Jump to content

Meixner–Pollaczek polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nejssor (talk | contribs)
Created properties section; added reference for orthogonality relation
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Refimprove|date=March 2016}}
{{distinguish|Meixner polynomials}}
{{distinguish|Meixner polynomials}}
{{More citations needed|date=March 2016}}
In mathematics, the '''Meixner–Pollaczek polynomials''' are a family of [[orthogonal polynomials]] ''P''{{su|b=''n''|p=(λ)}}(''x'',φ) introduced by {{harvs|txt|authorlink=Josef Meixner|last=Meixner|year=1934}}, which up to elementary changes of variables are the same as the '''Pollaczek polynomials''' ''P''{{su|b=''n''|p=λ}}(''x'',''a'',''b'') rediscovered by {{harvs|txt|authorlink=Felix Pollaczek|last=Pollaczek|year=1949}} in the case λ=1/2, and later generalized by him.
In mathematics, the '''Meixner–Pollaczek polynomials''' are a family of [[orthogonal polynomials]] ''P''{{su|b=''n''|p=(λ)}}(''x'',φ) introduced by {{harvs|txt|authorlink=Josef Meixner|last=Meixner|year=1934}}, which up to elementary changes of variables are the same as the '''Pollaczek polynomials''' ''P''{{su|b=''n''|p=λ}}(''x'',''a'',''b'') rediscovered by {{harvs|txt|authorlink=Felix Pollaczek|last=Pollaczek|year=1949}} in the case λ=1/2, and later generalized by him.


Line 6: Line 6:
:<math>P_n^{(\lambda)}(x;\phi) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c} -n,~\lambda+ix\\ 2\lambda \end{array}; 1-e^{-2i\phi}\right)</math>
:<math>P_n^{(\lambda)}(x;\phi) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c} -n,~\lambda+ix\\ 2\lambda \end{array}; 1-e^{-2i\phi}\right)</math>
:<math>P_n^{\lambda}(\cos \phi;a,b) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c}-n,~\lambda+i(a\cos \phi+b)/\sin \phi\\ 2\lambda \end{array};1-e^{-2i\phi}\right)</math>
:<math>P_n^{\lambda}(\cos \phi;a,b) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1\left(\begin{array}{c}-n,~\lambda+i(a\cos \phi+b)/\sin \phi\\ 2\lambda \end{array};1-e^{-2i\phi}\right)</math>

==Examples==

The first few Meixner–Pollaczek polynomials are
:<math>P_0^{(\lambda)}(x;\phi)=1</math>
:<math>P_1^{(\lambda)}(x;\phi)=2(\lambda\cos\phi + x\sin\phi)</math>
:<math>P_2^{(\lambda)}(x;\phi)=x^2+\lambda^2+(\lambda^2+\lambda-x^2)\cos(2\phi)+(1+2\lambda)x\sin(2\phi).</math>


==Properties==
==Properties==
Line 11: Line 18:
===Orthogonality===
===Orthogonality===


The Meixner-Pollaczek polynomials are orthogonal on the real line with respect to the weight function
The Meixner–Pollaczek polynomials ''P''<sub>m</sub><sup>(λ)</sup>(''x'';φ) are orthogonal on the real line with respect to the weight function
:<math> w(x; \lambda, \phi)= |\Gamma(\lambda+ix)|^2 e^{(2\phi-\pi)x},</math>
:<math> w(x; \lambda, \phi)= |\Gamma(\lambda+ix)|^2 e^{(2\phi-\pi)x}</math>
and the orthogonality is given by<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref>
and the orthogonality relation is given by<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref>
:<math>\int_{-\infty}^{\infty}P_n^{(\lambda)}(x;\phi)P_m^{(\lambda)}(x;\phi)w(x; \lambda, \phi)dx=\frac{2\pi\Gamma(n+2\lambda)}{(2\sin\phi)^{2\lambda}n!}\delta_{mn}</math>
:<math>\int_{-\infty}^{\infty}P_n^{(\lambda)}(x;\phi)P_m^{(\lambda)}(x;\phi)w(x; \lambda, \phi)dx=\frac{2\pi\Gamma(n+2\lambda)}{(2\sin\phi)^{2\lambda}n!}\delta_{mn},\quad \lambda>0,\quad 0<\phi<\pi.</math>

===Recurrence relation===

The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 213.</ref>
:<math>(n+1)P_{n+1}^{(\lambda)}(x;\phi)=2\bigl(x\sin\phi + (n+\lambda)\cos\phi\bigr)P_n^{(\lambda)}(x;\phi)-(n+2\lambda-1)P_{n-1}(x;\phi).</math>

===Rodrigues formula===

The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula<ref>Koekoek, Lesky, & Swarttouw (2010), p. 214.</ref>
:<math>P_n^{(\lambda)}(x;\phi)=\frac{(-1)^n}{n!\,w(x;\lambda,\phi)}\frac{d^n}{dx^n}w\left(x;\lambda+\tfrac12n,\phi\right),</math>
where ''w''(''x'';λ,φ) is the weight function given above.

===Generating function===

The Meixner–Pollaczek polynomials have the generating function<ref>Koekoek, Lesky, & Swarttouw (2010), p. 215.</ref>
:<math>\sum_{n=0}^{\infty}t^n P_n^{(\lambda)}(x;\phi) = (1-e^{i\phi}t)^{-\lambda+ix}(1-e^{-i\phi}t)^{-\lambda-ix}.</math>


==See also==
==See also==
Line 21: Line 44:


==References==
==References==
{{Reflist}}


*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
*{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}

Latest revision as of 14:55, 17 June 2020

In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n
(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomials Pλ
n
(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.

They are defined by

Examples

[edit]

The first few Meixner–Pollaczek polynomials are

Properties

[edit]

Orthogonality

[edit]

The Meixner–Pollaczek polynomials Pm(λ)(x;φ) are orthogonal on the real line with respect to the weight function

and the orthogonality relation is given by[1]

Recurrence relation

[edit]

The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation[2]

Rodrigues formula

[edit]

The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula[3]

where w(x;λ,φ) is the weight function given above.

Generating function

[edit]

The Meixner–Pollaczek polynomials have the generating function[4]

See also

[edit]

References

[edit]
  1. ^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
  2. ^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
  3. ^ Koekoek, Lesky, & Swarttouw (2010), p. 214.
  4. ^ Koekoek, Lesky, & Swarttouw (2010), p. 215.
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Pollaczek Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Meixner, J. (1934), "Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion", J. London Math. Soc., s1-9: 6–13, doi:10.1112/jlms/s1-9.1.6
  • Pollaczek, Félix (1949), "Sur une généralisation des polynomes de Legendre", Les Comptes rendus de l'Académie des sciences, 228: 1363–1365, MR 0030037