Jump to content

Dual pair: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Herojoker (talk | contribs)
There are two articles on this topic. I merged all of this article's content into the article that had more content and made this article into a redirect.
Tag: New redirect
 
(29 intermediate revisions by 22 users not shown)
Line 1: Line 1:
#REDIRECT [[Dual system]]
{{Otheruses4|dual pairs of vector spaces|dual pairs in representation theory|Reductive dual pair}}

In [[functional analysis]] and related areas of [[mathematics]] a '''dual pair''' or '''dual system''' is a pair of [[vector spaces]] with an associated [[bilinear form]].

A common method in functional analysis, when studying [[normed vector space]]s, is to analyze the relationship of the space to its [[continuous dual]], the vector space of all possible [[continuous linear form]]s on the original space. A dual pair generalizes this concept to arbitrary vector spaces, with the duality being expressed by a bilinear form. Using the bilinear form, [[semi norm]]s can be constructed to define a [[polar topology]] on the vector spaces and turn them into [[locally convex spaces]], generalizations of normed vector spaces.

== Definition ==

A '''dual pair''' is a 3-tuple <math>(X,Y,\langle , \rangle)</math> consisting of two [[vector space]]s <math>X</math> and <math>Y</math> over the same ([[real number|real]] or [[complex numbers|complex]]) [[field (mathematics)|field]] <math>\mathbb{F}</math> and a [[bilinear form]]
:<math>\langle , \rangle : X \times Y \to \mathbb{F}</math>
with
:<math>\forall x \in X \setminus \{0\} \quad \exists y \in Y : \langle x,y \rangle \neq 0</math>
and
:<math>\forall y \in Y \setminus \{0\} \quad \exists x \in X : \langle x,y \rangle \neq 0</math>

We say <math>\langle , \rangle</math> puts <math>X</math> and <math>Y</math> '''in duality'''.

We call two elements <math>x \in X</math> and <math>y \in Y</math> '''orthogonal''' if
:<math>\langle x, y\rangle = 0.</math>
We call two sets <math>M \subseteq X</math> and <math>N \subseteq Y</math> '''orthogonal''' if any two elements of <math>M</math> and <math>N</math> are orthogonal.

==Example==

A vector space <math>V </math> together with its [[algebraic dual]] <math>V^*</math> and the bilinear form defined as
:<math>\langle x, f\rangle := f(x) \qquad x \in V \mbox{ , } f \in V^*</math>
forms a dual pair.

A [[locally convex topological vector space]] space <math>E </math> together with its [[Dual_vector_space#Continuous_dual_space|topological dual]] <math>E'</math> and the bilinear form defined as
:<math>\langle x, f\rangle := f(x) \qquad x \in E \mbox{ , } f \in E'</math>
forms a dual pair. (to show this, the [[Hahn-Banach theorem]] is needed)

For each dual pair <math>(X,Y,\langle , \rangle)</math> we can define a new dual pair <math>(Y,X,\langle , \rangle')</math> with
:<math>\langle , \rangle': (y,x) \to \langle x , y\rangle</math>

A [[sequence space]] <math>E</math> and its [[beta dual]] <math>E^\beta</math> with the bilinear form defined as
:<math>\langle x, y\rangle := \sum_{i=1}^{\infty} x_i y_i \quad x \in E , y \in E^\beta</math>
form a dual pair.

== See also ==

*[[dual topology]]
*[[polar set]]
*[[polar topology]]
*[[reductive dual pair]]

[[Category:Functional analysis]]
[[Category:Duality theories]]

[[pl:Para dwoista]]

Latest revision as of 14:59, 14 May 2020

Redirect to: