
[[Image:AsymptoticExpansionE1.png|right|200px|thumb| Relative error of the asymptotic approximation for different number <math>~N~</math> of terms in the truncated sum]]


Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, for ''x''&nbsp;=&nbsp;10 more than 40 terms are required to get an answer correct to three significant figures for <math>E_1(z)</math>.<ref>Bleistein and Handelsman, p.&nbsp;2</ref> However, there is a divergent series approximation that can be obtained by integrating <math>z e^z E_1(z)</math> by parts:<ref>Bleistein and Handelsman, p.&nbsp;3</ref>
Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for <math>E_1(10)</math>.<ref>Bleistein and Handelsman, p.&nbsp;2</ref> However, for positive values of x, there is a divergent series approximation that can be obtained by integrating <math>x e^x E_1(x)</math> by parts:<ref>Bleistein and Handelsman, p.&nbsp;3</ref>
: <math>E_1(z)=\frac{\exp(-z)} z \sum_{n=0}^{N-1} \frac{n!}{(-z)^n}
: <math>E_1(x)=\frac{\exp(-x)} x \left(\sum_{n=0}^{N-1} \frac{n!}{(-x)^n} +O(N!x^{-N}) \right)</math>
The relative error of the approximation above is plotted on the figure to the right for various values of <math>N</math>, the number of terms in the truncated sum (<math>N=1</math> in red, <math>N=5</math> in pink).
</math>

which has error of order <math>O(N!z^{-N})</math> and is valid for large values of <math>\operatorname{Re}(z)</math>. The relative error of the approximation above is plotted on the figure to the right for various values of <math>N</math>, the number of terms in the truncated sum (<math>N=1</math> in red, <math>N=5</math> in pink).
==== Asymptotics beyond all orders ====
Using integration by parts, we can obtain an explicit formula<ref>{{Citation |last=O’Malley |first=Robert E. |title=Asymptotic Approximations |date=2014 |url=https://doi.org/10.1007/978-3-319-11924-3_2 |work=Historical Developments in Singular Perturbations |pages=27–51 |editor-last=O'Malley |editor-first=Robert E. |access-date=2023-05-04 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-11924-3_2 |isbn=978-3-319-11924-3}}</ref><math display="block">\operatorname{Ei}(z) = \frac{e^{z}} {z} \left (\sum _{k=0}^{n} \frac{k!} {z^{k}} + e_{n}(z)\right), \quad e_{n}(z) \equiv (n + 1)!\ ze^{-z}\int _{ -\infty }^{z} \frac{e^{t}} {t^{n+2}}\,dt</math>For any fixed <math>z</math>, the absolute value of the error term <math>|e_n(z)|</math> decreases, then increases. The minimum occurs at <math>n\sim |z|</math>, at which point <math>\vert e_{n}(z)\vert \leq \sqrt{\frac{2\pi } {\vert z\vert }}e^{-\vert z\vert }</math>. This bound is said to be "asymptotics beyond all orders".


===Exponential and logarithmic behavior: bracketing===
===Exponential and logarithmic behavior: bracketing===
Line 79: Line 62:
= \sum_{k=1}^\infty \frac{(-1)^{k+1}z^k}{k\; k!}
= \sum_{k=1}^\infty \frac{(-1)^{k+1}z^k}{k\; k!}
</math>
</math>
(note that this is just the alternating series in the above definition of <math>\mathrm{E}_1</math>). Then we have
(note that this is just the alternating series in the above definition of <math>E_1</math>). Then we have
:<math>
:<math>
E_1(z) \,=\, -\gamma-\ln z + {\rm Ein}(z)
E_1(z) \,=\, -\gamma-\ln z + {\rm Ein}(z)
\qquad |\operatorname{Arg}(z)| < \pi
\qquad \left| \operatorname{Arg}(z) \right| < \pi
</math>
</math>
:<math>\operatorname{Ei}(x) \,=\, \gamma+\ln x - \operatorname{Ein}(-x)
:<math>\operatorname{Ei}(x) \,=\, \gamma+\ln{x} - \operatorname{Ein}(-x)
\qquad x>0
\qquad x \neq 0
</math>
The function <math>\operatorname{Ein}</math> is related to the exponential generating function of the [[harmonic numbers]]:
:<math>
\operatorname{Ein}(z) = e^{-z} \, \sum_{n=1}^\infty \frac {z^n}{n!} H_n
</math>
</math>


