Jump to content

Dual pair: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
There are two articles on this topic. I merged all of this article's content into the article that had more content and made this article into a redirect.
Tag: New redirect
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
#REDIRECT [[Dual system]]
{{About|dual pairs of vector spaces|dual pairs in representation theory|Reductive dual pair}}
In [[functional analysis]] and related areas of [[mathematics]] a '''dual pair''' or '''dual system''' is a pair of [[vector spaces]] with an associated [[bilinear map]] to the [[base field]].

A common method in functional analysis, when studying [[normed vector space]]s, is to analyze the relationship of the space to its [[continuous dual]], the vector space of all possible [[continuous linear form]]s on the original space. A dual pair generalizes this concept to arbitrary vector spaces, with the duality being expressed as a bilinear map. Using the bilinear map, [[semi norm]]s can be constructed to define a [[polar topology]] on the vector spaces and turn them into [[locally convex spaces]], generalizations of normed vector spaces.

==Definition==
A '''dual pair'''<ref name=Jarchow>{{cite book|last=Jarchow|first=Hans|title=Locally convex spaces|year=1981|location=Stuttgart|isbn=9783519022244|pages=145–146}}</ref> is a 3-tuple <math>(X,Y,\langle \cdot, \cdot \rangle)</math> consisting of two [[vector space]]s <math>X</math> and <math>Y</math> over the same [[field (mathematics)|field]] <math>F</math> and a [[bilinear map]]
:<math>\langle \cdot, \cdot \rangle : X \times Y \to F</math>
with
:<math>\forall x \in X \setminus \{0\} \quad \exists y \in Y : \langle x,y \rangle \neq 0</math>
and
:<math>\forall y \in Y \setminus \{0\} \quad \exists x \in X : \langle x,y \rangle \neq 0</math>

If the vector spaces are finite dimensional this means that the bilinear form is [[degenerate bilinear form|non-degenerate]].

We call <math>\langle \cdot, \cdot \rangle</math> the '''duality pairing''', and say that it puts <math>X</math> and <math>Y</math> '''in duality'''.

When the two spaces are a vector space <math>X</math> (or a [[Module (mathematics)|module]] over a [[Ring (mathematics)|ring]] in general) and its [[dual space|dual]] <math>X^*</math>, we call the canonical duality pairing <math> \langle \cdot,\cdot \rangle : X^* \times X \rarr F : (\varphi, x) \mapsto \varphi(x)</math> the {{citation needed span|date=July 2019|text='''natural pairing'''}}.

We call two elements <math>x \in X</math> and <math>y \in Y</math> '''orthogonal''' if
:<math>\langle x, y\rangle = 0.</math>
We call two sets <math>M \subseteq X</math> and <math>N \subseteq Y</math> '''orthogonal''' if each pair of elements from <math>M</math> and <math>N</math> are orthogonal.

==Example==
A vector space <math>V</math> together with its [[algebraic dual]] <math>V^*</math> and the bilinear map defined as
:<math>\langle x, f\rangle := f(x) \qquad x \in V \mbox{ , } f \in V^*</math>
forms a dual pair.

A [[locally convex topological vector space]] <math>E</math> together with its [[Dual vector space#Continuous dual space|topological dual]] <math>E'</math> and the bilinear map defined as
:<math>\langle x, f\rangle := f(x) \qquad x \in E \mbox{ , } f \in E'</math>
forms a dual pair. (To show this, the [[Hahn–Banach theorem]] is needed.)

For each dual pair <math>(X,Y,\langle , \rangle)</math> we can define a new dual pair <math>(Y,X,\langle , \rangle')</math> with
:<math>\langle , \rangle': (y,x) \mapsto \langle x , y\rangle</math>

A [[sequence space]] <math>E</math> and its [[beta dual]] <math>E^\beta</math> with the bilinear map defined as
:<math>\langle x, y\rangle := \sum_{i=1}^{\infty} x_i y_i \quad x \in E , y \in E^\beta</math>
form a dual pair.

==Comment==
Associated with a dual pair <math>(X,Y,\langle , \rangle)</math> is an [[Injective function|injective]] linear map from <math>X</math> to <math>Y^*</math> given by
:<math>x \mapsto (y \mapsto \langle x , y\rangle)</math>
There is an analogous injective map from <math>Y</math> to <math>X^*</math>.

In particular, if either of <math>X</math> or <math>Y</math> is finite-dimensional, these maps are isomorphisms.

==See also==
*[[dual topology]]
*[[pairing]]
*[[polar set]]
*[[polar topology]]
*[[reductive dual pair]]

==References==
{{Reflist}}

{{DEFAULTSORT:Dual Pair}}
[[Category:Functional analysis]]
[[Category:Duality theories|Pair]]

Latest revision as of 14:59, 14 May 2020

Redirect to: