Meixner–Pollaczek polynomials: Difference between revisions
Created properties section; added reference for orthogonality relation |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
⚫ | |||
{{distinguish|Meixner polynomials}} |
{{distinguish|Meixner polynomials}} |
||
⚫ | |||
In mathematics, the '''Meixner–Pollaczek polynomials''' are a family of [[orthogonal polynomials]] ''P''{{su|b=''n''|p=(λ)}}(''x'',φ) introduced by {{harvs|txt|authorlink=Josef Meixner|last=Meixner|year=1934}}, which up to elementary changes of variables are the same as the '''Pollaczek polynomials''' ''P''{{su|b=''n''|p=λ}}(''x'',''a'',''b'') rediscovered by {{harvs|txt|authorlink=Felix Pollaczek|last=Pollaczek|year=1949}} in the case λ=1/2, and later generalized by him. |
In mathematics, the '''Meixner–Pollaczek polynomials''' are a family of [[orthogonal polynomials]] ''P''{{su|b=''n''|p=(λ)}}(''x'',φ) introduced by {{harvs|txt|authorlink=Josef Meixner|last=Meixner|year=1934}}, which up to elementary changes of variables are the same as the '''Pollaczek polynomials''' ''P''{{su|b=''n''|p=λ}}(''x'',''a'',''b'') rediscovered by {{harvs|txt|authorlink=Felix Pollaczek|last=Pollaczek|year=1949}} in the case λ=1/2, and later generalized by him. |
||
Line 6: | Line 6: | ||
:<math>P_n^{(\lambda)}(x;\phi) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c} -n,~\lambda+ix\\ 2\lambda \end{array}; 1-e^{-2i\phi}\right)</math> |
:<math>P_n^{(\lambda)}(x;\phi) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c} -n,~\lambda+ix\\ 2\lambda \end{array}; 1-e^{-2i\phi}\right)</math> |
||
:<math>P_n^{\lambda}(\cos \phi;a,b) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c}-n,~\lambda+i(a\cos \phi+b)/\sin \phi\\ 2\lambda \end{array};1-e^{-2i\phi}\right)</math> |
:<math>P_n^{\lambda}(\cos \phi;a,b) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c}-n,~\lambda+i(a\cos \phi+b)/\sin \phi\\ 2\lambda \end{array};1-e^{-2i\phi}\right)</math> |
||
==Examples== |
|||
The first few Meixner–Pollaczek polynomials are |
|||
:<math>P_0^{(\lambda)}(x;\phi)=1</math> |
|||
:<math>P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi)</math> |
|||
:<math>P_2^{(\lambda)}(x;\phi)=x^2+\lambda^2+(\lambda^2+\lambda-x^2)\cos(2\phi)+(1+2\lambda)x\sin(2\phi).</math> |
|||
==Properties== |
==Properties== |
||
Line 11: | Line 18: | ||
===Orthogonality=== |
===Orthogonality=== |
||
The |
The Meixner–Pollaczek polynomials ''P''<sub>m</sub><sup>(λ)</sup>(''x'';φ) are orthogonal on the real line with respect to the weight function |
||
:<math> w(x; \lambda, \phi)= |\Gamma(\lambda+ix)|^2 e^{(2\phi-\pi)x} |
:<math> w(x; \lambda, \phi)= |\Gamma(\lambda+ix)|^2 e^{(2\phi-\pi)x}</math> |
||
and the orthogonality is given by<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref> |
and the orthogonality relation is given by<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref> |
||
:<math>\int_{-\infty}^{\infty}P_n^{(\lambda)}(x;\phi)P_m^{(\lambda)}(x;\phi)w(x; \lambda, \phi)dx=\frac{2\pi\Gamma(n+2\lambda)}{(2\sin\phi)^{2\lambda}n!}\delta_{mn}</math> |
:<math>\int_{-\infty}^{\infty}P_n^{(\lambda)}(x;\phi)P_m^{(\lambda)}(x;\phi)w(x; \lambda, \phi)dx=\frac{2\pi\Gamma(n+2\lambda)}{(2\sin\phi)^{2\lambda}n!}\delta_{mn},\quad \lambda>0,\quad 0<\phi<\pi.</math> |
||
===Recurrence relation=== |
|||
The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref> |
|||
:<math>(n+1)P_{n+1}^{(\lambda)}(x;\phi)=2\bigl(x\sin\phi + (n+\lambda)\cos\phi\bigr)P_n^{(\lambda)}(x;\phi)-(n+2\lambda-1)P_{n-1}(x;\phi).</math> |
|||
===Rodrigues formula=== |
|||
The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula<ref>Koekoek, Lesky, & Swarttouw (2010), p. 214.</ref> |
|||
:<math>P_n^{(\lambda)}(x;\phi)=\frac{(-1)^n}{n!\,w(x;\lambda,\phi)}\frac{d^n}{dx^n}w\left(x;\lambda+\tfrac12n,\phi\right),</math> |
|||
where ''w''(''x'';λ,φ) is the weight function given above. |
|||
===Generating function=== |
|||
The Meixner–Pollaczek polynomials have the generating function<ref>Koekoek, Lesky, & Swarttouw (2010), p. 215.</ref> |
|||
:<math>\sum_{n=0}^{\infty}t^n P_n^{(\lambda)}(x;\phi) = (1-e^{i\phi}t)^{-\lambda+ix}(1-e^{-i\phi}t)^{-\lambda-ix}.</math> |
|||
==See also== |
==See also== |
||
Line 21: | Line 44: | ||
==References== |
==References== |
||
{{Reflist}} |
|||
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} |
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} |
Latest revision as of 14:55, 17 June 2020
This article needs additional citations for verification. (March 2016) |
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomials Pλ
n(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.
They are defined by
Examples
[edit]The first few Meixner–Pollaczek polynomials are
Properties
[edit]Orthogonality
[edit]The Meixner–Pollaczek polynomials Pm(λ)(x;φ) are orthogonal on the real line with respect to the weight function
and the orthogonality relation is given by[1]
Recurrence relation
[edit]The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation[2]
Rodrigues formula
[edit]The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula[3]
where w(x;λ,φ) is the weight function given above.
Generating function
[edit]The Meixner–Pollaczek polynomials have the generating function[4]
See also
[edit]References
[edit]- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Pollaczek Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Meixner, J. (1934), "Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion", J. London Math. Soc., s1-9: 6–13, doi:10.1112/jlms/s1-9.1.6
- Pollaczek, Félix (1949), "Sur une généralisation des polynomes de Legendre", Les Comptes rendus de l'Académie des sciences, 228: 1363–1365, MR 0030037