Line 95: Line 82:
we have
we have
:<math>M(0,1,z)=U(0,1,z)=1</math>
:<math>M(0,1,z)=U(0,1,z)=1</math>
for all ''z''. A second solution is then given by E<sub>1</sub>(''−z''). In fact,
for all ''z''. A second solution is then given by E<sub>1</sub>(''z''). In fact,
:<math>E_1(-z)=-\gamma-i\pi+\frac{\partial[U(a,1,z)-M(a,1,z)]}{\partial a},\qquad 0<{\rm Arg}(z)<2\pi</math>
:<math>E_1(-z)=-\gamma-i\pi+\frac{\partial[U(a,1,z)-M(a,1,z)]}{\partial a},\qquad 0<{\rm Arg}(z)<2\pi</math>
with the derivative evaluated at <math>a=0.</math> Another connexion with the confluent hypergeometric functions is that ''E<sub>1</sub>'' is an exponential times the function ''U''(1,1,''z''):
with the derivative evaluated at <math>a=0.</math> Another connexion with the confluent hypergeometric functions is that ''E<sub>1</sub>'' is an exponential times the function ''U''(1,1,''z''):
Line 101: Line 88:


The exponential integral is closely related to the [[logarithmic integral function]] li(''x'') by the formula
The exponential integral is closely related to the [[logarithmic integral function]] li(''x'') by the formula
:<math>\operatorname{li}(e^x) = \operatorname{Ei}(x)</math>
:<math>
for non-zero real values of <math>x </math>.
\operatorname{li}(e^x) = \operatorname{Ei}(x)
</math>
for non-zero real values of <math>x </math>.


===Generalization===
The exponential integral may also be generalized to
The exponential integral may also be generalized to


:<math>E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n}\, dt,</math>
:<math>E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n}\, dt,</math>


which can be written as a special case of the [[incomplete gamma function]]:<ref>Abramowitz and Stegun, p.&nbsp;230, 5.1.45</ref>
which can be written as a special case of the upper [[incomplete gamma function]]:<ref>Abramowitz and Stegun, p.&nbsp;230, 5.1.45</ref>


: <math>E_n(x) =x^{n-1}\Gamma(1-n,x).</math>
: <math>E_n(x) =x^{n-1}\Gamma(1-n,x).</math>
Line 118: Line 104:
:<math>\varphi_m(x)=E_{-m}(x).</math>
:<math>\varphi_m(x)=E_{-m}(x).</math>


Many properties of this generalized form can be found in the [https://dlmf.nist.gov/8.19 NIST Digital Library of Mathematical Functions.]
Including a logarithm defines the generalized integro-exponential function<ref>Milgram (1985)</ref>
:<math>E_s^j(z)= \frac{1}{\Gamma(j+1)}\int_1^\infty (\log t)^j \frac{e^{-zt}}{t^s}\,dt.</math>


Including a logarithm defines the generalized integro-exponential function<ref>Milgram (1985)</ref>
The indefinite integral:
:<math> \operatorname{Ei}(a \cdot b) = \iint e^{a b} \, da \, db</math>
:<math>E_s^j(z)= \frac{1}{\Gamma(j+1)}\int_1^\infty \left(\log t\right)^j \frac{e^{-zt}}{t^s}\,dt.</math>
is similar in form to the ordinary [[generating function]] for <math>d(n)</math>, the number of [[divisors]] of <math>n</math>:
:<math> \sum\limits_{n=1}^{\infty} d(n)x^{n} = \sum\limits_{a=1}^{\infty} \sum\limits_{b=1}^{\infty} x^{a b}</math>


===Derivatives===
===Derivatives===
Line 148: Line 131:
:<math>
:<math>
E_1(ix) = i\left[ -\tfrac{1}{2}\pi + \operatorname{Si}(x)\right] - \operatorname{Ci}(x)
E_1(ix) = i\left[ -\tfrac{1}{2}\pi + \operatorname{Si}(x)\right] - \operatorname{Ci}(x)
\qquad (x>0)
\qquad (x > 0)
</math>
</math>
The real and imaginary parts of <math>\mathrm{E}_1(ix)</math> are plotted in the figure to the right with black and red curves.
The real and imaginary parts of <math>\mathrm{E}_1(ix)</math> are plotted in the figure to the right with black and red curves.
Line 155: Line 138:
There have been a number of approximations for the exponential integral function. These include:
There have been a number of approximations for the exponential integral function. These include:


