User:Tomruen/Coxeter foldings: Difference between revisions
Appearance
Content deleted Content added
(3 intermediate revisions by the same user not shown) | |||
Line 210: | Line 210: | ||
|{{CDD|node_c2|3|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6||B<sub>3</sub> |
|{{CDD|node_c2|3|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|4|node_c3|3|node_c2}} || {{CDD|node_c2|6|node_c3}} ||6||B<sub>3</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c3}} || || {{CDD|node_c2| |
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c3}} || || {{CDD|node_c2|6|node_c3}} ||3×2||A<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
|{{CDD|node_c2|3|node_c2|4|node_c2|3|node_c2}} || || {{CDD|node_c2}} || 2||A<sub>1</sub> |
||
Line 229: | Line 229: | ||
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|5|node_c3|3|node_c2|3|node_c2}} || {{CDD|node_c2|5|node_c3|3|node_c2}} || {{CDD|node_c2|10|node_c3}} ||10||H<sub>3</sub> |
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c2}}<BR>{{CDD|node_c2|5|node_c3|3|node_c2|3|node_c2}} || {{CDD|node_c2|5|node_c3|3|node_c2}} || {{CDD|node_c2|10|node_c3}} ||10||H<sub>3</sub> |
||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2| |
|{{CDD|node_c2|5|node_c3|3|node_c3|3|node_c3}} || || {{CDD|node_c2|10|node_c3}} ||5×2||H<sub>2</sub> |
||
|- align=center |
|- align=center |
||
|{{CDD|node_c2|5|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|5|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|3|node_c3}} ||3×2||A<sub>2</sub> |
|{{CDD|node_c2|5|node_c2|3|node_c3|3|node_c3}}<BR>{{CDD|node_c2|5|node_c2|3|node_c2|3|node_c3}} || || {{CDD|node_c2|3|node_c3}} ||3×2||A<sub>2</sub> |
||
Line 304: | Line 304: | ||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|- align=center |
||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c3}} || {{CDD|node_c2|3|node_c3|4|node_c2|3|node_c3}} ||{{CDD|node_c2|12|node_c3}} || 12||E<sub>6</sub> |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2|3ab|nodeab_c3}} || {{CDD|node_c2|3|node_c3|4|node_c2|3|node_c3}} ||{{CDD|node_c2|12|node_c3}} || 12||E<sub>6</sub> = F<sub>4</sub> |
||
|- align=center |
|- align=center |
||
| || ||{{CDD|node_c2|9|node_c3}} || 9|| |
| || ||{{CDD|node_c2|9|node_c3}} || 9|| |
||
Line 310: | Line 310: | ||
|- align=center BGCOLOR="#ffe0e0" |
|- align=center BGCOLOR="#ffe0e0" |
||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2-3|3ab|nodeab_c3-2}} || {{CDD|node_c3|3|node_c2|3|node_c3|split1|nodeab_c2}} = {{CDD|node_c3|3|node_c2|3|node_c3|4|node_c2}} ||{{CDD|node_c2|8|node_c3}} || 8||D<sub>5</sub> = B<sub>4</sub> |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c2-3|3ab|nodeab_c3-2}} || {{CDD|node_c3|3|node_c2|3|node_c3|split1|nodeab_c2}} = {{CDD|node_c3|3|node_c2|3|node_c3|4|node_c2}} ||{{CDD|node_c2|8|node_c3}} || 8||D<sub>5</sub> = B<sub>4</sub> |
||
⚫ | |||
⚫ | |{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c3|3ab|nodeab_c3-2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2-3|3ab|nodeab_c3}}<BR>{{CDD|node_c3|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c3-2}} |
||
⚫ | |||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
Line 324: | Line 321: | ||
|{{CDD|node_c2|3|node_c3|split1|nodeab_c3-2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3-2}} <BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2-3}} |
|{{CDD|node_c2|3|node_c3|split1|nodeab_c3-2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3-2}} <BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2-3}} |
||
