Brunner's glands: Difference between revisions
Assem Khidhr (talk | contribs) Changing short description from "Duodenal submucosal structures secreting bicarbonate-rich mucus" to "Duodenal submucosal cells secreting bicarbonate-rich mucus" (Shortdesc helper) |
Citation bot (talk | contribs) Alter: author, pages. Added pmc-embargo-date. Removed URL that duplicated identifier. Formatted dashes. | Use this bot. Report bugs. | Suggested by Jay8g | Category:CS1 maint: extra punctuation | #UCB_Category 3/8 |
||
(24 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Duodenal submucosal cells secreting bicarbonate-rich mucus}} |
{{short description|Duodenal submucosal cells secreting bicarbonate-rich mucus}} |
||
{{More citations needed|date=May 2021}} |
|||
{{Infobox microanatomy |
{{Infobox microanatomy |
||
| Name = Brunner |
| Name = Brunner's glands |
||
| Latin = glandulae duodenales |
| Latin = glandulae duodenales |
||
| Image = gray1058.png |
| Image = gray1058.png |
||
Line 8: | Line 9: | ||
| Caption2 = |
| Caption2 = |
||
| Location = [[Duodenum]] |
| Location = [[Duodenum]] |
||
| System = [[Digestive system]] |
| System = [[Digestion|Digestive system]] |
||
}} |
}} |
||
'''Brunner's glands''' (or '''duodenal glands''') are compound |
'''Brunner's glands''' (or '''duodenal glands''') are compound tubuloalveolar [[submucosa]]l [[gland]]s found in that portion of the [[duodenum]] proximal to the [[hepatopancreatic sphincter]] (i.e '''sphincter of Oddi''').{{citation needed|date=November 2023}} |
||
⚫ | |||
For decades, it was believed that the main function of the glands is to secrete alkaline ([[bicarbonate]]-containing) mucus in order to:{{citation needed|date=November 2023}} |
|||
* provide an alkaline condition for the intestinal enzymes to be active, thus enabling absorption to take place; |
|||
⚫ | |||
* provide an alkaline environment which promotes the activity of intestinal enzymes, |
|||
* lubricate the intestinal walls. |
* lubricate the intestinal walls. |
||
However, more recent studies have demonstrated that Brunner’s glands actually act as major modulators of the gut microbiome and systemic immunity. |
|||
⚫ | They also secrete [[epidermal growth factor]], which inhibits [[parietal cell|parietal]] and [[chief cell]]s of the stomach from secreting acid and their digestive enzymes.<ref>{{Cite journal| |
||
They are the distinguishing feature of the duodenum, and are named for the [[Switzerland|Swiss]] physician who first described them, [[Johann Conrad Brunner]]. |
They are the distinguishing feature of the duodenum, and are named for the [[Switzerland|Swiss]] physician who first described them, [[Johann Conrad Brunner]].{{citation needed|date=November 2023}}[[File:Duodenum-brunner's glands.JPG|thumb|360px|right|Human Brunner's gland]] |
||
[[File:Duodenum-brunner's glands.JPG|thumb|360px|right|Human Brunner's gland]] |
|||
==Structure== |
==Structure== |
||
Duodenal glands are situated within the mucosa and submucosa of the duodenum. They are most abundant near the pylorus, growing shorter and more sparse distally towards the terminal portion of the duodenum.<ref name=":0">{{Cite web |title=Dictionnaire médical de l'Académie de Médecine |url=https://www.academie-medecine.fr/le-dictionnaire/index.php?q=glandes+duod%C3%A9nales |access-date=2023-11-10 |website=www.academie-medecine.fr}}</ref> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | The Brunner glands, which empty into the [[intestinal glands]], secrete an alkaline fluid composed of mucin, which exerts a physiologic anti-acid function by coating the duodenal epithelium, therefore protecting it from the acid chyme of the stomach. Furthermore, in response to the presence of acid in the duodenum, these glands secrete pepsinogen and urogastrone, which inhibit gastric acid secretion.{{citation needed|date=May 2014}} |
||
⚫ | |||
The main function of these glands is to produce a mucus-rich alkaline secretion (containing [[bicarbonate]]) in order to: |
|||
Their excretory cannals are tortuous, opening at the bases of the villi.<ref name=":0" /> |
|||
* protect the duodenum from the acidic content of [[chyme]] (which is introduced into the duodenum from the [[stomach]]) |
|||
* provide an alkaline condition for the intestinal enzymes to be active, thus enabling absorption to take place |
|||
Two forms of duodenal glands are distinguished: the external group (which are more voluminous and extend into the duodenal submucosa), and the internal group (which are smaller and are situated within the duodenal mucosa).<ref name=":0" /> |
|||
* lubricate the intestinal walls |
|||
⚫ | |||
⚫ | They also secrete [[epidermal growth factor]], which inhibits [[parietal cell|parietal]] and [[chief cell]]s of the stomach from secreting acid and their digestive enzymes.<ref>{{Cite journal |last1=Gregory |first1=H. |last2=Preston |first2=B. M. |date=1977-01-01 |title=The primary structure of human urogastrone |journal=International Journal of Peptide and Protein Research |volume=9 |issue=2 |pages=107–118 |doi=10.1111/j.1399-3011.1977.tb03470.x |issn=0367-8377 |pmid=300079}}</ref>{{citation needed|date=May 2015}} This is another form of protection for the duodenum.{{citation needed|date=November 2023}} |