* The Swamee and Ohija approximation<ref name=":0">{{Cite journal|title = Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution|journal = Ground Water|date = 2003-05-01|issn = 1745-6584|pages = 387–390|volume = 41| issue = 3|doi = 10.1111/j.1745-6584.2003.tb02608.x|first = Pham Huy|last = Giao}}</ref>
* The Swamee and Ohija approximation<ref name=":0">{{Cite journal|title = Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution|journal = Ground Water|date = 2003-05-01|issn = 1745-6584|pages = 387–390|volume = 41| issue = 3|doi = 10.1111/j.1745-6584.2003.tb02608.x|first = Pham Huy|last = Giao| pmid=12772832 | bibcode=2003GrWat..41..387G | s2cid=31982931 }}</ref> <math display="block">E_1(x) = \left (A^{-7.7}+B \right )^{-0.13},</math> where <math display="block">\begin{align}
:: <math>E_1(x) = \left (A^{-7.7}+B \right )^{-0.13},</math>
:where
::<math>\begin{align}
A &= \ln\left [\left (\frac{0.56146}{x}+0.65\right)(1+x)\right] \\
A &= \ln\left [\left (\frac{0.56146}{x}+0.65\right)(1+x)\right] \\
B &= x^4e^{7.7x}(2+x)^{3.7}
B &= x^4e^{7.7x}(2+x)^{3.7}
\end{align}</math>
\end{align}</math>
* The Allen and Hastings approximation <ref name=":0" /><ref name=":1">{{Cite journal|title = Numerical evaluation of exponential integral: Theis well function approximation|journal = Journal of Hydrology|date = 1998-02-26|pages = 38–51|volume = 205|issue = 1–2|doi = 10.1016/S0022-1694(97)00134-0|first1 = Peng-Hsiang|last1 = Tseng|first2 = Tien-Chang|last2 = Lee|bibcode = 1998JHyd..205...38T }}</ref> <math display="block">E_1(x) = \begin{cases} - \ln x +\textbf{a}^T\textbf{x}_5,&x\leq1 \\ \frac{e^{-x}} x \frac{\textbf{b}^T \textbf{x}_3}{\textbf{c}^T\textbf{x}_3},&x\geq1 \end{cases}</math> where <math display="block">\begin{align}

* The Allen and Hastings approximation <ref name=":0" /><ref name=":1">{{Cite journal|title = Numerical evaluation of exponential integral: Theis well function approximation|journal = Journal of Hydrology|date = 1998-02-26|pages = 38–51|volume = 205|issue = 1–2|doi = 10.1016/S0022-1694(97)00134-0|first = Peng-Hsiang|last = Tseng|first2 = Tien-Chang|last2 = Lee|bibcode = 1998JHyd..205...38T }}</ref>
::<math>E_1(x) = \begin{cases} - \ln x +\textbf{a}^T\textbf{x}_5,&x\leq1 \\ \frac{e^{-x}} x \frac{\textbf{b}^T \textbf{x}_3}{\textbf{c}^T\textbf{x}_3},&x\geq1 \end{cases}</math>
: where
::<math>\begin{align}
\textbf{a} & \triangleq [-0.57722, 0.99999, -0.24991, 0.05519, -0.00976, 0.00108]^T \\
\textbf{a} & \triangleq [-0.57722, 0.99999, -0.24991, 0.05519, -0.00976, 0.00108]^T \\
\textbf{b} & \triangleq[0.26777,8.63476, 18.05902, 8.57333]^T \\
\textbf{b} & \triangleq[0.26777,8.63476, 18.05902, 8.57333]^T \\
Line 172: Line 148:
\textbf{x}_k &\triangleq[x^0,x^1,\dots, x^k]^T
\textbf{x}_k &\triangleq[x^0,x^1,\dots, x^k]^T
\end{align}</math>
\end{align}</math>
* The continued fraction expansion <ref name=":1" /> <math display="block">E_1(x) = \cfrac{e^{-x}}{x+\cfrac{1}{1+\cfrac{1}{x+\cfrac{2}{1+\cfrac{2}{x+\cfrac{3}{\ddots}}}}}}.</math>

* The approximation of Barry ''et al.'' <ref>{{Cite journal|title = Approximation for the exponential integral (Theis well function) |journal = Journal of Hydrology|date = 2000-01-31| pages = 287–291|volume = 227|issue = 1–4|doi = 10.1016/S0022-1694(99)00184-5|first1 = D. A|last1 = Barry|first2 = J. -Y|last2 = Parlange |first3 = L|last3 = Li|bibcode = 2000JHyd..227..287B }}</ref> <math display="block">E_1(x) = \frac{e^{-x}}{G+(1-G)e^{-\frac{x}{1-G}}}\ln\left[1+\frac G x -\frac{1-G}{(h+bx)^2}\right],</math> where: <math display="block">\begin{align}
* The continued fraction expansion <ref name=":1" />
::<math>E_1(x) = \cfrac{e^{-x}}{x+\cfrac{1}{1+\cfrac{1}{x+\cfrac{2}{1+\cfrac{2}{x+\cfrac{3}{\dots}}}}}}.</math>

* The approximation of Barry ''et al.'' <ref>{{Cite journal|title = Approximation for the exponential integral (Theis well function) |journal = Journal of Hydrology|date = 2000-01-31| pages = 287–291|volume = 227|issue = 1–4|doi = 10.1016/S0022-1694(99)00184-5|first = D. A|last = Barry|first2 = J. -Y|last2 = Parlange |first3 = L|last3 = Li|bibcode = 2000JHyd..227..287B }}</ref>
::<math>E_1(x) = \frac{e^{-x}}{G+(1-G)e^{-\frac{x}{1-G}}}\ln\left[1+\frac G x -\frac{1-G}{(h+bx)^2}\right],</math>
: where:
::<math>\begin{align}
h &= \frac{1}{1+x\sqrt{x}}+\frac{h_{\infty}q}{1+q} \\
h &= \frac{1}{1+x\sqrt{x}}+\frac{h_{\infty}q}{1+q} \\
q &=\frac{20}{47}x^{\sqrt{\frac{31}{26}}} \\
q &=\frac{20}{47}x^{\sqrt{\frac{31}{26}}} \\
Line 185: Line 155:
b &=\sqrt{\frac{2(1-G)}{G(2-G)}} \\
b &=\sqrt{\frac{2(1-G)}{G(2-G)}} \\
G &= e^{-\gamma}
G &= e^{-\gamma}
\end{align}</math>
\end{align}</math> with <math>\gamma</math> being the [[Euler–Mascheroni constant]].

:with <math>\gamma</math> being the [[Euler–Mascheroni constant]].
== Inverse function of the Exponential Integral ==
We can express the [[Inverse function]] of the exponential integral in [[power series]] form:<ref>{{Cite web |title=Inverse function of the Exponential Integral {{math|Ei{{sup|-1}}(''x'')}} |url=https://math.stackexchange.com/questions/4901881/inverse-function-of-the-exponential-integral-mathrmei-1x |access-date=2024-04-24 |website=Mathematics Stack Exchange |language=}}</ref>

: <math>\forall |x| < \frac{\mu}{\ln(\mu)},\quad \mathrm{Ei}^{-1}(x) = \sum_{n=0}^\infty \frac{x^n}{n!} \frac{P_n(\ln(\mu))}{\mu^n}</math>

where <math>\mu</math> is the [[Ramanujan–Soldner constant]] and <math>(P_n)</math> is [[polynomial]] sequence defined by the following [[recurrence relation]]:

: <math>P_0(x) = x,\ P_{n+1}(x) = x(P_n'(x) - nP_n(x)).</math>

For <math>n > 0</math>, <math>\deg P_n = n</math> and we have the formula :

: <math>P_n(x) = \left.\left(\frac{\mathrm d}{\mathrm dt}\right)^{n-1} \left(\frac{te^x}{\mathrm{Ei}(t+x)-\mathrm{Ei}(x)}\right)^n\right|_{t=0}.</math>


