User:Tomruen/Coxeter foldings: Difference between revisions
Appearance
Content deleted Content added
(37 intermediate revisions by the same user not shown) | |||
Line 72: | Line 72: | ||
! D<sub>5</sub> |
! D<sub>5</sub> |
||
|{{CDD|nodes|split2|node|3|node|3|node}} |
|{{CDD|nodes|split2|node|3|node|3|node}} |
||
| |
| 2, 4, 6, 8; 5 |
||
|A<sub>1</sub>, A<sub>3</sub>, A<sub>2</sub>=D<sub>4</sub>, D<sub>5</sub>; A<sub>4</sub> |
|||
|- align=center |
|- align=center |
||
! A<sub>6</sub> |
! A<sub>6</sub> |
||
Line 89: | Line 90: | ||
|- align=center |
|- align=center |
||
! E<sub>6</sub> |
! E<sub>6</sub> |
||
|{{CDD| |
|{{CDD|node|3|node|split1|nodes|3ab|nodes}} |
||
| 2, 5, 6, 8, 9, 12 |
| 2, 5, 6, 8, 9, 12 |
||
|A<sub>1</sub>, A<sub>4</sub>, A<sub>2</sub>=D<sub>4</sub>=A<sub>5</sub>, A<sub>3</sub>=D<sub>5</sub>, ?, E<sub>6</sub> |
|||
|- align=center |
|- align=center |
||
! E<sub>7</sub> |
! E<sub>7</sub> |
||
Line 102: | Line 104: | ||
[[File:Geometric_folding_Coxeter_graphs.png|thumb|Finite Coxeter group foldings]] |
[[File:Geometric_folding_Coxeter_graphs.png|thumb|Finite Coxeter group foldings]] |
||
Let me try using [[Coxeter–Dynkin_diagram#Geometric_folding]]s to express [[Coxeter plane]]s as [[Coxeter_element#Definitions|Coxeter numbers]] and ''all degrees of fundamental invariants''. Foldings are shown by marking node with colors, re and blue, which map to node 1 or 2 in the rank 2 folded group. |
|||
==A3== |
==A3== |
||
{| class=wikitable |
{| class=wikitable |
||
Line 108: | Line 110: | ||
!colspan=2|Folding||Degree||Coxeter Plane |
!colspan=2|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|3|node_c3}} || {{CDD|node_c2|3|node_c3}} ||3||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|3|node_c2}} || {{CDD|node_c2}} ||2||A<sub>1</sub> |
||
|} |
|} |
||
Line 120: | Line 122: | ||
!colspan=2|Folding||Degree||Coxeter Plane |
!colspan=2|Folding||Degree||Coxeter Plane |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6||B<sub>3</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c2|3|node_c3}} || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c3|3|node_c3}} || {{CDD|node_c2|4|node_c3}} ||4||B<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c2|3|node_c2}} || {{CDD|node_c2}} ||2||A<sub>1</sub> |
||
|} |
|} |
||
Line 134: | Line 136: | ||
!colspan=2|Folding||Degree||Coxeter Plane |
!colspan=2|Folding||Degree||Coxeter Plane |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c3|3|node_c2}} || {{CDD|node_c2|10|node_c3}} ||10||H<sub>3</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c3|3|node_c3}} || {{CDD|node_c2|10|node_c3}} ||5×2||H<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c2|3|node_c3}} || {{CDD|node_c2|3|node_c3}} ||3×2||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c2|3|node_c2}} || {{CDD|node_c2}} ||2||A<sub>1</sub> |
||
|} |
|} |
||
Line 149: | Line 151: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}}|| || {{CDD|node_c2|5|node_c3}} ||5||A<sub>4</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|3|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|3|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|3|node_c3}} ||3||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|3|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
|} |
|} |
||
Line 164: | Line 166: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c3|3|node_c2|3|node_c3}}|| || {{CDD|node_c2|8|node_c3}} ||8||B<sub>4</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|4|node_c3|3|node_c2|3|node_c2}} || {{CDD|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6||B<sub>3</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2|4|node_c3}} ||4||B<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
|} |
|} |
||