||
⚫ | The Brunner glands, which empty into the [[intestinal glands]], secrete an alkaline fluid composed of [[mucin]], which exerts a physiologic anti-acid function by coating the duodenal epithelium, therefore protecting it from the acid chyme of the stomach. Furthermore, in response to the presence of acid in the duodenum, these glands secrete [[pepsinogen]] and [[urogastrone]], which inhibit gastric acid secretion.{{citation needed|date=May 2014}} |
||
More recent studies have demonstrated that Brunner’s glands are major modulators of the gut microbiome and systemic immunity. Studies conducted by [[Ivan De Araujo]]’s laboratory revealed that Brunner’s gland secretions promote the proliferation of probiotics and protect the host against foreign pathogens.<ref name="pmid39121857">{{cite journal| author=Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo I | display-authors=etal| title=Stress-sensitive neural circuits change the gut microbiome via duodenal glands. | journal=Cell | year= 2024 | volume= 187 | issue= 19 | pages= 5393–5412.e30 | pmid=39121857 | doi=10.1016/j.cell.2024.07.019 | pmc=11425084 | pmc-embargo-date=September 19, 2025}} </ref> |
|||
==Clinical significance== |
==Clinical significance== |
||
Hyperplasia of Brunner glands with a lesion greater than 1 cm was initially described as a Brunner gland adenoma. Several features of these lesions favor their designation as [[hamartoma]]s, including the lack of encapsulation; the mixture of acini, smooth muscles, adipose tissue, Paneth cells, and mucosal glands; and the lack of any cell atypia. These hamartomas are rare, with approximately 150 cases described in the literature. It is estimated that they represent approximately 5–10% of benign duodenal tumors. They are variable in size, typically 1–3 cm, with only a few reported cases of lesions larger than 5 cm. |
Hyperplasia of Brunner glands with a lesion greater than 1 cm was initially described as a Brunner gland adenoma. Several features of these lesions favor their designation as [[hamartoma]]s, including the lack of encapsulation; the mixture of acini, smooth muscles, adipose tissue, Paneth cells, and mucosal glands; and the lack of any cell atypia. These hamartomas are rare, with approximately 150 cases described in the literature. It is estimated that they represent approximately 5–10% of benign duodenal tumors. They are variable in size, typically 1–3 cm, with only a few reported cases of lesions larger than 5 cm.{{citation needed|date=November 2023}} |
||
⚫ | |||
⚫ | Most reports in the literature describe local surgical resection of Brunner gland hamartoma via duodenotomy. Increasingly, successful endoscopic resection has been reported and is primarily used for [[pedunculated]] Brunner gland hamartomas. The endoscopic approach in selective cases appears to be safe, less invasive, and less costly.{{citation needed|date=May 2018}} |
||
⚫ | |||
Consistent with the more recent idea that Brunner’s glands influence systemic immunity via the microbiome, patients who had the duodenal bulb removed (where the glands are mostly located) showed greater alterations in immune factors compared to patients having more distal parts of the duodenum removed.<ref name="pmid39121857" /> |
|||
⚫ | Most reports in the literature describe local surgical resection of Brunner gland hamartoma via duodenotomy. Increasingly, successful endoscopic resection has been reported and is primarily used for pedunculated Brunner gland hamartomas. The endoscopic approach in selective cases appears to be safe, less invasive, and less costly.{{citation needed|date=May 2018}} |
||
==See also== |
==See also== |
||
*[[Peutz–Jeghers syndrome]] |
*[[Peutz–Jeghers syndrome]] |
||
*[[List of distinct cell types in the adult human body]] |
|||
==References== |
==References== |
Latest revision as of 19:30, 15 November 2024
This article needs additional citations for verification. (May 2021) |
Brunner's glands | |
---|---|
Details | |
System | Digestive system |
Location | Duodenum |
Identifiers | |
Latin | glandulae duodenales |
MeSH | D002011 |
TA98 | A05.6.02.017 |
TA2 | 2957 |
FMA | 71622 |
Anatomical terms of microanatomy |
Brunner's glands (or duodenal glands) are compound tubuloalveolar submucosal glands found in that portion of the duodenum proximal to the hepatopancreatic sphincter (i.e sphincter of Oddi).[citation needed]
For decades, it was believed that the main function of the glands is to secrete alkaline (bicarbonate-containing) mucus in order to:[citation needed]
- protect the duodenum from the acidic content of chyme (which enters the duodenum from the stomach),
- provide an alkaline environment which promotes the activity of intestinal enzymes,
- lubricate the intestinal walls.