== Applications ==
== Applications ==
Line 193: Line 175:
* Radiative transfer in stellar and planetary atmospheres
* Radiative transfer in stellar and planetary atmospheres
* Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
* Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
* Solutions to the [[neutron transport]] equation in simplified 1-D geometries.<ref>{{cite book|title=Nuclear Reactor Theory|year=1970|publisher=Van Nostrand Reinhold Company|author=George I. Bell|author2=Samuel Glasstone}}</ref>
* Solutions to the [[neutron transport]] equation in simplified 1-D geometries<ref>{{cite book|title=Nuclear Reactor Theory|year=1970|publisher=Van Nostrand Reinhold Company|author=George I. Bell|author2=Samuel Glasstone}}</ref>


==See also==
==See also==
Line 233: Line 215:
| isbn = 978-0-486-65082-1
| isbn = 978-0-486-65082-1
}}
}}
* {{Citation | last1=Andrews | first1=George E. | last2=Berndt | first2=Bruce C. | title=Ramanujan's lost notebook. Part IV | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-1-4614-4080-2 | year=2013}}
* {{cite journal
* {{cite journal
|doi=10.1093/qmath/1.1.176
|doi=10.1093/qmath/1.1.176
Line 296: Line 279:
}}
}}
* {{cite journal
* {{cite journal
| last = Misra
| last1 = Misra
| first = Rama Dhar
| first1 = Rama Dhar
| year = 1940
| year = 1940
| title = On the Stability of Crystal Lattices. II
| title = On the Stability of Crystal Lattices. II
Line 307: Line 290:
| last2 = Born
| last2 = Born
| first2 = M.
| first2 = M.
|bibcode = 1940PCPS...36..173M }}
|bibcode = 1940PCPS...36..173M | s2cid = 251097063
}}
* {{cite journal
* {{cite journal
|first1=C.
|first1=C.
Line 338: Line 322:
|year=1990
|year=1990
|doi=10.1016/0898-1221(90)90098-5
|doi=10.1016/0898-1221(90)90098-5
|url=https://www.openaccessrepository.it/record/135675
|doi-access=
}}
}}
* {{cite journal
* {{cite journal
Line 349: Line 335:
|number=2
|number=2
|pages=363–374
|pages=363–374
|bibcode=2002JCoAm.138..363M
|bibcode=2002JCoAM.148..363M
|doi-access=free
|doi-access=free
}}
}}
* {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | location=New York | isbn=978-0-521-88068-8 | chapter=Section 6.3. Exponential Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=266}}
* {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | location=New York | isbn=978-0-521-88068-8 | chapter=Section 6.3. Exponential Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=266 | access-date=2011-08-09 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=266 | url-status=dead }}
*{{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}
*{{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}}


Line 363: Line 349:
* [http://dlmf.nist.gov/6 Exponential, Logarithmic, Sine, and Cosine Integrals] in [[DLMF]]. <!-- {{DLMF}} is not for external links. ;-/ -->
* [http://dlmf.nist.gov/6 Exponential, Logarithmic, Sine, and Cosine Integrals] in [[DLMF]]. <!-- {{DLMF}} is not for external links. ;-/ -->
{{Nonelementary Integral}}
{{Nonelementary Integral}}

{{DEFAULTSORT:Exponential Integral}}
{{DEFAULTSORT:Exponential Integral}}
[[Category:Exponentials]]
[[Category:Exponentials]]

Latest revision as of 13:40, 8 January 2025

Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the exponential integral Ei is a special function on the complex plane.

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions

[edit]

For real non-zero values of x, the exponential integral Ei(x) is defined as

[1]

Properties

[edit]

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

Convergent series

[edit]
Plot of function (top) and function (bottom).

For real or complex arguments off the negative real axis, can be expressed as[2]

where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:[3]

Asymptotic (divergent) series

[edit]
Relative error of the asymptotic approximation for different number of terms in the truncated sum

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for .[4] However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts:[5]

The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).

Asymptotics beyond all orders

[edit]

Using integration by parts, we can obtain an explicit formula[6]For any fixed , the absolute value of the error term decreases, then increases. The minimum occurs at , at which point . This bound is said to be "asymptotics beyond all orders".

Exponential and logarithmic behavior: bracketing

[edit]
Bracketing of by elementary functions

From the two series suggested in previous subsections, it follows that behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, can be bracketed by elementary functions as follows:[7]

The left-hand side of this inequality is shown in the graph to the left in blue; the central part is shown in black and the right-hand side is shown in red.