Line 183: | Line 185: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2}} ||{{CDD|node_c2|3|node_c3|4|node_c2}} ||{{CDD|node_c2|6|node_c3}} || 6||D<sub>4</sub>=B<sub>3</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c3}} || || {{CDD|node_c2|6|node_c3}} ||3×2 ||A<sub>2</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|split1|nodeab_c3}} || {{CDD|node_c2|split1|nodeab_c3}} = {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||D<sub>3</sub>=A<sub>3</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
| || || {{CDD| |
| || || {{CDD|node_c2|4|node_c3}} ||4||B<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|split1|nodeab_c2}} || || {{CDD|node_c2}} ||2 ||A<sub>1</sub> |
||
|} |
|} |
||
Line 200: | Line 202: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|4|node_c2|3|node_c3}} || || {{CDD|node_c2|12|node_c3}} ||12||F<sub>4</sub> |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|4|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|8|node_c3}} ||4×2||A<sub>3</sub> |
||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|4|node_c3|3|node_c3}} || || {{CDD|node_c2|8|node_c3}} ||4×2||B<sub>2</sub> |
||
⚫ | |||
⚫ | |||
⚫ | |||
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c3}} || || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
|||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
|} |
|} |
||
Line 219: | Line 221: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c3|3|node_c2|3|node_c3}}|| || {{CDD|node_c2|3x|0x|node_c3}} ||30||H<sub>4</sub> |
||
|- align=center |
|- align=center |
||
| || ||{{CDD| |
| || ||{{CDD|node_c2|20|node_c3}} ||20 || |
||
|- align=center |
|- align=center |
||
| || ||{{CDD| |
| || ||{{CDD|node_c2|12|node_c3}} ||12 || F<sub>4</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|5|node_c3|3|node_c2|3|node_c2}} || {{CDD|node_c2|5|node_c3|3|node_c2}} || {{CDD|node_c2|10|node_c3}} ||10||H<sub>3</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2|10|node_c3}} ||5×2||H<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|5|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|3|node_c3}} ||3×2||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|5|node_c2|3|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
|} |
|} |
||
Line 242: | Line 244: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3|3|node_c2}} || || {{CDD|node_c2|6|node_c3}} ||6||A<sub>5</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|3|node_c3|3|node_c2|3|node_c3}}<BR>{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c2|3|node_c3}} || {{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} || {{CDD|node_c2|5|node_c3}} ||5||A<sub>4</sub> |
||
|- align=center |
|||
|{{CDD|node_c2|3|node_c2|3|node_c2|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|3|node_c2|3|node_c3|3|node_c2|3|node_c2}}<BR>{{CDD|node_c2|3|node_c2|3|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|3|node_c3|3|node_c3|3|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c2|3|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|3|node_c3}} ||3||A<sub>2</sub> |
|||
|- align=center |
|||
⚫ | |||
|} |
|||
==B5== |
|||
{| class=wikitable |
|||
|+ Example: B<sub>5</sub>, {{CDD|node|4|node|3|node|3|node|3|node}} |
|||
!colspan=3|Folding||Degree||Coxeter Plane |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
⚫ | |||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c2|3|node_c3}} || {{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} || {{CDD|node_c2|10|node_c3}} ||5×2||A<sub>4</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|4|node_c3|3|node_c2|3|node_c2|3|node_c3}} || {{CDD|node_c2|4|node_c3|3|node_c2|3|node_c3}} || {{CDD|node_c2|8|node_c3}} ||8||B<sub>4</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|||
