Jump to content

Mathematics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1261114312 by Goyama (talk) not about etymology, and appears to have been copied from somewhere else
 
Line 1: Line 1:
{{Short description|Area of knowledge}}
{{sprotect}}
{{dablink|For other meanings of "mathematics" or "math", see [[mathematics (disambiguation)]].}}
{{Redirect2|Math|Maths|other uses|Mathematics (disambiguation)|and|Math (disambiguation)}}
{{pp|small=yes}}
[[Image:Euclid.jpg|right|thumb|220px|[[Euclid]], Greek mathematician, 3rd century BC, known today as the father of geometry; shown here in a detail of ''[[The School of Athens]]'' by [[Raphael]].]]
{{portal}}
{{pp-move}}
{{Use American English|date=August 2022}}
{{Use mdy dates|date=October 2024}}
{{CS1 config|mode=cs1}}
{{Math topics TOC}}


'''Mathematics''' is a field of study that discovers and organizes methods, [[Mathematical theory|theories]] and [[theorem]]s that are developed and [[Mathematical proof|proved]] for the needs of [[empirical sciences]] and mathematics itself. There are many areas of mathematics, which include [[number theory]] (the study of numbers), [[algebra]] (the study of formulas and related structures), [[geometry]] (the study of shapes and spaces that contain them), [[Mathematical analysis|analysis]] (the study of continuous changes), and [[set theory]] (presently used as a foundation for all mathematics).
'''Mathematics''' ([[Colloquialism|colloquially]], '''maths''', or '''math''' in [[North American English]]) is the body of knowledge centered on concepts such as [[quantity]], [[structure]], [[space]], and [[change]], and also the academic discipline that studies them. [[Benjamin Peirce]] called it "the science that draws necessary conclusions".<ref>Peirce, p.97</ref>
[[Lynn Steen|Steen]] <ref> [[Lynn Steen|Steen, L.A.]] (April 29, 1988). ''The Science of Patterns.'' [[Science (journal)|Science]], 240: 611–616. and summarised at [http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId=f97433df69abb010VgnVCM1000003d01a8c0RCRD Association for Supervision and Curriculum Development.] </ref> and [[Keith Devlin|Devlin]] <ref> [[Keith Devlin|Devlin, Keith]] , ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, ISBN-10: 0716760223 </ref> have argued that mathematics is the science of pattern and that mathematicians seek out patterns whether found in numbers, space, science, computers, or in imaginary abstractions.


Mathematics involves the description and manipulation of [[mathematical object|abstract objects]] that consist of either [[abstraction (mathematics)|abstraction]]s from nature or{{emdash}}in modern mathematics{{emdash}}purely abstract entities that are stipulated to have certain properties, called [[axiom]]s. Mathematics uses pure [[reason]] to [[proof (mathematics)|prove]] properties of objects, a ''proof'' consisting of a succession of applications of [[inference rule|deductive rules]] to already established results. These results include previously proved [[theorem]]s, axioms, and{{emdash}}in case of abstraction from nature{{emdash}}some basic properties that are considered true starting points of the theory under consideration.<ref>{{cite book |last=Hipólito |first=Inês Viegas |editor1-last=Kanzian |editor1-first=Christian |editor2-last=Mitterer |editor2-first=Josef |editor2-link=Josef Mitterer |editor3-last=Neges |editor3-first=Katharina |date=August 9–15, 2015 |chapter=Abstract Cognition and the Nature of Mathematical Proof |pages=132–134 |title=Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums |trans-title=Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium |volume=23 |language=de, en |publisher=Austrian Ludwig Wittgenstein Society |location=Kirchberg am Wechsel, Austria |issn=1022-3398 |oclc=236026294 |url=https://www.alws.at/alws/wp-content/uploads/2018/06/papers-2015.pdf#page=133 |url-status=live |archive-url=https://web.archive.org/web/20221107221937/https://www.alws.at/alws/wp-content/uploads/2018/06/papers-2015.pdf#page=133 |archive-date=November 7, 2022 |access-date=January 17, 2024}} ([https://www.researchgate.net/publication/280654540_Abstract_Cognition_and_the_Nature_of_Mathematical_Proof at ResearchGate] {{open access}} {{Webarchive|url=https://web.archive.org/web/20221105145638/https://www.researchgate.net/publication/280654540_Abstract_Cognition_and_the_Nature_of_Mathematical_Proof |date=November 5, 2022}})</ref><!-- Commenting out the following pending discussion on talk: Contrary to [[physical law]]s, the validity of a theorem (its truth) does not rely on any [[experimentation]] but on the correctness of its reasoning (though experimentation is often useful for discovering new theorems of interest). -->
Through the use of [[abstraction (mathematics)|abstraction]] and [[logic|logical]] [[reasoning]], mathematics evolved from [[counting]], [[calculation]], [[measurement]], and the systematic study of the [[shape]]s and [[motion (physics)|motion]]s of physical objects. [[Mathematician]]s explore such concepts, aiming to formulate new [[conjecture]]s and establish their truth by [[Rigour|rigorous]] deduction from appropriately chosen [[axiom]]s and [[definition]]s.<ref>Jourdain</ref>
Knowledge and use of basic mathematics have always been an inherent and integral part of individual and group life. Refinements of the basic ideas are visible in mathematical texts originating in [[ancient Egypt]], [[Mesopotamia]], [[History of India|ancient India]], [[ancient China]], and [[ancient Greece]]. Rigorous arguments first appear in Euclid's [[Euclid's Elements|''Elements'']]. The development continued in fitful bursts until the [[Renaissance]] period of the [[16th century]], when mathematical innovations interacted with new [[scientific discoveries]], leading to an acceleration in research that continues to the present day.<ref>Eves</ref>


Today, mathematics is used throughout the world in many fields, including [[science]], [[engineering]], [[medicine]] and [[economics]]. The application of mathematics to such fields, often dubbed [[applied mathematics]], inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new disciplines. Mathematicians also engage in [[pure mathematics]], or mathemathics for its own sake, without having any application in mind, although applications for what began as pure mathematics are often discovered later.<ref>Peterson</ref>
Mathematics is essential in the [[natural science]]s, [[engineering]], [[medicine]], [[finance]], [[computer science]], and the [[social sciences]]. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as [[statistics]] and [[game theory]], are developed in close correlation with their applications and are often grouped under [[applied mathematics]]. Other areas are developed independently from any application (and are therefore called [[pure mathematics]]) but often later find practical applications.{{Sfn|Peterson|1988|page=12}}<ref name=wigner1960 />


Historically, the concept of a proof and its associated [[mathematical rigour]] first appeared in [[Greek mathematics]], most notably in [[Euclid]]'s ''[[Euclid's Elements|Elements]]''.<ref>{{cite web |last=Wise |first=David |url=http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Wise/essay7/essay7.htm |title=Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion|website=[[The University of Georgia]] |url-status=live |archive-url=https://web.archive.org/web/20190601004355/http://jwilson.coe.uga.edu/emt668/EMAT6680.F99/Wise/essay7/essay7.htm |archive-date=June 1, 2019 |access-date=January 18, 2024}}</ref> Since its beginning, mathematics was primarily divided into geometry and [[arithmetic]] (the manipulation of [[natural number]]s and [[fractions]]), until the 16th and 17th centuries, when algebra{{efn|Here, ''algebra'' is taken in its modern sense, which is, roughly speaking, the art of manipulating [[formula]]s.}} and [[infinitesimal calculus]] were introduced as new fields. Since then, the interaction between mathematical innovations and [[timeline of scientific discoveries|scientific discoveries]] has led to a correlated increase in the development of both.<ref>{{cite journal |last=Alexander |first=Amir |author-link=Amir Alexander |date=September 2011 |title=The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics? |journal=Isis |volume=102 |number=3 |pages=475–480 |doi=10.1086/661620 |issn=0021-1753 |mr=2884913 |pmid=22073771 |s2cid=21629993}}</ref> At the end of the 19th century, the [[foundational crisis of mathematics]] led to the systematization of the [[axiomatic method]],<ref name=Kleiner_1991>{{cite journal |last=Kleiner |first=Israel |author-link=Israel Kleiner (mathematician) |date=December 1991 |title=Rigor and Proof in Mathematics: A Historical Perspective |journal=Mathematics Magazine |publisher=Taylor & Francis, Ltd. |volume=64 |issue=5 |pages=291–314 |doi=10.1080/0025570X.1991.11977625 |jstor=2690647 |issn=0025-570X |eissn=1930-0980 |lccn=47003192 |mr=1141557 |oclc=1756877 |s2cid=7787171}}</ref> which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary [[Mathematics Subject Classification]] lists more than sixty first-level areas of mathematics.
==Etymology==
The word "mathematics" (Greek: μαθηματικά or ''mathēmatiká'') comes from the [[Ancient Greek language|Greek]] μάθημα (''máthēma''), which means ''learning'', ''study'', ''science'', and additionally came to have the narrower and more technical meaning "mathematical study", even in Classical times. Its adjective is μαθηματικός (''mathēmatikós''), ''related to learning'', or ''studious'', which likewise further came to mean ''mathematical''. In particular, {{polytonic|μαθηματικὴ τέχνη}} (''mathēmatikḗ tékhnē''), in [[Latin]] ''ars mathematica'', meant ''the mathematical art''.
The apparent plural form in [[English language|English]], like the [[French language|French]] plural form ''les mathématiques'' (and the less commonly used singular derivative ''la mathématique''), goes back to the Latin neuter plural ''mathematica'' ([[Cicero]]), based on the Greek plural τα μαθηματικά (''ta mathēmatiká''), used by [[Aristotle]], and meaning roughly "all things mathematical".<ref>''[[The Oxford Dictionary of English Etymology]]'', ''[[Oxford English Dictionary]]''</ref>
Despite the form and etymology, the word ''mathematics'', like the names of arts and sciences in general, is used as a singular [[mass noun]] in English today. The colloquial English-language shortened forms perpetuate this singular/plural idiosyncrasy, as the word is shortened to ''math'' in [[North American English]], while it is ''maths'' elsewhere (including [[British English|Britain]], [[Hiberno-English|Ireland]], [[Australia]] and other non-North American [[Commonwealth of Nations|Commonwealth]] countries).


{{TOC limit|3}}
==History==


== Areas of mathematics ==
[[Image:Quipu.png|thumb|right|A [[quipu]], a counting device used by the [[Inca Empire|Inca]].]]
{{anchor|Branches of mathematics}}
Before the [[Renaissance]], mathematics was divided into two main areas: [[arithmetic]], regarding the manipulation of numbers, and [[geometry]], regarding the study of shapes.<ref>{{cite book |last=Bell |first=E. T. |author-link=Eric Temple Bell |year=1945 |orig-date=1940 |chapter=General Prospectus |title=The Development of Mathematics |edition=2nd |isbn=978-0-486-27239-9 |lccn=45010599 |oclc=523284 |page=3 |publisher=Dover Publications |quote=... mathematics has come down to the present by the two main streams of number and form. The first carried along arithmetic and algebra, the second, geometry.}}</ref> Some types of [[pseudoscience]], such as [[numerology]] and [[astrology]], were not then clearly distinguished from mathematics.<ref>{{cite book |last=Tiwari |first=Sarju |year=1992 |chapter=A Mirror of Civilization |title=Mathematics in History, Culture, Philosophy, and Science |edition=1st |page=27 |publisher=Mittal Publications |publication-place=New Delhi, India |isbn=978-81-7099-404-6 |lccn=92909575 |oclc=28115124 |quote=It is unfortunate that two curses of mathematics--Numerology and Astrology were also born with it and have been more acceptable to the masses than mathematics itself.}}</ref>


During the Renaissance, two more areas appeared. [[Mathematical notation]] led to [[algebra]] which, roughly speaking, consists of the study and the manipulation of [[formula]]s. [[Calculus]], consisting of the two subfields ''[[differential calculus]]'' and ''[[integral calculus]]'', is the study of [[continuous functions]], which model the typically [[Nonlinear system|nonlinear relationships]] between varying quantities, as represented by [[variable (mathematics)|variables]]. This division into four main areas{{emdash}}arithmetic, geometry, algebra, and calculus<ref>{{cite book |last=Restivo |first=Sal |author-link=Sal Restivo |editor-last=Bunge |editor-first=Mario |editor-link=Mario Bunge |year=1992 |chapter=Mathematics from the Ground Up |title=Mathematics in Society and History |page=14 |series=Episteme |volume=20 |publisher=[[Kluwer Academic Publishers]] |isbn=0-7923-1765-3 |lccn=25709270 |oclc=92013695}}</ref>{{emdash}}endured until the end of the 19th century. Areas such as [[celestial mechanics]] and [[solid mechanics]] were then studied by mathematicians, but now are considered as belonging to physics.<ref>{{cite book |last=Musielak |first=Dora |author-link=Dora Musielak |year=2022 |title=Leonhard Euler and the Foundations of Celestial Mechanics |series=History of Physics |publisher=[[Springer International Publishing]] |doi=10.1007/978-3-031-12322-1 |isbn=978-3-031-12321-4 |s2cid=253240718 |issn=2730-7549 |eissn=2730-7557 |oclc=1332780664}}</ref> The subject of [[combinatorics]] has been studied for much of recorded history, yet did not become a separate branch of mathematics until the seventeenth century.<ref>{{cite journal |date=May 1979 |last=Biggs |first=N. L. |title=The roots of combinatorics |journal=Historia Mathematica |volume=6 |issue=2 |pages=109–136 |doi=10.1016/0315-0860(79)90074-0 |doi-access=free |issn=0315-0860 |eissn=1090-249X |lccn=75642280 |oclc=2240703}}</ref>
:''Main article: [[History of mathematics]]''


At the end of the 19th century, the [[foundational crisis in mathematics]] and the resulting systematization of the [[axiomatic method]] led to an explosion of new areas of mathematics.<ref name=Warner_2013>{{cite web |last=Warner |first=Evan |title=Splash Talk: The Foundational Crisis of Mathematics |publisher=[[Columbia University]] |url=https://www.math.columbia.edu/~warner/notes/SplashTalk.pdf |url-status=dead |archive-url=https://web.archive.org/web/20230322165544/https://www.math.columbia.edu/~warner/notes/SplashTalk.pdf |archive-date=March 22, 2023 |access-date=February 3, 2024}}</ref><ref name="Kleiner_1991" /> The 2020 [[Mathematics Subject Classification]] contains no less than {{em|sixty-three}} first-level areas.<ref>{{cite journal |last1=Dunne |first1=Edward |last2=Hulek |first2=Klaus |author2-link=Klaus Hulek |date=March 2020 |title=Mathematics Subject Classification 2020 |journal=Notices of the American Mathematical Society |volume=67 |issue=3 |pages=410–411 |doi=10.1090/noti2052 |doi-access=free |issn=0002-9920 |eissn=1088-9477 |lccn=sf77000404 |oclc=1480366 |url=https://www.ams.org/journals/notices/202003/rnoti-p410.pdf |url-status=live |archive-url=https://web.archive.org/web/20210803203928/https://www.ams.org/journals/notices/202003/rnoti-p410.pdf |archive-date=August 3, 2021 |access-date=February 3, 2024 |quote=The new MSC contains 63 two-digit classifications, 529 three-digit classifications, and 6,006 five-digit classifications.}}</ref> Some of these areas correspond to the older division, as is true regarding [[number theory]] (the modern name for [[higher arithmetic]]) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as [[mathematical logic]] and [[foundations of mathematics|foundations]].<ref name=MSC>{{cite web |url=https://zbmath.org/enwiki/static/msc2020.pdf |title=MSC2020-Mathematics Subject Classification System |website=zbMath |publisher=Associate Editors of Mathematical Reviews and zbMATH |url-status=live |archive-url=https://web.archive.org/web/20240102023805/https://zbmath.org/enwiki/static/msc2020.pdf |archive-date=January 2, 2024 |access-date=February 3, 2024}}</ref>
The evolution of mathematics might be seen as an ever-increasing series of [[abstraction]]s, or alternatively an expansion of subject matter. The first abstraction was probably that of [[number]]s. The realization that two apples and two oranges have something in common was a breakthrough in human thought.
In addition to recognizing how to [[Counting|count]] ''physical'' objects, [[Prehistory|prehistoric]] peoples also recognized how to count ''abstract'' quantities, like [[time]] — [[day]]s, [[season]]s, [[year]]s. [[Arithmetic]] ([[addition]], [[subtraction]], [[multiplication]] and [[division (mathematics)|division]]), naturally followed. Monolithic monuments testify to knowledge of [[geometry]].


=== Number theory ===
Further steps need [[writing]] or some other system for recording numbers such as [[Tally sticks|tallies]] or the knotted strings called [[quipu]] used by the [[Inca empire]] to store numerical data. [[Numeral system]]s have been many and diverse.
{{Main|Number theory}}
[[File:Spirale Ulam 150.jpg|thumb|This is the [[Ulam spiral]], which illustrates the distribution of [[prime numbers]]. The dark diagonal lines in the spiral hint at the hypothesized approximate [[Independence (probability theory)|independence]] between being prime and being a value of a quadratic polynomial, a conjecture now known as [[Ulam spiral#Hardy and Littlewood's Conjecture F|Hardy and Littlewood's Conjecture F]].]]
Number theory began with the manipulation of [[number]]s, that is, [[natural number]]s <math>(\mathbb{N}),</math> and later expanded to [[integer]]s <math>(\Z)</math> and [[rational number]]s <math>(\Q).</math> Number theory was once called arithmetic, but nowadays this term is mostly used for [[numerical calculation]]s.<ref>{{cite book |last=LeVeque |first=William J. |author-link=William J. LeVeque |year=1977 |chapter=Introduction |title=Fundamentals of Number Theory |pages=1–30 |publisher=[[Addison-Wesley Publishing Company]] |isbn=0-201-04287-8 |lccn=76055645 |oclc=3519779 |s2cid=118560854}}</ref> Number theory dates back to ancient [[Babylonian mathematics|Babylon]] and probably [[ancient China|China]]. Two prominent early number theorists were [[Euclid]] of ancient Greece and [[Diophantus]] of Alexandria.<ref>{{cite book |last=Goldman |first=Jay R. |year=1998 |chapter=The Founding Fathers |title=The Queen of Mathematics: A Historically Motivated Guide to Number Theory |pages=2–3 |publisher=A K Peters |publication-place=Wellesley, MA |doi=10.1201/9781439864623 |isbn=1-56881-006-7 |lccn=94020017 |oclc=30437959 |s2cid=118934517}}</ref> The modern study of number theory in its abstract form is largely attributed to [[Pierre de Fermat]] and [[Leonhard Euler]]. The field came to full fruition with the contributions of [[Adrien-Marie Legendre]] and [[Carl Friedrich Gauss]].<ref>{{cite book |last=Weil |first=André |author-link=André Weil |year=1983 |title=Number Theory: An Approach Through History From Hammurapi to Legendre |publisher=Birkhäuser Boston |pages=2–3 |doi=10.1007/978-0-8176-4571-7 |isbn=0-8176-3141-0 |lccn=83011857 |oclc=9576587 |s2cid=117789303}}</ref>


Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is [[Fermat's Last Theorem]]. This conjecture was stated in 1637 by Pierre de Fermat, but it [[Wiles's proof of Fermat's Last Theorem|was proved]] only in 1994 by [[Andrew Wiles]], who used tools including [[scheme theory]] from [[algebraic geometry]], [[category theory]], and [[homological algebra]].<ref>{{cite journal |last=Kleiner |first=Israel |author-link=Israel Kleiner (mathematician) |date=March 2000 |title=From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem |journal=[[Elemente der Mathematik]] |volume=55 |issue=1 |pages=19–37 |doi=10.1007/PL00000079 |doi-access=free |issn=0013-6018 |eissn=1420-8962 |lccn=66083524 |oclc=1567783 |s2cid=53319514}}</ref> Another example is [[Goldbach's conjecture]], which asserts that every even integer greater than 2 is the sum of two [[prime number]]s. Stated in 1742 by [[Christian Goldbach]], it remains unproven despite considerable effort.<ref>{{cite book |last=Wang |first=Yuan |year=2002 |title=The Goldbach Conjecture | pages=1–18 |edition=2nd |series=Series in Pure Mathematics |volume=4 |publisher=[[World Scientific]] |doi=10.1142/5096 |isbn=981-238-159-7 |lccn=2003268597 |oclc=51533750 |s2cid=14555830}}</ref>
From the beginnings of recorded history, the major disciplines within mathematics arose out of the need to do calculations relating to [[taxation]] and [[commerce]], to understand the relationships among numbers, to [[land measurement|measure land]], and to predict [[astronomy|astronomical events]]. These needs can be roughly related to the broad subdivision of mathematics, into the studies of ''quantity'', ''structure'', ''space'', and ''change''.


Number theory includes several subareas, including [[analytic number theory]], [[algebraic number theory]], [[geometry of numbers]] (method oriented), [[diophantine equation]]s, and [[transcendence theory]] (problem oriented).<ref name=MSC />
Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries have been made throughout history and continue to be made today. According to Mikhail B. Sevryuk, in the January 2006 issue of the [[Bulletin of the American Mathematical Society]], "The number of papers and books included in the [[Mathematical Reviews]] database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical [[theorem]]s and their [[mathematical proof|proof]]s."<ref>Sevryuk</ref>


=== Geometry ===
==Inspiration, pure and applied mathematics, and aesthetics==
{{Main|Geometry}}
[[Image:GodfreyKneller-IsaacNewton-1689.jpg|right|thumb|Sir [[Isaac Newton]] (1643-1727), an inventor of [[infinitesimal calculus]].]]
[[File:Triangles (spherical geometry).jpg|thumb|On the surface of a sphere, Euclidean geometry only applies as a local approximation. For larger scales the sum of the angles of a triangle is not equal to 180°.]]
{{main|Mathematical beauty}}


Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as [[line (geometry)|lines]], [[angle]]s and [[circle]]s, which were developed mainly for the needs of [[surveying]] and [[architecture]], but has since blossomed out into many other subfields.<ref name="Straume_2014">{{Cite arXiv|last=Straume |first=Eldar |date=September 4, 2014 |title=A Survey of the Development of Geometry up to 1870 |class=math.HO |eprint=1409.1140 }}</ref>
Mathematics arises wherever there are difficult problems that involve quantity, structure, space, or change. At first these were found in [[commerce]], [[land measurement]] and later [[astronomy]]; nowadays, all sciences suggest problems studied by mathematicians, and many problems arise within mathematics itself. [[Isaac Newton|Newton]] was one of the [[infinitesimal calculus]] inventors, [[Feynman]] invented the [[Feynman path integral]] using a combination of reasoning and physical insight, and today's [[string theory]] also inspires new mathematics. Some mathematics is only relevant in the area that inspired it, and is applied to solve further problems in that area. But often mathematics inspired by one area proves useful in many areas, and joins the general stock of mathematical concepts. The remarkable fact that even the "purest" mathematics often turns out to have practical applications is what [[Eugene Wigner]] has called "[[The Unreasonable Effectiveness of Mathematics in the Natural Sciences|the unreasonable effectiveness of mathematics]]."


A fundamental innovation was the ancient Greeks' introduction of the concept of [[mathematical proof|proof]]s, which require that every assertion must be ''proved''. For example, it is not sufficient to verify by [[measurement]] that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results ([[theorem]]s) and a few basic statements. The basic statements are not subject to proof because they are self-evident ([[postulate]]s), or are part of the definition of the subject of study ([[axiom]]s). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by [[Euclid]] around 300 BC in his book ''[[Euclid's Elements|Elements]]''.<ref>{{cite book |last=Hilbert |first=David |author-link=David Hilbert |year=1902 |title=The Foundations of Geometry |page=1 |publisher=[[Open Court Publishing Company]] |doi=10.1126/science.16.399.307 |lccn=02019303 |oclc=996838 |s2cid=238499430 |url={{GBurl|id=8ZBsAAAAMAAJ}} |access-date=February 6, 2024}} {{free access}}</ref><ref>{{cite book |last=Hartshorne |first=Robin |author-link=Robin Hartshorne |year=2000 |chapter=Euclid's Geometry |pages=9–13 |title=Geometry: Euclid and Beyond |publisher=[[Springer New York]] |isbn=0-387-98650-2 |lccn=99044789 |oclc=42290188 |url={{GBurl|id=EJCSL9S6la0C|p=9}} |access-date=February 7, 2024}}</ref>
As in most areas of study, the explosion of knowledge in the scientific age has led to specialization in mathematics. One major distinction is between [[pure mathematics]] and [[applied mathematics]]. Several areas of applied mathematics have merged with related traditions outside of mathematics and become disciplines in their own right, including [[statistics]], [[operations research]], and [[computer science]].


The resulting [[Euclidean geometry]] is the study of shapes and their arrangements [[straightedge and compass construction|constructed]] from lines, [[plane (geometry)|planes]] and circles in the [[Euclidean plane]] ([[plane geometry]]) and the three-dimensional [[Euclidean space]].{{efn|This includes [[conic section]]s, which are intersections of [[circular cylinder]]s and planes.}}<ref name=Straume_2014 />
Many mathematicians talk about the ''elegance'' of mathematics, its intrinsic [[aesthetics]] and inner [[beauty]]. [[Simplicity]] and [[generality]] are valued. There is beauty also in a clever proof, such as [[Euclid]]'s proof that there are infinitely many [[prime number]]s, and in a numerical method that speeds calculation, such as the [[fast Fourier transform]]. [[G. H. Hardy]] in ''[[A Mathematician's Apology]]'' expressed the belief that these aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics.


Euclidean geometry was developed without change of methods or scope until the 17th century, when [[René Descartes]] introduced what is now called [[Cartesian coordinates]]. This constituted a major [[Paradigm shift|change of paradigm]]: Instead of defining [[real number]]s as lengths of [[line segments]] (see [[number line]]), it allowed the representation of points using their ''coordinates'', which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: [[synthetic geometry]], which uses purely geometrical methods, and [[analytic geometry]], which uses coordinates systemically.<ref>{{cite book |last=Boyer |first=Carl B. |author-link=Carl B. Boyer |year=2004 |orig-date=1956 |chapter=Fermat and Descartes |pages=74–102 |title=History of Analytic Geometry |publisher=[[Dover Publications]] |isbn=0-486-43832-5 |lccn=2004056235 |oclc=56317813}}</ref>
==Notation, language, and rigor==
[[Image:Pic79.png|right|thumb|In modern notation, simple expressions can describe complex concepts. This image is generated by a single [[equation]].]]
{{main|Mathematical notation}}


Analytic geometry allows the study of [[curve]]s unrelated to circles and lines. Such curves can be defined as the [[graph of a function|graph of functions]], the study of which led to [[differential geometry]]. They can also be defined as [[implicit equation]]s, often [[polynomial equation]]s (which spawned [[algebraic geometry]]). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions.<ref name=Straume_2014 />
Most of the mathematical notation in use today was not invented until the [[16th century]].<ref>[http://members.aol.com/jeff570/mathsym.html Earliest Uses of Various Mathematical Symbols] (Contains many further references)</ref> Before that, mathematics was written out in words, a painstaking process that limited mathematical discovery. Modern notation makes mathematics much easier for the professional, but beginners often find it daunting. It is extremely compressed: a few symbols contain a great deal of information. Like musical notation, modern mathematical notation has a strict syntax and encodes information that would be difficult to write in any other way.


In the 19th century, mathematicians discovered [[non-Euclidean geometries]], which do not follow the [[parallel postulate]]. By questioning that postulate's truth, this discovery has been viewed as joining [[Russell's paradox]] in revealing the [[foundational crisis of mathematics]]. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem.<ref>{{cite journal |last=Stump |year=1997 |first=David J. |title=Reconstructing the Unity of Mathematics circa 1900 |journal=[[Perspectives on Science]] |volume=5 |issue=3 |pages=383–417 |doi=10.1162/posc_a_00532 |eissn=1530-9274 |issn=1063-6145 |lccn=94657506 |oclc=26085129 |s2cid=117709681 |url=https://philpapers.org/archive/STURTU.pdf |access-date=February 8, 2024}}</ref><ref name=Kleiner_1991 /> In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that [[Invariant (mathematics)|do not change]] under specific transformations of the [[space (mathematics)|space]].<ref>{{cite web |last1=O'Connor |first1=J. J. |last2=Robertson |first2=E. F. |date=February 1996 |title=Non-Euclidean geometry |website=MacTuror |publisher=[[University of St. Andrews]] |publication-place=Scotland, UK |url=https://mathshistory.st-andrews.ac.uk/HistTopics/Non-Euclidean_geometry/ |url-status=live |archive-url=https://web.archive.org/web/20221106142807/https://mathshistory.st-andrews.ac.uk/HistTopics/Non-Euclidean_geometry/ |archive-date=November 6, 2022 |access-date=February 8, 2024}}</ref>
Mathematical [[language]] also is hard for beginners. Words such as ''or'' and ''only'' have more precise meanings than in everyday speech. Also confusing to beginners, words such as ''[[open set|open]]'' and ''[[field (mathematics)|field]]'' have been given specialized mathematical meanings. [[Mathematical jargon]] includes technical terms such as ''[[homeomorphism]]'' and ''[[integrability|integrable]]''. It was said that [[Henri Poincaré]] was only elected to the [[Académie française]] so that he could tell them how to define ''[[automorphic|automorphe]]'' in their dictionary.{{fact}} But there is a reason for special notation and technical jargon: mathematics requires more precision than everyday speech. Mathematicians refer to this precision of language and logic as "rigor".


Today's subareas of geometry include:<ref name=MSC />
[[Rigor]] is fundamentally a matter of [[mathematical proof]]. Mathematicians want their theorems to follow from axioms by means of systematic reasoning. This is to avoid mistaken "[[theorem]]s", based on fallible intuitions, of which many instances have occurred in the history of the subject.<ref>See [[false proof]] for simple examples of what can go wrong in a formal proof. The [[Four color theorem#History|history of the Four Color Theorem]] contains examples of false proofs accepted by other mathematicians.</ref> The level of rigor expected in mathematics has varied over time: the Greeks expected detailed arguments, but at the time of [[Isaac Newton]] the methods employed were less rigorous. Problems inherent in the definitions used by Newton would lead to a resurgence of careful analysis and formal proof in the 19th century. Today, mathematicians continue to argue among themselves about [[computer-assisted proof]]s. Since large computations are hard to verify, such proofs may not be sufficiently rigorous.
* [[Projective geometry]], introduced in the 16th century by [[Girard Desargues]], extends Euclidean geometry by adding [[points at infinity]] at which [[parallel lines]] intersect. This simplifies many aspects of classical geometry by unifying the treatments for intersecting and parallel lines.
* [[Affine geometry]], the study of properties relative to [[parallel (geometry)|parallelism]] and independent from the concept of length.
* [[Differential geometry]], the study of curves, surfaces, and their generalizations, which are defined using [[differentiable function]]s.
* [[Manifold theory]], the study of shapes that are not necessarily embedded in a larger space.
* [[Riemannian geometry]], the study of distance properties in curved spaces.
* [[Algebraic geometry]], the study of curves, surfaces, and their generalizations, which are defined using [[polynomial]]s.
* [[Topology]], the study of properties that are kept under [[continuous deformation]]s.
** [[Algebraic topology]], the use in topology of algebraic methods, mainly [[homological algebra]].
* [[Discrete geometry]], the study of finite configurations in geometry.
* [[Convex geometry]], the study of [[convex set]]s, which takes its importance from its applications in [[convex optimization|optimization]].
* [[Complex geometry]], the geometry obtained by replacing real numbers with [[complex number]]s.


=== Algebra ===
[[Axiom]]s in traditional thought were "self-evident truths", but that conception is problematic. At a formal level, an axiom is just a string of [[Symbolic logic|symbols]], which has an intrinsic meaning only in the context of all derivable formulas of an [[axiomatic system]]. It was the goal of [[Hilbert's program]] to put all of mathematics on a firm axiomatic basis, but according to [[Gödel's incompleteness theorem]] every (sufficiently powerful) axiomatic system has [[Independence (mathematical logic)|undecidable]] formulas; and so a final [[axiomatization]] of mathematics is impossible. Nonetheless mathematics is often imagined to be (as far as its formal content) nothing but [[set theory]] in some axiomatization, in the sense that every mathematical statement or proof could be cast into formulas within set theory.
{{Main|Algebra}}
[[File:Quadratic formula.svg|thumb|alt=refer to caption |The [[quadratic formula]], which concisely expresses the solutions of all [[quadratic equation]]s|class=skin-invert-image]] [[File:Rubik's cube.svg|thumb|alt=A shuffled 3x3 rubik's cube |The [[Rubik's Cube group]] is a concrete application of [[group theory]].<ref>{{cite book |last=Joyner |first=David |year=2008 |chapter=The (legal) Rubik's Cube group |title=Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys |pages=219–232 |edition=2nd |publisher=[[Johns Hopkins University Press]] |isbn=978-0-8018-9012-3 |lccn=2008011322 |oclc=213765703}}</ref>]]


Algebra is the art of manipulating [[equation]]s and formulas. [[Diophantus]] (3rd century) and [[al-Khwarizmi]] (9th century) were the two main precursors of algebra.<ref>{{cite journal |last1=Christianidis |first1=Jean |last2=Oaks |first2=Jeffrey |date=May 2013 |title=Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria |journal=Historia Mathematica |volume=40 |issue=2 |pages=127–163 |doi=10.1016/j.hm.2012.09.001 |doi-access=free |eissn=1090-249X |issn=0315-0860 |lccn=75642280 |oclc=2240703 |s2cid=121346342}}</ref>{{sfn|Kleiner|2007|loc="History of Classical Algebra" pp. 3–5}} Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution.<ref>{{Cite web |last=Shane |first=David |year=2022 |title=Figurate Numbers: A Historical Survey of an Ancient Mathematics |url=https://www.methodist.edu/wp-content/uploads/2022/06/mr2018_shane.pdf |website=[[Methodist University]] |page=20 |access-date=June 13, 2024 |quote=In his work, Diophantus focused on deducing the arithmetic properties of figurate numbers, such as deducing the number of sides, the different ways a number can be expressed as a figurate number, and the formulation of the arithmetic progressions.}}</ref> Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side.<ref>{{Cite web |url=https://www.ms.uky.edu/~carl/ma330/project2/al-khwa21.html |last1=Overbay |first1=Shawn |last2=Schorer |first2=Jimmy |last3=Conger |first3=Heather |title=Al-Khwarizmi |website=[[University of Kentucky]] |access-date=June 13, 2024}}</ref> The term ''algebra'' is derived from the [[Arabic]] word ''al-jabr'' meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of [[The Compendious Book on Calculation by Completion and Balancing|his main treatise]].<ref>{{Cite web |last=Lim |first=Lisa |date=December 21, 2018 |title=Where the x we use in algebra came from, and the X in Xmas |url=https://www.scmp.com/magazines/post-magazine/short-reads/article/2178856/where-x-we-use-algebra-came-and-x-xmas |url-access=limited |url-status=live |archive-url=https://web.archive.org/web/20181222003908/https://www.scmp.com/magazines/post-magazine/short-reads/article/2178856/where-x-we-use-algebra-came-and-x-xmas |archive-date=December 22, 2018 |access-date=February 8, 2024 |website=[[South China Morning Post]]}}</ref><ref>{{cite encyclopedia |url=https://referenceworks.brill.com/display/db/ei3o |last=Berntjes |first=Sonja |author-link=Sonja Brentjes |title=Algebra |encyclopedia=[[Encyclopaedia of Islam Online]] |edition=3rd |language=en |issn=1573-3912 |lccn=2007238847 |oclc=56713464 |access-date=June 13, 2024}}</ref>
==Mathematics as science==
[[Image:Carl Friedrich Gauss.jpg|right|thumb|[[Carl Friedrich Gauss]], while known as the "prince of mathematicians", did not believe that mathematics was worthy of study in its own right{{fact}}.]]
[[Carl Friedrich Gauss]] referred to mathematics as "the Queen of the Sciences".<ref>Waltershausen</ref> In the original Latin ''Regina Scientiarum'', as well as in [[German language|German]] ''Königin der Wissenschaften'', the word corresponding to ''science'' means (field of) knowledge. Indeed, this is also the original meaning in English, and there is no doubt that mathematics is in this sense a science. The specialization restricting the meaning to ''natural'' science is of later date. If one considers [[science]] to be strictly about the physical world, then mathematics, or at least [[pure mathematics]], is not a science. [[Albert Einstein]] has stated that ''"as far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.''"<ref>Einstein, p. 28. The quote is Einstein's answer to the question: "how can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality?" He, too, is concerned with ''[[The Unreasonable Effectiveness of Mathematics in the Natural Sciences]]''.</ref>


Algebra became an area in its own right only with [[François Viète]] (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers.<ref>{{cite journal |last=Oaks |first=Jeffery A. |year=2018 |title=François Viète's revolution in algebra |journal=[[Archive for History of Exact Sciences]] |volume=72 |issue=3 |pages=245–302 |doi=10.1007/s00407-018-0208-0 |eissn=1432-0657 |issn=0003-9519 |lccn=63024699 |oclc=1482042 |s2cid=125704699 |url=https://researchoutreach.org/wp-content/uploads/2019/02/Jeffrey-Oaks.pdf |url-status=live |archive-url=https://web.archive.org/web/20221108162134/https://researchoutreach.org/wp-content/uploads/2019/02/Jeffrey-Oaks.pdf |archive-date=November 8, 2022 |access-date=February 8, 2024}}</ref> Variables allow mathematicians to describe the operations that have to be done on the numbers represented using [[mathematical formulas]].<ref>{{cite web |url=https://www.geeksforgeeks.org/variable-in-maths/ |title=Variable in Maths |website=GeeksforGeeks |date=April 24, 2024 |access-date=June 13, 2024}}</ref>
Many philosophers believe that mathematics is not experimentally [[Falsifiability|falsifiable]],{{fact}} and thus not a science according to the definition of [[Karl Popper]]. However, in the 1930s important work in mathematical logic showed that mathematics cannot be reduced to logic, and Karl Popper concluded that "most mathematical theories are, like those of physics and biology, hypothetico-deductive: pure mathematics therefore turns out to be much closer to the natural sciences whose hypotheses are conjectures, than it seemed even recently."<ref>Popper 1995, p. 56</ref> Other thinkers, notably [[Imre Lakatos]], have applied a version of falsificationism to mathematics itself.


Until the 19th century, algebra consisted mainly of the study of [[linear equation]]s (presently ''[[linear algebra]]''), and polynomial equations in a single [[unknown (algebra)|unknown]], which were called ''algebraic equations'' (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as [[matrix (mathematics)|matrices]], [[modular arithmetic|modular integers]], and [[geometric transformation]]s), on which generalizations of arithmetic operations are often valid.{{sfn|Kleiner|2007|loc="History of Linear Algebra" pp. 79–101}} The concept of [[algebraic structure]] addresses this, consisting of a [[set (mathematics)|set]] whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called ''modern algebra'' or [[abstract algebra]], as established by the influence and works of [[Emmy Noether]].<ref>{{cite book |last=Corry |first=Leo |author-link=Leo Corry |year=2004 |chapter=Emmy Noether: Ideals and Structures |title=Modern Algebra and the Rise of Mathematical Structures |pages=247–252 |edition=2nd revised |publisher=Birkhäuser Basel |publication-place=Germany |isbn=3-7643-7002-5 |lccn=2004556211 |oclc=51234417 |url={{GBurl|id=WdGbeyehoCoC|p=247}} |access-date=February 8, 2024}}</ref>
An alternative view is that certain scientific fields (such as [[theoretical physics]]) are mathematics with axioms that are intended to correspond to reality. In fact, the theoretical physicist, J. M. Ziman, proposed that science is ''public knowledge'' and thus includes mathematics.<ref>Ziman</ref> In any case, mathematics shares much in common with many fields in the physical sciences, notably the exploration of the logical consequences of assumptions. [[intuition (knowledge)|Intuition]] and [[experiment|experimentation]] also play a role in the formulation of [[conjecture]]s in both mathematics and the (other) sciences. [[Experimental mathematics]] continues to grow in importance within mathematics, and computation and simulation are playing an increasing role in both the sciences and mathematics, weakening the objection that mathematics does not use the [[scientific method]]. In his 2002 book ''[[A New Kind of Science]]'', [[Stephen Wolfram]] argues that computational mathematics deserves to be explored empirically as a scientific field in its own right.


Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include:<ref name=MSC />
The opinions of mathematicians on this matter are varied. While some in [[applied mathematics]] feel that they are scientists, those in pure mathematics often feel that they are working in an area more akin to [[logic]] and that they are, hence, fundamentally [[Philosophy|philosophers]]. Many mathematicians feel that to call their area a science is to downplay the importance of its aesthetic side, and its history in the traditional seven [[liberal arts]]; others feel that to ignore its connection to the sciences is to turn a blind eye to the fact that the interface between mathematics and its applications in science and [[engineering]] has driven much development in mathematics. One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematics is ''created'' (as in art) or ''discovered'' (as in science). It is common to see [[University|universities]] divided into sections that include a division of ''Science and Mathematics'', indicating that the fields are seen as being allied but that they do not coincide. In practice, mathematicians are typically grouped with scientists at the gross level but separated at finer levels. This is one of many issues considered in the [[philosophy of mathematics]].
* [[group theory]]
* [[field (mathematics)|field theory]]
* [[vector space]]s, whose study is essentially the same as [[linear algebra]]
* [[ring theory]]
* [[commutative algebra]], which is the study of [[commutative ring]]s, includes the study of [[polynomial]]s, and is a foundational part of [[algebraic geometry]]
* [[homological algebra]]
* [[Lie algebra]] and [[Lie group]] theory
* [[Boolean algebra]], which is widely used for the study of the logical structure of [[computer]]s


The study of types of algebraic structures as [[mathematical object]]s is the purpose of [[universal algebra]] and [[category theory]].<ref>{{cite book |last=Riche |first=Jacques |editor1-last=Beziau |editor1-first=J. Y. |editor2-last=Costa-Leite |editor2-first=Alexandre |year=2007 |chapter=From Universal Algebra to Universal Logic |pages=3–39 |title=Perspectives on Universal Logic |publisher=Polimetrica International Scientific Publisher |publication-place=Milano, Italy |isbn=978-88-7699-077-9 |oclc=647049731 |url={{GBurl|id=ZoRN9T1GUVwC|p=3}} |access-date=February 8, 2024}}</ref> The latter applies to every [[mathematical structure]] (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as [[topological space]]s; this particular area of application is called [[algebraic topology]].<ref>{{cite book |last=Krömer |first=Ralph |year=2007 |title=Tool and Object: A History and Philosophy of Category Theory |pages=xxi–xxv, 1–91 |series=Science Networks – Historical Studies |volume=32 |publisher=[[Springer Science & Business Media]] |publication-place=Germany |isbn=978-3-7643-7523-2 |lccn=2007920230 |oclc=85242858 |url={{GBurl|id=41bHxtHxjUAC|pg=PR20}} |access-date=February 8, 2024}}</ref>
Mathematical awards are generally kept separate from their equivalents in science. The most prestigious award in mathematics is the [[Fields Medal|Fields&nbsp;Medal]],<ref>"''The Fields Medal is now indisputably the best known and most influential award in mathematics.''" Monastyrsky</ref><ref>Riehm</ref> established in 1936 and now awarded every 4 years. It is usually considered the equivalent of science's [[Nobel prize]]. Another major international award, the [[Abel Prize]], was introduced in 2003. Both of these are awarded for a particular body of work, either innovation in a new area of mathematics or resolution of an outstanding problem in an established field. A famous list of 23 such open problems, called "[[Hilbert's problems]]", was compiled in 1900 by German mathematician [[David Hilbert]]. This list achieved great celebrity among mathematicians, and at least nine of the problems have now been solved. A new list of seven important problems, titled the "[[Clay Mathematics Institute#The Millennium Prize problems|Millennium Prize Problems]]", was published in 2000. Solution of each of these problems carries a $1 million reward, and only one (the [[Riemann hypothesis]]) is duplicated in Hilbert's problems.


=== Calculus and analysis ===
==Fields of mathematics==
{{Main|Calculus|Mathematical analysis}}
[[Image:Abacus 6.png|right|thumb|Early mathematics was entirely concerned with the need to perform practical calculations, as reflected in this Chinese [[abacus]].]]
[[File:Cauchy sequence illustration.svg|thumb|A [[Cauchy sequence]] consists of elements such that all subsequent terms of a term become arbitrarily close to each other as the sequence progresses (from left to right).]]
As noted above, the major disciplines within mathematics first arose out of the need to do calculations in commerce, to understand the relationships between numbers, to measure land, and to predict [[astronomy|astronomical]] events. These four needs can be roughly related to the broad subdivision of mathematics into the study of quantity, structure, space, and change (i.e., [[arithmetic]], [[algebra]], [[geometry]], and [[mathematical analysis|analysis]]). In addition to these main concerns, there are also subdivisions dedicated to exploring links from the heart of mathematics to other fields: to [[Mathematical logic|logic]], to [[set theory]] ([[Foundations of mathematics|foundations]]), to the empirical mathematics of the various sciences ([[applied mathematics]]), and more recently to the rigorous study of [[uncertainty]].


Calculus, formerly called infinitesimal calculus, was introduced independently and simultaneously by 17th-century mathematicians [[Isaac Newton|Newton]] and [[Leibniz]].<ref>{{cite book |last=Guicciardini |first=Niccolo |author-link=Niccolò Guicciardini |editor1-last=Schliesser |editor1-first=Eric |editor2-last=Smeenk |editor2-first=Chris |year=2017 |chapter=The Newton–Leibniz Calculus Controversy, 1708–1730 |title=The Oxford Handbook of Newton |series=Oxford Handbooks |publisher=[[Oxford University Press]] |doi=10.1093/oxfordhb/9780199930418.013.9 |isbn=978-0-19-993041-8 |oclc=975829354 |chapter-url=https://core.ac.uk/download/pdf/187993169.pdf |url-status=live |archive-url=https://web.archive.org/web/20221109163253/https://core.ac.uk/download/pdf/187993169.pdf |archive-date=November 9, 2022 |access-date=February 9, 2024}}</ref> It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by [[Euler]] with the introduction of the concept of a [[function (mathematics)|function]] and many other results.<ref>{{cite web |last1=O'Connor |first1=J. J. |last2=Robertson |first2=E. F. |date=September 1998 |title=Leonhard Euler |website=MacTutor |publisher=[[University of St Andrews]] |publication-place=Scotland, UK |url=https://mathshistory.st-andrews.ac.uk/Biographies/Euler/ |url-status=live |archive-url=https://web.archive.org/web/20221109164921/https://mathshistory.st-andrews.ac.uk/Biographies/Euler/ |archive-date=November 9, 2022 |access-date=February 9, 2024}}</ref> Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts.<ref>{{Cite web |url=https://byjus.com/maths/calculus/ |title=Calculus (Differential and Integral Calculus with Examples) |website=[[Byju's]] |access-date=June 13, 2024}}</ref>
===Quantity===
The study of quantity starts with [[number]]s, first the familiar [[natural number]]s and [[integer]]s ("whole numbers") and arithmetical operations on them, which are characterized in [[arithmetic]]. The deeper properties of integers are studied in [[number theory]], whence such popular results as [[Fermat's last theorem]]. Number theory also holds two widely-considered unsolved problems: the [[twin prime conjecture]] and [[Goldbach's conjecture]].


Analysis is further subdivided into [[real analysis]], where variables represent [[real number]]s, and [[complex analysis]], where variables represent [[complex number]]s. Analysis includes many subareas shared by other areas of mathematics which include:<ref name=MSC />
As the number system is further developed, the integers are recognized as a [[subset]] of the [[rational numbers]] ("fractions"). These, in turn, are contained within the [[real numbers]], which are used to represent continuous quantities. Real numbers are generalized to [[complex number]]s. These are the first steps of a hierarchy of numbers that goes on to include [[quarternions]] and [[octonions]]. Consideration of the natural numbers also leads to the [[transfinite numbers]], which formalize the concept of counting to infinity. Another area of study is size, which leads to the [[cardinal number]]s and then to another conception of infinity: the [[aleph number]]s, which allow meaningful comparison of the size of infinitely large sets.
* [[Multivariable calculus]]
:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="20"
* [[Functional analysis]], where variables represent varying functions
| <math>1, 2, 3\,\!</math> || <math>-2, -1, 0, 1, 2\,\!</math> || <math> -2, \frac{2}{3}, 1.21\,\!</math> || <math>-e, \sqrt{2}, 3, \pi\,\!</math> || <math>2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!</math>
* [[Integration (mathematics)|Integration]], [[measure theory]] and [[potential theory]], all strongly related with [[probability theory]] on a [[Continuum (set theory)|continuum]]
|-
* [[Ordinary differential equation]]s
| [[Natural number]]s|| [[Integer]]s || [[Rational number]]s || [[Real number]]s || [[Complex number]]s
* [[Partial differential equation]]s
|}
* [[Numerical analysis]], mainly devoted to the computation on computers of solutions of ordinary and partial differential equations that arise in many applications


===Structure===
=== Discrete mathematics ===
{{Main|Discrete mathematics}}
Many mathematical objects, such as [[set]]s of numbers and [[function (mathematics)|function]]s, exhibit internal structure. The structural properties of these objects are investigated in the study of [[group (mathematics)|groups]], [[ring (mathematics)|rings]], [[field (mathematics)|fields]] and other abstract systems, which are themselves such objects. This is the field of [[abstract algebra]]. An important concept here is that of [[vector (spatial)|vector]]s, generalized to [[vector space]]s, and studied in [[linear algebra]]. The study of vectors combines three of the fundamental areas of mathematics: quantity, structure, and space. [[Vector calculus]] expands the field into a fourth fundamental area, that of change.
[[File:Markovkate 01.svg|right|thumb|A diagram representing a two-state [[Markov chain]]. The states are represented by 'A' and 'E'. The numbers are the probability of flipping the state.|class=skin-invert-image]]
:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
Discrete mathematics, broadly speaking, is the study of individual, [[countable]] mathematical objects. An example is the set of all integers.<ref>{{cite journal |last=Franklin |first=James |author-link=James Franklin (philosopher) |date=July 2017 |title=Discrete and Continuous: A Fundamental Dichotomy in Mathematics |journal=Journal of Humanistic Mathematics |volume=7 |issue=2 |pages=355–378 |url=https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1334&context=jhm |doi=10.5642/jhummath.201702.18 |doi-access=free |issn=2159-8118 |lccn=2011202231 |oclc=700943261 |s2cid=6945363 |access-date=February 9, 2024}}</ref> Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply.{{efn|However, some advanced methods of analysis are sometimes used; for example, methods of [[complex analysis]] applied to [[generating series]].}} [[Algorithm]]s{{emdash}}especially their [[implementation]] and [[computational complexity]]{{emdash}}play a major role in discrete mathematics.<ref>{{cite book |last=Maurer |first=Stephen B. |editor1-last=Rosenstein |editor1-first=Joseph G. |editor2-last=Franzblau |editor2-first=Deborah S. |editor3-last=Roberts |editor3-first=Fred S. |editor3-link=Fred S. Roberts |year=1997 |chapter=What is Discrete Mathematics? The Many Answers |pages=121–124 |title=Discrete Mathematics in the Schools |series=DIMACS: Series in Discrete Mathematics and Theoretical Computer Science |volume=36 |publisher=[[American Mathematical Society]] |doi=10.1090/dimacs/036/13 |isbn=0-8218-0448-0 |issn=1052-1798 |lccn=97023277 |oclc=37141146 |s2cid=67358543 |chapter-url={{GBurl|id=EvuQdO3h-DQC|p=121}} |access-date=February 9, 2024}}</ref>
| [[Image:Elliptic curve simple.png|96px]] || [[Image:Rubik float.png|96px]] || [[Image:Group diagdram D6.svg|96px]] || [[Image:Lattice of the divisibility of 60.svg|96px]]
|-
| [[Number theory]] || [[Abstract algebra]] || [[Group theory]] || [[Order theory]]
|}


The [[four color theorem]] and [[Kepler conjecture|optimal sphere packing]] were two major problems of discrete mathematics solved in the second half of the 20th century.<ref>{{cite book |last=Hales |first=Thomas C. |title=Turing's Legacy |author-link=Thomas Callister Hales |editor-last=Downey |editor-first=Rod |editor-link=Rod Downey |year=2014 |pages=260–261 |chapter=Turing's Legacy: Developments from Turing's Ideas in Logic |publisher=[[Cambridge University Press]] |series=Lecture Notes in Logic |volume=42 |doi=10.1017/CBO9781107338579.001 |isbn=978-1-107-04348-0 |lccn=2014000240 |oclc=867717052 |s2cid=19315498 |chapter-url={{GBurl|id=fYgaBQAAQBAJ|p=260}} |access-date=February 9, 2024}}</ref> The [[P versus NP problem]], which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of [[Computationally expensive|computationally difficult]] problems.<ref>{{cite conference |last=Sipser |first=Michael |author-link=Michael Sipser |date=July 1992 |title=The History and Status of the P versus NP Question |conference=STOC '92: Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing |pages=603–618 |doi=10.1145/129712.129771 |s2cid=11678884}}</ref>
===Space===
The study of space originates with [[geometry]] - in particular, [[Euclidean geometry]]. [[Trigonometry]] combines space and numbers, and encompasses the well-known [[Pythagorean theorem]]. The modern study of space generalizes these ideas to include higher-dimensional geometry, [[Non-euclidean geometry|non-Euclidean geometries]] (which play a central role in [[general relativity]]) and [[topology]]. Quantity and space both play a role in [[analytic geometry]], [[differential geometry]], and [[algebraic geometry]]. Within differential geometry are the concepts of [[fiber bundles]] and calculus on [[manifold]]s. Within algebraic geometry is the description of geometric objects as solution sets of [[polynomial]] equations, combining the concepts of quantity and space, and also the study of [[topological groups]], which combine structure and space. [[Lie group]]s are used to study space, structure, and change. [[Topology]] in all its many ramifications may have been the greatest growth area in 20th century mathematics, and includes the long-standing [[Poincaré conjecture]] and the controversial [[four color theorem]], whose only proof, by computer, has never been verified by a human.
:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| [[Image:Pythagorean.svg|96px]] || [[Image:Taylorsine.svg|96px]] || [[Image:Osculating circle.svg|96px]] || [[Image:Torus.png|96px]] || [[Image:Von koch 6 etapes.svg|96px]]
|-
|[[Geometry]] || [[Trigonometry]] || [[Differential geometry]] || [[Topology]] || [[Fractal geometry]]
|}


Discrete mathematics includes:<ref name=MSC />
===Change===
* [[Combinatorics]], the art of enumerating mathematical objects that satisfy some given constraints. Originally, these objects were elements or [[subset]]s of a given [[set (mathematics)|set]]; this has been extended to various objects, which establishes a strong link between combinatorics and other parts of discrete mathematics. For example, discrete geometry includes counting configurations of [[geometric shape]]s.
Understanding and describing change is a common theme in the [[natural science]]s, and [[calculus]] was developed as a powerful tool to investigate it. [[function (mathematics)|Functions]] arise here, as a central concept describing a changing quantity. The rigorous study of real numbers and real-valued functions is known as [[real analysis]], with [[complex analysis]] the equivalent field for the complex numbers. The [[Riemann hypothesis]], one of the most fundamental open questions in mathematics, is drawn from complex analysis. [[Functional analysis]] focuses attention on (typically infinite-dimensional) [[space#Mathematical spaces|space]]s of functions. One of many applications of functional analysis is [[quantum mechanics]]. Many problems lead naturally to relationships between a quantity and its rate of change, and these are studied as [[differential equation]]s. Many phenomena in nature can be described by [[dynamical system]]s; [[chaos theory]] makes precise the ways in which many of these systems exhibit unpredictable yet still [[deterministic system (mathematics)|deterministic]] behavior.
* [[Graph theory]] and [[hypergraph]]s
{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="20"
* [[Coding theory]], including [[error correcting code]]s and a part of [[cryptography]]
| [[Image:Integral_as_region_under_curve.svg|96px]] || [[Image:Vectorfield_jaredwf.png|96px]] || [[Image:Differential.png|96px]] || [[Image:Limitcycle.jpg|96px]] || [[Image:Lorenz attractor.svg|96px]]
* [[Matroid]] theory
|-
* [[Discrete geometry]]
| [[Calculus]] || [[Vector calculus]]|| [[Differential equation]]s || [[Dynamical system]]s || [[Chaos theory]]
* [[Discrete probability distribution]]s
|}
* [[Game theory]] (although [[continuous game]]s are also studied, most common games, such as [[chess]] and [[poker]] are discrete)
* [[Discrete optimization]], including [[combinatorial optimization]], [[integer programming]], [[constraint programming]]


===Foundations and philosophy===
=== Mathematical logic and set theory ===
{{Main|Mathematical logic|Set theory}}
In order to clarify the [[foundations of mathematics]], the fields of [[mathematical logic]] and [[set theory]] were developed, as well as [[category theory]] which is still in development.
[[File:Venn A intersect B.svg|thumb|alt=A blue and pink circle and their intersection labeled |The [[Venn diagram]] is a commonly used method to illustrate the relations between sets.]]


The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century.<ref>{{cite encyclopedia |url=https://plato.stanford.edu/entries/logic-firstorder-emergence/ |last=Ewald |first=William |date=November 17, 2018 |title=The Emergence of First-Order Logic |encyclopedia=[[Stanford Encyclopedia of Philosophy]] |issn=1095-5054 |lccn=sn97004494 |oclc=37550526 |access-date=June 14, 2024}}</ref><ref>{{cite encyclopedia |url=https://plato.stanford.edu/entries/settheory-early/ |last=Ferreirós |first=José |date=June 18, 2020 |orig-date=First published April 10, 2007 |title=The Early Development of Set Theory |encyclopedia=[[Stanford Encyclopedia of Philosophy]] |issn=1095-5054 |lccn=sn97004494 |oclc=37550526 |access-date=June 14, 2024}}</ref> Before this period, sets were not considered to be mathematical objects, and [[logic]], although used for mathematical proofs, belonged to [[philosophy]] and was not specifically studied by mathematicians.<ref>{{Cite journal |last=Ferreirós |first=José |date=December 2001 |title=The Road to Modern Logic—An Interpretation |journal=The Bulletin of Symbolic Logic |volume=7 |issue=4 |pages=441–484 |doi=10.2307/2687794 |jstor=2687794 |issn=1079-8986 |eissn=1943-5894 |hdl=11441/38373 |lccn=95652899 |oclc=31616719 |s2cid=43258676 |url=https://idus.us.es/xmlui/bitstream/11441/38373/1/The%20road%20to%20modern%20logic.pdf |access-date=June 14, 2024}}</ref>
Mathematical logic is concerned with setting mathematics on a rigid [[axiom]]atic framework, and studying the results of such a framework. As such, it is home to [[Gödel's incompleteness theorems#Second incompleteness theorem|Gödel's second incompleteness theorem]], perhaps the most widely celebrated result in logic, which (informally) implies that any formal system that contains basic arithmetic, if ''sound'' (meaning that all theorems that can be proven are true), is necessarily ''incomplete'' (meaning that there are true theorems which cannot be proved ''in that system''). Gödel showed how to construct, whatever the given collection of number-theoretical axioms, a formal statement in the logic that is a true number-theoretical fact, but which does not follow from those axioms. Therefore no formal system is a true axiomatization of full number theory. Modern logic is divided into [[recursion theory]], [[model theory]], and [[proof theory]], and is closely linked to [[theoretical computer science|theoretical]] [[computer science]].
:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| <math> P \Rightarrow Q \,</math>|| [[Image:Venn A intersect B.svg|128px]] || [[Image:Commutative diagram for morphism.svg|96px]]
|-
| [[Mathematical logic]] || [[Set theory]] || [[Category theory]] ||
|}


Before [[Georg Cantor|Cantor]]'s study of [[infinite set]]s, mathematicians were reluctant to consider [[actually infinite]] collections, and considered [[infinity]] to be the result of endless [[enumeration]]. Cantor's work offended many mathematicians not only by considering actually infinite sets<ref>{{cite web |url=https://www.quantamagazine.org/to-settle-infinity-question-a-new-law-of-mathematics-20131126/ |editor-last=Wolchover |editor-first=Natalie |editor-link=Natalie Wolchover |date=November 26, 2013 |title=Dispute over Infinity Divides Mathematicians |website=[[Quanta Magazine]] |access-date=June 14, 2024}}</ref> but by showing that this implies different sizes of infinity, per [[Cantor's diagonal argument]]. This led to the [[controversy over Cantor's theory|controversy over Cantor's set theory]].<ref>{{cite web |url=https://philarchive.org/archive/ZHUWAO |last=Zhuang |first=Chaohui |title=Wittgenstein's analysis on Cantor's diagonal argument |format=DOC |website=[[PhilArchive]] |access-date=June 14, 2024}}</ref> In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring [[mathematical rigour]].<ref>{{cite book |last=Tanswell |first=Fenner Stanley |title=Mathematical Rigour and Informal Proof |series=Cambridge Elements in the Philosophy of Mathematics |date=2024 |publisher=[[Cambridge University Press]] |doi=10.1017/9781009325110 |isbn=978-1-00-949438-0 |issn=2514-3808 |eissn=2399-2883 |oclc=1418750041}}</ref>
===Discrete mathematics===
[[Discrete mathematics]] is the common name for the fields of mathematics most generally useful in [[theoretical computer science]]. This includes [[Computability theory (computation)|computability theory]], [[computational complexity theory]], and [[information theory]]. Computability theory examines the limitations of various theoretical models of the computer, including the most powerful known model - the [[Turing machine]]. Complexity theory is the study of tractability by computer; some problems, although theoretically soluble by computer, are so expensive in terms of time or space that solving them is likely to remain practically unfeasible, even with rapid advance of computer hardware. Finally, information theory is concerned with the amount of data that can be stored on a given medium, and hence concepts such as [[data compression|compression]] and [[Entropy in thermodynamics and information theory|entropy]].


This became the foundational crisis of mathematics.<ref>{{cite web |last1=Avigad |first1=Jeremy |author1-link=Jeremy Avigad |last2=Reck |first2=Erich H. |date=December 11, 2001 |title="Clarifying the nature of the infinite": the development of metamathematics and proof theory |website=[[Carnegie Mellon University]] |url=https://www.andrew.cmu.edu/user/avigad/Papers/infinite.pdf |access-date=June 14, 2024}}</ref> It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a [[Zermelo–Fraenkel set theory|formalized set theory]]. Roughly speaking, each mathematical object is defined by the set of all similar objects and the properties that these objects must have.<ref name=Warner_2013 /> For example, in [[Peano arithmetic]], the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning.<ref>{{cite book
As a relatively new field, discrete mathematics has a number of fundamental open problems. The most famous of these is the "[[Complexity classes P and NP|P=NP?]]" problem, one of the [[Millennium Prize Problems]]. <ref>[http://www.claymath.org/millennium/P_vs_NP/ Clay Mathematics Institute] P=NP</ref>
| title=Numbers, Sets and Axioms: The Apparatus of Mathematics
:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| first=Alan G.
| <math>\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}</math> || [[Image:DFAexample.svg|96px]] || [[Image:Caesar3.svg|96px]] || [[Image:6n-graf.svg|96px]]
| last=Hamilton
|-
| pages=3–4
| [[Combinatorics]] || [[Theory of computation]] || [[Cryptography]] || [[Graph theory]]
| year=1982
|}
| isbn=978-0-521-28761-6
| publisher=Cambridge University Press
| url={{GBurl|id=OXfmTHXvRXMC|p=3}}
| access-date=November 12, 2022
}}</ref> This [[mathematical abstraction]] from reality is embodied in the modern philosophy of [[Formalism (philosophy of mathematics)|formalism]], as founded by [[David Hilbert]] around 1910.<ref name="Snapper">{{Cite journal |doi=10.2307/2689412 |title=The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism |journal=Mathematics Magazine |date=September 1979 |first=Ernst |last=Snapper |author-link=Ernst Snapper |volume=52 |issue=4 |pages=207–216 |jstor=2689412 | issn = 0025-570X }}</ref>


The "nature" of the objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion{{emdash}}sometimes called "intuition"{{emdash}}to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, [[Gödel's incompleteness theorems]] assert, roughly speaking that, in every [[consistent]] [[formal system]] that contains the natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system.<ref name=Raatikainen_2005>{{cite journal | title=On the Philosophical Relevance of Gödel's Incompleteness Theorems | first=Panu | last=Raatikainen | journal=Revue Internationale de Philosophie | volume=59 | issue=4 | date=October 2005 | pages=513–534 | doi=10.3917/rip.234.0513 | url=https://www.cairn.info/revue-internationale-de-philosophie-2005-4-page-513.htm | jstor=23955909 | s2cid=52083793 | access-date=November 12, 2022 | archive-date=November 12, 2022 | archive-url=https://web.archive.org/web/20221112212555/https://www.cairn.info/revue-internationale-de-philosophie-2005-4-page-513.htm | url-status=live }}</ref> This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by [[L. E. J. Brouwer|Brouwer]], who promoted [[intuitionistic logic]], which explicitly lacks the [[law of excluded middle]].<ref>{{cite web
===Applied mathematics===
| title=Intuitionistic Logic
Applied mathematics considers the use of abstract mathematical tools in solving concrete problems in the [[science]]s, [[business]], and other areas. An important field in applied mathematics is [[statistics]], which uses [[probability theory]] as a tool and allows the description, analysis, and prediction of phenomena where chance plays a role. Most experiments, surveys and observational studies require the informed use of statistics. (Many statisticians, however, do not consider themselves to be mathematicians, but rather part of an allied group.) [[Numerical analysis]] investigates computational methods for efficiently solving a broad range of mathematical problems that are typically too large for human numerical capacity; it includes the study of [[rounding error]]s or other sources of error in computation.
| date=September 4, 2018
| first=Joan
| last=Moschovakis
| author-link=Joan Moschovakis
| website=Stanford Encyclopedia of Philosophy
| url=https://plato.stanford.edu/entries/logic-intuitionistic/
| access-date=November 12, 2022
| archive-date=December 16, 2022
| archive-url=https://web.archive.org/web/20221216154821/https://plato.stanford.edu/entries/logic-intuitionistic/
| url-status=live
}}</ref><ref>{{cite journal
| title=At the Heart of Analysis: Intuitionism and Philosophy
| first=Charles | last=McCarty
| journal=Philosophia Scientiæ, Cahier spécial 6
| year=2006 | pages=81–94 | doi=10.4000/philosophiascientiae.411
| doi-access=free}}</ref>


These problems and debates led to a wide expansion of mathematical logic, with subareas such as [[model theory]] (modeling some logical theories inside other theories), [[proof theory]], [[type theory]], [[computability theory]] and [[computational complexity theory]].<ref name=MSC /> Although these aspects of mathematical logic were introduced before the rise of [[computer]]s, their use in [[compiler]] design, [[formal verification]], [[program analysis]], [[proof assistant]]s and other aspects of [[computer science]], contributed in turn to the expansion of these logical theories.<ref>{{cite web
:[[Mathematical physics]] • [[Mechanics|Analytical mechanics]] • [[Fluid mechanics|Mathematical fluid dynamics]] • [[Numerical analysis]] • [[Optimization (mathematics)|Optimization]] • [[Probability]] • [[Statistics]] • [[Mathematical economics]] • [[Financial mathematics]] • [[Game theory]] • [[Mathematical biology]] • [[Cryptography]] • [[Operations research]]
| last1=Halpern | first1=Joseph | author1-link=Joseph Halpern
| last2=Harper | first2=Robert | author2-link=Robert Harper (computer scientist)
| last3=Immerman | first3=Neil | author3-link=Neil Immerman
| last4=Kolaitis | first4=Phokion | author4-link=Phokion Kolaitis
| last5=Vardi | first5=Moshe | author5-link=Moshe Vardi
| last6=Vianu | first6=Victor | author6-link=Victor Vianu
| title=On the Unusual Effectiveness of Logic in Computer Science
| url=https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf
| access-date=January 15, 2021 |year=2001 | archive-date=March 3, 2021
| archive-url=https://web.archive.org/web/20210303115643/https://www.cs.cmu.edu/~rwh/papers/unreasonable/basl.pdf
| url-status=live }}</ref>


=== Statistics and other decision sciences ===
==Common misconceptions==
{{Main|Statistics|Probability theory}}
Mathematics is not a closed intellectual system, in which everything has already been worked out. There is no shortage of open problems.
[[File:IllustrationCentralTheorem.png|upright=1.5|thumb|right|Whatever the form of a random population [[Probability distribution|distribution]] (μ), the sampling [[mean]] (x̄) tends to a [[Gaussian]] distribution and its [[variance]] (σ) is given by the [[central limit theorem]] of probability theory.<ref>{{cite book |last=Rouaud |first=Mathieu |date=April 2017 |orig-date=First published July 2013 |title=Probability, Statistics and Estimation |page=10 |url=http://www.incertitudes.fr/book.pdf |url-status=live |archive-url=https://ghostarchive.org/archive/20221009/http://www.incertitudes.fr/book.pdf |archive-date=October 9, 2022 |access-date=February 13, 2024}}</ref>|class=skin-invert-image]]


The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially [[probability theory]]. Statisticians generate data with [[random sampling]] or randomized [[design of experiments|experiments]].<ref>{{cite book |last=Rao |first=C. Radhakrishna |author-link=C. R. Rao |year=1997 |orig-date=1989 |title=Statistics and Truth: Putting Chance to Work |edition=2nd |pages=3–17, 63–70 |publisher=World Scientific |isbn=981-02-3111-3 |lccn=97010349 |mr=1474730 |oclc=36597731}}</ref>
[[Pseudomathematics]] is a form of mathematics-like activity undertaken outside [[academia]], and occasionally by mathematicians themselves. It often consists of determined attacks on famous questions, consisting of proof-attempts made in an isolated way (that is, long papers not supported by previously published theory). The relationship to generally-accepted mathematics is similar to that between [[pseudoscience]] and real science. The misconceptions involved are normally based on:


[[Statistical theory]] studies [[statistical decision theory|decision problems]] such as minimizing the [[risk]] ([[expected loss]]) of a statistical action, such as using a [[statistical method|procedure]] in, for example, [[parameter estimation]], [[hypothesis testing]], and [[selection algorithm|selecting the best]]. In these traditional areas of [[mathematical statistics]], a statistical-decision problem is formulated by minimizing an [[objective function]], like expected loss or [[cost]], under specific constraints. For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence.<ref name="RaoOpt">{{cite book |last=Rao |first=C. Radhakrishna |author-link=C.R. Rao |editor1-last=Arthanari |editor1-first=T.S. |editor2-last=Dodge |editor2-first=Yadolah |editor2-link=Yadolah Dodge |chapter=Foreword |title=Mathematical programming in statistics |series=Wiley Series in Probability and Mathematical Statistics |publisher=Wiley |location=New York |year=1981 |pages=vii–viii |isbn=978-0-471-08073-2 |lccn=80021637 |mr=607328 |oclc=6707805}}</ref> Because of its use of [[optimization]], the mathematical theory of statistics overlaps with other [[decision science]]s, such as [[operations research]], [[control theory]], and [[mathematical economics]].{{sfn|Whittle|1994|pp=10–11, 14–18}}
*misunderstanding of the implications of [[mathematical rigor]];
*attempts to circumvent the usual criteria for publication of [[mathematical paper]]s in a [[learned journal]] after [[peer review]], often in the belief that the journal is biased against the author;
*lack of familiarity with, and therefore underestimation of, the existing literature.


=== Computational mathematics ===
The case of [[Kurt Heegner]]'s work shows that the mathematical establishment is neither infallible, nor unwilling to admit error in assessing 'amateur' work. And like [[astronomy]], mathematics owes much to amateur contributors such as [[Pierre de Fermat|Fermat]] and [[Marin Mersenne|Mersenne]].
{{Main|Computational mathematics}}
Computational mathematics is the study of [[mathematical problem]]s that are typically too large for human, numerical capacity.<ref>{{cite web
| title=G I Marchuk's plenary: ICM 1970
| first=Gurii Ivanovich
| last=Marchuk
| website=MacTutor
| date=April 2020
| publisher=School of Mathematics and Statistics, University of St Andrews, Scotland
| url=https://mathshistory.st-andrews.ac.uk/Extras/Computational_mathematics/
| access-date=November 13, 2022
| archive-date=November 13, 2022
| archive-url=https://web.archive.org/web/20221113155409/https://mathshistory.st-andrews.ac.uk/Extras/Computational_mathematics/
| url-status=live
}}</ref><ref>{{cite conference | title=Grand Challenges, High Performance Computing, and Computational Science | last1=Johnson | first1=Gary M. | last2=Cavallini | first2=John S. | conference=Singapore Supercomputing Conference'90: Supercomputing For Strategic Advantage | date=September 1991 | page=28 |lccn=91018998 |publisher=World Scientific | editor1-first=Kang Hoh | editor1-last=Phua | editor2-first=Kia Fock | editor2-last=Loe | url={{GBurl|id=jYNIDwAAQBAJ|p=28}} | access-date=November 13, 2022 }}</ref> [[Numerical analysis]] studies methods for problems in [[analysis (mathematics)|analysis]] using [[functional analysis]] and [[approximation theory]]; numerical analysis broadly includes the study of [[approximation]] and [[discretization]] with special focus on [[rounding error]]s.<ref>{{cite book |last=Trefethen |first=Lloyd N. |author-link=Lloyd N. Trefethen |editor1-last=Gowers |editor1-first=Timothy |editor1-link=Timothy Gowers |editor2-last=Barrow-Green |editor2-first=June |editor2-link=June Barrow-Green |editor3-last=Leader |editor3-first=Imre |editor3-link=Imre Leader |year=2008 |chapter=Numerical Analysis |pages=604–615 |title=The Princeton Companion to Mathematics |publisher=[[Princeton University Press]] |isbn=978-0-691-11880-2 |lccn=2008020450 |mr=2467561 |oclc=227205932 |url=http://people.maths.ox.ac.uk/trefethen/NAessay.pdf |url-status=live |archive-url=https://web.archive.org/web/20230307054158/http://people.maths.ox.ac.uk/trefethen/NAessay.pdf |archive-date=March 7, 2023 |access-date=February 15, 2024}}</ref> Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic-[[numerical linear algebra|matrix]]-and-[[graph theory]]. Other areas of computational mathematics include [[computer algebra]] and [[symbolic computation]].


== History ==
===Relationship between mathematics and physical reality===
{{Main|History of mathematics}}


=== Etymology ===
Mathematical concepts and theorems need not correspond to anything in the physical world. Insofar as a correspondence does exist, while mathematicians and physicists may select axioms and postulates that seem reasonable and intuitive, it is not necessary for the basic assumptions within an axiomatic system to be true in an empirical or physical sense. Thus, while most systems of axioms are derived from our perceptions and experiments, they are not dependent on them.
The word ''mathematics'' comes from the [[Ancient Greek]] word ''máthēma'' (''{{langx|grc|{{wikt-lang|en|μάθημα}}|label=none}}''), meaning {{gloss|something learned, knowledge, mathematics}}, and the derived expression ''mathēmatikḗ tékhnē'' ({{lang|grc|μαθηματικὴ τέχνη}}), meaning {{gloss|mathematical science}}. It entered the English language during the [[Late Middle English]] period through French and Latin.<ref>{{multiref | {{harvnb|Cresswell|2021|loc=§ Mathematics}} | {{harvnb|Perisho|1965|p=64}} }}</ref>


Similarly, one of the two main schools of thought in [[Pythagoreanism]] was known as the ''mathēmatikoi'' (μαθηματικοί){{emdash}}which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely the first to constrain the use of the word to just the study of [[arithmetic]] and geometry. By the time of [[Aristotle]] (384–322&nbsp;BC) this meaning was fully established.<ref>{{cite journal |last=Perisho |first=Margaret W. |date=Spring 1965 |title=The Etymology of Mathematical Terms |journal=[[Pi Mu Epsilon Journal]] |volume=4 |issue=2 |pages=62–66 |issn=0031-952X |jstor=24338341 |lccn=58015848 |oclc=1762376}}</ref>
For example, we could say that the physical concept of two apples may be accurately [[mathematical model|modeled]] by the [[natural number]] 2. On the other hand, we could also say that the natural numbers are ''not'' an accurate model because there is no standard "unit" apple and no two apples are exactly alike. The modeling idea is further complicated by the possibility of [[fraction (mathematics)|fractional]] or partial apples. So while it may be instructive to visualize the axiomatic definition of the natural numbers as collections of apples, the definition itself is not dependent upon nor derived from any actual physical entities.


In Latin and English, until around 1700, the term ''mathematics'' more commonly meant "[[astrology]]" (or sometimes "[[astronomy]]") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, [[Saint Augustine]]'s warning that Christians should beware of ''mathematici'', meaning "astrologers", is sometimes mistranslated as a condemnation of mathematicians.<ref name="Boas">{{cite book |last=Boas |first=Ralph P. |author-link=Ralph P. Boas Jr. |editor-last1=Alexanderson |editor-first1=Gerald L. |editor-last2=Mugler |editor-first2=Dale H. |year=1995 |chapter=What Augustine Didn't Say About Mathematicians |page=257 |title=Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories |publisher=[[Mathematical Association of America]] |isbn=978-0-88385-323-8 |lccn=94078313 |oclc=633018890}}</ref>
Nevertheless, mathematics remains extremely useful for solving real-world problems. This fact led Eugene Wigner to write an essay, ''[[The Unreasonable Effectiveness of Mathematics in the Natural Sciences]]''.


The apparent [[plural]] form in English goes back to the Latin [[Neuter (grammar)|neuter]] plural {{lang|la|mathematica}} ([[Cicero]]), based on the Greek plural ''ta mathēmatiká'' ({{lang|el|τὰ μαθηματικά}}) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective ''mathematic(al)'' and formed the noun ''mathematics'' anew, after the pattern of ''[[physics]]'' and ''[[metaphysics]]'', inherited from Greek.<ref>''[[The Oxford Dictionary of English Etymology]]'', ''[[Oxford English Dictionary]]'', ''sub'' "mathematics", "mathematic", "mathematics".</ref> In English, the noun ''mathematics'' takes a singular verb. It is often shortened to ''maths''<ref>{{cite web |url=https://www.oed.com/dictionary/maths_n |title=Maths (Noun) |website=[[Oxford English Dictionary]] |publisher=[[Oxford University Press]] |access-date=January 25, 2024}}</ref> or, in North America, ''math''.<ref>{{cite web |url=https://www.oed.com/dictionary/math_n3 |title=Math (Noun³) |website=[[Oxford English Dictionary]] |publisher=[[Oxford University Press]] |url-status=live |archive-url=https://web.archive.org/web/20200404201407/http://oed.com/view/Entry/114982 |archive-date=April 4, 2020 |access-date=January 25, 2024}}</ref>
==See also==
* [[List of basic mathematics topics]]
* [[List of free mathematics books]]
* [[Portal:Mathematics|Mathematics portal]]
* [[Philosophy of mathematics]]
* [[Mathematical game]]
* [[Education]]
* [[Mathematical problem]]
* [[Mathematics competitions]]


==Notes==
=== Ancient ===
[[File:Plimpton 322.jpg|thumb|The Babylonian mathematical tablet ''[[Plimpton 322]]'', dated to 1800&nbsp;BC]]
{{reflist}}
In addition to recognizing how to [[counting|count]] physical objects, [[prehistoric]] peoples may have also known how to count abstract quantities, like time{{emdash}}days, seasons, or years.<ref>See, for example, {{cite book | first=Raymond L. | last=Wilder|author-link=Raymond L. Wilder|title=Evolution of Mathematical Concepts; an Elementary Study|at=passim}}</ref><ref>{{Cite book|last=Zaslavsky|first=Claudia|author-link=Claudia Zaslavsky|title=Africa Counts: Number and Pattern in African Culture.|date=1999|publisher=Chicago Review Press|isbn=978-1-61374-115-3|oclc=843204342}}</ref> Evidence for more complex mathematics does not appear until around 3000&nbsp;{{Abbr|BC|Before Christ}}, when the [[Babylonia]]ns and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy.{{sfn|Kline|1990|loc=Chapter 1}} The oldest mathematical texts from [[Mesopotamia]] and [[Ancient Egypt|Egypt]] are from 2000 to 1800&nbsp;BC.<ref>[https://www.ms.uky.edu/~dhje223/CrestOfThePeacockCh4-pages-2-21.pdf/ Mesopotamia] pg 10. Retrieved June 1, 2024</ref> Many early texts mention [[Pythagorean triple]]s and so, by inference, the [[Pythagorean theorem]] seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that [[elementary arithmetic]] ([[addition]], [[subtraction]], [[multiplication]], and [[division (mathematics)|division]]) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a [[sexagesimal]] numeral system which is still in use today for measuring angles and time.{{sfn|Boyer|1991|loc="Mesopotamia" pp. 24–27}}


In the 6th century BC, [[Greek mathematics]] began to emerge as a distinct discipline and some [[Ancient Greeks]] such as the [[Pythagoreans]] appeared to have considered it a subject in its own right.<ref>{{cite book | last=Heath | first=Thomas Little | author-link=Thomas Heath (classicist) |url=https://archive.org/details/historyofgreekma0002heat/page/n14 |url-access=registration |page=1 |title=A History of Greek Mathematics: From Thales to Euclid |location=New York |publisher=Dover Publications |date=1981 |orig-date=1921 |isbn=978-0-486-24073-2}}</ref> Around 300 BC, [[Euclid]] organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof.<ref>{{Cite journal |last=Mueller |first=I. |year=1969 |title=Euclid's Elements and the Axiomatic Method |journal=The British Journal for the Philosophy of Science |volume=20 |issue=4 |pages=289–309 |doi=10.1093/bjps/20.4.289 |jstor=686258 |issn=0007-0882}}</ref> His book, ''[[Euclid's Elements|Elements]]'', is widely considered the most successful and influential textbook of all time.{{sfn|Boyer|1991|loc="Euclid of Alexandria" p. 119}} The greatest mathematician of antiquity is often held to be [[Archimedes]] ({{Circa|287|212 BC}}) of [[Syracuse, Italy|Syracuse]].{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 120}} He developed formulas for calculating the surface area and volume of [[solids of revolution]] and used the [[method of exhaustion]] to calculate the [[area]] under the arc of a [[parabola]] with the [[Series (mathematics)|summation of an infinite series]], in a manner not too dissimilar from modern calculus.{{sfn|Boyer|1991|loc="Archimedes of Syracuse" p. 130}} Other notable achievements of Greek mathematics are [[conic sections]] ([[Apollonius of Perga]], 3rd century BC),{{sfn|Boyer|1991|loc="Apollonius of Perga" p. 145}} [[trigonometry]] ([[Hipparchus of Nicaea]], 2nd century BC),{{sfn|Boyer|1991|loc="Greek Trigonometry and Mensuration" p. 162}} and the beginnings of algebra (Diophantus, 3rd century AD).{{sfn|Boyer|1991|loc="Revival and Decline of Greek Mathematics" p. 180}}
==References==
[[File:Bakhshali numerals 2.jpg|thumb|right|upright=1.5|The numerals used in the [[Bakhshali manuscript]], dated between the 2nd century BC and the 2nd century AD]]
<div class="references-small">
The [[Hindu–Arabic numeral system]] and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in [[Indian mathematics|India]] and were transmitted to the [[Western world]] via [[Islamic mathematics]].<ref>{{cite book
*Benson, Donald C., ''The Moment of Proof: Mathematical Epiphanies'', Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
| title=Number Theory and Its History
*[[Carl B. Boyer|Boyer, Carl B.]], ''A History of Mathematics'', Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. &mdash; A concise history of mathematics from the Concept of Number to contemporary Mathematics.
| first=Øystein
*Courant, R. and H. Robbins, ''What Is Mathematics? : An Elementary Approach to Ideas and Methods'', Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
| last=Ore
*[[Philip J. Davis|Davis, Philip J.]] and [[Reuben Hersh|Hersh, Reuben]], ''[[The Mathematical Experience]]''. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7.&mdash; A gentle introduction to the world of mathematics.
| author-link=Øystein Ore
*{{cite journal
| publisher=Courier Corporation
| last = Einstein
| pages=19–24
| first = Albert
| year=1988
| authorlink = Albert Einstein
| isbn=978-0-486-65620-5
| title = Sidelights on Relativity (Geometry and Experience)
| url={{GBurl|id=Sl_6BPp7S0AC|pg=IA19}}
| publisher = P. Dutton., Co
| date = 1923}}
| access-date=November 14, 2022
}}</ref> Other notable developments of Indian mathematics include the modern definition and approximation of [[sine]] and [[cosine]], and an early form of [[infinite series]].<ref>{{cite journal
*Eves, Howard, ''An Introduction to the History of Mathematics'', Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
| title=On the Use of Series in Hindu Mathematics
*Gullberg, Jan, ''Mathematics—From the Birth of Numbers''. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. &mdash; An encyclopedic overview of mathematics presented in clear, simple language.
| first=A. N. | last=Singh | journal=Osiris
*Hazewinkel, Michiel (ed.), ''[[Encyclopaedia of Mathematics]]''. Kluwer Academic Publishers 2000. &mdash; A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [http://eom.springer.de/default.htm].
| volume=1 | date=January 1936 | pages=606–628
*Jourdain, Philip E. B., ''The Nature of Mathematics'', in ''The World of Mathematics'', James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
| doi=10.1086/368443 | jstor=301627
*[[Morris Kline|Kline, Morris]], ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.
| s2cid=144760421 }}</ref><ref>{{cite book
*{{cite paper|url=http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf|date=2001|title=Some Trends in Modern Mathematics and the Fields Medal|author=Monastyrsky, Michael|publisher=Canadian Mathematical Society|accessdate=2006-07-28}}
| chapter=Use of series in India
*[[Oxford English Dictionary]], second edition, ed. John Simpson and Edmund Weiner, Clarendon Press, 1989, ISBN 0-19-861186-2.
| last1=Kolachana | first1=A. | last2=Mahesh | first2=K.
*''[[The Oxford Dictionary of English Etymology]]'', 1983 reprint. ISBN 0-19-861112-9.
| last3=Ramasubramanian | first3=K.
*Pappas, Theoni, ''The Joy Of Mathematics'', Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9.
| title=Studies in Indian Mathematics and Astronomy
*{{cite journal|title=Linear Associative Algebra|first= Benjamin|last= Peirce|journal= American Journal of Mathematics|issue= Vol. 4, No. 1/4. (1881|, pages= 97-229|url= http://links.jstor.org/sici?sici=0002-9327%281881%294%3A1%2F4%3C97%3ALAA%3E2.0.CO%3B2-X}} [[JSTOR]].
| series=Sources and Studies in the History of Mathematics and Physical Sciences
*Peterson, Ivars, ''Mathematical Tourist, New and Updated Snapshots of Modern Mathematics'', Owl Books, 2001, ISBN 0-8050-7159-8.
| pages=438–461 | publisher=Springer | publication-place=Singapore
*{{cite book | last = Paulos | first = John Allen | authorlink = John Allen Paulos | year = 1996 | title = A Mathematician Reads the Newspaper | publisher = Anchor | id = ISBN 0-385-48254-X}}
| isbn=978-981-13-7325-1 | year=2019
* {{Cite book | first=Karl R. | last=Popper | authorlink=Karl Popper | title=In Search of a Better World: Lectures and Essays from Thirty Years | chapter=On knowledge | publisher=Routledge | year=1995 | id=ISBN 0-415-13548-6}}
| doi=10.1007/978-981-13-7326-8_20 | s2cid=190176726 }}</ref>
*{{cite journal
| last = Riehm
| first = Carl
| authorlink =
| title = The Early History of the Fields Medal
| journal = Notices of the AMS
| volume = 49
| issue = 7
| pages = 778-782
| publisher = AMS
| date = August 2002
| url = http://www.ams.org/notices/200207/comm-riehm.pdf
| doi =
| id =
| accessdate = }}
*{{cite journal| last=Sevryuk | first=Mikhail B. | authorlink = Mikhail B. Sevryuk| year = 2006| month = January| title = Book Reviews| journal = [[Bulletin of the American Mathematical Society]]| volume = 43| issue = 1| pages = 101-109| url = http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf| format = PDF| accessdate = 2006-06-24}}
*{{cite book | last = Waltershausen | first = Wolfgang Sartorius von | authorlink = Wolfgang Sartorius von Waltershausen | title = Gauss zum Gedächtniss | year = 1856, repr. 1965 | publisher = Sändig Reprint Verlag H. R. Wohlwend | id = ISBN 3-253-01702-8 | asin = ASIN: B0000BN5SQ | url = http://www.amazon.de/Gauss-Ged%e4chtnis-Wolfgang-Sartorius-Waltershausen/dp/3253017028}}
*{{cite paper|url=http://info.med.yale.edu/therarad/summers/ziman.htm|date=1968|title=Public Knowledge:An essay concerning the social dimension of science|author= Ziman, J.M., F.R.S.}}
</div>


=== Medieval and later ===
==External links==
[[File:Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg|thumb|upright=.7|A page from [[al-Khwarizmi]]'s ''[[Al-Jabr]]'']]
{{sisterlinks|Mathematics}}
During the [[Golden Age of Islam]], especially during the 9th and 10th&nbsp;centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of [[algebra]]. Other achievements of the Islamic period include advances in [[spherical trigonometry]] and the addition of the [[decimal point]] to the Arabic numeral system.<ref>{{Cite book | last=Saliba | first=George | author-link=George Saliba | title=A history of Arabic astronomy: planetary theories during the golden age of Islam | date=1994 | publisher=New York University Press | isbn=978-0-8147-7962-0 | oclc=28723059 }}</ref> Many notable mathematicians from this period were Persian, such as [[Al-Khwarizmi]], [[Omar Khayyam]] and [[Sharaf al-Dīn al-Ṭūsī]].<ref>{{cite journal
{{Wikiversity|School:Mathematics}}
| title=Contributions of Islamic scholars to the scientific enterprise
<div class="references-small">
| first=Yasmeen M.
* Online [http://eom.springer.de/ "Encyclopaedia of Mathematics"] from Springer. Graduate-level reference work with over 8,000 entries, illuminating nearly 50,000 notions in mathematics.
| last=Faruqi
* [http://www-math.mit.edu/daimp Some mathematics applets, at MIT]
| journal=International Education Journal
* Rusin, Dave: [http://www.math-atlas.org/ ''The Mathematical Atlas'']. A guided tour through the various branches of modern mathematics. (Can also be found [http://www.math.niu.edu/~rusin/known-math/index/index.html here].)
| year=2006
* Stefanov, Alexandre: [http://us.geocities.com/alex_stef/mylist.html ''Textbooks in Mathematics'']. A list of free online textbooks and lecture notes in mathematics.
| volume=7
* Weisstein, Eric et al.: [http://www.mathworld.com/ ''MathWorld: World of Mathematics'']. An online encyclopedia of mathematics.
| issue=4
* Polyanin, Andrei: [http://eqworld.ipmnet.ru/ ''EqWorld: The World of Mathematical Equations'']. An online resource focusing on algebraic, ordinary differential, partial differential ([[mathematical physics]]), integral, and other mathematical equations.
| pages=391–399
* [http://planetmath.org/ ''Planet Math'']. An online mathematics encyclopedia under construction, focusing on modern mathematics. Uses the [[GNU Free Documentation License|GFDL]], allowing article exchange with Wikipedia. Uses [[TeX]] markup.
| publisher=Shannon Research Press
* [http://www.mathforge.net/ ''Mathforge'']. A news-blog with topics ranging from popular mathematics to popular physics to computer science and education.
| url=https://eric.ed.gov/?id=EJ854295
* [http://metamath.org/ ''Metamath'']. A site and a language, that formalize mathematics from its foundations.
| access-date=November 14, 2022
* [http://www-history.mcs.st-and.ac.uk/~history/ Mathematician Biographies]. The [[MacTutor History of Mathematics archive]] Extensive history and quotes from all famous mathematicians.
| archive-date=November 14, 2022
* Cain, George: [http://www.math.gatech.edu/~cain/textbooks/onlinebooks.html Online Mathematics Textbooks] available free online.
| archive-url=https://web.archive.org/web/20221114165547/https://eric.ed.gov/?id=EJ854295
* [http://etext.lib.virginia.edu/DicHist/analytic/anaVII.html Math & Logic: The history of formal mathematical, logical, linguistic and methodological ideas.] In ''The Dictionary of the History of Ideas.''
| url-status=live
* [http://www.nrich.maths.org/public/index.php Nrich], a prize-winning site for students from age five from [[University of Cambridge|Cambridge University]]
}}</ref> The Greek and Arabic mathematical texts were in turn translated to Latin during the Middle Ages and made available in Europe.<ref>{{cite journal | title=Greek-Arabic-Latin: The Transmission of Mathematical Texts in the Middle Ages | first=Richard | last=Lorch | journal=Science in Context | volume=14 | issue=1–2 | date=June 2001 | pages=313–331 | publisher=Cambridge University Press | doi=10.1017/S0269889701000114 | s2cid=146539132 | url=https://epub.ub.uni-muenchen.de/15929/1/greek-arabic-latin.pdf | access-date=December 5, 2022 | archive-date=December 17, 2022 | archive-url=https://web.archive.org/web/20221217160922/https://epub.ub.uni-muenchen.de/15929/1/greek-arabic-latin.pdf | url-status=live }}</ref>
* [http://www.freescience.info/mathematics.php 'FreeScience Library->Mathematics '] The mathematics section of FreeScience library
</div>


During the [[early modern period]], mathematics began to develop at an accelerating pace in [[Western Europe]], with innovations that revolutionized mathematics, such as the introduction of variables and [[#Symbolic notation and terminology|symbolic notation]] by [[François Viète]] (1540–1603), the introduction of [[History of logarithms|logarithms]] by [[John Napier]] in 1614, which greatly simplified numerical calculations, especially for [[astronomy]] and [[marine navigation]], the introduction of coordinates by [[René Descartes]] (1596–1650) for reducing geometry to algebra, and the development of calculus by [[Isaac Newton]] (1643–1727) and [[Gottfried Leibniz]] (1646–1716). [[Leonhard Euler]] (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and the proof of numerous theorems.<ref>{{Cite book |last=Kent |first=Benjamin |url=http://rguir.inflibnet.ac.in/bitstream/123456789/16963/1/9781984668677.pdf |title=History of Science |publisher=Bibliotex Digital Library |year=2022 |isbn=978-1-984668-67-7 |volume=2 }}</ref>
{{Mathematics-footer}}


[[File:Carl Friedrich Gauss 1840 by Jensen.jpg|thumb|left|upright=.8|[[Carl Friedrich Gauss]]]]
[[Category:Mathematics| ]]
Perhaps the foremost mathematician of the 19th century was the German mathematician [[Carl Gauss]], who made numerous contributions to fields such as algebra, analysis, [[differential geometry]], [[matrix theory]], number theory, and [[statistics]].<ref>{{cite journal
| title=History of Mathematics After the Sixteenth Century
| first=Raymond Clare | last=Archibald | author-link=Raymond Clare Archibald
| journal=The American Mathematical Monthly
| series=Part 2: Outline of the History of Mathematics
| volume=56 | issue=1 | date=January 1949 | pages=35–56
| doi=10.2307/2304570 | jstor=2304570
}}</ref> In the early 20th century, [[Kurt Gödel]] transformed mathematics by publishing [[Gödel's incompleteness theorems|his incompleteness theorems]], which show in part that any consistent axiomatic system{{emdash}}if powerful enough to describe arithmetic{{emdash}}will contain true propositions that cannot be proved.<ref name=Raatikainen_2005 />


Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and [[science]], to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January&nbsp;2006 issue of the ''[[Bulletin of the American Mathematical Society]]'', "The number of papers and books included in the ''[[Mathematical Reviews]]'' (MR) database since 1940 (the first year of operation of MR) is now more than 1.9&nbsp;million, and more than 75&nbsp;thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."{{sfn|Sevryuk|2006|pp=101–109}}
{{Link FA|mk}}


== Symbolic notation and terminology ==
[[af:Wiskunde]]
{{Main|Mathematical notation|Language of mathematics|Glossary of mathematics}}
[[am:ትምህርተ ሂሳብ]]
[[File:Sigma summation notation.svg|thumb|An explanation of the sigma (Σ) [[summation]] notation|class=skin-invert-image]]
[[ar:رياضيات]]
Mathematical notation is widely used in science and [[engineering]] for representing complex [[concept]]s and [[property (philosophy)|properties]] in a concise, unambiguous, and accurate way. This notation consists of [[glossary of mathematical symbols|symbols]] used for representing [[operation (mathematics)|operation]]s, unspecified numbers, [[relation (mathematics)|relation]]s and any other mathematical objects, and then assembling them into [[expression (mathematics)|expression]]s and formulas.<ref>{{cite conference |last=Wolfram |first=Stephan |date=October 2000 |author-link=Stephen Wolfram |title=Mathematical Notation: Past and Future |conference=MathML and Math on the Web: MathML International Conference 2000, Urbana Champaign, USA |url=https://www.stephenwolfram.com/publications/mathematical-notation-past-future/ |url-status=live |archive-url=https://web.archive.org/web/20221116150905/https://www.stephenwolfram.com/publications/mathematical-notation-past-future/ |archive-date=November 16, 2022 |access-date=February 3, 2024}}</ref> More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally [[Latin alphabet|Latin]] or [[Greek alphabet|Greek]] letters, and often include [[subscript]]s. Operation and relations are generally represented by specific [[Glossary of mathematical symbols|symbols]] or [[glyph]]s,<ref>{{cite journal |last1=Douglas |first1=Heather |last2=Headley |first2=Marcia Gail |last3=Hadden |first3=Stephanie |last4=LeFevre |first4=Jo-Anne |author4-link=Jo-Anne LeFevre |date=December 3, 2020 |title=Knowledge of Mathematical Symbols Goes Beyond Numbers |journal=Journal of Numerical Cognition |volume=6 |issue=3 |pages=322–354 |doi=10.5964/jnc.v6i3.293 |doi-access=free |eissn=2363-8761 |s2cid=228085700}}</ref> such as {{math|+}} ([[plus sign|plus]]), {{math|×}} ([[multiplication sign|multiplication]]), <math display =inline>\int</math> ([[integral sign|integral]]), {{math|1==}} ([[equals sign|equal]]), and {{math|<}} ([[less-than sign|less than]]).<ref name=AMS>{{cite web |last1=Letourneau |first1=Mary |last2=Wright Sharp |first2=Jennifer |date=October 2017 |title=AMS Style Guide |page=75 |publisher=[[American Mathematical Society]] |url=https://www.ams.org/publications/authors/AMS-StyleGuide-online.pdf |url-status=live |archive-url=https://web.archive.org/web/20221208063650/https://www.ams.org//publications/authors/AMS-StyleGuide-online.pdf |archive-date=December 8, 2022 |access-date=February 3, 2024}}</ref> All these symbols are generally grouped according to specific rules to form expressions and formulas.<ref>{{cite journal |last1=Jansen |first1=Anthony R. |last2=Marriott |first2=Kim |last3=Yelland |first3=Greg W. |year=2000 |title=Constituent Structure in Mathematical Expressions |journal=Proceedings of the Annual Meeting of the Cognitive Science Society |volume=22 |publisher=[[University of California Merced]] |eissn=1069-7977 |oclc=68713073 |url=https://escholarship.org/content/qt35r988q9/qt35r988q9.pdf |url-status=live |archive-url=https://web.archive.org/web/20221116152222/https://escholarship.org/content/qt35r988q9/qt35r988q9.pdf |archive-date=November 16, 2022 |access-date=February 3, 2024}}</ref> Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of [[noun phrase]]s and formulas play the role of [[clause]]s.
[[an:Matematicas]]

[[ast:Matemátiques]]
Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous [[Technical definition|definitions]] that provide a standard foundation for communication. An axiom or [[postulate]] is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a [[conjecture]]. Through a series of rigorous arguments employing [[deductive reasoning]], a statement that is [[formal proof|proven]] to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a [[Lemma (mathematics)|lemma]]. A proven instance that forms part of a more general finding is termed a [[corollary]].<ref>{{cite book |last=Rossi |first=Richard J. |year=2006 |title=Theorems, Corollaries, Lemmas, and Methods of Proof |series=Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts |publisher=[[John Wiley & Sons]] |pages=1–14, 47–48 |isbn=978-0-470-04295-3 |lccn=2006041609 |oclc=64085024}}</ref>
[[az:Riyaziyyat]]

[[bn:গণিত]]
Numerous technical terms used in mathematics are [[neologism]]s, such as ''[[polynomial]]'' and ''[[homeomorphism]]''.<ref>{{cite web |url=https://mathshistory.st-andrews.ac.uk/Miller/mathword/ |title=Earliest Uses of Some Words of Mathematics |website=MacTutor |publisher=[[University of St. Andrews]] |publication-place=Scotland, UK |url-status=live |archive-url=https://web.archive.org/web/20220929032236/https://mathshistory.st-andrews.ac.uk/Miller/mathword/ |archive-date=September 29, 2022 |access-date=February 3, 2024}}</ref> Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, "[[logical disjunction|or]]" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "[[exclusive or]]"). Finally, many mathematical terms are common words that are used with a completely different meaning.<ref>{{cite journal |last=Silver |first=Daniel S. |date=November–December 2017 |title=The New Language of Mathematics |journal=The American Scientist |volume=105 |number=6 |pages=364–371 |publisher=[[Sigma Xi]] |doi=10.1511/2017.105.6.364 |doi-access=free |issn=0003-0996 |lccn=43020253 |oclc=1480717 |s2cid=125455764}}</ref> This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every [[free module]] is [[flat module|flat]]" and "a [[field (mathematics)|field]] is always a [[ring (mathematics)|ring]]".
[[zh-min-nan:Sò͘-ha̍k]]

[[ba:Математика]]
== Relationship with sciences ==
[[be:Матэматыка]]
Mathematics is used in most [[science]]s for [[Mathematical model|modeling]] phenomena, which then allows predictions to be made from experimental laws.<ref>{{cite book | title=Modelling Mathematical Methods and Scientific Computation | first1=Nicola | last1=Bellomo | first2=Luigi | last2=Preziosi | publisher=CRC Press | date=December 22, 1994 | page=1 | isbn=978-0-8493-8331-1 | series=Mathematical Modeling | volume=1 | url={{GBurl|id=pJAvWaRYo3UC}} | access-date=November 16, 2022 }}</ref> The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model.<ref>{{cite journal
[[bar:Mathematik]]
| title=Mathematical Models and Reality: A Constructivist Perspective
[[bs:Matematika]]
| first=Christian | last=Hennig
[[br:Matematikoù]]
| journal=Foundations of Science
[[bg:Математика]]
| volume=15 | pages=29–48 | year=2010
[[ca:Matemàtiques]]
| doi=10.1007/s10699-009-9167-x
[[ceb:Matematika]]
| s2cid=6229200 | url=https://www.researchgate.net/publication/225691477
[[cs:Matematika]]
| access-date=November 17, 2022
[[co:Matematica]]
}}</ref> Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used.<ref>{{cite journal | title=Models in Science | date=February 4, 2020 | first1=Roman | last1=Frigg | author-link=Roman Frigg | first2=Stephan | last2=Hartmann | author2-link=Stephan Hartmann | website=Stanford Encyclopedia of Philosophy | url=https://seop.illc.uva.nl/entries/models-science/ | access-date=November 17, 2022 | archive-date=November 17, 2022 | archive-url=https://web.archive.org/web/20221117162412/https://seop.illc.uva.nl/entries/models-science/ | url-status=live }}</ref> For example, the [[perihelion precession of Mercury]] could only be explained after the emergence of [[Einstein]]'s [[general relativity]], which replaced [[Newton's law of gravitation]] as a better mathematical model.<ref>{{cite book | last=Stewart | first=Ian | author-link=Ian Stewart (mathematician) | chapter=Mathematics, Maps, and Models | title=The Map and the Territory: Exploring the Foundations of Science, Thought and Reality | pages=345–356 | publisher=Springer | year=2018 | editor1-first=Shyam | editor1-last=Wuppuluri | editor2-first=Francisco Antonio | editor2-last=Doria | isbn=978-3-319-72478-2 | series=The Frontiers Collection | chapter-url={{GBurl|id=mRBMDwAAQBAJ|p=345}} | doi=10.1007/978-3-319-72478-2_18 | access-date=November 17, 2022 }}</ref>
[[cy:Mathemateg]]

[[da:Matematik]]
There is still a [[philosophy of mathematics|philosophical]] debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is [[falsifiable]], which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a [[counterexample]]. Similarly as in science, [[mathematical theory|theories]] and results (theorems) are often obtained from [[experimentation]].<ref>{{Cite web|url=https://undsci.berkeley.edu/article/mathematics|title=The science checklist applied: Mathematics|website=Understanding Science |publisher=University of California, Berkeley |access-date=October 27, 2019|archive-url=https://web.archive.org/web/20191027021023/https://undsci.berkeley.edu/article/mathematics|archive-date=October 27, 2019|url-status=live}}</ref> In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).<ref>{{cite book | last=Mackay | first=A. L. | year=1991 | title=Dictionary of Scientific Quotations | location=London | page=100 | isbn=978-0-7503-0106-0 | publisher=Taylor & Francis | url={{GBurl|id=KwESE88CGa8C|q=durch planmässiges Tattonieren}} | access-date=March 19, 2023 }}</ref> However, some authors emphasize that mathematics differs from the modern notion of science by not {{em|relying}} on empirical evidence.<ref name="Bishop1991">{{cite book | last1 = Bishop | first1 = Alan | year = 1991 | chapter = Environmental activities and mathematical culture | title = Mathematical Enculturation: A Cultural Perspective on Mathematics Education | chapter-url = {{GBurl|id=9AgrBgAAQBAJ|p=54}} | pages = 20–59 | location = Norwell, Massachusetts | publisher = Kluwer Academic Publishers | isbn = 978-0-7923-1270-3 | access-date = April 5, 2020 }}</ref><ref>{{cite book | title=Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists | last1=Shasha | first1=Dennis Elliot | author1-link=Dennis Elliot Shasha | last2=Lazere | first2=Cathy A. | publisher=Springer | year=1998 | page=228 | isbn=978-0-387-98269-4 }}</ref><ref name="Nickles2013">{{cite book | last=Nickles | first=Thomas | year=2013 | chapter=The Problem of Demarcation | title=Philosophy of Pseudoscience: Reconsidering the Demarcation Problem | page=104 | location=Chicago | publisher=The University of Chicago Press | isbn=978-0-226-05182-6 }}</ref><ref name="Pigliucci2014">{{Cite magazine | year=2014| last=Pigliucci| first=Massimo | author-link=Massimo Pigliucci | title=Are There 'Other' Ways of Knowing? | magazine=[[Philosophy Now]]| url=https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing | access-date=April 6, 2020| archive-date=May 13, 2020 | archive-url=https://web.archive.org/web/20200513190522/https://philosophynow.org/issues/102/Are_There_Other_Ways_of_Knowing | url-status=live}}</ref>
[[de:Mathematik]]
<!-- What precedes is only one aspect of the relationship between mathematics and other sciences. Other aspects are considered in the next subsections. -->
[[et:Matemaatika]]

[[el:Μαθηματικά]]
=== Pure and applied mathematics ===
[[es:Matemática]]
{{Main|Applied mathematics|Pure mathematics}}
[[eo:Matematiko]]
{{multiple image
[[eu:Matematika]]
| footer = Isaac Newton (left) and [[Gottfried Wilhelm Leibniz]] developed infinitesimal calculus.
[[fa:ریاضیات]]
| total_width = 330
[[fo:Støddfrøði]]
| width1 = 407
[[fr:Mathématiques]]
| height1 = 559
[[fy:Wiskunde]]
| image1 = GodfreyKneller-IsaacNewton-1689.jpg
[[fur:Matematiche]]
| alt1 = Isaac Newton
[[ga:Matamaitic]]
| width2 = 320
[[gv:Maddaght]]
| height2 = 390
[[gd:Matamataigs]]
| image2 = Gottfried Wilhelm Leibniz, Bernhard Christoph Francke.jpg
[[gl:Matemáticas]]
| alt2 = Gottfried Wilhelm von Leibniz
[[gu:ગણિત]]
}}
[[zh-classical:數學]]

[[ko:수학]]
Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of [[technology]] and science, and there was no clear distinction between pure and applied mathematics.<ref name="Ferreirós_2007">{{cite book
[[haw:Makemakika]]
| title=The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae
[[hi:गणित]]
| last=Ferreirós | first=J.
[[hr:Matematika]]
| chapter=Ό Θεὸς Άριθμητίζει: The Rise of Pure Mathematics as Arithmetic with Gauss
[[io:Matematiko]]
| pages=235–268 | year=2007 | isbn=978-3-540-34720-0
[[id:Matematika]]
| editor1-first=Catherine | editor1-last=Goldstein | editor1-link=Catherine Goldstein
[[ia:Mathematica]]
| editor2-first=Norbert | editor2-last=Schappacher
[[ie:Matematica]]
| editor3-first=Joachim | editor3-last=Schwermer
[[is:Stærðfræði]]
| publisher=Springer Science & Business Media
[[it:Matematica]]
| chapter-url={{GBurl|id=IUFTcOsMTysC|p=235}}
[[he:מתמטיקה]]
}}</ref> For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, [[Isaac Newton]] introduced infinitesimal calculus for explaining the movement of the [[planet]]s with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians.<ref>{{cite journal
[[jv:Matematika]]
| title=Mathematical vs. Experimental Traditions in the Development of Physical Science
[[ka:მათემატიკა]]
| first=Thomas S. | last=Kuhn | author-link=Thomas Kuhn
[[csb:Matematika]]
| journal=The Journal of Interdisciplinary History
[[ky:Математика]]
| year=1976 | volume=7 | issue=1 | pages=1–31 | publisher=The MIT Press
[[sw:Hisabati]]
| jstor=202372 | doi=10.2307/202372
[[lad:Matematika]]
}}</ref> However, a notable exception occurred with the tradition of [[pure mathematics in Ancient Greece]].<ref>{{cite book
[[la:Mathematica]]
| chapter=The two cultures of mathematics in ancient Greece
[[lv:Matemātika]]
| first=Markus
[[lb:Mathematik]]
| last=Asper
[[lt:Matematika]]
| year=2009
[[lij:Matematica]]
| title=The Oxford Handbook of the History of Mathematics
[[li:Mathematik]]
| editor1-first=Eleanor
[[jbo:cmaci]]
| editor1-last=Robson
[[lmo:Matemàtega]]
| editor2-first=Jacqueline
[[hu:Matematika]]
| editor2-last=Stedall
[[mk:Математика]]
| pages=107–132
[[mr:गणित]]
| isbn=978-0-19-921312-2
[[ms:Matematik]]
| publisher=OUP Oxford
[[nah:Tlapōhuayōtl]]
| series=Oxford Handbooks in Mathematics
[[nl:Wiskunde]]
| chapter-url={{GBurl|id=xZMSDAAAQBAJ|p=107}}
[[nds-nl:Wiskunde]]
| access-date=November 18, 2022
[[ja:数学]]
}}</ref> The problem of [[integer factorization]], for example, which goes back to [[Euclid]] in 300 BC, had no practical application before its use in the [[RSA cryptosystem]], now widely used for the security of [[computer network]]s.<ref>{{cite book |last1=Gozwami |first1=Pinkimani |last2=Singh |first2=Madan Mohan |editor-last1=Ahmad |editor-first1=Khaleel |editor-last2=Doja |editor-first2=M. N. |editor-last3=Udzir |editor-first3=Nur Izura |editor-last4=Singh |editor-first4=Manu Pratap |year=2019 |pages=59–60 |chapter=Integer Factorization Problem |title=Emerging Security Algorithms and Techniques |publisher=CRC Press |isbn=978-0-8153-6145-9 |lccn=2019010556 |oclc=1082226900}}</ref>
[[no:Matematikk]]

[[nn:Matematikk]]
In the 19th century, mathematicians such as [[Karl Weierstrass]] and [[Richard Dedekind]] increasingly focused their research on internal problems, that is, ''pure mathematics''.<ref name="Ferreirós_2007" /><ref>{{cite journal
[[nrm:Caltchul]]
| title=How applied mathematics became pure
[[nov:Matematike]]
| last=Maddy | first=P. | author-link=Penelope Maddy
[[oc:Matematicas]]
| journal=The Review of Symbolic Logic
[[ug:ماتېماتىكا]]
| year=2008
[[pag:Matematiks]]
| volume=1
[[ps:شمېر پوهنه]]
| issue=1
[[km:គណិតសាស្ត្រ]]
| pages=16–41
[[nds:Mathematik]]
| doi=10.1017/S1755020308080027
[[pl:Matematyka]]
| s2cid=18122406
[[pt:Matemática]]
| url=http://pgrim.org/philosophersannual/pa28articles/maddyhowapplied.pdf
[[ro:Matematică]]
| access-date=November 19, 2022
[[qu:Yupay Yachay]]
| archive-date=August 12, 2017
[[ru:Математика]]
| archive-url=https://web.archive.org/web/20170812012210/http://pgrim.org/philosophersannual/pa28articles/maddyhowapplied.pdf
[[sc:Matemàtica]]
| url-status=live
[[sco:Mathematics]]
}}</ref> This led to split mathematics into ''pure mathematics'' and ''applied mathematics'', the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.<ref>{{cite book
[[sq:Matematika]]
| title=The Best Writing on Mathematics, 2016
[[ru-sib:Математика]]
| chapter=In Defense of Pure Mathematics
[[scn:Matimàtica]]
| first=Daniel S.
[[simple:Mathematics]]
| last=Silver
[[sk:Matematika]]
| pages=17–26
[[sl:Matematika]]
| isbn=978-0-691-17529-4
[[sr:Математика]]
| year=2017
[[su:Matematika]]
| editor1-first=Mircea
[[fi:Matematiikka]]
| editor1-last=Pitici
[[sv:Matematik]]
| publisher=Princeton University Press
[[tl:Matematika]]
| chapter-url={{GBurl|id=RXGYDwAAQBAJ|p=17}}
[[ta:கணிதம்]]
| access-date=November 19, 2022
[[tt:Matematik]]
}}</ref>
[[tet:Matemátika]]

[[th:คณิตศาสตร์]]
The aftermath of [[World War II]] led to a surge in the development of applied mathematics in the US and elsewhere.<ref>{{cite journal | title=The American Mathematical Society and Applied Mathematics from the 1920s to the 1950s: A Revisionist Account | first=Karen Hunger | last=Parshall | author-link=Karen Hunger Parshall | journal=Bulletin of the American Mathematical Society | volume=59 | year=2022 | issue=3 | pages=405–427 | doi=10.1090/bull/1754 | s2cid=249561106 | url=https://www.ams.org/journals/bull/2022-59-03/S0273-0979-2022-01754-5/home.html | access-date=November 20, 2022 | doi-access=free | archive-date=November 20, 2022 | archive-url=https://web.archive.org/web/20221120151259/https://www.ams.org/journals/bull/2022-59-03/S0273-0979-2022-01754-5/home.html | url-status=live }}</ref><ref>{{cite journal
[[vi:Toán học]]
| title=The History Of Applied Mathematics And The History Of Society
[[tr:Matematik]]
| first=Michael | last=Stolz
[[uk:Математика]]
| journal=Synthese
[[uz:Matematika]]
| volume=133 | pages=43–57 | year=2002
[[vec:Matemàtega]]
| doi=10.1023/A:1020823608217
[[vo:Matematav]]
| s2cid=34271623 | url=https://www.researchgate.net/publication/226795930
[[fiu-vro:Matõmaatiga]]
| access-date=November 20, 2022
[[wo:Xayma]]
}}</ref> Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".<ref>{{cite journal
[[yi:מאטעמאטיק]]
| title=On the role of applied mathematics
[[zh-yue:數學]]
| journal=[[Advances in Mathematics]] | first=C. C . | last=Lin
[[diq:Matematik]]
| volume=19 | issue=3 | date=March 1976 | pages=267–288
[[zh:数学]]
| doi=10.1016/0001-8708(76)90024-4 | doi-access=free
}}</ref><ref>{{cite conference
| title=Applying Pure Mathematics
| first=Anthony
| last=Peressini
| conference=Philosophy of Science. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part I: Contributed Papers
| volume=66
| date=September 1999
| pages=S1–S13
| jstor=188757
| access-date=November 30, 2022
| url=https://www.academia.edu/download/32799272/ApplyingMathPSA.pdf
| archive-url=https://web.archive.org/web/20240102210931/https://d1wqtxts1xzle7.cloudfront.net/32799272/ApplyingMathPSA-libre.pdf?1391205742=&response-content-disposition=inline%3B+filename%3DApplying_Pure_Mathematics.pdf&Expires=1704233371&Signature=BvNJyYufdj9BiKFe94w6gdXLpAfr7T5JIv~RU74R2uT0O9Ngj6i4cdBtYYOSB6D4V-MgButb6lKNhIGGQogw0e0sHVFkJUy5TRsoCiQ-MLabpZOf74E5SGLMFIExhGVAw7SKrSFaQsFGhfbaRMxbMP~u-wRdJAz6ve6kbWr6oq-doQeEOlRfO4EByNCUYx-KAk3~cBsH1Q2WNZ5QiVObMI1ufQ7zkQM1bqzOumLu6g07F~pt~Cds~lftuQufHomoTH-V9H9iKQgUyc3-4bEB1y1Jdngs7WWg76LcSGn65bPK8dxvsZzKaLDGfoK5jamZkA8z3-xxiMIPL8c6YETjZA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
| archive-date=January 2, 2024
| url-status=live
}}</ref>

An example of the first case is the [[theory of distributions]], introduced by [[Laurent Schwartz]] for validating computations done in [[quantum mechanics]], which became immediately an important tool of (pure) mathematical analysis.<ref>{{cite conference
| title=Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century
| last=Lützen
| first=J.
| year=2011
| editor1-last=Schlote
| editor1-first=K. H.
| editor2-last=Schneider
| editor2-first=M.
| publisher=Verlag Harri Deutsch
| publication-place=Frankfurt am Main
| chapter=Examples and reflections on the interplay between mathematics and physics in the 19th and 20th century
| chapter-url=https://slub.qucosa.de/enwiki/api/qucosa%3A16267/zip/
| access-date=November 19, 2022
| archive-date=March 23, 2023
| archive-url=https://web.archive.org/web/20230323164143/https://slub.qucosa.de/enwiki/api/qucosa%3A16267/zip/
| url-status=live
}}</ref> An example of the second case is the [[decidability of the first-order theory of the real numbers]], a problem of pure mathematics that was proved true by [[Alfred Tarski]], with an algorithm that is impossible to [[implementation (computer science)|implement]] because of a computational complexity that is much too high.<ref>{{cite journal
| title=Model theory and exponentiation
| last=Marker
| first=Dave
| journal=Notices of the American Mathematical Society
| volume=43
| issue=7
| date=July 1996
| pages=753–759
| url=https://www.ams.org/notices/199607/
| access-date=November 19, 2022
| archive-date=March 13, 2014
| archive-url=https://web.archive.org/web/20140313004011/http://www.ams.org/notices/199607/
| url-status=live
}}</ref> For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, [[George E. Collins|George Collins]] introduced the [[cylindrical algebraic decomposition]] that became a fundamental tool in [[real algebraic geometry]].<ref>{{cite conference
| title=Cylindrical Algebraic Decomposition in the RegularChains Library
| first1=Changbo | last1=Chen | first2=Marc Moreno | last2=Maza
| date=August 2014 | volume=8592
| publisher=Springer | publication-place=Berlin
| conference=International Congress on Mathematical Software 2014
| series=Lecture Notes in Computer Science
| url=https://www.researchgate.net/publication/268067322
| access-date=November 19, 2022 | doi=10.1007/978-3-662-44199-2_65 }}</ref>

In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas.<ref>{{cite journal
| title=Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy
| first1=José Antonio | last1=Pérez-Escobar | first2=Deniz | last2=Sarikaya
| journal=European Journal for Philosophy of Science
| volume=12 | issue=1 | pages=1–22 | year=2021
| doi=10.1007/s13194-021-00435-9 | s2cid=245465895
| doi-access=free }}</ref><ref>{{cite book
| chapter=Pure Mathematics and Applied Mathematics are Inseparably Intertwined: Observation of the Early Analysis of the Infinity
| last=Takase
| first=M.
| title=A Mathematical Approach to Research Problems of Science and Technology
| series=Mathematics for Industry
| volume=5
| year=2014
| pages=393–399
| publisher=Springer
| publication-place=Tokyo
| chapter-url={{GBurl|id=UeElBAAAQBAJ|p=393}}
| doi=10.1007/978-4-431-55060-0_29
| isbn=978-4-431-55059-4
| access-date=November 20, 2022
}}</ref> The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics".<ref name=MSC /> However, these terms are still used in names of some [[university]] departments, such as at the [[Faculty of Mathematics, University of Cambridge|Faculty of Mathematics]] at the [[University of Cambridge]].

=== Unreasonable effectiveness ===

The [[unreasonable effectiveness of mathematics]] is a phenomenon that was named and first made explicit by physicist [[Eugene Wigner]].<ref name=wigner1960>{{cite journal
| title=The Unreasonable Effectiveness of Mathematics in the Natural Sciences
| last=Wigner | first=Eugene | author-link=Eugene Wigner
| journal=[[Communications on Pure and Applied Mathematics]]
| volume=13 | issue=1 | pages=1–14 | year=1960
| doi=10.1002/cpa.3160130102 | bibcode=1960CPAM...13....1W
| s2cid=6112252 | url=https://math.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
| url-status=live | archive-url=https://web.archive.org/web/20110228152633/http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
| archive-date=February 28, 2011 | df=mdy-all
}}</ref> It is the fact that many mathematical theories (even the "purest") have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.<ref>{{cite journal
| title=Revisiting the 'unreasonable effectiveness' of mathematics
| first=Sundar | last=Sarukkai
| journal=Current Science
| volume=88 | issue=3 | date=February 10, 2005 | pages=415–423
| jstor=24110208
}}</ref> Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.

A notable example is the [[prime factorization]] of natural numbers that was discovered more than 2,000 years before its common use for secure [[internet]] communications through the [[RSA cryptosystem]].<ref>{{cite book
| chapter=History of Integer Factoring
| pages=41–77
| first=Samuel S. Jr.
| last=Wagstaff
| title=Computational Cryptography, Algorithmic Aspects of Cryptography, A Tribute to AKL
| editor1-first=Joppe W.
| editor1-last=Bos
| editor2-first=Martijn
| editor2-last=Stam
| series=London Mathematical Society Lecture Notes Series 469
| publisher=Cambridge University Press
| year=2021
| chapter-url=https://www.cs.purdue.edu/homes/ssw/chapter3.pdf
| access-date=November 20, 2022
| archive-date=November 20, 2022
| archive-url=https://web.archive.org/web/20221120155733/https://www.cs.purdue.edu/homes/ssw/chapter3.pdf
| url-status=live
}}</ref> A second historical example is the theory of [[ellipse]]s. They were studied by the [[ancient Greek mathematicians]] as [[conic section]]s (that is, intersections of [[cone]]s with planes). It was almost 2,000 years later that [[Johannes Kepler]] discovered that the [[trajectories]] of the planets are ellipses.<ref>{{cite web
| title=Curves: Ellipse
| website=MacTutor
| publisher=School of Mathematics and Statistics, University of St Andrews, Scotland
| url=https://mathshistory.st-andrews.ac.uk/Curves/Ellipse/
| access-date=November 20, 2022
| archive-date=October 14, 2022
| archive-url=https://web.archive.org/web/20221014051943/https://mathshistory.st-andrews.ac.uk/Curves/Ellipse/
| url-status=live
}}</ref>

In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and [[manifold]]s. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, [[Albert Einstein]] developed the [[theory of relativity]] that uses fundamentally these concepts. In particular, [[spacetime]] of [[special relativity]] is a non-Euclidean space of dimension four, and spacetime of [[general relativity]] is a (curved) manifold of dimension four.<ref>{{cite web
| title=Beyond the Surface of Einstein's Relativity Lay a Chimerical Geometry
| first=Vasudevan
| last=Mukunth
| website=The Wire
| date=September 10, 2015
| url=https://thewire.in/science/beyond-the-surface-of-einsteins-relativity-lay-a-chimerical-geometry
| access-date=November 20, 2022
| archive-date=November 20, 2022
| archive-url=https://web.archive.org/web/20221120191206/https://thewire.in/science/beyond-the-surface-of-einsteins-relativity-lay-a-chimerical-geometry
| url-status=live
}}</ref><ref>{{cite journal
| title=The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics
| first1=Edwin B. | last1=Wilson | first2=Gilbert N. | last2=Lewis
| journal=Proceedings of the American Academy of Arts and Sciences
| volume=48 | issue=11 | date=November 1912 | pages=389–507
| doi=10.2307/20022840 | jstor=20022840 }}</ref>

A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the [[positron]] and the [[omega baryon|baryon]] <math>\Omega^{-}.</math> In both cases, the equations of the theories had unexplained solutions, which led to conjecture of the existence of an unknown [[particle]], and the search for these particles. In both cases, these particles were discovered a few years later by specific experiments.<ref name=borel /><ref>{{cite journal
| title=Discovering the Positron (I)
| first=Norwood Russell | last=Hanson | author-link=Norwood Russell Hanson
| journal=The British Journal for the Philosophy of Science
| volume=12 | issue=47 | date=November 1961 | pages=194–214
| publisher=The University of Chicago Press
| jstor=685207 | doi=10.1093/bjps/xiii.49.54
}}</ref><ref>{{cite journal
| title=Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the Ω<sup>–</sup> particle
| first=Michele | last=Ginammi
| journal=Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
| volume=53 | date=February 2016 | pages=20–27
| doi=10.1016/j.shpsb.2015.12.001
| bibcode=2016SHPMP..53...20G }}</ref>

=== Specific sciences ===
==== Physics ====
{{Main|Relationship between mathematics and physics}}
[[File:Pendule schema.gif|thumb|Diagram of a pendulum]]
Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,<ref>{{Cite book |last1=Wagh |first1=Sanjay Moreshwar |url={{GBurl|id=-DmfVjBUPksC|p=3}} |title=Essentials of Physics |last2=Deshpande |first2=Dilip Abasaheb |date=September 27, 2012 |publisher=PHI Learning Pvt. Ltd. |isbn=978-81-203-4642-0 |page=3 |language=en |access-date=January 3, 2023 }}</ref> and is also considered to be the motivation of major mathematical developments.<ref>{{Cite conference |last=Atiyah |first=Michael |author-link=Michael Atiyah |year=1990 |title=On the Work of Edward Witten |url=http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf |conference=Proceedings of the International Congress of Mathematicians |page=31 |archive-url=https://web.archive.org/web/20130928095313/http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf |archive-date=September 28, 2013 |access-date=December 29, 2022}}</ref>

==== Computing ====
{{Further|Theoretical computer science|Computational mathematics}}
Computing is closely related to mathematics in several ways.<ref>{{Cite web |title=Course 18C Mathematics with Computer Science |url=https://math.mit.edu/academics/undergrad/major/course18c.html |access-date=June 1, 2024 |website=math.mit.edu}}</ref> [[Theoretical computer science]] is considered to be mathematical in nature.<ref>{{Cite web |title=Theoretical Computer Science |url=https://math.mit.edu/research/applied/comp-science-theory.html |access-date=June 1, 2024 |website=math.mit.edu}}</ref> Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in [[cryptography]] and [[coding theory]]. [[Discrete mathematics]] is useful in many areas of computer science, such as [[Computational complexity theory|complexity theory]], [[information theory]], and [[graph theory]].<ref>{{Cite web |date=April 8, 2024 |title=Real-Life Applications of Discrete Mathematics |url=https://www.geeksforgeeks.org/real-life-applications-of-discrete-mathematics/ |access-date=May 19, 2024 |website=GeeksforGeeks |language=en-US}}</ref> In 1998, the [[Kepler conjecture]] on [[sphere packing]] seemed to also be partially proven by computer.<ref>{{cite journal |last1=Hales |first1=Thomas |last2=Adams |first2=Mark |last3=Bauer |first3=Gertrud |last4=Dang |first4=Tat Dat |last5=Harrison |first5=John |last6=Hoang |first6=Le Truong |last7=Kaliszyk |first7=Cezary |last8=Magron |first8=Victor |last9=Mclaughlin |first9=Sean |last10=Nguyen |first10=Tat Thang |last11=Nguyen |first11=Quang Truong |last12=Nipkow |first12=Tobias |last13=Obua |first13=Steven |last14=Pleso |first14=Joseph |last15=Rute |first15=Jason |last16=Solovyev |first16=Alexey |last17=Ta |first17=Thi Hoai An |last18=Tran |first18=Nam Trung |last19=Trieu |first19=Thi Diep |last20=Urban |first20=Josef |last21=Vu |first21=Ky |last22=Zumkeller |first22=Roland |title=A Formal Proof of the Kepler Conjecture |journal=Forum of Mathematics, Pi |year=2017 |volume=5 |page=e2 |doi=10.1017/fmp.2017.1 |s2cid=216912822 |url=https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |language=en |issn=2050-5086 |access-date=February 25, 2023 |archive-date=December 4, 2020 |archive-url=https://web.archive.org/web/20201204053232/https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |url-status=live |hdl=2066/176365 |hdl-access=free }}</ref>

==== Biology and chemistry ====
{{Main|Mathematical and theoretical biology|Mathematical chemistry}}
[[File:Giant Pufferfish skin pattern detail.jpg|thumb|The skin of this [[giant pufferfish]] exhibits a [[Turing pattern]], which can be modeled by [[reaction–diffusion system]]s.]]
[[Biology]] uses probability extensively in fields such as ecology or [[neurobiology]].<ref name=":2">{{Cite book |last=Millstein |first=Roberta |author-link=Roberta Millstein |title=The Oxford Handbook of Probability and Philosophy |date=September 8, 2016 |editor-last=Hájek |editor-first=Alan |pages=601–622 |chapter=Probability in Biology: The Case of Fitness |doi=10.1093/oxfordhb/9780199607617.013.27 |editor-last2=Hitchcock |editor-first2=Christopher |chapter-url=http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf |access-date=December 29, 2022 |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054456/http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf |url-status=live }}</ref> Most discussion of probability centers on the concept of [[evolutionary fitness]].<ref name=":2" /> Ecology heavily uses modeling to simulate [[population dynamics]],<ref name=":2" /><ref>See for example Anne Laurent, Roland Gamet, Jérôme Pantel, ''Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés»'' 15–17 janvier 1996, CNRS</ref> study ecosystems such as the predator-prey model, measure pollution diffusion,{{Sfn|Bouleau|1999|pp=282–283}} or to assess climate change.{{Sfn|Bouleau|1999|p=285}} The dynamics of a population can be modeled by coupled differential equations, such as the [[Lotka–Volterra equations]].<ref>{{Cite web |date=January 5, 2022 |title=1.4: The Lotka-Volterra Predator-Prey Model |url=https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01%3A_Population_Dynamics/1.04%3A_The_Lotka-Volterra_Predator-Prey_Model |access-date=December 29, 2022 |website=Mathematics LibreTexts |language=en |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204111/https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01:_Population_Dynamics/1.04:_The_Lotka-Volterra_Predator-Prey_Model |url-status=live }}</ref>

[[Statistical hypothesis testing]], is run on data from [[clinical trial]]s to determine whether a new treatment works.<ref>{{Cite journal |last=Salsburg |first=David |date=August 17, 1992 |title=Commentary |url=https://www.dfcm.utoronto.ca/sites/default/files/inline-files/salsburg_1.pdf |journal=The Use of Statistical Methods in the Analysis of Clinical Studies |volume=46 |pages=17}}</ref> Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions.<ref>{{Cite book |url=https://nap.nationalacademies.org/read/10633/chapter/8 |title=Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering |publisher=NAP.edu |year=2003 |isbn=978-0-309-16839-7 |pages=71–73 |language=en |chapter=8 |doi=10.17226/10633|pmid=25032300 |author=National Research Council |author-link=National Research Council (United States) }}</ref>

==== Earth sciences ====
{{Main|Geomathematics}}
[[Structural geology]] and climatology use probabilistic models to predict the risk of natural catastrophes.<ref>{{Cite web |title=Catastrophe Models (Property) |url=https://content.naic.org/cipr-topics/catastrophe-models-property |access-date=May 19, 2024 |website=content.naic.org |language=en}}</ref> Similarly, [[meteorology]], [[oceanography]], and [[planetology]] also use mathematics due to their heavy use of models.<ref>{{Cite web |title=MAM2001 Essay |url=https://ww2.amstat.org/mam/01/essay.html |access-date=May 19, 2024 |website=ww2.amstat.org}}</ref><ref>{{Cite web |last=Hill |first=Mullica |date=September 7, 2022 |title=HOW MATH IS USED IN WEATHER FORECASTING |url=https://www.mathnasium.com/math-centers/mullicahill/news/how-math-used-weather-forecasting |access-date=May 19, 2024 |website=mathnasium.com}}</ref><ref>{{Cite web |title=Using Mathematical Models to Investigate Planetary Habitability |url=https://icp.giss.nasa.gov/education/modules/eccm/eccm_student_3.pdf |access-date=May 19, 2024 |website=[[NASA]]}}</ref>

==== Social sciences ====
{{Further|Mathematical economics|Historical dynamics}}
Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, [[economics]], [[sociology]],<ref>{{Cite journal |last=Edling |first=Christofer R. |year=2002 |title=Mathematics in Sociology |url=https://www.annualreviews.org/doi/10.1146/annurev.soc.28.110601.140942 |journal=Annual Review of Sociology |language=en |volume=28 |issue=1 |pages=197–220 |doi=10.1146/annurev.soc.28.110601.140942 |issn=0360-0572}}</ref> and [[psychology]].<ref>{{Citation |last=Batchelder |first=William H. |title=Mathematical Psychology: History |date=January 1, 2015 |url=https://www.sciencedirect.com/science/article/pii/B978008097086843059X |encyclopedia=International Encyclopedia of the Social & Behavioral Sciences (Second Edition) |pages=808–815 |editor-last=Wright |editor-first=James D. |access-date=September 30, 2023 |place=Oxford |publisher=Elsevier |isbn=978-0-08-097087-5}}</ref>
[[File:Supply-demand-equilibrium.svg|thumb|[[Supply and demand]] curves, like this one, are a staple of mathematical economics.|class=skin-invert-image]]
Often the fundamental postulate of mathematical economics is that of the rational individual actor – ''[[Homo economicus]]'' ({{Literal translation|economic man}}).<ref name=":3">{{Cite book |last=Zak |first=Paul J. |url={{GBurl|id=6QrvmNo2qD4C|p=158}} |title=Moral Markets: The Critical Role of Values in the Economy |date=2010 |page=158 |publisher=Princeton University Press |isbn=978-1-4008-3736-6 |language=en |access-date=January 3, 2023 }}</ref> In this model, the individual seeks to maximize their [[rational choice theory|self-interest]],<ref name=":3" /> and always makes optimal choices using [[perfect information]].<ref>{{cite book |url=https://web.stanford.edu/~jdlevin/Econ%20202/Choice%20Theory.pdf |title=Introduction to Choice Theory |first1=Jonathan |last1=Levin |first2=Paul |last2=Milgrom |date=September 2004}}</ref> This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual [[calculations]] are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms. Some reject or criticise the concept of ''Homo economicus''. Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.<ref>{{cite book |author1=Kremer, Michael |author2=Rao, Gautam |author3=Schilbach, Frank |url=https://economics.mit.edu/sites/default/files/2022-09/behavioral-development-economics.pdf |title=Handbook of Behavioral Economics: Applications and Foundations |chapter=Chapter 5 Behavioral development economics |year=2019 |volume=2}}</ref>

Without mathematical modeling, it is hard to go beyond statistical observations or untestable speculation. Mathematical modeling allows economists to create structured frameworks to test hypotheses and analyze complex interactions. Models provide clarity and precision, enabling the translation of theoretical concepts into quantifiable predictions that can be tested against real-world data.<ref>{{Cite web|url=https://www.mdpi.com/journal/mathematics/special_issues/Mathematical_Modeling_Economics_Ecology_Environment|title=Mathematics|website=mdpi.com}}</ref>

At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, [[Nikolai Kondratiev]] discerned the ~50-year-long [[Kondratiev cycle]], which explains phases of economic growth or crisis.<ref>{{Cite web |title=Kondratiev, Nikolai Dmitrievich {{!}} Encyclopedia.com |url=https://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/kondratiev-nikolai-dmitrievich |access-date=December 29, 2022 |website=www.encyclopedia.com |archive-date=July 1, 2016 |archive-url=https://web.archive.org/web/20160701224009/http://www.encyclopedia.com/doc/1G2-3404100667.html |url-status=live }}</ref> Towards the end of the 19th century, mathematicians extended their analysis into [[geopolitics]].<ref>{{Cite web|url=https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=ha010090244#:~:text=##+Math%C3%A9matique+de+l'histoire,org%E3%80%91|title=Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. &#124; The Online Books Page|website=onlinebooks.library.upenn.edu}}</ref> [[Peter Turchin]] developed [[cliodynamics]] since the 1990s.<ref>{{Cite web |title=Cliodynamics: a science for predicting the future |url=https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/ |access-date=December 29, 2022 |publisher=ZDNet |language=en |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204104/https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/ |url-status=live }}</ref>

Mathematization of the social sciences is not without risk. In the controversial book ''[[Fashionable Nonsense]]'' (1997), [[Alan Sokal|Sokal]] and [[Jean Bricmont|Bricmont]] denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.<ref>{{cite book|last=Sokal|first=Alan|url=https://archive.org/details/fashionablenonse00soka|title=Fashionable Nonsense|author2=Jean Bricmont|publisher=Picador|year=1998|isbn=978-0-312-19545-8|location=New York|oclc=39605994|author-link=Alan Sokal|author2-link=Jean Bricmont}}</ref> The study of [[complex systems]] (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.<ref>{{Cite web|url=https://www.factcheck.org/2023/01/bidens-misleading-unemployment-statistic/|title=Biden's Misleading Unemployment Statistic – FactCheck.org}}</ref><ref>{{Cite web|url=https://www.minneapolisfed.org/article/2010/modern-macroeconomic-models-as-tools-for-economic-policy|title=Modern Macroeconomic Models as Tools for Economic Policy &#124; Federal Reserve Bank of Minneapolis|website=minneapolisfed.org}}</ref>

== Philosophy ==
{{Main|Philosophy of mathematics}}

=== Reality ===
The connection between mathematics and material reality has led to philosophical debates since at least the time of [[Pythagoras]]. The ancient philosopher [[Plato]] argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as [[Mathematical Platonism|Platonism]]. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.<ref name=SEP-Platonism>{{cite encyclopedia |title=Platonism in Metaphysics |encyclopedia=The Stanford Encyclopedia of Philosophy |last=Balaguer |first=Mark |editor-last=Zalta |editor-first=Edward N. |year=2016 |edition=Spring 2016 |publisher=Metaphysics Research Lab, Stanford University |url=https://plato.stanford.edu/archives/spr2016/entries/platonism |access-date=April 2, 2022 |archive-date=January 30, 2022 |archive-url=https://web.archive.org/web/20220130174043/https://plato.stanford.edu/archives/spr2016/entries/platonism/ |url-status=live }}</ref>

[[Armand Borel]] summarized this view of mathematics reality as follows, and provided quotations of [[G. H. Hardy]], [[Charles Hermite]], [[Henri Poincaré]] and Albert Einstein that support his views.<ref name=borel />
{{blockquote| Something becomes objective (as opposed to "subjective") as soon as we are convinced that it exists in the minds of others in the same form as it does in ours and that we can think about it and discuss it together.<ref>See {{cite journal
| first=L. | last=White | year=1947
| title=The locus of mathematical reality: An anthropological footnote
| journal=[[Philosophy of Science (journal)|Philosophy of Science]]
| volume=14|issue=4 | pages=289–303
| doi=10.1086/286957 | s2cid=119887253
| id=189303 | postscript=;
}} also in {{cite book
| first=J. R. | last=Newman | year=1956
| title=The World of Mathematics
| publisher=Simon and Schuster | location=New York
| volume=4 | pages=2348–2364
}}</ref> Because the language of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus exists. In my opinion, that is sufficient to provide us with a {{em|feeling}} of an objective existence, of a reality of mathematics ...}}

Nevertheless, Platonism and the concurrent views on abstraction do not explain the [[#Unreasonable effectiveness|unreasonable effectiveness]] of mathematics.<ref>{{cite book
| title=The Software of the Universe, An Introduction to the History and Philosophy of Laws of Nature
| first=Mauro
| last=Dorato
| year=2005
| chapter=Why are laws mathematical?
| pages=31–66
| isbn=978-0-7546-3994-7
| publisher=Ashgate
| chapter-url=https://www.academia.edu/download/52076815/2ch.pdf
| access-date=December 5, 2022
| archive-url=https://web.archive.org/web/20230817111932/https://d1wqtxts1xzle7.cloudfront.net/52076815/2ch-libre.pdf?1488997736=&response-content-disposition=inline%3B+filename%3DChapter_2_of_the_book_the_software_of_th.pdf&Expires=1692274771&Signature=PXpNLBsmWMkz9YUs6~LUOfXNkmkCAmDfxQUoWOkGJKP4YqPGQUFMuP1I0xFycLZkL0dyfGwdGQ7mPk44nvmpM3YpKBSeVCZRXtDMiwgqs1JhEWrJovAhrchPLM1mGn3pw5P6LPo0sDZsl7uaPoZHMyCyJpayHvFtpyj1oUMIdmGuYM5P3euy1R87g6xlKyNAp~~BR5I4gVpopzLoeZn7d3oEnOOua0GjsqsZ6H9mEgcZMpH-qF8w9iFa9aSXFpqxagQwcVVkg7DXkOjVV5jyzctBUKQtOQQ~-9EN1y-c9pFV-Xu-NNuoN3Ij6K4SwvjYv0a8DMs8T5SVj1Kz9i4CEQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
| archive-date=August 17, 2023
| url-status=live
}}</ref>

=== Proposed definitions ===
{{Main|Definitions of mathematics}}

There is no general consensus about the definition of mathematics or its [[epistemology|epistemological status]]{{emdash}}that is, its place inside knowledge<!-- please, do not link "knowledge", since it is linked in the first paragraph of the preceding link. -->.<!-- <ref name="Mura" /><ref name="Runge" /> --> A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable.<!-- <ref name="Mura" /> --> There is not even consensus on whether mathematics is an art or a science.<!-- <ref name="Runge" /> --> Some just say, "mathematics is what mathematicians do".<ref name="Mura">{{cite journal
| title=Images of Mathematics Held by University Teachers of Mathematical Sciences
| last=Mura | first=Roberta | date=Dec 1993
| journal=Educational Studies in Mathematics
| volume=25 | issue=4 | pages=375–85
| doi=10.1007/BF01273907 | jstor=3482762 | s2cid=122351146
}}</ref><ref name="Runge">{{cite book
| title=Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry
| last1=Tobies
| first1=Renate
| author1-link=Renate Tobies
| first2=Helmut
| last2=Neunzert
| publisher=Springer
| year=2012
| isbn=978-3-0348-0229-1
| page=9
| url={{GBurl|id=EDm0eQqFUQ4C|p=9}}
| quote=[I]t is first necessary to ask what is meant by ''mathematics'' in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.
| access-date=June 20, 2015
}}</ref> A common approach is to define mathematics by its object of study.<ref>{{cite conference
| title="What is Mathematics?" and why we should ask, where one should experience and learn that, and how to teach it
| first1=Günter M. | last1=Ziegler | author1-link=Günter M. Ziegler
| first2=Andreas | last2=Loos | editor-last=Kaiser | editor-first=G.
| conference=Proceedings of the 13th International Congress on Mathematical Education
| series=ICME-13 Monographs
| date=November 2, 2017 | pages=63–77 | publisher=Springer
| doi=10.1007/978-3-319-62597-3_5
| isbn=978-3-319-62596-6 }} (Sections "What is Mathematics?" and "What is Mathematics, Really?")</ref>{{sfn|Mura|1993|pp=379, 381}}{{sfn|Brown|Porter|1995|p=326}}<ref>{{cite journal
| last=Strauss | first=Danie | year=2011
| title=Defining mathematics
| journal=Acta Academica
| volume=43 | issue=4 | pages=1–28
| url=https://www.researchgate.net/publication/290955899
| access-date=November 25, 2022
}}</ref>

Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart.<ref name="Franklin">{{Cite book | last=Franklin | first=James | author-link=James Franklin (philosopher) | title=Philosophy of Mathematics | date= 2009 | isbn=978-0-08-093058-9 | pages=104–106 | publisher=Elsevier | url={{GBurl|id=mbn35b2ghgkC|p=104}} | access-date=June 20, 2015 }}</ref> In the 19th century, when mathematicians began to address topics{{mdash}}such as infinite sets{{mdash}}which have no clear-cut relation to physical reality, a variety of new definitions were given.<ref name="Cajori">{{cite book
| title=A History of Mathematics
| last=Cajori
| first=Florian
| author-link=Florian Cajori
| publisher=American Mathematical Society (1991 reprint)
| year=1893
| isbn=978-0-8218-2102-2
| pages=285–286
| url={{GBurl|id=mGJRjIC9fZgC|p=285}}
| access-date=June 20, 2015
}}</ref> With the large number of new areas of mathematics that have appeared since the beginning of the 20th century, defining mathematics by its object of study has become increasingly difficult.{{sfn|Devlin|2018|p=[https://books.google.com/books?id=gUb7CAAAQBAJ&pg=PA3 3]}} For example, in lieu of a definition, [[Saunders Mac Lane]] in ''[[Mathematics, form and function]]'' summarizes the basics of several areas of mathematics, emphasizing their inter-connectedness, and observes:<ref>{{cite book|author=Saunders Maclane|year=1986|title=Mathematics, form and function|publisher=Springer}}, page 409</ref>
{{blockquote|the development of Mathematics provides a tightly connected network of formal rules, concepts, and systems. Nodes of this network are closely bound to procedures useful in human activities and to questions arising in science. The transition from activities to the formal Mathematical systems is guided by a variety of general insights and ideas.}}

Another approach for defining mathematics is to use its methods. For example, an area of study is often qualified as mathematics as soon as one can prove theorems{{emdash}}assertions whose validity relies on a proof, that is, a purely-logical deduction.{{efn|For example, logic belongs to philosophy since [[Aristotle]]. Circa the end of the 19th century, the [[foundational crisis of mathematics]] implied developments of logic that are specific to mathematics. This allowed eventually the proof of theorems such as [[Gödel's theorems]]. Since then, [[mathematical logic]] is commonly considered as an area of mathematics.}}<ref>{{cite journal | title=The Methodology of Mathematics | first1=Ronald | last1=Brown | author1-link=Ronald Brown (mathematician) | first2=Timothy | last2=Porter | journal=The Mathematical Gazette | volume=79 | issue=485 | pages=321–334 |year=1995 | doi=10.2307/3618304 | jstor=3618304 | s2cid=178923299 | url=https://cds.cern.ch/record/280311 | access-date=November 25, 2022 | archive-date=March 23, 2023 | archive-url=https://web.archive.org/web/20230323164159/https://cds.cern.ch/record/280311 | url-status=live }}</ref>{{verification failed|date=October 2024}}

=== Rigor ===
{{See also|Logic}}
Mathematical reasoning requires [[Mathematical rigor|rigor]]. This means that the definitions must be absolutely unambiguous and the [[proof (mathematics)|proof]]s must be reducible to a succession of applications of [[inference rule]]s,{{efn|This does not mean to make explicit all inference rules that are used. On the contrary, this is generally impossible, without [[computer]]s and [[proof assistant]]s. Even with this modern technology, it may take years of human work for writing down a completely detailed proof.}} without any use of empirical evidence and [[intuition]].{{efn|This does not mean that empirical evidence and intuition are not needed for choosing the theorems to be proved and to prove them.}}<ref>{{cite journal | title=Mathematical Rigor and Proof | first=Yacin | last=Hamami | journal=The Review of Symbolic Logic | volume=15 | issue=2 | date=June 2022 | pages=409–449 | url=https://www.yacinhamami.com/wp-content/uploads/2019/12/Hamami-2019-Mathematical-Rigor-and-Proof.pdf | access-date=November 21, 2022 | doi=10.1017/S1755020319000443 | s2cid=209980693 | archive-date=December 5, 2022 | archive-url=https://web.archive.org/web/20221205114343/https://www.yacinhamami.com/wp-content/uploads/2019/12/Hamami-2019-Mathematical-Rigor-and-Proof.pdf | url-status=live }}</ref> Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics' [[concision]], rigorous proofs can require hundreds of pages to express, such as the 255-page [[Feit–Thompson theorem]].{{efn|This is the length of the original paper that does not contain the proofs of some previously published auxiliary results. The book devoted to the complete proof has more than 1,000 pages.}} The emergence of [[computer-assisted proof]]s has allowed proof lengths to further expand.{{efn|For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software}}<ref>{{harvnb|Peterson|1988|p=4}}: "A few complain that the computer program can't be verified properly." (in reference to the Haken–Apple proof of the [[Four Color Theorem]])</ref> The result of this trend is a philosophy of the [[Quasi-empiricism in mathematics|quasi-empiricist]] proof that can not be considered infallible, but has a probability attached to it.<ref name=Kleiner_1991 />

The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation. In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs.<ref name=Kleiner_1991 />

At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and [[Weierstrass function]]) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the [[apodictic]] inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.<ref name=Kleiner_1991 /> It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a [[pleonasm]]. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.<ref>{{cite journal
| title=On the Reliability of Mathematical Proofs
| first=V. Ya. | last=Perminov
| journal=Philosophy of Mathematics
| volume=42 | issue=167 (4) | year=1988 | pages=500–508
| publisher=Revue Internationale de Philosophie
}}</ref>

Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.<ref>{{cite journal
| title=Teachers' perceptions of the official curriculum: Problem solving and rigor
| first1=Jon D. | last1=Davis | first2=Amy Roth | last2=McDuffie
| first3=Corey | last3=Drake | first4=Amanda L. | last4=Seiwell
| journal=International Journal of Educational Research
| volume=93 | year=2019 | pages=91–100
| doi=10.1016/j.ijer.2018.10.002 | s2cid=149753721 }}</ref>

== Training and practice ==

=== Education ===
{{Main|Mathematics education}}
Mathematics has a remarkable ability to cross cultural boundaries and time periods. As a [[human activity]], the practice of mathematics has a social side, which includes [[Mathematics education|education]], [[Mathematician|careers]], [[List of mathematics awards|recognition]], [[Popular mathematics|popularization]], and so on. In education, mathematics is a core part of the curriculum and forms an important element of the [[STEM]] academic disciplines. Prominent careers for professional mathematicians include math teacher or professor, [[statistician]], [[actuary]], [[financial analyst]], [[economist]], [[accountant]], [[commodity trader]], or [[Information technology consulting|computer consultant]].<ref>{{cite book
| title=Mathematicians and Statisticians: A Practical Career Guide
| first=Kezia
| last=Endsley
| year=2021
| series=Practical Career Guides
| isbn=978-1-5381-4517-3
| publisher=Rowman & Littlefield
| pages=1–3
| url={{GBurl|id=1cEYEAAAQBAJ|p=3}}
| access-date=November 29, 2022
}}</ref>

Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia.<ref>{{cite book
| title=The Oxford Handbook of the History of Mathematics
| first=Eleanor | last=Robson | author-link=Eleanor Robson
| year=2009
| chapter=Mathematics education in an Old Babylonian scribal school
| editor1-first=Eleanor | editor1-last=Robson
| editor2-first=Jacqueline | editor2-last=Stedall | editor2-link=Jackie Stedall
| publisher=OUP Oxford
| isbn=978-0-19-921312-2
| chapter-url={{GBurl|id=xZMSDAAAQBAJ|p=199}}
| access-date=November 24, 2022
}}</ref> Comparable evidence has been unearthed for scribal mathematics training in the [[ancient Near East]] and then for the [[Greco-Roman world]] starting around 300 BCE.<ref>{{cite book
| chapter=Mathematics Education in Antiquity
| first1=Alain | last1=Bernard
| first2=Christine | last2=Proust | author2-link=Christine Proust
| first3=Micah | last3=Ross
| title=Handbook on the History of Mathematics Education
| editor1-last=Karp | editor1-first=A.
| editor2-last=Schubring | editor2-first=G.
| year=2014 | pages=27–53 | isbn=978-1-4614-9154-5
| publisher=Springer | publication-place=New York
| doi=10.1007/978-1-4614-9155-2_3
}}</ref> The oldest known mathematics textbook is the [[Rhind papyrus]], dated from {{Circa|1650 BCE}} in Egypt.<ref>{{cite journal
| title=The World's First Mathematics Textbook
| first=Underwood | last=Dudley
| journal=Math Horizons
| volume=9 | issue=4 | date=April 2002 | pages=8–11
| publisher=Taylor & Francis, Ltd.
| doi=10.1080/10724117.2002.11975154 | jstor=25678363
| s2cid=126067145 }}</ref> Due to a scarcity of books, mathematical teachings in ancient India were communicated using memorized [[oral tradition]] since the [[Vedic period]] ({{c.|1500|500 BCE}}).<ref>{{cite conference
| title=Indian pedagogy and problem solving in ancient Thamizhakam
| last=Subramarian
| first=F.
| conference=History and Pedagogy of Mathematics conference, July 16–20, 2012
| url=http://hpm2012.onpcs.com/Proceeding/OT2/T2-10.pdf
| access-date=November 29, 2022
| archive-date=November 28, 2022
| archive-url=https://web.archive.org/web/20221128082654/http://hpm2012.onpcs.com/Proceeding/OT2/T2-10.pdf
| url-status=live
}}</ref> In [[Imperial China]] during the [[Tang dynasty]] (618–907 CE), a mathematics curriculum was adopted for the [[Imperial examination|civil service exam]] to join the state bureaucracy.<ref>{{cite book
| chapter=Official Curriculum in Mathematics in Ancient China: How did Candidates Study for the Examination?
| first=Man Keung | last=Siu
| series=Series on Mathematics Education
| title=How Chinese Learn Mathematics
| pages=157–185 | year=2004 | volume=1 | isbn=978-981-256-014-8
| doi=10.1142/9789812562241_0006
| url=https://scholar.archive.org/work/3fb5lb2qsfg35gf2cv6viaydny/access/wayback/http://hkumath.hku.hk:80/~mks/Chapter%206-Siu.pdf
| access-date=November 26, 2022 }}</ref>

Following the [[Dark Age]]s, mathematics education in Europe was provided by religious schools as part of the [[Quadrivium]]. Formal instruction in [[pedagogy]] began with [[Jesuit]] schools in the 16th and 17th century. Most mathematical curricula remained at a basic and practical level until the nineteenth century, when it began to flourish in France and Germany. The oldest journal addressing instruction in mathematics was ''[[L'Enseignement Mathématique]]'', which began publication in 1899.<ref>{{cite journal
| title=The History of Mathematical Education
| journal=The American Mathematical Monthly
| volume=74 | issue=1 | pages=38–55
| publisher=Taylor & Francis, Ltd.
| doi=10.2307/2314867 | jstor=2314867 | last1=Jones
| first1=Phillip S.
| year=1967
}}</ref> The Western advancements in science and technology led to the establishment of centralized education systems in many nation-states, with mathematics as a core component{{emdash}}initially for its military applications.<ref>{{cite journal
| title=Introduction: the history of mathematics teaching. Indicators for modernization processes in societies
| first1=Gert | last1=Schubring | first2=Fulvia | last2=Furinghetti
| first3=Man Keung | last3=Siu
| journal=ZDM Mathematics Education
| volume=44 | pages=457–459 | date=August 2012
| issue=4 | doi=10.1007/s11858-012-0445-7
| s2cid=145507519 | doi-access=free }}</ref> While the content of courses varies, in the present day nearly all countries teach mathematics to students for significant amounts of time.<ref>{{Cite book | chapter=Examining eTIMSS Country Differences Between eTIMSS Data and Bridge Data: A Look at Country-Level Mode of Administration Effects | title=TIMSS 2019 International Results in Mathematics and Science | first1=Matthias | last1=von Davier | first2=Pierre | last2=Foy | first3=Michael O. | last3=Martin | first4=Ina V.S. | last4=Mullis | publisher=[[TIMSS]] & [[PIRLS]] International Study Center, [[Lynch School of Education and Human Development]] and [[International Association for the Evaluation of Educational Achievement]] | isbn=978-1-889938-54-7 | page=13.1 | language=en-US | year=2020 | url=https://files.eric.ed.gov/fulltext/ED610099.pdf | access-date=November 29, 2022 | archive-date=November 29, 2022 | archive-url=https://web.archive.org/web/20221129163908/https://files.eric.ed.gov/fulltext/ED610099.pdf | url-status=live }}</ref>

During school, mathematical capabilities and positive expectations have a strong association with career interest in the field. Extrinsic factors such as feedback motivation by teachers, parents, and peer groups can influence the level of interest in mathematics.<ref>{{cite journal
| title=Social Cognitive Factors, Support, and Engagement: Early Adolescents' Math Interests as Precursors to Choice of Career
| first1=Heather T.
| last1=Rowan-Kenyon
| first2=Amy K.
| last2=Swan
| first3=Marie F.
| last3=Creager
| journal=The Career Development Quarterly
| volume=60
| issue=1
| date=March 2012
| pages=2–15
| doi=10.1002/j.2161-0045.2012.00001.x
| url=https://www.academia.edu/download/45974312/j.2161-0045.2012.00001.x20160526-3995-67kydl.pdf
| access-date=November 29, 2022
| archive-url=https://web.archive.org/web/20231122212933/https://d1wqtxts1xzle7.cloudfront.net/45974312/j.2161-0045.2012.00001.x20160526-3995-67kydl-libre.pdf?1464293840=&response-content-disposition=inline%3B+filename%3DSocial_Cognitive_Factors_Support_and_Eng.pdf&Expires=1700692172&Signature=cs9KfTPxoPh859wY~ExtJyAl9NpYb3X-2P4rDel1Z3z7DwehsHLRggoZtgi1pMsamxYobu9dVK4G7OsqfvNxcuwz3uKh1pnCMZQEz~ahVtPb4kvN-4dmwExJplzoxWu31o3SJOfuBt0GGE-0Hl8eLfPBg5agmtkjSwAWQwlqGrjp3YgYZGjbNxOEAM4t1l4qvoWXidWvSHHcEUNvlKYwCDvG0~QhGTmA6ldxmfS1ovf0adog-qqvjGxxJuSjtP6O8zCTwkPXYwi2e8giI0H6b5fNarHc-2q~-NRnVVtYKhvSBcwC22kNZoA7s8sp8ix9KIdM3uxiUIBRBRC-4aaVoQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
| archive-date=November 22, 2023
| url-status=live
}}</ref> Some students studying math may develop an apprehension or fear about their performance in the subject. This is known as [[math anxiety]] or math phobia, and is considered the most prominent of the disorders impacting academic performance. Math anxiety can develop due to various factors such as parental and teacher attitudes, social stereotypes, and personal traits. Help to counteract the anxiety can come from changes in instructional approaches, by interactions with parents and teachers, and by tailored treatments for the individual.<ref>{{cite journal
| title=Spotlight on math anxiety
| first1=Silke | last1=Luttenberger
| first2=Sigrid | last2=Wimmer
| first3=Manuela | last3=Paechter
| journal=Psychology Research and Behavior Management
| year=2018 | volume=11 | pages=311–322
| doi=10.2147/PRBM.S141421 | pmid=30123014
| pmc=6087017 | doi-access=free }}</ref>

=== Psychology (aesthetic, creativity and intuition) ===
The validity of a mathematical theorem relies only on the rigor of its proof, which could theoretically be done automatically by a [[computer program]]. This does not mean that there is no place for creativity in a mathematical work. On the contrary, many important mathematical results (theorems) are solutions of problems that other mathematicians failed to solve, and the invention of a way for solving them may be a fundamental way of the solving process.<ref>{{cite journal
| title=The Outlook of the Mathematicians' Creative Processes
| first=Narges | last=Yaftian
| journal=Procedia – Social and Behavioral Sciences
| volume=191 | date=June 2, 2015 | pages=2519–2525
| doi=10.1016/j.sbspro.2015.04.617
| doi-access=free}}</ref><ref>{{cite journal
| title=The Frontage of Creativity and Mathematical Creativity
| first1=Mehdi | last1=Nadjafikhah | first2=Narges | last2=Yaftian
| journal=Procedia – Social and Behavioral Sciences
| volume=90 | date=October 10, 2013 | pages=344–350
| doi=10.1016/j.sbspro.2013.07.101
| doi-access=free}}</ref> An extreme example is [[Apery's theorem]]: [[Roger Apery]] provided only the ideas for a proof, and the formal proof was given only several months later by three other mathematicians.<ref>{{cite journal
| title=A proof that Euler missed... Apéry's Proof of the irrationality of ζ(3)
| first=A.
| last=van der Poorten
| journal=[[The Mathematical Intelligencer]]
| volume=1
| issue=4
| year=1979
| pages=195–203
| doi=10.1007/BF03028234
| s2cid=121589323
| url=http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf
| access-date=November 22, 2022
| archive-date=September 6, 2015
| archive-url=https://web.archive.org/web/20150906015716/http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf
| url-status=live
}}</ref>

Creativity and rigor are not the only psychological aspects of the activity of mathematicians. Some mathematicians can see their activity as a game, more specifically as solving [[puzzle]]s.<ref>{{cite book
| title=Famous Puzzles of Great Mathematicians
| first=Miodrag
| last=Petkovi
| date=September 2, 2009
| publisher=American Mathematical Society
| pages=xiii–xiv
| isbn=978-0-8218-4814-2
| url={{GBurl|id=AZlwAAAAQBAJ|pg=PR13}}
| access-date=November 25, 2022
}}</ref> This aspect of mathematical activity is emphasized in [[recreational mathematics]].

Mathematicians can find an [[aesthetic]] value to mathematics. Like [[beauty]], it is hard to define, it is commonly related to ''elegance'', which involves qualities like [[simplicity]], [[symmetry]], completeness, and generality. G. H. Hardy in ''[[A Mathematician's Apology]]'' expressed the belief that the aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He also identified other criteria such as significance, unexpectedness, and inevitability, which contribute to mathematical aesthetics.<ref>{{cite book
| title=A Mathematician's Apology
| last=Hardy | first=G. H. | author-link=G. H. Hardy
| publisher=Cambridge University Press | year=1940
| url=https://archive.org/details/hardy_annotated/
| isbn=978-0-521-42706-7 | access-date=November 22, 2022
}} See also ''[[A Mathematician's Apology]]''.</ref> [[Paul Erdős]] expressed this sentiment more ironically by speaking of "The Book", a supposed divine collection of the most beautiful proofs. The 1998 book ''[[Proofs from THE BOOK]]'', inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the [[fast Fourier transform]] for [[harmonic analysis]].<ref>{{cite journal
| title=Reflections on Paul Erdős on His Birth Centenary, Part II
| first1=Noga | last1=Alon | first2=Dan | last2=Goldston
| first3=András | last3=Sárközy | first4=József | last4=Szabados
| first5=Gérald | last5=Tenenbaum | first6=Stephan Ramon | last6=Garcia
| first7=Amy L. | last7=Shoemaker
| journal=Notices of the American Mathematical Society
| date=March 2015 | volume=62 | issue=3 | pages=226–247
| editor1-first=Krishnaswami | editor1-last=Alladi
| editor2-first=Steven G. | editor2-last=Krantz
| doi=10.1090/noti1223
| doi-access=free }}</ref>

Some feel that to consider mathematics a science is to downplay its artistry and history in the seven traditional [[liberal arts]].<ref>See, for example [[Bertrand Russell]]'s statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his {{cite book | title=History of Western Philosophy | year=1919 | page=60 }}</ref> One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematical results are ''created'' (as in art) or ''discovered'' (as in science).<ref name=borel>{{Cite journal
| last=Borel | first=Armand | author-link=Armand Borel
| title=Mathematics: Art and Science
| journal=The Mathematical Intelligencer
| volume=5 | issue=4 | pages=9–17 | year=1983
| publisher=Springer | issn=1027-488X
| doi=10.4171/news/103/8| doi-access=free
}}</ref> The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions.

== Cultural impact ==

=== Artistic expression ===
{{Main|Mathematics and art}}
Notes that sound well together to a Western ear are sounds whose fundamental [[frequencies]] of vibration are in simple ratios. For example, an octave doubles the frequency and a [[perfect fifth]] multiplies it by <math>\frac{3}{2}</math>.<ref>{{cite journal | last = Cazden | first = Norman | date = October 1959 | doi = 10.1177/002242945900700205 | issue = 2 | journal = Journal of Research in Music Education | jstor = 3344215 | pages = 197–220 | title = Musical intervals and simple number ratios | volume = 7| s2cid = 220636812 }}</ref><ref>{{cite journal | last = Budden | first = F. J. | date = October 1967 | doi = 10.2307/3613237 | issue = 377 | journal = The Mathematical Gazette | jstor = 3613237 | pages = 204–215 | publisher = Cambridge University Press ({CUP}) | title = Modern mathematics and music | volume = 51| s2cid = 126119711 }}</ref>

[[File:Julia set (highres 01).jpg|thumb|[[Fractal]] with a scaling symmetry and a central symmetry]]
Humans, as well as some other animals, find symmetric patterns to be more beautiful.<ref>{{Cite journal |last1=Enquist |first1=Magnus |last2=Arak |first2=Anthony |date=November 1994 |title=Symmetry, beauty and evolution |url=https://www.nature.com/articles/372169a0 |journal=Nature |language=en |volume=372 |issue=6502 |pages=169–172 |doi=10.1038/372169a0 |pmid=7969448 |bibcode=1994Natur.372..169E |s2cid=4310147 |issn=1476-4687 |access-date=December 29, 2022 |archive-date=December 28, 2022 |archive-url=https://web.archive.org/web/20221228052049/https://www.nature.com/articles/372169a0 |url-status=live }}</ref> Mathematically, the symmetries of an object form a group known as the [[symmetry group]].<ref>{{Cite web |last=Hestenes |first=David |year=1999 |title=Symmetry Groups |url=https://davidhestenes.net/geocalc/pdf/SymmetryGroups.pdf }}</ref> For example, the group underlying mirror symmetry is the [[cyclic group]] of two elements, <math>\mathbb{Z}/2\mathbb{Z}</math>. A [[Rorschach test]] is a figure invariant by this symmetry,<ref>{{cite encyclopedia | last = Bender | first = Sara | editor1-last = Carducci | editor1-first = Bernardo J. | editor2-last = Nave | editor2-first = Christopher S. | editor3-last = Mio | editor3-first = Jeffrey S. | editor4-last = Riggio | editor4-first = Ronald E. | title = The Rorschach Test | date = September 2020 | doi = 10.1002/9781119547167.ch131 | pages = 367–376 | publisher = Wiley | encyclopedia = The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment| isbn = 978-1-119-05751-2 }}</ref> as are [[butterfly]] and animal bodies more generally (at least on the surface).<ref>{{cite book|title=Symmetry|volume=47|series=Princeton Science Library|first=Hermann|last=Weyl|author-link=Hermann Weyl|publisher=Princeton University Press|year=2015|isbn=978-1-4008-7434-7|page=[https://books.google.com/books?hl=en&lr=&id=GG1FCQAAQBAJ&pg=PA4 4]}}</ref> Waves on the sea surface possess translation symmetry: moving one's viewpoint by the distance between wave crests does not change one's view of the sea.<ref>{{Cite web|url=https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/pages/part-i-mechanical-vibrations-and-waves/lecture-8/|title=Lecture 8: Translation Symmetry &#124; Physics III: Vibrations and Waves &#124; Physics|website=MIT OpenCourseWare}}</ref> [[Fractals]] possess [[self-similarity]].<ref>{{Cite web |last=Bradley |first=Larry |year=2010 |title=Fractals – Chaos & Fractals |url=https://www.stsci.edu/~lbradley/seminar/fractals.html |access-date=December 29, 2022 |website=stsci.edu |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054609/https://www.stsci.edu/~lbradley/seminar/fractals.html |url-status=live }}</ref><ref>{{Cite web |title=Self-similarity |url=https://math.bu.edu/DYSYS/chaos-game/node5.html |access-date=December 29, 2022 |website=math.bu.edu |archive-date=March 2, 2023 |archive-url=https://web.archive.org/web/20230302132911/http://math.bu.edu/DYSYS/chaos-game/node5.html |url-status=live }}</ref>

=== Popularization ===
{{Main|Popular mathematics}}Popular mathematics is the act of presenting mathematics without technical terms.<ref>{{Cite conference |last=Kissane |first=Barry |date=July 2009 |title=Popular mathematics |url=https://researchrepository.murdoch.edu.au/id/eprint/6242/ |conference=22nd Biennial Conference of The Australian Association of Mathematics Teachers |location=Fremantle, Western Australia |publisher=Australian Association of Mathematics Teachers |pages=125–126 |access-date=December 29, 2022 |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054610/https://researchrepository.murdoch.edu.au/id/eprint/6242/ |url-status=live }}</ref> Presenting mathematics may be hard since the general public suffers from [[mathematical anxiety]] and mathematical objects are highly abstract.<ref>{{Cite book |last=Steen |first=L. A. |url={{GBurl|id=-d3TBwAAQBAJ|dq="popular mathematics" analogies|p=2}} |title=Mathematics Today Twelve Informal Essays |date=2012|publisher=Springer Science & Business Media |isbn=978-1-4613-9435-8 |page=2 |language=en |access-date=January 3, 2023 }}</ref> However, popular mathematics writing can overcome this by using applications or cultural links.<ref>{{Cite book |last=Pitici |first=Mircea |url={{GBurl|id=9nGQDQAAQBAJ|dq="popular mathematics" analogies|p=331}} |title=The Best Writing on Mathematics 2016 |date=2017|publisher=Princeton University Press |isbn=978-1-4008-8560-2 |language=en |access-date=January 3, 2023 }}</ref> Despite this, mathematics is rarely the topic of popularization in printed or televised media.

=== Awards and prize problems ===
{{Main category|Mathematics awards}}
[[File:FieldsMedalFront.jpg|thumb|The front side of the [[Fields Medal]] with an illustration of the Greek [[polymath]] [[Archimedes]]]]

The most prestigious award in mathematics is the [[Fields Medal]],{{sfn|Monastyrsky|2001|p=1|ps=: "The Fields Medal is now indisputably the best known and most influential award in mathematics."}}{{sfn|Riehm|2002|pp=778–782}} established in 1936 and awarded every four years (except around [[World War II in Yugoslavia|World War II]]) to up to four individuals.<ref>{{Cite web |title=Fields Medal {{!}} International Mathematical Union (IMU) |url=https://www.mathunion.org/imu-awards/fields-medal |access-date=February 21, 2022 |website=www.mathunion.org |archive-date=December 26, 2018 |archive-url=https://web.archive.org/web/20181226015744/https://www.mathunion.org/imu-awards/fields-medal |url-status=live }}</ref><ref name="StAndrews-Fields">{{Cite web |title=Fields Medal |url=https://mathshistory.st-andrews.ac.uk/Honours/FieldsMedal/ |access-date=February 21, 2022 |website=Maths History |language=en |archive-date=March 22, 2019 |archive-url=https://web.archive.org/web/20190322134417/http://www-history.mcs.st-andrews.ac.uk/Honours/FieldsMedal.html |url-status=live }}</ref> It is considered the mathematical equivalent of the [[Nobel Prize]].<ref name="StAndrews-Fields" />

Other prestigious mathematics awards include:<ref>{{cite web
| title=Honours/Prizes Index
| website=MacTutor History of Mathematics Archive
| url=https://mathshistory.st-andrews.ac.uk/Honours/
| access-date=February 20, 2023
| archive-date=December 17, 2021
| archive-url=https://web.archive.org/web/20211217235828/https://mathshistory.st-andrews.ac.uk/Honours/
| url-status=live
}}</ref>
* The [[Abel Prize]], instituted in 2002<ref>{{Cite web|title=About the Abel Prize|publisher=The Abel Prize|url=https://abelprize.no/page/about-abel-prize|access-date=January 23, 2022|archive-date=April 14, 2022|archive-url=https://web.archive.org/web/20220414060442/https://abelprize.no/page/about-abel-prize|url-status=live}}</ref> and first awarded in 2003<ref>{{Cite encyclopedia|title=Abel Prize {{!}} mathematics award|encyclopedia=Encyclopedia Britannica|url=https://www.britannica.com/science/Abel-Prize|access-date=January 23, 2022|language=en|archive-date=January 26, 2020|archive-url=https://web.archive.org/web/20200126120202/https://www.britannica.com/science/Abel-Prize|url-status=live}}</ref>
* The [[Chern Medal]] for lifetime achievement, introduced in 2009<ref>{{Cite web |date=June 1, 2009 |title=Chern Medal Award|url=https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf |url-status=live |archive-url=https://web.archive.org/web/20090617012953/https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf |archive-date=June 17, 2009 |access-date=February 21, 2022 |website=mathunion.org}}</ref> and first awarded in 2010<ref>{{Cite web |title=Chern Medal Award|publisher=International Mathematical Union (IMU)|url=https://www.mathunion.org/imu-awards/chern-medal-award |access-date=January 23, 2022|archive-date=August 25, 2010 |archive-url=https://web.archive.org/web/20100825071850/http://www.mathunion.org/general/prizes/chern/details |url-status=live }}</ref>
* The [[American Mathematical Society|AMS]] [[Leroy P. Steele Prize]], awarded since 1970<ref>{{cite web
| title=The Leroy P Steele Prize of the AMS
| publisher=School of Mathematics and Statistics, University of St Andrews, Scotland
| url=https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/
| access-date=November 17, 2022
| archive-date=November 17, 2022
| archive-url=https://web.archive.org/web/20221117201134/https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/
| url-status=live
}}</ref>
* The [[Wolf Prize in Mathematics]], also for lifetime achievement,<ref>{{Cite book |last1=Chern |first1=S. S. |last2=Hirzebruch |first2=F. |date=September 2000 |title=Wolf Prize in Mathematics |url=https://www.worldscientific.com/worldscibooks/10.1142/4149 |language=en |doi=10.1142/4149 |isbn=978-981-02-3945-9 |access-date=February 21, 2022 |archive-date=February 21, 2022 |archive-url=https://web.archive.org/web/20220221171351/https://www.worldscientific.com/worldscibooks/10.1142/4149 |url-status=live }}</ref> instituted in 1978<ref>{{Cite web|title=The Wolf Prize|url=https://wolffund.org.il/the-wolf-prize/|url-status=live|archive-url=https://web.archive.org/web/20200112205029/https://wolffund.org.il/the-wolf-prize/|archive-date=January 12, 2020|access-date=January 23, 2022|website=Wolf Foundation|language=en-US}}</ref>

A famous list of 23 [[open problem]]s, called "[[Hilbert's problems]]", was compiled in 1900 by German mathematician David Hilbert.<ref name=":0">{{Cite web|date=May 6, 2020|title=Hilbert's Problems: 23 and Math|url=https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/|access-date=January 23, 2022|website=Simons Foundation|language=en-US|archive-date=January 23, 2022|archive-url=https://web.archive.org/web/20220123011430/https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/|url-status=live}}</ref> This list has achieved great celebrity among mathematicians,<ref>{{cite book
| chapter=Deciding the undecidable: Wrestling with Hilbert's problems
| first=Solomon
| last=Feferman
| author-link=Solomon Feferman
| title=In the Light of Logic
| year=1998
| publisher=Oxford University Press
| isbn=978-0-19-508030-8
| pages=3–27
| series=Logic and Computation in Philosophy series
| chapter-url=https://math.stanford.edu/~feferman/papers/deciding.pdf
| url={{GBurl|id=1rjnCwAAQBAJ}}
| access-date=November 29, 2022
}}</ref> and at least thirteen of the problems (depending how some are interpreted) have been solved.<ref name=":0" /><!-- Namely: problems 1, 3, 4; 5, 7, 10; 13, 14, 17; 18, 19, 20; 21 have been solved. (The semicolons are to make counting easier). ~Duckmather -->

A new list of seven important problems, titled the "[[Millennium Prize Problems]]", was published in 2000. Only one of them, the [[Riemann hypothesis]], duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward.<ref>{{Cite web|title=The Millennium Prize Problems|publisher=Clay Mathematics Institute|url=http://www.claymath.org/millennium-problems/millennium-prize-problems|access-date=January 23, 2022|archive-date=July 3, 2015|archive-url=https://web.archive.org/web/20150703184941/http://www.claymath.org/millennium-problems/millennium-prize-problems|url-status=live}}</ref> To date, only one of these problems, the [[Poincaré conjecture]], has been solved by the Russian mathematician [[Grigori Perelman]].<ref>{{Cite web|title=Millennium Problems|publisher=Clay Mathematics Institute|url=http://www.claymath.org/millennium-problems|access-date=January 23, 2022|archive-date=December 20, 2018|archive-url=https://web.archive.org/web/20181220122925/http://www.claymath.org/millennium-problems|url-status=live}}</ref><!-- NOTE that this website describes the answer to each problem as "unknown" EXCEPT for the Poincaré conjecture, where it mentions "Perelman's proof". ~Duckmather -->

== See also ==
{{Portal|Mathematics}}
{{div col|colwidth=22em}}
* [[Law (mathematics)]]
* [[List of mathematical jargon]]
* [[Lists of mathematicians]]
* [[Lists of mathematics topics]]
* [[Mathematical constant]]
* [[Mathematical sciences]]
* [[Mathematics and art]]
* [[Mathematics education]]
* [[Philosophy of mathematics]]
* [[Relationship between mathematics and physics]]
* [[Science, technology, engineering, and mathematics]]
{{div col end}}

== References ==
=== Notes ===
{{notelist}}

=== Citations ===
{{Reflist|30em
<!--
|refs=
<ref name=future>[[Lynn Steen|Steen, L.A.]] (April 29, 1988). ''The Science of Patterns'' [[Science (journal)|Science]], 240: 611–16. And summarized at [http://www.ascd.org/publications/curriculum-handbook/409/chapters/The-Future-of-Mathematics-Education.aspx Association for Supervision and Curriculum Development] {{webarchive|url=https://web.archive.org/web/20101028101034/http://www.ascd.org/publications/curriculum-handbook/409/chapters/The-Future-of-Mathematics-Education.aspx |date=October 28, 2010 }}, www.ascd.org.</ref>
<ref name=devlin>[[Devlin, Keith]], ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, {{isbn|978-0716750475}}</ref>
-->
}}

=== Sources ===
{{refbegin|30em}}
* {{cite book |last=Bouleau |first=Nicolas|author-link=Nicolas Bouleau |title=Philosophie des mathématiques et de la modélisation: Du chercheur à l'ingénieur |publisher=L'Harmattan |year=1999 |isbn=978-2-7384-8125-2}}
* {{cite book |last1=Boyer |first1=Carl Benjamin |author1-link=Carl Benjamin Boyer |title=A History of Mathematics |date=1991 |publisher=[[Wiley (publisher)|Wiley]] |location=New York |isbn=978-0-471-54397-8 |edition=2nd |url=https://archive.org/details/historyofmathema00boye/page/n3/mode/2up |chapter= |url-access=registration }}
* {{cite book |last1=Cresswell |first1=Julia |title=Oxford Dictionary of Word Origins |publisher=Oxford University Press |isbn=978-0-19-886875-0 |edition=3 |date=2021 }}
* {{cite book |last1=Devlin |first1=Keith |title=Sets, Functions, and Logic: An Introduction to Abstract Mathematics |publisher=CRC Press |isbn=978-1-4822-8602-1 |edition=3 |url=https://books.google.com/books?id=gUb7CAAAQBAJ&pg=PA3 |language=en |year=2018}}
* {{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=An Introduction to the History of Mathematics |edition=6th |publisher=Saunders |year=1990 |isbn=978-0-03-029558-4 |ref=none}}
* {{cite book |last=Kleiner |first=Israel |editor-first1=Israel |editor-last1=Kleiner |author-link=Israel Kleiner (mathematician) |year=2007 |title=A History of Abstract Algebra |publisher=Springer Science & Business Media |doi=10.1007/978-0-8176-4685-1 |isbn=978-0-8176-4684-4 |lccn=2007932362 |oclc=76935733 |s2cid=117392219 |url={{GBurl|id=RTLRBK-wj6wC}} |access-date=February 8, 2024}}
* {{cite book |last=Kline |first=Morris |author-link=Morris Kline |title=Mathematical Thought from Ancient to Modern Times |url=https://archive.org/details/mathematicalthou00klin |url-access=registration |location=New York |publisher=Oxford University Press |edition=|year=1990 |isbn=978-0-19-506135-2 }}
* {{cite journal |last=Monastyrsky |first=Michael |url=http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf |year=2001 |title=Some Trends in Modern Mathematics and the Fields Medal |journal=CMS – Notes – de la SMC |volume=33 |issue=2–3 |publisher=Canadian Mathematical Society |access-date=July 28, 2006 |archive-date=August 13, 2006 |archive-url=https://web.archive.org/web/20060813224844/http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf |url-status=live }}
* {{cite book |last=Oakley |first=Barbara |author-link=Barbara Oakley |title=A Mind For Numbers: How to Excel at Math and Science (Even If You Flunked Algebra) |date=2014 |publisher=Penguin Random House |location=New York |url=https://archive.org/details/isbn_9780399165245 |url-access=registration |quote=A Mind for Numbers. |isbn=978-0-399-16524-5 |ref=none }}
* {{cite journal |last=Peirce |first=Benjamin |author-link=Benjamin Peirce |pages=97–229 |title=Linear associative algebra |editor-link=Charles Sanders Peirce |editor-first=Charles&nbsp;Sanders |editor-last=Peirce |edition=Corrected, expanded, and annotated revision with an 1875 paper by B.&nbsp;Peirce and annotations by his son, C.S. Peirce, of the 1872 lithograph |journal=American Journal of Mathematics |volume=4 |year=1881 |url={{GBurl|id=De0GAAAAYAAJ|q=Peirce Benjamin Linear Associative Algebra|p=1}} |id=Corrected, expanded, and annotated revision with an 1875 paper by B.&nbsp;Peirce and annotations by his son, C.&nbsp;S.&nbsp;Peirce, of the 1872 lithograph ed. Google [{{GBurl|id=LQgPAAAAIAAJ|p=221}} Eprint] and as an extract, D.&nbsp;Van Nostrand, 1882, Google [https://archive.org/details/bub_gb_De0GAAAAYAAJ Eprint] |issue=1–4 |doi=10.2307/2369153 |jstor=2369153 |hdl=2027/hvd.32044030622997 |hdl-access=free |access-date=November 17, 2020 |ref=none }}.
* {{cite book |last=Peterson |first=Ivars |year=1988 |title=The Mathematical Tourist: Snapshots of Modern Mathematics |publisher=W. H. Freeman and Company |isbn=0-7167-1953-3 |lccn=87033078 |oclc=17202382}}
* {{cite book |last=Popper |first=Karl R. |author-link=Karl Popper |title=In Search of a Better World: Lectures and Essays from Thirty Years |location=New York |publisher=Routledge |chapter=On knowledge |year=1995 |isbn=978-0-415-13548-1 |bibcode=1992sbwl.book.....P |url-access=registration |url=https://archive.org/details/insearchofbetter00karl |ref=none }}
* {{cite journal |last=Riehm |first=Carl |title=The Early History of the Fields Medal |journal=Notices of the AMS |volume=49 |issue=7 |pages=778–782 |date=August 2002 |url=https://www.ams.org/notices/200207/comm-riehm.pdf |access-date=October 2, 2006 |archive-date=October 26, 2006 |archive-url=https://web.archive.org/web/20061026000014/http://www.ams.org/notices/200207/comm-riehm.pdf |url-status=live }}
* {{cite journal |last=Sevryuk |first=Mikhail B. |date=January 2006 |title=Book Reviews |journal=[[Bulletin of the American Mathematical Society]] |volume=43 |issue=1 |pages=101–109 |url=https://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf |access-date=June 24, 2006 |doi=10.1090/S0273-0979-05-01069-4 |archive-date=July 23, 2006 |archive-url=https://web.archive.org/web/20060723082901/http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf |url-status=live |doi-access=free }}
* {{cite book |last=Whittle |first=Peter |author-link=Peter Whittle (mathematician) |chapter=Almost home |editor-link=Frank Kelly (mathematician) |editor-first=F.P. |editor-last=Kelly |year=1994 |title=Probability, statistics and optimisation: A Tribute to Peter Whittle |location=Chichester |publisher=John Wiley |isbn=978-0-471-94829-2 |pages=1–28 |chapter-url=http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |edition=previously "A realised path: The Cambridge Statistical Laboratory up to 1993 (revised 2002)" |url-status=live |archive-url=https://web.archive.org/web/20131219080017/http://www.statslab.cam.ac.uk/History/2history.html#6._1966--72:_The_Churchill_Chair |archive-date=December 19, 2013 }}
{{refend}}

== Further reading ==
{{Library resources box |by=no |onlinebooks=yes |others=yes |about=yes |label=Mathematics}}
{{refbegin}}
* {{cite book |last=Benson |first=Donald C. |title=The Moment of Proof: Mathematical Epiphanies |publisher=Oxford University Press |year=1999 |url=https://archive.org/details/momentofproofmat00bens/page/n5/mode/2up |url-access=registration |isbn=978-0-19-513919-8 |ref=none}}
* {{cite book |last1=Davis |first1=Philip J. |author1-link=Philip J. Davis |last2=Hersh |first2=Reuben |author2-link=Reuben Hersh |title=The Mathematical Experience |publisher=Mariner Books |location=Boston; New York |edition=Reprint |year=1999 |isbn=978-0-395-92968-1 |title-link=The Mathematical Experience |ref=none}} Available [https://archive.org/details/mathematicalexpe0000davi/page/n5/mode/2up online] (registration required).
* {{cite book |last1=Courant |first1=Richard |author-link1=Richard Courant |last2=Robbins |first2=Herbert |author-link2=Herbert Robbins |title=What Is Mathematics?: An Elementary Approach to Ideas and Methods |location=New York |publisher=Oxford University Press |edition=2nd |year=1996 |isbn=978-0-19-510519-3 |url=https://archive.org/details/whatismathematic0000cour/page/n5/mode/2up |url-access=registration |ref=none}}
* {{cite book |last=Gullberg |first=Jan |author-link=Jan Gullberg |title=Mathematics: From the Birth of Numbers |url=https://archive.org/details/mathematicsfromb1997gull/page/n5/mode/2up |url-access=registration |publisher=W.W. Norton & Company |edition= |year=1997 |isbn=978-0-393-04002-9 |ref=none}}
* {{cite book |editor-last=Hazewinkel |editor-first=Michiel |editor-link=Michiel Hazewinkel |title=Encyclopaedia of Mathematics |publisher=Kluwer Academic Publishers |year=2000 |title-link=Encyclopaedia of Mathematics |ref=none}}&nbsp;– A translated and expanded version of a Soviet mathematics encyclopedia, in ten volumes. Also in paperback and on CD-ROM, and [https://encyclopediaofmath.org/wiki/Special:AllPages online]. {{Webarchive|url=https://archive.today/20121220135247/http://www.encyclopediaofmath.org/ |date=December 20, 2012 |ref=none }}.
* {{cite book |last=Hodgkin |first=Luke Howard |title=A History of Mathematics: From Mesopotamia to Modernity |publisher=Oxford University Press |year=2005 |isbn=978-0-19-152383-0}}
* {{cite book |last=Jourdain |first=Philip E. B. |author-link=Philip Jourdain |chapter=The Nature of Mathematics |title=The World of Mathematics |editor=James R. Newman |publisher=Dover Publications |year=2003 |isbn=978-0-486-43268-7 |ref=none}}
<!-- * {{cite book |last=Maier |first=Annaliese |author-link=Anneliese Maier |title=At the Threshold of Exact Science: Selected Writings of Annaliese Maier on Late Medieval Natural Philosophy |editor=Steven Sargent |location=Philadelphia |publisher=University of Pennsylvania Press |year=1982 |ref=none}}
-->
* {{cite book |last1=Pappas |first1=Theoni |author1-link=Theoni Pappas |title=The Joy Of Mathematics |date=1986 |publisher=Wide World Publishing |location=San Carlos, California |isbn=978-0-933174-65-8 |url=https://archive.org/details/joyofmathematics0000papp_t0z1/page/n3/mode/2up |url-access=registration |ref=none}}
* {{cite book |last=Waltershausen |first=Wolfgang Sartorius von |author-link=Wolfgang Sartorius von Waltershausen |title=Gauss zum Gedächtniss |year=1965 |orig-date=1856 |publisher=Sändig Reprint Verlag H. R. Wohlwend |isbn=978-3-253-01702-5 |ref=no}}
{{refend}}

{{Areas of mathematics}}
{{Authority control}}
{{Subject bar
| portal1 = Mathematics
| portal2 = Arithmetic
| portal3 = History of science
| portal4 = Science
| b = y
| commons = y
| d = y
| n = y
| q = y
| s = y
| v = y
| wikt = y
}}

[[Category:Mathematics| ]]
[[Category:Formal sciences]]
[[Category:Main topic articles]]

Latest revision as of 10:09, 4 December 2024

Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics).

Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration.[1]

Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics) but often later find practical applications.[2][3]

Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclid's Elements.[4] Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra[a] and infinitesimal calculus were introduced as new fields. Since then, the interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both.[5] At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method,[6] which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics.

Areas of mathematics

Before the Renaissance, mathematics was divided into two main areas: arithmetic, regarding the manipulation of numbers, and geometry, regarding the study of shapes.[7] Some types of pseudoscience, such as numerology and astrology, were not then clearly distinguished from mathematics.[8]

During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of the study and the manipulation of formulas. Calculus, consisting of the two subfields differential calculus and integral calculus, is the study of continuous functions, which model the typically nonlinear relationships between varying quantities, as represented by variables. This division into four main areas—arithmetic, geometry, algebra, and calculus[9]—endured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics.[10] The subject of combinatorics has been studied for much of recorded history, yet did not become a separate branch of mathematics until the seventeenth century.[11]

At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics.[12][6] The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas.[13] Some of these areas correspond to the older division, as is true regarding number theory (the modern name for higher arithmetic) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations.[14]

Number theory

This is the Ulam spiral, which illustrates the distribution of prime numbers. The dark diagonal lines in the spiral hint at the hypothesized approximate independence between being prime and being a value of a quadratic polynomial, a conjecture now known as Hardy and Littlewood's Conjecture F.

Number theory began with the manipulation of numbers, that is, natural numbers and later expanded to integers and rational numbers Number theory was once called arithmetic, but nowadays this term is mostly used for numerical calculations.[15] Number theory dates back to ancient Babylon and probably China. Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria.[16] The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss.[17]

Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is Fermat's Last Theorem. This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles, who used tools including scheme theory from algebraic geometry, category theory, and homological algebra.[18] Another example is Goldbach's conjecture, which asserts that every even integer greater than 2 is the sum of two prime numbers. Stated in 1742 by Christian Goldbach, it remains unproven despite considerable effort.[19]

Number theory includes several subareas, including analytic number theory, algebraic number theory, geometry of numbers (method oriented), diophantine equations, and transcendence theory (problem oriented).[14]

Geometry

On the surface of a sphere, Euclidean geometry only applies as a local approximation. For larger scales the sum of the angles of a triangle is not equal to 180°.

Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines, angles and circles, which were developed mainly for the needs of surveying and architecture, but has since blossomed out into many other subfields.[20]

A fundamental innovation was the ancient Greeks' introduction of the concept of proofs, which require that every assertion must be proved. For example, it is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results (theorems) and a few basic statements. The basic statements are not subject to proof because they are self-evident (postulates), or are part of the definition of the subject of study (axioms). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements.[21][22]

The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane (plane geometry) and the three-dimensional Euclidean space.[b][20]

Euclidean geometry was developed without change of methods or scope until the 17th century, when René Descartes introduced what is now called Cartesian coordinates. This constituted a major change of paradigm: Instead of defining real numbers as lengths of line segments (see number line), it allowed the representation of points using their coordinates, which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically.[23]

Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions, the study of which led to differential geometry. They can also be defined as implicit equations, often polynomial equations (which spawned algebraic geometry). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions.[20]

In the 19th century, mathematicians discovered non-Euclidean geometries, which do not follow the parallel postulate. By questioning that postulate's truth, this discovery has been viewed as joining Russell's paradox in revealing the foundational crisis of mathematics. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem.[24][6] In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space.[25]

Today's subareas of geometry include:[14]

Algebra

refer to caption
The quadratic formula, which concisely expresses the solutions of all quadratic equations
A shuffled 3x3 rubik's cube
The Rubik's Cube group is a concrete application of group theory.[26]

Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were the two main precursors of algebra.[27][28] Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution.[29] Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side.[30] The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise.[31][32]

Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers.[33] Variables allow mathematicians to describe the operations that have to be done on the numbers represented using mathematical formulas.[34]

Until the 19th century, algebra consisted mainly of the study of linear equations (presently linear algebra), and polynomial equations in a single unknown, which were called algebraic equations (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices, modular integers, and geometric transformations), on which generalizations of arithmetic operations are often valid.[35] The concept of algebraic structure addresses this, consisting of a set whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether.[36]

Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include:[14]

The study of types of algebraic structures as mathematical objects is the purpose of universal algebra and category theory.[37] The latter applies to every mathematical structure (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces; this particular area of application is called algebraic topology.[38]

Calculus and analysis

A Cauchy sequence consists of elements such that all subsequent terms of a term become arbitrarily close to each other as the sequence progresses (from left to right).

Calculus, formerly called infinitesimal calculus, was introduced independently and simultaneously by 17th-century mathematicians Newton and Leibniz.[39] It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results.[40] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts.[41]

Analysis is further subdivided into real analysis, where variables represent real numbers, and complex analysis, where variables represent complex numbers. Analysis includes many subareas shared by other areas of mathematics which include:[14]

Discrete mathematics

A diagram representing a two-state Markov chain. The states are represented by 'A' and 'E'. The numbers are the probability of flipping the state.

Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example is the set of all integers.[42] Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply.[c] Algorithms—especially their implementation and computational complexity—play a major role in discrete mathematics.[43]

The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of the 20th century.[44] The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems.[45]

Discrete mathematics includes:[14]

Mathematical logic and set theory

A blue and pink circle and their intersection labeled
The Venn diagram is a commonly used method to illustrate the relations between sets.

The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century.[46][47] Before this period, sets were not considered to be mathematical objects, and logic, although used for mathematical proofs, belonged to philosophy and was not specifically studied by mathematicians.[48]

Before Cantor's study of infinite sets, mathematicians were reluctant to consider actually infinite collections, and considered infinity to be the result of endless enumeration. Cantor's work offended many mathematicians not only by considering actually infinite sets[49] but by showing that this implies different sizes of infinity, per Cantor's diagonal argument. This led to the controversy over Cantor's set theory.[50] In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour.[51]

This became the foundational crisis of mathematics.[52] It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory. Roughly speaking, each mathematical object is defined by the set of all similar objects and the properties that these objects must have.[12] For example, in Peano arithmetic, the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning.[53] This mathematical abstraction from reality is embodied in the modern philosophy of formalism, as founded by David Hilbert around 1910.[54]

The "nature" of the objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, Gödel's incompleteness theorems assert, roughly speaking that, in every consistent formal system that contains the natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system.[55] This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by Brouwer, who promoted intuitionistic logic, which explicitly lacks the law of excluded middle.[56][57]

These problems and debates led to a wide expansion of mathematical logic, with subareas such as model theory (modeling some logical theories inside other theories), proof theory, type theory, computability theory and computational complexity theory.[14] Although these aspects of mathematical logic were introduced before the rise of computers, their use in compiler design, formal verification, program analysis, proof assistants and other aspects of computer science, contributed in turn to the expansion of these logical theories.[58]

Statistics and other decision sciences

Whatever the form of a random population distribution (μ), the sampling mean (x̄) tends to a Gaussian distribution and its variance (σ) is given by the central limit theorem of probability theory.[59]

The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory. Statisticians generate data with random sampling or randomized experiments.[60]

Statistical theory studies decision problems such as minimizing the risk (expected loss) of a statistical action, such as using a procedure in, for example, parameter estimation, hypothesis testing, and selecting the best. In these traditional areas of mathematical statistics, a statistical-decision problem is formulated by minimizing an objective function, like expected loss or cost, under specific constraints. For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence.[61] Because of its use of optimization, the mathematical theory of statistics overlaps with other decision sciences, such as operations research, control theory, and mathematical economics.[62]

Computational mathematics

Computational mathematics is the study of mathematical problems that are typically too large for human, numerical capacity.[63][64] Numerical analysis studies methods for problems in analysis using functional analysis and approximation theory; numerical analysis broadly includes the study of approximation and discretization with special focus on rounding errors.[65] Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic-matrix-and-graph theory. Other areas of computational mathematics include computer algebra and symbolic computation.

History

Etymology

The word mathematics comes from the Ancient Greek word máthēma (μάθημα), meaning 'something learned, knowledge, mathematics', and the derived expression mathēmatikḗ tékhnē (μαθηματικὴ τέχνη), meaning 'mathematical science'. It entered the English language during the Late Middle English period through French and Latin.[66]

Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely the first to constrain the use of the word to just the study of arithmetic and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established.[67]

In Latin and English, until around 1700, the term mathematics more commonly meant "astrology" (or sometimes "astronomy") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine's warning that Christians should beware of mathematici, meaning "astrologers", is sometimes mistranslated as a condemnation of mathematicians.[68]

The apparent plural form in English goes back to the Latin neuter plural mathematica (Cicero), based on the Greek plural ta mathēmatiká (τὰ μαθηματικά) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of physics and metaphysics, inherited from Greek.[69] In English, the noun mathematics takes a singular verb. It is often shortened to maths[70] or, in North America, math.[71]

Ancient

The Babylonian mathematical tablet Plimpton 322, dated to 1800 BC

In addition to recognizing how to count physical objects, prehistoric peoples may have also known how to count abstract quantities, like time—days, seasons, or years.[72][73] Evidence for more complex mathematics does not appear until around 3000 BC, when the Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy.[74] The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC.[75] Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (addition, subtraction, multiplication, and division) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time.[76]

In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as the Pythagoreans appeared to have considered it a subject in its own right.[77] Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof.[78] His book, Elements, is widely considered the most successful and influential textbook of all time.[79] The greatest mathematician of antiquity is often held to be Archimedes (c. 287 – c. 212 BC) of Syracuse.[80] He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus.[81] Other notable achievements of Greek mathematics are conic sections (Apollonius of Perga, 3rd century BC),[82] trigonometry (Hipparchus of Nicaea, 2nd century BC),[83] and the beginnings of algebra (Diophantus, 3rd century AD).[84]

The numerals used in the Bakhshali manuscript, dated between the 2nd century BC and the 2nd century AD

The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics.[85] Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine, and an early form of infinite series.[86][87]

Medieval and later

A page from al-Khwarizmi's Al-Jabr

During the Golden Age of Islam, especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra. Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system.[88] Many notable mathematicians from this period were Persian, such as Al-Khwarizmi, Omar Khayyam and Sharaf al-Dīn al-Ṭūsī.[89] The Greek and Arabic mathematical texts were in turn translated to Latin during the Middle Ages and made available in Europe.[90]

During the early modern period, mathematics began to develop at an accelerating pace in Western Europe, with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical calculations, especially for astronomy and marine navigation, the introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1643–1727) and Gottfried Leibniz (1646–1716). Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and the proof of numerous theorems.[91]

Carl Friedrich Gauss

Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss, who made numerous contributions to fields such as algebra, analysis, differential geometry, matrix theory, number theory, and statistics.[92] In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems, which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved.[55]

Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January 2006 issue of the Bulletin of the American Mathematical Society, "The number of papers and books included in the Mathematical Reviews (MR) database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."[93]

Symbolic notation and terminology

An explanation of the sigma (Σ) summation notation

Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations, unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas.[94] More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts. Operation and relations are generally represented by specific symbols or glyphs,[95] such as + (plus), × (multiplication), (integral), = (equal), and < (less than).[96] All these symbols are generally grouped according to specific rules to form expressions and formulas.[97] Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of noun phrases and formulas play the role of clauses.

Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture. Through a series of rigorous arguments employing deductive reasoning, a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma. A proven instance that forms part of a more general finding is termed a corollary.[98]

Numerous technical terms used in mathematics are neologisms, such as polynomial and homeomorphism.[99] Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, "or" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "exclusive or"). Finally, many mathematical terms are common words that are used with a completely different meaning.[100] This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module is flat" and "a field is always a ring".

Relationship with sciences

Mathematics is used in most sciences for modeling phenomena, which then allows predictions to be made from experimental laws.[101] The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model.[102] Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used.[103] For example, the perihelion precession of Mercury could only be explained after the emergence of Einstein's general relativity, which replaced Newton's law of gravitation as a better mathematical model.[104]

There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation.[105] In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).[106] However, some authors emphasize that mathematics differs from the modern notion of science by not relying on empirical evidence.[107][108][109][110]

Pure and applied mathematics

Isaac Newton
Gottfried Wilhelm von Leibniz
Isaac Newton (left) and Gottfried Wilhelm Leibniz developed infinitesimal calculus.

Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of technology and science, and there was no clear distinction between pure and applied mathematics.[111] For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, Isaac Newton introduced infinitesimal calculus for explaining the movement of the planets with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians.[112] However, a notable exception occurred with the tradition of pure mathematics in Ancient Greece.[113] The problem of integer factorization, for example, which goes back to Euclid in 300 BC, had no practical application before its use in the RSA cryptosystem, now widely used for the security of computer networks.[114]

In the 19th century, mathematicians such as Karl Weierstrass and Richard Dedekind increasingly focused their research on internal problems, that is, pure mathematics.[111][115] This led to split mathematics into pure mathematics and applied mathematics, the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.[116]

The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere.[117][118] Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".[119][120]

An example of the first case is the theory of distributions, introduced by Laurent Schwartz for validating computations done in quantum mechanics, which became immediately an important tool of (pure) mathematical analysis.[121] An example of the second case is the decidability of the first-order theory of the real numbers, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high.[122] For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry.[123]

In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas.[124][125] The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics".[14] However, these terms are still used in names of some university departments, such as at the Faculty of Mathematics at the University of Cambridge.

Unreasonable effectiveness

The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner.[3] It is the fact that many mathematical theories (even the "purest") have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.[126] Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.

A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem.[127] A second historical example is the theory of ellipses. They were studied by the ancient Greek mathematicians as conic sections (that is, intersections of cones with planes). It was almost 2,000 years later that Johannes Kepler discovered that the trajectories of the planets are ellipses.[128]

In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the theory of relativity that uses fundamentally these concepts. In particular, spacetime of special relativity is a non-Euclidean space of dimension four, and spacetime of general relativity is a (curved) manifold of dimension four.[129][130]

A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the positron and the baryon In both cases, the equations of the theories had unexplained solutions, which led to conjecture of the existence of an unknown particle, and the search for these particles. In both cases, these particles were discovered a few years later by specific experiments.[131][132][133]

Specific sciences

Physics

Diagram of a pendulum

Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,[134] and is also considered to be the motivation of major mathematical developments.[135]

Computing

Computing is closely related to mathematics in several ways.[136] Theoretical computer science is considered to be mathematical in nature.[137] Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in cryptography and coding theory. Discrete mathematics is useful in many areas of computer science, such as complexity theory, information theory, and graph theory.[138] In 1998, the Kepler conjecture on sphere packing seemed to also be partially proven by computer.[139]

Biology and chemistry

The skin of this giant pufferfish exhibits a Turing pattern, which can be modeled by reaction–diffusion systems.