Definition by Ein

[edit]

Both and can be written more simply using the entire function [8] defined as

(note that this is just the alternating series in the above definition of ). Then we have

The function is related to the exponential generating function of the harmonic numbers:

Relation with other functions

[edit]

Kummer's equation

is usually solved by the confluent hypergeometric functions and But when and that is,

we have

for all z. A second solution is then given by E1(−z). In fact,

with the derivative evaluated at Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

for non-zero real values of .

Generalization

[edit]

The exponential integral may also be generalized to

which can be written as a special case of the upper incomplete gamma function:[9]

The generalized form is sometimes called the Misra function[10] , defined as

Many properties of this generalized form can be found in the NIST Digital Library of Mathematical Functions.

Including a logarithm defines the generalized integro-exponential function[11]

Derivatives

[edit]

The derivatives of the generalised functions can be calculated by means of the formula [12]

Note that the function is easy to evaluate (making this recursion useful), since it is just .[13]

Exponential integral of imaginary argument

[edit]
against ; real part black, imaginary part red.

If is imaginary, it has a nonnegative real part, so we can use the formula

to get a relation with the trigonometric integrals and :

The real and imaginary parts of are plotted in the figure to the right with black and red curves.

Approximations

[edit]

There have been a number of approximations for the exponential integral function. These include:

  • The Swamee and Ohija approximation[14] where
  • The Allen and Hastings approximation [14][15] where
  • The continued fraction expansion [15]
  • The approximation of Barry et al. [16] where: with being the Euler–Mascheroni constant.

Inverse function of the Exponential Integral

[edit]

We can express the Inverse function of the exponential integral in power series form:[17]

where is the Ramanujan–Soldner constant and is polynomial sequence defined by the following recurrence relation:

For , and we have the formula :

Applications

[edit]
  • Time-dependent heat transfer
  • Nonequilibrium groundwater flow in the Theis solution (called a well function)
  • Radiative transfer in stellar and planetary atmospheres
  • Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
  • Solutions to the neutron transport equation in simplified 1-D geometries[18]

See also

[edit]

Notes

[edit]
  1. ^ Abramowitz and Stegun, p. 228, 5.1.7
  2. ^ Abramowitz and Stegun, p. 229, 5.1.11
  3. ^ Andrews and Berndt, p. 130, 24.16
  4. ^ Bleistein and Handelsman, p. 2
  5. ^ Bleistein and Handelsman, p. 3
  6. ^ O’Malley, Robert E. (2014), O'Malley, Robert E. (ed.), "Asymptotic Approximations", Historical Developments in Singular Perturbations, Cham: Springer International Publishing, pp. 27–51, doi:10.1007/978-3-319-11924-3_2, ISBN 978-3-319-11924-3, retrieved 2023-05-04
  7. ^ Abramowitz and Stegun, p. 229, 5.1.20
  8. ^ Abramowitz and Stegun, p. 228, see footnote 3.
  9. ^ Abramowitz and Stegun, p. 230, 5.1.45
  10. ^ After Misra (1940), p. 178
  11. ^ Milgram (1985)
  12. ^ Abramowitz and Stegun, p. 230, 5.1.26
  13. ^ Abramowitz and Stegun, p. 229, 5.1.24
  14. ^ a b Giao, Pham Huy (2003-05-01). "Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution". Ground Water. 41 (3): 387–390. Bibcode:2003GrWat..41..387G. doi:10.1111/j.1745-6584.2003.tb02608.x. ISSN 1745-6584. PMID 12772832. S2CID 31982931.
  15. ^ a b Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). "Numerical evaluation of exponential integral: Theis well function approximation". Journal of Hydrology. 205 (1–2): 38–51. Bibcode:1998JHyd..205...38T. doi:10.1016/S0022-1694(97)00134-0.
  16. ^ Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). "Approximation for the exponential integral (Theis well function)". Journal of Hydrology. 227 (1–4): 287–291. Bibcode:2000JHyd..227..287B. doi:10.1016/S0022-1694(99)00184-5.
  17. ^ "Inverse function of the Exponential Integral Ei-1(x)". Mathematics Stack Exchange. Retrieved 2024-04-24.
  18. ^ George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Company.

References

[edit]
[edit]