|{{CDD|node_c2|4|node_c3|3|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|4|node_c3|3|node_c3|3|node_c2|3|node_c2}}<BR>{{CDD|node_c2|4|node_c3|3|node_c2|3|node_c2|3|node_c2}} || {{CDD|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6||B<sub>3</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|||
|{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c2|3|node_c3}}<BR>{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c2|3|node_c2}}<BR>{{CDD|node_c2|4|node_c2|3|node_c3|3|node_c3|3|node_c2}} || {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||A<sub>3</sub> |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|4|node_c3|3|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2|4|node_c3}} ||4||B<sub>2</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|4|node_c2|3|node_c2|3|node_c2|3|node_c2}} || || {{CDD|node_c2}} ||2||A<sub>1</sub> |
|||
|} |
|||
==D5== |
|||
{| class=wikitable |
|||
|+ Example: D<sub>5</sub>, {{CDD|node|3|node|3|node|split1|nodes}} |
|||
!colspan=3|Folding||Degree||Coxeter Plane |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c3|3|node_c2|split1|nodeab_c3}} ||{{CDD|node_c2|3|node_c3|3|node_c2|4|node_c3}} ||{{CDD|node_c2|8|node_c3}} || 8||D<sub>5</sub>=B<sub>4</sub> |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|3|node_c2|3|node_c3|split1|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c3|3|node_c3|split1|nodeab_c2}} ||{{CDD|node_c2|3|node_c3|split1|nodeab_c2}} = {{CDD|node_c2|3|node_c3|4|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6 ||D<sub>4</sub>=B<sub>3</sub> |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|3|node_c3|3|node_c3|split1|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|3|node_c3|split1|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|3|node_c2|split1|nodeab_c2-3}} || || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c3|3|node_c2|split1|nodeab_c2-3}} ||{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} || {{CDD|node_c2|5|node_c3}} ||5||A<sub>4</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c3|3|node_c2|split1|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c2|3|node_c2|split1|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c3|3|node_c3|split1|nodeab_c2-3}}<BR>{{CDD|node_c2|3|node_c2|3|node_c3|split1|nodeab_c2-3}} |
|||
||{{CDD|node_c3|split1|nodeab_c2}} = {{CDD|node_c2|3|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3}} ||4||D<sub>3</sub>=A<sub>3</sub> |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c2|3|node_c2|split1|nodeab_c2}} || || {{CDD|node_c2}} ||2 ||A<sub>1</sub> |
|||
|} |
|||
==E6== |
|||
{| class=wikitable |
|||
|+ Example: E<sub>6</sub>, {{CDD|node|3|node|split1|nodes|3ab|nodes}} |
|||
!colspan=3|Folding||Degree||Coxeter Plane |
|||
|- align=center |
|||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c3}} || {{CDD|node_c2|3|node_c3|4|node_c2|3|node_c3}} ||{{CDD|node_c2|12|node_c3}} || 12||E<sub>6</sub> = F<sub>4</sub> |
|||
|- align=center |
|||
| || ||{{CDD|node_c2|9|node_c3}} || 9|| |
|||
|- align=center BGCOLOR="#ffe0e0" |
|||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2-3|3ab|nodeab_c3-2}} || {{CDD|node_c3|3|node_c2|3|node_c3|split1|nodeab_c2}} = {{CDD|node_c3|3|node_c2|3|node_c3|4|node_c2}} ||{{CDD|node_c2|8|node_c3}} || 8||D<sub>5</sub> = B<sub>4</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|||
|{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c2}} || {{CDD|node_c2|split1|nodeab_c3|3ab|nodeab_c2}} ||{{CDD|node_c2|6|node_c3}} || 6||A<sub>5</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c3-2|3ab|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c3-2}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c3}} |
|||