However, more recent studies have demonstrated that Brunner’s glands actually act as major modulators of the gut microbiome and systemic immunity.
They are the distinguishing feature of the duodenum, and are named for the Swiss physician who first described them, Johann Conrad Brunner.[citation needed]
Structure
[edit]Duodenal glands are situated within the mucosa and submucosa of the duodenum. They are most abundant near the pylorus, growing shorter and more sparse distally towards the terminal portion of the duodenum.[1]
The duodenum can be distinguished from the jejunum and ileum by the presence of Brunner's glands in the submucosa.[citation needed]
Histology
[edit]Their excretory cannals are tortuous, opening at the bases of the villi.[1]
Two forms of duodenal glands are distinguished: the external group (which are more voluminous and extend into the duodenal submucosa), and the internal group (which are smaller and are situated within the duodenal mucosa).[1]
Function
[edit]They also secrete epidermal growth factor, which inhibits parietal and chief cells of the stomach from secreting acid and their digestive enzymes.[2][citation needed] This is another form of protection for the duodenum.[citation needed]
The Brunner glands, which empty into the intestinal glands, secrete an alkaline fluid composed of mucin, which exerts a physiologic anti-acid function by coating the duodenal epithelium, therefore protecting it from the acid chyme of the stomach. Furthermore, in response to the presence of acid in the duodenum, these glands secrete pepsinogen and urogastrone, which inhibit gastric acid secretion.[citation needed]
More recent studies have demonstrated that Brunner’s glands are major modulators of the gut microbiome and systemic immunity. Studies conducted by Ivan De Araujo’s laboratory revealed that Brunner’s gland secretions promote the proliferation of probiotics and protect the host against foreign pathogens.[3]
Clinical significance
[edit]Hyperplasia of Brunner glands with a lesion greater than 1 cm was initially described as a Brunner gland adenoma. Several features of these lesions favor their designation as hamartomas, including the lack of encapsulation; the mixture of acini, smooth muscles, adipose tissue, Paneth cells, and mucosal glands; and the lack of any cell atypia. These hamartomas are rare, with approximately 150 cases described in the literature. It is estimated that they represent approximately 5–10% of benign duodenal tumors. They are variable in size, typically 1–3 cm, with only a few reported cases of lesions larger than 5 cm.[citation needed]
Most patients with Brunner gland hamartomas are asymptomatic or have nonspecific complaints such as nausea, bloating, or vague abdominal pain.[citation needed]
Most reports in the literature describe local surgical resection of Brunner gland hamartoma via duodenotomy. Increasingly, successful endoscopic resection has been reported and is primarily used for pedunculated Brunner gland hamartomas. The endoscopic approach in selective cases appears to be safe, less invasive, and less costly.[citation needed]
Consistent with the more recent idea that Brunner’s glands influence systemic immunity via the microbiome, patients who had the duodenal bulb removed (where the glands are mostly located) showed greater alterations in immune factors compared to patients having more distal parts of the duodenum removed.[3]
See also
[edit]References
[edit]- ^ a b c "Dictionnaire médical de l'Académie de Médecine". www.academie-medecine.fr. Retrieved 2023-11-10.
- ^ Gregory, H.; Preston, B. M. (1977-01-01). "The primary structure of human urogastrone". International Journal of Peptide and Protein Research. 9 (2): 107–118. doi:10.1111/j.1399-3011.1977.tb03470.x. ISSN 0367-8377. PMID 300079.
- ^ a b Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo I; et al. (2024). "Stress-sensitive neural circuits change the gut microbiome via duodenal glands". Cell. 187 (19): 5393–5412.e30. doi:10.1016/j.cell.2024.07.019. PMC 11425084. PMID 39121857.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
External links
[edit]- Histology image: 11504loa – Histology Learning System at Boston University - "Digestive System: Alimentary Canal: pyloro/duodenal junction, duodenum"
- Histology image: 11513loa – Histology Learning System at Boston University - "Digestive System: Alimentary Canal: pyloro/duodenal junction"
- Histology image: 11609loa – Histology Learning System at Boston University - "Digestive System: Alimentary Canal: duodenum, plicae circularis"