||{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} ||{{CDD|node_c2|5|node_c3}} || 5||A<sub>4</sub> |
||{{CDD|node_c2|3|node_c3|3|node_c2|3|node_c3}} ||{{CDD|node_c2|5|node_c3}} || 5||A<sub>4</sub> |
||
⚫ | |||
⚫ | |{{CDD|node_c2|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c3|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c3|split1|nodeab_c3|3ab|nodeab_c3-2}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c3}}<BR>{{CDD|node_c2|3|node_c2|split1|nodeab_c2-3|3ab|nodeab_c3}}<BR>{{CDD|node_c3|3|node_c2|split1|nodeab_c3-2|3ab|nodeab_c3-2}} |
||
⚫ | |||
|- align=center |
|- align=center |
||
|{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c2}}|| || {{CDD|node_c2}} || 2||A<sub>1</sub> |
|{{CDD|node_c2|3|node_c2|split1|nodeab_c2|3ab|nodeab_c2}}|| || {{CDD|node_c2}} || 2||A<sub>1</sub> |
Latest revision as of 02:20, 31 October 2017
Coxeter group |
Coxeter diagram |
Degrees | Coxeter planes |
---|---|---|---|
A2 | 2, 3 | A1, A2 | |
B2 | 2, 4 | A1, B2 | |
H2 | 2, 5 | A1, H2 | |
A3 | 2, 3, 4 | A1, A2, A3 | |
B3 | 2, 4, 6 | A1, B2, A2=B3 | |
H3 | 2, 6, 10 | A1, A2, H2=H3 | |
A4 | 2, 3, 4, 5 | A1, A2, A3, A4 | |
B4 | 2, 4, 6, 8 | A1, A3, B2, A2=B3, B4 | |
D4 | 2, 4, 6 | A1, A3, A2=D4 | |
F4 | 2, 6, 8, 12 | A1, A3=B2, A2=B3, F4 | |
H4 | 2, 12, 20, 30 | A1, A2, A3, H2=H3, H4 | |
A5 | 2, 3, 4, 5, 6 | A1, A2, A3, A4, A5 | |
B5 | 2, 4, 6, 8, 10 | A1, A3=B2, A2=B3, B4, A4=B5 | |
D5 | 2, 4, 6, 8; 5 | A1, A3, A2=D4, D5; A4 | |
A6 | 2, 3, 4, 5, 6, 7 | A1, A2, A3, A4, A5, A6 | |
B6 | 2, 4, 6, 8, 10, 12 | A1, A3=B2, A2=B3, B4, A4=B5, B6 | |
D6 | 2, 4, 6, 8, 10 | ||
E6 | 2, 5, 6, 8, 9, 12 | A1, A4, A2=D4=A5, A3=D5, ?, E6 | |
E7 | 2, 6, 8, 10, 12, 14, 18 | ||
E8 | 2, 8, 12, 14, 18, 20, 24, 30 |
Let me try using Coxeter–Dynkin_diagram#Geometric_foldings to express Coxeter planes as Coxeter numbers and all degrees of fundamental invariants. Foldings are shown by marking node with colors, re and blue, which map to node 1 or 2 in the rank 2 folded group.
A3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
4 | A3 | ||
3 | A2 | ||
2 | A1 |
B3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
6 | B3 | ||
3×2 | A2 | ||
4 | B2 | ||
2 | A1 |
H3
[edit]Folding | Degree | Coxeter Plane | |
---|---|---|---|
10 | H3 | ||
5×2 | H2 | ||
3×2 | A2 | ||
2 | A1 |
A4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |
B4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
8 | B4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
D4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | D4=B3 | |||
3×2 | A2 | |||
= | 4 | D3=A3 | ||
4 | B2 | |||
2 | A1 |
F4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
12 | F4 | |||
4×2 | A3 | |||
4×2 | B2 | |||
6 | B3 | |||
3×2 | A2 | |||
2 | A1 |
H4
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
30 | H4 | |||
20 | ||||
12 | F4 | |||
10 | H3 | |||
5×2 | H2 | |||
3×2 | A2 | |||
4 | A3 | |||
2 | A1 |
A5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | A5 | |||
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |
B5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
10 | B5 | |||
5×2 | A4 | |||
8 | B4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
D5
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
8 | D5=B4 | |||
= | 6 | D4=B3 | ||
3×2 | A2 | |||
5 | A4 | |||
= | 4 | D3=A3 | ||
2 | A1 |
E6
[edit]Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
12 | E6 = F4 | |||
9 | ||||
= | 8 | D5 = B4 | ||
6 | A5 | |||
= | 6 | D4 = B3 | ||
3×2 | A2 | |||
5 | A4 | |||
4 | A3 | |||
2 | A1 |