Property B: Difference between revisions
Link to set-splitting problem. |
m Moving Category:Set families to Category:Families of sets per Wikipedia:Categories for discussion/Log/2022 August 17#Category:Set families |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{for|the B-property in finite group theory|B-theorem}} |
{{for|the B-property in finite group theory|B-theorem}} |
||
In [[mathematics]], '''Property B''' is a certain [[set theory|set theoretic]] property. Formally, given a [[finite set]] ''X'', a collection ''C'' of [[subset]]s of ''X'' |
In [[mathematics]], '''Property B''' is a certain [[set theory|set theoretic]] property. Formally, given a [[finite set]] ''X'', a collection ''C'' of [[subset]]s of ''X'' has Property B if we can partition ''X'' into two disjoint subsets ''Y'' and ''Z'' such that every set in ''C'' meets both ''Y'' and ''Z''. |
||
The property gets its name from mathematician [[Felix Bernstein (mathematician)|Felix Bernstein]], who first introduced the property in 1908.<ref>{{citation|last=Bernstein|first=F.|title=Zur theorie der trigonometrische Reihen|journal=Leipz. Ber.|volume=60|year=1908|pages=325–328}}.</ref> |
The property gets its name from mathematician [[Felix Bernstein (mathematician)|Felix Bernstein]], who first introduced the property in 1908.<ref>{{citation|last=Bernstein|first=F.|title=Zur theorie der trigonometrische Reihen|journal=Leipz. Ber.|volume=60|year=1908|pages=325–328}}.</ref> |
||
Line 14: | Line 14: | ||
| title = On 3-chromatic hypergraphs |
| title = On 3-chromatic hypergraphs |
||
| volume = 24 |
| volume = 24 |
||
| year = 1978 |
| year = 1978| doi-access = free |
||
}}</ref> |
|||
The problem of checking whether a collection ''C'' has Property B is called the [[set splitting problem]]. |
The problem of checking whether a collection ''C'' has Property B is called the [[set splitting problem]]. |
||
Line 53: | Line 54: | ||
==Further reading== |
==Further reading== |
||
*{{citation|last=Erdős|first=Paul|title=On a combinatorial problem|journal=Nordisk Mat. Tidskr.|year=1963|pages=5–10|volume=11|ref=none}} |
*{{citation|last=Erdős|first=Paul|title=On a combinatorial problem|journal=Nordisk Mat. Tidskr.|year=1963|pages=5–10|volume=11|ref=none}} |
||
*{{Cite journal| first1 = P.| title = On a combinatorial problem. II| journal = Acta Mathematica Academiae Scientiarum Hungaricae| last1 = Erdős| volume = 15| issue = 3–4| pages = 445–447| year = 1964| doi = 10.1007/BF01897152|ref=none}} |
*{{Cite journal| first1 = P.|author1-link=Paul Erdős| title = On a combinatorial problem. II| journal = [[Acta Mathematica Hungarica|Acta Mathematica Academiae Scientiarum Hungaricae]]| last1 = Erdős| volume = 15| issue = 3–4| pages = 445–447| year = 1964| doi = 10.1007/BF01897152|doi-access=free|ref=none}} |
||
*{{Cite journal|ref=none| first1 = W. M.| title = Ein kombinatorisches Problem von P. Erdős und A. Hajnal| journal = Acta Mathematica Academiae Scientiarum Hungaricae| last1 = Schmidt| volume = 15| issue = 3–4| pages = 373–374| year = 1964| doi = 10.1007/BF01897145}} |
*{{Cite journal|ref=none| first1 = W. M.| title = Ein kombinatorisches Problem von P. Erdős und A. Hajnal| journal = [[Acta Mathematica Hungarica|Acta Mathematica Academiae Scientiarum Hungaricae]]| last1 = Schmidt| volume = 15| issue = 3–4| pages = 373–374| year = 1964| doi = 10.1007/BF01897145| doi-access=free}} |
||
*{{citation|ref=none|doi=10.1112/jlms/s2-8.4.681|last=Seymour|first=Paul|authorlink=Paul Seymour (mathematician)|title=A note on a combinatorial problem of Erdős and Hajnal|journal=Bulletin of the London Mathematical Society|volume=8|issue=4|year=1974|pages=681–682}}. |
*{{citation|ref=none|doi=10.1112/jlms/s2-8.4.681|last=Seymour|first=Paul|authorlink=Paul Seymour (mathematician)|title=A note on a combinatorial problem of Erdős and Hajnal|journal=Bulletin of the London Mathematical Society|volume=8|issue=4|year=1974|pages=681–682}}. |
||
*{{citation|ref=none|last=Toft|first=Bjarne|contribution=On colour-critical hypergraphs|title=Infinite and Finite Sets: To Paul Erdös on His 60th Birthday|editor1-first=A.|editor1-last=Hajnal|editor1-link=András Hajnal|editor2-first=Richard|editor2-last=Rado|editor2-link=Richard Rado|editor3-first=Vera T.|editor3-last=Sós|publisher=North Holland Publishing Co.|year=1975|pages=1445–1457}}. |
*{{citation|ref=none|last=Toft|first=Bjarne|contribution=On colour-critical hypergraphs|title=Infinite and Finite Sets: To Paul Erdös on His 60th Birthday|editor1-first=A.|editor1-last=Hajnal|editor1-link=András Hajnal|editor2-first=Richard|editor2-last=Rado|editor2-link=Richard Rado|editor3-first=Vera T.|editor3-last=Sós|publisher=North Holland Publishing Co.|year=1975|pages=1445–1457}}. |
||
*{{citation|ref=none|doi=10.1090/S1079-6762-95-03004-6|first=G. M.|last=Manning|title=Some results on the ''m''(4) problem of Erdős and Hajnal|journal=[[Electronic Research Announcements of the American Mathematical Society]]|volume=1|issue=3|year=1995|pages=112–113|doi-access=free}}. |
*{{citation|ref=none|doi=10.1090/S1079-6762-95-03004-6|first=G. M.|last=Manning|title=Some results on the ''m''(4) problem of Erdős and Hajnal|journal=[[Electronic Research Announcements of the American Mathematical Society]]|volume=1|issue=3|year=1995|pages=112–113|doi-access=free}}. |
||
*{{citation|ref=none|first=J.|last=Beck|title=On 3-chromatic hypergraphs|journal=Discrete Mathematics|volume=24|issue=2|pages=127–137|year=1978|doi=10.1016/0012-365X(78)90191-7}}. |
*{{citation|ref=none|first=J.|last=Beck|title=On 3-chromatic hypergraphs|journal=Discrete Mathematics|volume=24|issue=2|pages=127–137|year=1978|doi=10.1016/0012-365X(78)90191-7|doi-access=free}}. |
||
*{{citation|ref=none|doi=10.1002/(SICI)1098-2418(200001)16:1<4::AID-RSA2>3.0.CO;2-2|first1=J.|last1=Radhakrishnan|first2=A.|last2=Srinivasan|title=Improved bounds and algorithms for hypergraph 2-coloring|url=https://ieeexplore.ieee.org/document/743519|journal=Random Structures and Algorithms|volume=16|issue=1|pages=4–32|year=2000}}. |
*{{citation|ref=none|doi=10.1002/(SICI)1098-2418(200001)16:1<4::AID-RSA2>3.0.CO;2-2|first1=J.|last1=Radhakrishnan|first2=A.|last2=Srinivasan|title=Improved bounds and algorithms for hypergraph 2-coloring|url=https://ieeexplore.ieee.org/document/743519|journal=Random Structures and Algorithms|volume=16|issue=1|pages=4–32|year=2000}}. |
||
*{{citation|ref=none|first=E. W.|last=Miller|title=On a property of families of sets|journal=Comp. Rend. Varsovie|volume=30|year=1937|pages=31–38}}. |
*{{citation|ref=none|first=E. W.|last=Miller|title=On a property of families of sets|journal=Comp. Rend. Varsovie|volume=30|year=1937|pages=31–38}}. |
||
*{{citation|ref=none|doi=10.1007/BF02066676|first1=P.|last1=Erdős|author1-link=Paul Erdős|first2=A.|last2=Hajnal|author2-link=András Hajnal|title=On a property of families of sets|journal=Acta |
*{{citation|ref=none|doi=10.1007/BF02066676|doi-access=free|first1=P.|last1=Erdős|author1-link=Paul Erdős|first2=A.|last2=Hajnal|author2-link=András Hajnal|title=On a property of families of sets|journal=[[Acta Mathematica Hungarica|Acta Mathematica Academiae Scientiarum Hungaricae]]|volume=12|issue=1–2|year=1961|pages=87–123}}. |
||
*{{citation|ref=none|doi=10.4153/CMB-1969-107-x|first1=H. L.|last1=Abbott|first2=D.|last2=Hanson|title=On a combinatorial problem of Erdös|journal=[[Canadian Mathematical Bulletin]]|volume=12|issue=6|year=1969|pages=823–829}} |
*{{citation|ref=none|doi=10.4153/CMB-1969-107-x|doi-access=free|first1=H. L.|last1=Abbott|first2=D.|last2=Hanson|title=On a combinatorial problem of Erdös|journal=[[Canadian Mathematical Bulletin]]|volume=12|issue=6|year=1969|pages=823–829}} |
||
*{{cite journal|ref=none|last1=Östergård|first1=Patric R. J.|title=On the minimum size of 4-uniform hypergraphs without property B|journal=Discrete Applied Mathematics|date=30 January 2014|volume=163, Part 2|pages=199–204|doi=10.1016/j.dam.2011.11.035|doi-access=free}} |
*{{cite journal|ref=none|last1=Östergård|first1=Patric R. J.|title=On the minimum size of 4-uniform hypergraphs without property B|journal=Discrete Applied Mathematics|date=30 January 2014|volume=163, Part 2|pages=199–204|doi=10.1016/j.dam.2011.11.035|doi-access=free}} |
||
[[Category: |
[[Category:Families of sets]] |
||
[[Category:Hypergraphs]] |
[[Category:Hypergraphs]] |
Latest revision as of 05:49, 27 August 2022
In mathematics, Property B is a certain set theoretic property. Formally, given a finite set X, a collection C of subsets of X has Property B if we can partition X into two disjoint subsets Y and Z such that every set in C meets both Y and Z.
The property gets its name from mathematician Felix Bernstein, who first introduced the property in 1908.[1]
Property B is equivalent to 2-coloring the hypergraph described by the collection C. A hypergraph with property B is also called 2-colorable.[2]: 468 Sometimes it is also called bipartite, by analogy to the bipartite graphs. Property B is often studied for uniform hypergraphs (set systems in which all subsets of the system have the same cardinality) but it has also been considered in the non-uniform case.[3]
The problem of checking whether a collection C has Property B is called the set splitting problem.
Smallest set-families without property B
[edit]The smallest number of sets in a collection of sets of size n such that C does not have Property B is denoted by m(n).
Known values of m(n)
[edit]It is known that m(1) = 1, m(2) = 3, and m(3) = 7 (as can by seen by the following examples); the value of m(4) = 23 (Östergård), although finding this result was the result of an exhaustive search. An upper bound of 23 (Seymour, Toft) and a lower bound of 21 (Manning) have been proven. At the time of this writing (March 2017), there is no OEIS entry for the sequence m(n) yet, due to the lack of terms known.
- m(1)
- For n = 1, set X = {1}, and C = {{1}}. Then C does not have Property B.
- m(2)
- For n = 2, set X = {1, 2, 3} and C = {{1, 2}, {1, 3}, {2, 3}} (a triangle). Then C does not have Property B, so m(2) <= 3. However, C' = {{1, 2}, {1, 3}} does (set Y = {1} and Z = {2, 3}), so m(2) >= 3.
- m(3)
- For n = 3, set X = {1, 2, 3, 4, 5, 6, 7}, and C = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}} (the Steiner triple system S7); C does not have Property B (so m(3) <= 7), but if any element of C is omitted, then that element can be taken as Y, and the set of remaining elements C' will have Property B (so for this particular case, m(3) >= 7). One may check all other collections of 6 3-sets to see that all have Property B.
- m(4)
- Östergård (2014) through an exhaustive search found m(4) = 23. Seymour (1974) constructed a hypergraph on 11 vertices with 23 edges without Property B, which shows that m(4) <= 23. Manning (1995) narrowed the floor such that m(4) >= 21.
Asymptotics of m(n)
[edit]Erdős (1963) proved that for any collection of fewer than sets of size n, there exists a 2-coloring in which all set are bichromatic. The proof is simple: Consider a random coloring. The probability that an arbitrary set is monochromatic is . By a union bound, the probability that there exist a monochromatic set is less than . Therefore, there exists a good coloring.
Erdős (1964) showed the existence of an n-uniform hypergraph with hyperedges which does not have property B (i.e., does not have a 2-coloring in which all hyperedges are bichromatic), establishing an upper bound.
Schmidt (1963) proved that every collection of at most sets of size n has property B. Erdős and Lovász conjectured that . Beck in 1978 improved the lower bound to , where is an arbitrary small positive number. In 2000, Radhakrishnan and Srinivasan improved the lower bound to . They used a clever probabilistic algorithm.
See also
[edit]References
[edit]- ^ Bernstein, F. (1908), "Zur theorie der trigonometrische Reihen", Leipz. Ber., 60: 325–328.
- ^ Lovász, László; Plummer, M. D. (1986), Matching Theory, Annals of Discrete Mathematics, vol. 29, North-Holland, ISBN 0-444-87916-1, MR 0859549
- ^ Beck, J. (1978), "On 3-chromatic hypergraphs", Discrete Mathematics, 24 (2): 127–137, doi:10.1016/0012-365X(78)90191-7, MR 0522920
Further reading
[edit]- Erdős, Paul (1963), "On a combinatorial problem", Nordisk Mat. Tidskr., 11: 5–10
- Erdős, P. (1964). "On a combinatorial problem. II". Acta Mathematica Academiae Scientiarum Hungaricae. 15 (3–4): 445–447. doi:10.1007/BF01897152.
- Schmidt, W. M. (1964). "Ein kombinatorisches Problem von P. Erdős und A. Hajnal". Acta Mathematica Academiae Scientiarum Hungaricae. 15 (3–4): 373–374. doi:10.1007/BF01897145.
- Seymour, Paul (1974), "A note on a combinatorial problem of Erdős and Hajnal", Bulletin of the London Mathematical Society, 8 (4): 681–682, doi:10.1112/jlms/s2-8.4.681.
- Toft, Bjarne (1975), "On colour-critical hypergraphs", in Hajnal, A.; Rado, Richard; Sós, Vera T. (eds.), Infinite and Finite Sets: To Paul Erdös on His 60th Birthday, North Holland Publishing Co., pp. 1445–1457.
- Manning, G. M. (1995), "Some results on the m(4) problem of Erdős and Hajnal", Electronic Research Announcements of the American Mathematical Society, 1 (3): 112–113, doi:10.1090/S1079-6762-95-03004-6.
- Beck, J. (1978), "On 3-chromatic hypergraphs", Discrete Mathematics, 24 (2): 127–137, doi:10.1016/0012-365X(78)90191-7.
- Radhakrishnan, J.; Srinivasan, A. (2000), "Improved bounds and algorithms for hypergraph 2-coloring", Random Structures and Algorithms, 16 (1): 4–32, doi:10.1002/(SICI)1098-2418(200001)16:1<4::AID-RSA2>3.0.CO;2-2.
- Miller, E. W. (1937), "On a property of families of sets", Comp. Rend. Varsovie, 30: 31–38.
- Erdős, P.; Hajnal, A. (1961), "On a property of families of sets", Acta Mathematica Academiae Scientiarum Hungaricae, 12 (1–2): 87–123, doi:10.1007/BF02066676.
- Abbott, H. L.; Hanson, D. (1969), "On a combinatorial problem of Erdös", Canadian Mathematical Bulletin, 12 (6): 823–829, doi:10.4153/CMB-1969-107-x
- Östergård, Patric R. J. (30 January 2014). "On the minimum size of 4-uniform hypergraphs without property B". Discrete Applied Mathematics. 163, Part 2: 199–204. doi:10.1016/j.dam.2011.11.035.