|| {{CDD|node_c2|3|node_c3|split1|nodeab_c2}} = {{CDD|node_c2|3|node_c3|4|node_c2}} ||{{CDD|node_c2|6|node_c3}} || 6||D<sub>4</sub> = B<sub>3</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c3|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c3-2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c3-2}}|| || {{CDD|node_c2|6|node_c3}} || 3×2||A<sub>2</sub> |
|||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c3-2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3-2}} <BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2-3}} |
||
||{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} ||{{CDD|node_c2|5|node_c3}} || 5||A<sub>4</sub> |
|||
|- align=center |
|- align=center |
||
|{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c3|3ab|nodeab_c3-2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2-3|3ab|nodeab_c3}}<BR>{{CDD|node_c3|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c3-2}} |
|||
⚫ | |||
|| {{CDD|node_c2|split1|nodeab_c3}} || {{CDD|node_c2|4|node_c3}} || 4||A<sub>3</sub> |
|||
|- align=center |
|- align=center |
||
|{{CDD| |
|{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c2}}|| || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
|} |
|} |
Latest revision as of 02:20, 31 October 2017
Coxeter group |
Coxeter diagram |
Degrees | Coxeter planes |
---|---|---|---|
A2 | 2, 3 | A1, A2 | |
B2 | 2, 4 | A1, B2 | |
H2 | 2, 5 | A1, H2 | |
A3 | 2, 3, 4 | A1, A2, A3 | |
B3 | 2, 4, 6 | A1, B2, A2=B3 | |
H3 | 2, 6, 10 | A1, A2, H2=H3 | |
A4 | 2, 3, 4, 5 | A1, A2, A3, A4 | |
B4 | 2, 4, 6, 8 | A1, A3, B2, A2=B3, B4 | |
D4 | 2, 4, 6 | A1, A3, A2=D4 | |
F4 | 2, 6, 8, 12 | A1, A3=B2, A2=B3, F4 | |
H4 | 2, 12, 20, 30 | A1, A2, A3, H2=H3, H4 | |
A5 | 2, 3, 4, 5, 6 | A1, A2, A3, A4, A5 | |
B5 | 2, 4, 6, 8, 10 | A1, A3=B2, A2=B3, B4, A4=B5 | |
D5 | 2, 4, 6, 8; 5 | A1, A3, A2=D4, D5; A4 | |
A6 | 2, 3, 4, 5, 6, 7 | A1, A2, A3, A4, A5, A6 | |
B6 | 2, 4, 6, 8, 10, 12 | A1, A3=B2, A2=B3, B4, A4=B5, B6 | |
D6 | 2, 4, 6, 8, 10 | ||
E6 | 2, 5, 6, 8, 9, 12 | A1, A4, A2=D4=A5, A3=D5, ?, E6 | |
E7 | 2, 6, 8, 10, 12, 14, 18 | ||
E8 | 2, 8, 12, 14, 18, 20, 24, 30 |
Let me try using Coxeter–Dynkin_diagram#Geometric_foldings to express Coxeter planes as Coxeter numbers and all degrees of fundamental invariants. Foldings are shown by marking node with colors, re and blue, which map to node 1 or 2 in the rank 2 folded group.
A3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
4 | A3 | ||
3 | A2 | ||
2 | A1 |
B3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
6 | B3 | ||
3×2 | A2 | ||
4 | B2 | ||
2 | A1 |
H3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
10 | H3 | ||
5×2 | H2 | ||
3×2 | A2 | ||
2 | A1 |
A4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |
B4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
8 | B4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
D4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | D4=B3 | |||
3×2 | A2 | |||
= | 4 | D3=A3 | ||
4 | B2 | |||
2 | A1 |
F4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
12 | F4 | |||
4×2 | A3 | |||
4×2 | B2 | |||
6 | B3 | |||
3×2 | A2 | |||
2 | A1 |
H4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
30 | H4 | |||
20 | ||||
12 | F4 | |||
10 | H3 | |||
5×2 | H2 | |||
3×2 | A2 | |||
4 | A3 | |||
2 | A1 |
A5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | A5 | |||
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |
B5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
10 | B5 | |||
5×2 | A4 | |||
8 | B4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
D5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
8 | D5=B4 | |||
= | 6 | D4=B3 | ||
3×2 | A2 | |||
5 | A4 | |||
= | 4 | D3=A3 | ||
2 | A1 |
E6
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
12 | E6 = F4 | |||
9 | ||||
= | 8 | D5 = B4 | ||
6 | A5 | |||
= | 6 | D4 = B3 | ||
3×2 | A2 | |||
5 | A4 | |||
4 | A3 | |||
2 | A1 |