Biology uses probability extensively in fields such as ecology or neurobiology.[140] Most discussion of probability centers on the concept of evolutionary fitness.[140] Ecology heavily uses modeling to simulate population dynamics,[140][141] study ecosystems such as the predator-prey model, measure pollution diffusion,[142] or to assess climate change.[143] The dynamics of a population can be modeled by coupled differential equations, such as the Lotka–Volterra equations.[144]

Statistical hypothesis testing, is run on data from clinical trials to determine whether a new treatment works.[145] Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions.[146]

Earth sciences

Structural geology and climatology use probabilistic models to predict the risk of natural catastrophes.[147] Similarly, meteorology, oceanography, and planetology also use mathematics due to their heavy use of models.[148][149][150]

Social sciences

Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, economics, sociology,[151] and psychology.[152]

Supply and demand curves, like this one, are a staple of mathematical economics.

Often the fundamental postulate of mathematical economics is that of the rational individual actor – Homo economicus (lit.'economic man').[153] In this model, the individual seeks to maximize their self-interest,[153] and always makes optimal choices using perfect information.[154] This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual calculations are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms. Some reject or criticise the concept of Homo economicus. Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.[155]

Without mathematical modeling, it is hard to go beyond statistical observations or untestable speculation. Mathematical modeling allows economists to create structured frameworks to test hypotheses and analyze complex interactions. Models provide clarity and precision, enabling the translation of theoretical concepts into quantifiable predictions that can be tested against real-world data.[156]

At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, Nikolai Kondratiev discerned the ~50-year-long Kondratiev cycle, which explains phases of economic growth or crisis.[157] Towards the end of the 19th century, mathematicians extended their analysis into geopolitics.[158] Peter Turchin developed cliodynamics since the 1990s.[159]

Mathematization of the social sciences is not without risk. In the controversial book Fashionable Nonsense (1997), Sokal and Bricmont denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.[160] The study of complex systems (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.[161][162]

Philosophy

Reality

The connection between mathematics and material reality has led to philosophical debates since at least the time of Pythagoras. The ancient philosopher Plato argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as Platonism. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.[163]

Armand Borel summarized this view of mathematics reality as follows, and provided quotations of G. H. Hardy, Charles Hermite, Henri Poincaré and Albert Einstein that support his views.[131]

Something becomes objective (as opposed to "subjective") as soon as we are convinced that it exists in the minds of others in the same form as it does in ours and that we can think about it and discuss it together.[164] Because the language of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus exists. In my opinion, that is sufficient to provide us with a feeling of an objective existence, of a reality of mathematics ...

Nevertheless, Platonism and the concurrent views on abstraction do not explain the unreasonable effectiveness of mathematics.[165]

Proposed definitions

There is no general consensus about the definition of mathematics or its epistemological status—that is, its place inside knowledge. A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do".[166][167] A common approach is to define mathematics by its object of study.[168][169][170][171]

Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart.[172] In the 19th century, when mathematicians began to address topics—such as infinite sets—which have no clear-cut relation to physical reality, a variety of new definitions were given.[173] With the large number of new areas of mathematics that have appeared since the beginning of the 20th century, defining mathematics by its object of study has become increasingly difficult.[174] For example, in lieu of a definition, Saunders Mac Lane in Mathematics, form and function summarizes the basics of several areas of mathematics, emphasizing their inter-connectedness, and observes:[175]

the development of Mathematics provides a tightly connected network of formal rules, concepts, and systems. Nodes of this network are closely bound to procedures useful in human activities and to questions arising in science. The transition from activities to the formal Mathematical systems is guided by a variety of general insights and ideas.

Another approach for defining mathematics is to use its methods. For example, an area of study is often qualified as mathematics as soon as one can prove theorems—assertions whose validity relies on a proof, that is, a purely-logical deduction.[d][176][failed verification]

Rigor

Mathematical reasoning requires rigor. This means that the definitions must be absolutely unambiguous and the proofs must be reducible to a succession of applications of inference rules,[e] without any use of empirical evidence and intuition.[f][177] Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics' concision, rigorous proofs can require hundreds of pages to express, such as the 255-page Feit–Thompson theorem.[g] The emergence of computer-assisted proofs has allowed proof lengths to further expand.[h][178] The result of this trend is a philosophy of the quasi-empiricist proof that can not be considered infallible, but has a probability attached to it.[6]

The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation. In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs.[6]

At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and Weierstrass function) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the apodictic inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.[6] It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a pleonasm. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.[179]

Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.[180]

Training and practice

Education

Mathematics has a remarkable ability to cross cultural boundaries and time periods. As a human activity, the practice of mathematics has a social side, which includes education, careers, recognition, popularization, and so on. In education, mathematics is a core part of the curriculum and forms an important element of the STEM academic disciplines. Prominent careers for professional mathematicians include math teacher or professor, statistician, actuary, financial analyst, economist, accountant, commodity trader, or computer consultant.[181]

Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia.[182] Comparable evidence has been unearthed for scribal mathematics training in the ancient Near East and then for the Greco-Roman world starting around 300 BCE.[183] The oldest known mathematics textbook is the Rhind papyrus, dated from c. 1650 BCE in Egypt.[184] Due to a scarcity of books, mathematical teachings in ancient India were communicated using memorized oral tradition since the Vedic period (c. 1500 – c. 500 BCE).[185] In Imperial China during the Tang dynasty (618–907 CE), a mathematics curriculum was adopted for the civil service exam to join the state bureaucracy.[186]

Following the Dark Ages, mathematics education in Europe was provided by religious schools as part of the Quadrivium. Formal instruction in pedagogy began with Jesuit schools in the 16th and 17th century. Most mathematical curricula remained at a basic and practical level until the nineteenth century, when it began to flourish in France and Germany. The oldest journal addressing instruction in mathematics was L'Enseignement Mathématique, which began publication in 1899.[187] The Western advancements in science and technology led to the establishment of centralized education systems in many nation-states, with mathematics as a core component—initially for its military applications.[188] While the content of courses varies, in the present day nearly all countries teach mathematics to students for significant amounts of time.[189]

During school, mathematical capabilities and positive expectations have a strong association with career interest in the field. Extrinsic factors such as feedback motivation by teachers, parents, and peer groups can influence the level of interest in mathematics.[190] Some students studying math may develop an apprehension or fear about their performance in the subject. This is known as math anxiety or math phobia, and is considered the most prominent of the disorders impacting academic performance. Math anxiety can develop due to various factors such as parental and teacher attitudes, social stereotypes, and personal traits. Help to counteract the anxiety can come from changes in instructional approaches, by interactions with parents and teachers, and by tailored treatments for the individual.[191]

Psychology (aesthetic, creativity and intuition)

The validity of a mathematical theorem relies only on the rigor of its proof, which could theoretically be done automatically by a computer program. This does not mean that there is no place for creativity in a mathematical work. On the contrary, many important mathematical results (theorems) are solutions of problems that other mathematicians failed to solve, and the invention of a way for solving them may be a fundamental way of the solving process.[192][193] An extreme example is Apery's theorem: Roger Apery provided only the ideas for a proof, and the formal proof was given only several months later by three other mathematicians.[194]

Creativity and rigor are not the only psychological aspects of the activity of mathematicians. Some mathematicians can see their activity as a game, more specifically as solving puzzles.[195] This aspect of mathematical activity is emphasized in recreational mathematics.

Mathematicians can find an aesthetic value to mathematics. Like beauty, it is hard to define, it is commonly related to elegance, which involves qualities like simplicity, symmetry, completeness, and generality. G. H. Hardy in A Mathematician's Apology expressed the belief that the aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He also identified other criteria such as significance, unexpectedness, and inevitability, which contribute to mathematical aesthetics.[196] Paul Erdős expressed this sentiment more ironically by speaking of "The Book", a supposed divine collection of the most beautiful proofs. The 1998 book Proofs from THE BOOK, inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the fast Fourier transform for harmonic analysis.[197]

Some feel that to consider mathematics a science is to downplay its artistry and history in the seven traditional liberal arts.[198] One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematical results are created (as in art) or discovered (as in science).[131] The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions.

Cultural impact

Artistic expression

Notes that sound well together to a Western ear are sounds whose fundamental frequencies of vibration are in simple ratios. For example, an octave doubles the frequency and a perfect fifth multiplies it by .[199][200]

Fractal with a scaling symmetry and a central symmetry

Humans, as well as some other animals, find symmetric patterns to be more beautiful.[201] Mathematically, the symmetries of an object form a group known as the symmetry group.[202] For example, the group underlying mirror symmetry is the cyclic group of two elements, . A Rorschach test is a figure invariant by this symmetry,[203] as are butterfly and animal bodies more generally (at least on the surface).[204] Waves on the sea surface possess translation symmetry: moving one's viewpoint by the distance between wave crests does not change one's view of the sea.[205] Fractals possess self-similarity.[206][207]

Popularization

Popular mathematics is the act of presenting mathematics without technical terms.[208] Presenting mathematics may be hard since the general public suffers from mathematical anxiety and mathematical objects are highly abstract.[209] However, popular mathematics writing can overcome this by using applications or cultural links.[210] Despite this, mathematics is rarely the topic of popularization in printed or televised media.

Awards and prize problems

The front side of the Fields Medal with an illustration of the Greek polymath Archimedes

The most prestigious award in mathematics is the Fields Medal,[211][212] established in 1936 and awarded every four years (except around World War II) to up to four individuals.[213][214] It is considered the mathematical equivalent of the Nobel Prize.[214]

Other prestigious mathematics awards include:[215]

A famous list of 23 open problems, called "Hilbert's problems", was compiled in 1900 by German mathematician David Hilbert.[223] This list has achieved great celebrity among mathematicians,[224] and at least thirteen of the problems (depending how some are interpreted) have been solved.[223]

A new list of seven important problems, titled the "Millennium Prize Problems", was published in 2000. Only one of them, the Riemann hypothesis, duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward.[225] To date, only one of these problems, the Poincaré conjecture, has been solved by the Russian mathematician Grigori Perelman.[226]

See also

References

Notes

  1. ^ Here, algebra is taken in its modern sense, which is, roughly speaking, the art of manipulating formulas.
  2. ^ This includes conic sections, which are intersections of circular cylinders and planes.
  3. ^ However, some advanced methods of analysis are sometimes used; for example, methods of complex analysis applied to generating series.
  4. ^ For example, logic belongs to philosophy since Aristotle. Circa the end of the 19th century, the foundational crisis of mathematics implied developments of logic that are specific to mathematics. This allowed eventually the proof of theorems such as Gödel's theorems. Since then, mathematical logic is commonly considered as an area of mathematics.
  5. ^ This does not mean to make explicit all inference rules that are used. On the contrary, this is generally impossible, without computers and proof assistants. Even with this modern technology, it may take years of human work for writing down a completely detailed proof.
  6. ^ This does not mean that empirical evidence and intuition are not needed for choosing the theorems to be proved and to prove them.
  7. ^ This is the length of the original paper that does not contain the proofs of some previously published auxiliary results. The book devoted to the complete proof has more than 1,000 pages.
  8. ^ For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software

Citations

  1. ^ Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". In Kanzian, Christian; Mitterer, Josef; Neges, Katharina (eds.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (in German and English). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. Archived (PDF) from the original on November 7, 2022. Retrieved January 17, 2024. (at ResearchGate Open access icon Archived November 5, 2022, at the Wayback Machine)
  2. ^ Peterson 1988, p. 12.
  3. ^ a b Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. Archived from the original on February 28, 2011.
  4. ^ Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. Archived from the original on June 1, 2019. Retrieved January 18, 2024.
  5. ^ Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
  6. ^ a b c d e f Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. 64 (5). Taylor & Francis, Ltd.: 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.
  7. ^ Bell, E. T. (1945) [1940]. "General Prospectus". The Development of Mathematics (2nd ed.). Dover Publications. p. 3. ISBN 978-0-486-27239-9. LCCN 45010599. OCLC 523284. ... mathematics has come down to the present by the two main streams of number and form. The first carried along arithmetic and algebra, the second, geometry.
  8. ^ Tiwari, Sarju (1992). "A Mirror of Civilization". Mathematics in History, Culture, Philosophy, and Science (1st ed.). New Delhi, India: Mittal Publications. p. 27. ISBN 978-81-7099-404-6. LCCN 92909575. OCLC 28115124. It is unfortunate that two curses of mathematics--Numerology and Astrology were also born with it and have been more acceptable to the masses than mathematics itself.
  9. ^ Restivo, Sal (1992). "Mathematics from the Ground Up". In Bunge, Mario (ed.). Mathematics in Society and History. Episteme. Vol. 20. Kluwer Academic Publishers. p. 14. ISBN 0-7923-1765-3. LCCN 25709270. OCLC 92013695.
  10. ^ Musielak, Dora (2022). Leonhard Euler and the Foundations of Celestial Mechanics. History of Physics. Springer International Publishing. doi:10.1007/978-3-031-12322-1. eISSN 2730-7557. ISBN 978-3-031-12321-4. ISSN 2730-7549. OCLC 1332780664. S2CID 253240718.
  11. ^ Biggs, N. L. (May 1979). "The roots of combinatorics". Historia Mathematica. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0. eISSN 1090-249X. ISSN 0315-0860. LCCN 75642280. OCLC 2240703.
  12. ^ a b Warner, Evan. "Splash Talk: The Foundational Crisis of Mathematics" (PDF). Columbia University. Archived from the original (PDF) on March 22, 2023. Retrieved February 3, 2024.
  13. ^ Dunne, Edward; Hulek, Klaus (March 2020). "Mathematics Subject Classification 2020" (PDF). Notices of the American Mathematical Society. 67 (3): 410–411. doi:10.1090/noti2052. eISSN 1088-9477. ISSN 0002-9920. LCCN sf77000404. OCLC 1480366. Archived (PDF) from the original on August 3, 2021. Retrieved February 3, 2024. The new MSC contains 63 two-digit classifications, 529 three-digit classifications, and 6,006 five-digit classifications.
  14. ^ a b c d e f g h "MSC2020-Mathematics Subject Classification System" (PDF). zbMath. Associate Editors of Mathematical Reviews and zbMATH. Archived (PDF) from the original on January 2, 2024. Retrieved February 3, 2024.
  15. ^ LeVeque, William J. (1977). "Introduction". Fundamentals of Number Theory. Addison-Wesley Publishing Company. pp. 1–30. ISBN 0-201-04287-8. LCCN 76055645. OCLC 3519779. S2CID 118560854.
  16. ^ Goldman, Jay R. (1998). "The Founding Fathers". The Queen of Mathematics: A Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters. pp. 2–3. doi:10.1201/9781439864623. ISBN 1-56881-006-7. LCCN 94020017. OCLC 30437959. S2CID 118934517.
  17. ^ Weil, André (1983). Number Theory: An Approach Through History From Hammurapi to Legendre. Birkhäuser Boston. pp. 2–3. doi:10.1007/978-0-8176-4571-7. ISBN 0-8176-3141-0. LCCN 83011857. OCLC 9576587. S2CID 117789303.
  18. ^ Kleiner, Israel (March 2000). "From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem". Elemente der Mathematik. 55 (1): 19–37. doi:10.1007/PL00000079. eISSN 1420-8962. ISSN 0013-6018. LCCN 66083524. OCLC 1567783. S2CID 53319514.
  19. ^ Wang, Yuan (2002). The Goldbach Conjecture. Series in Pure Mathematics. Vol. 4 (2nd ed.). World Scientific. pp. 1–18. doi:10.1142/5096. ISBN 981-238-159-7. LCCN 2003268597. OCLC 51533750. S2CID 14555830.
  20. ^ a b c Straume, Eldar (September 4, 2014). "A Survey of the Development of Geometry up to 1870". arXiv:1409.1140 [math.HO].
  21. ^ Hilbert, David (1902). The Foundations of Geometry. Open Court Publishing Company. p. 1. doi:10.1126/science.16.399.307. LCCN 02019303. OCLC 996838. S2CID 238499430. Retrieved February 6, 2024. Free access icon
  22. ^ Hartshorne, Robin (2000). "Euclid's Geometry". Geometry: Euclid and Beyond. Springer New York. pp. 9–13. ISBN 0-387-98650-2. LCCN 99044789. OCLC 42290188. Retrieved February 7, 2024.
  23. ^ Boyer, Carl B. (2004) [1956]. "Fermat and Descartes". History of Analytic Geometry. Dover Publications. pp. 74–102. ISBN 0-486-43832-5. LCCN 2004056235. OCLC 56317813.
  24. ^ Stump, David J. (1997). "Reconstructing the Unity of Mathematics circa 1900" (PDF). Perspectives on Science. 5 (3): 383–417. doi:10.1162/posc_a_00532. eISSN 1530-9274. ISSN 1063-6145. LCCN 94657506. OCLC 26085129. S2CID 117709681. Retrieved February 8, 2024.
  25. ^ O'Connor, J. J.; Robertson, E. F. (February 1996). "Non-Euclidean geometry". MacTuror. Scotland, UK: University of St. Andrews. Archived from the original on November 6, 2022. Retrieved February 8, 2024.
  26. ^ Joyner, David (2008). "The (legal) Rubik's Cube group". Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys (2nd ed.). Johns Hopkins University Press. pp. 219–232. ISBN 978-0-8018-9012-3. LCCN 2008011322. OCLC 213765703.
  27. ^ Christianidis, Jean; Oaks, Jeffrey (May 2013). "Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria". Historia Mathematica. 40 (2): 127–163. doi:10.1016/j.hm.2012.09.001. eISSN 1090-249X. ISSN 0315-0860. LCCN 75642280. OCLC 2240703. S2CID 121346342.
  28. ^ Kleiner 2007, "History of Classical Algebra" pp. 3–5.
  29. ^ Shane, David (2022). "Figurate Numbers: A Historical Survey of an Ancient Mathematics" (PDF). Methodist University. p. 20. Retrieved June 13, 2024. In his work, Diophantus focused on deducing the arithmetic properties of figurate numbers, such as deducing the number of sides, the different ways a number can be expressed as a figurate number, and the formulation of the arithmetic progressions.
  30. ^ Overbay, Shawn; Schorer, Jimmy; Conger, Heather. "Al-Khwarizmi". University of Kentucky. Retrieved June 13, 2024.
  31. ^ Lim, Lisa (December 21, 2018). "Where the x we use in algebra came from, and the X in Xmas". South China Morning Post. Archived from the original on December 22, 2018. Retrieved February 8, 2024.
  32. ^ Berntjes, Sonja. "Algebra". Encyclopaedia of Islam Online (3rd ed.). ISSN 1573-3912. LCCN 2007238847. OCLC 56713464. Retrieved June 13, 2024.
  33. ^ Oaks, Jeffery A. (2018). "François Viète's revolution in algebra" (PDF). Archive for History of Exact Sciences. 72 (3): 245–302. doi:10.1007/s00407-018-0208-0. eISSN 1432-0657. ISSN 0003-9519. LCCN 63024699. OCLC 1482042. S2CID 125704699. Archived (PDF) from the original on November 8, 2022. Retrieved February 8, 2024.
  34. ^ "Variable in Maths". GeeksforGeeks. April 24, 2024. Retrieved June 13, 2024.
  35. ^ Kleiner 2007, "History of Linear Algebra" pp. 79–101.
  36. ^ Corry, Leo (2004). "Emmy Noether: Ideals and Structures". Modern Algebra and the Rise of Mathematical Structures (2nd revised ed.). Germany: Birkhäuser Basel. pp. 247–252. ISBN 3-7643-7002-5. LCCN 2004556211. OCLC 51234417. Retrieved February 8, 2024.
  37. ^ Riche, Jacques (2007). "From Universal Algebra to Universal Logic". In Beziau, J. Y.; Costa-Leite, Alexandre (eds.). Perspectives on Universal Logic. Milano, Italy: Polimetrica International Scientific Publisher. pp. 3–39. ISBN 978-88-7699-077-9. OCLC 647049731. Retrieved February 8, 2024.
  38. ^ Krömer, Ralph (2007). Tool and Object: A History and Philosophy of Category Theory. Science Networks – Historical Studies. Vol. 32. Germany: Springer Science & Business Media. pp. xxi–xxv, 1–91. ISBN 978-3-7643-7523-2. LCCN 2007920230. OCLC 85242858. Retrieved February 8, 2024.
  39. ^ Guicciardini, Niccolo (2017). "The Newton–Leibniz Calculus Controversy, 1708–1730" (PDF). In Schliesser, Eric; Smeenk, Chris (eds.). The Oxford Handbook of Newton. Oxford Handbooks. Oxford University Press. doi:10.1093/oxfordhb/9780199930418.013.9. ISBN 978-0-19-993041-8. OCLC 975829354. Archived (PDF) from the original on November 9, 2022. Retrieved February 9, 2024.
  40. ^ O'Connor, J. J.; Robertson, E. F. (September 1998). "Leonhard Euler". MacTutor. Scotland, UK: University of St Andrews. Archived from the original on November 9, 2022. Retrieved February 9, 2024.
  41. ^ "Calculus (Differential and Integral Calculus with Examples)". Byju's. Retrieved June 13, 2024.
  42. ^ Franklin, James (July 2017). "Discrete and Continuous: A Fundamental Dichotomy in Mathematics". Journal of Humanistic Mathematics. 7 (2): 355–378. doi:10.5642/jhummath.201702.18. ISSN 2159-8118. LCCN 2011202231. OCLC 700943261. S2CID 6945363. Retrieved February 9, 2024.
  43. ^ Maurer, Stephen B. (1997). "What is Discrete Mathematics? The Many Answers". In Rosenstein, Joseph G.; Franzblau, Deborah S.; Roberts, Fred S. (eds.). Discrete Mathematics in the Schools. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science. Vol. 36. American Mathematical Society. pp. 121–124. doi:10.1090/dimacs/036/13. ISBN 0-8218-0448-0. ISSN 1052-1798. LCCN 97023277. OCLC 37141146. S2CID 67358543. Retrieved February 9, 2024.
  44. ^ Hales, Thomas C. (2014). "Turing's Legacy: Developments from Turing's Ideas in Logic". In Downey, Rod (ed.). Turing's Legacy. Lecture Notes in Logic. Vol. 42. Cambridge University Press. pp. 260–261. doi:10.1017/CBO9781107338579.001. ISBN 978-1-107-04348-0. LCCN 2014000240. OCLC 867717052. S2CID 19315498. Retrieved February 9, 2024.
  45. ^ Sipser, Michael (July 1992). The History and Status of the P versus NP Question. STOC '92: Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing. pp. 603–618. doi:10.1145/129712.129771. S2CID 11678884.
  46. ^ Ewald, William (November 17, 2018). "The Emergence of First-Order Logic". Stanford Encyclopedia of Philosophy. ISSN 1095-5054. LCCN sn97004494. OCLC 37550526. Retrieved June 14, 2024.
  47. ^ Ferreirós, José (June 18, 2020) [First published April 10, 2007]. "The Early Development of Set Theory". Stanford Encyclopedia of Philosophy. ISSN 1095-5054. LCCN sn97004494. OCLC 37550526. Retrieved June 14, 2024.
  48. ^ Ferreirós, José (December 2001). "The Road to Modern Logic—An Interpretation" (PDF). The Bulletin of Symbolic Logic. 7 (4): 441–484. doi:10.2307/2687794. eISSN 1943-5894. hdl:11441/38373. ISSN 1079-8986. JSTOR 2687794. LCCN 95652899. OCLC 31616719. S2CID 43258676. Retrieved June 14, 2024.
  49. ^ Wolchover, Natalie, ed. (November 26, 2013). "Dispute over Infinity Divides Mathematicians". Quanta Magazine. Retrieved June 14, 2024.
  50. ^ Zhuang, Chaohui. "Wittgenstein's analysis on Cantor's diagonal argument" (DOC). PhilArchive. Retrieved June 14, 2024.
  51. ^ Tanswell, Fenner Stanley (2024). Mathematical Rigour and Informal Proof. Cambridge Elements in the Philosophy of Mathematics. Cambridge University Press. doi:10.1017/9781009325110. eISSN 2399-2883. ISBN 978-1-00-949438-0. ISSN 2514-3808. OCLC 1418750041.
  52. ^ Avigad, Jeremy; Reck, Erich H. (December 11, 2001). ""Clarifying the nature of the infinite": the development of metamathematics and proof theory" (PDF). Carnegie Mellon University. Retrieved June 14, 2024.
  53. ^ Hamilton, Alan G. (1982). Numbers, Sets and Axioms: The Apparatus of Mathematics. Cambridge University Press. pp. 3–4. ISBN 978-0-521-28761-6. Retrieved November 12, 2022.
  54. ^ Snapper, Ernst (September 1979). "The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism". Mathematics Magazine. 52 (4): 207–216. doi:10.2307/2689412. ISSN 0025-570X. JSTOR 2689412.
  55. ^ a b Raatikainen, Panu (October 2005). "On the Philosophical Relevance of Gödel's Incompleteness Theorems". Revue Internationale de Philosophie. 59 (4): 513–534. doi:10.3917/rip.234.0513. JSTOR 23955909. S2CID 52083793. Archived from the original on November 12, 2022. Retrieved November 12, 2022.
  56. ^ Moschovakis, Joan (September 4, 2018). "Intuitionistic Logic". Stanford Encyclopedia of Philosophy. Archived from the original on December 16, 2022. Retrieved November 12, 2022.
  57. ^ McCarty, Charles (2006). "At the Heart of Analysis: Intuitionism and Philosophy". Philosophia Scientiæ, Cahier spécial 6: 81–94. doi:10.4000/philosophiascientiae.411.
  58. ^ Halpern, Joseph; Harper, Robert; Immerman, Neil; Kolaitis, Phokion; Vardi, Moshe; Vianu, Victor (2001). "On the Unusual Effectiveness of Logic in Computer Science" (PDF). Archived (PDF) from the original on March 3, 2021. Retrieved January 15, 2021.
  59. ^ Rouaud, Mathieu (April 2017) [First published July 2013]. Probability, Statistics and Estimation (PDF). p. 10. Archived (PDF) from the original on October 9, 2022. Retrieved February 13, 2024.
  60. ^ Rao, C. Radhakrishna (1997) [1989]. Statistics and Truth: Putting Chance to Work (2nd ed.). World Scientific. pp. 3–17, 63–70. ISBN 981-02-3111-3. LCCN 97010349. MR 1474730. OCLC 36597731.
  61. ^ Rao, C. Radhakrishna (1981). "Foreword". In Arthanari, T.S.; Dodge, Yadolah (eds.). Mathematical programming in statistics. Wiley Series in Probability and Mathematical Statistics. New York: Wiley. pp. vii–viii. ISBN 978-0-471-08073-2. LCCN 80021637. MR 0607328. OCLC 6707805.
  62. ^ Whittle 1994, pp. 10–11, 14–18.
  63. ^ Marchuk, Gurii Ivanovich (April 2020). "G I Marchuk's plenary: ICM 1970". MacTutor. School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on November 13, 2022. Retrieved November 13, 2022.
  64. ^ Johnson, Gary M.; Cavallini, John S. (September 1991). Phua, Kang Hoh; Loe, Kia Fock (eds.). Grand Challenges, High Performance Computing, and Computational Science. Singapore Supercomputing Conference'90: Supercomputing For Strategic Advantage. World Scientific. p. 28. LCCN 91018998. Retrieved November 13, 2022.
  65. ^ Trefethen, Lloyd N. (2008). "Numerical Analysis". In Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.). The Princeton Companion to Mathematics (PDF). Princeton University Press. pp. 604–615. ISBN 978-0-691-11880-2. LCCN 2008020450. MR 2467561. OCLC 227205932. Archived (PDF) from the original on March 7, 2023. Retrieved February 15, 2024.
  66. ^
  67. ^ Perisho, Margaret W. (Spring 1965). "The Etymology of Mathematical Terms". Pi Mu Epsilon Journal. 4 (2): 62–66. ISSN 0031-952X. JSTOR 24338341. LCCN 58015848. OCLC 1762376.
  68. ^ Boas, Ralph P. (1995). "What Augustine Didn't Say About Mathematicians". In Alexanderson, Gerald L.; Mugler, Dale H. (eds.). Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories. Mathematical Association of America. p. 257. ISBN 978-0-88385-323-8. LCCN 94078313. OCLC 633018890.
  69. ^ The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics".
  70. ^ "Maths (Noun)". Oxford English Dictionary. Oxford University Press. Retrieved January 25, 2024.
  71. ^ "Math (Noun³)". Oxford English Dictionary. Oxford University Press. Archived from the original on April 4, 2020. Retrieved January 25, 2024.
  72. ^ See, for example, Wilder, Raymond L. Evolution of Mathematical Concepts; an Elementary Study. passim.
  73. ^ Zaslavsky, Claudia (1999). Africa Counts: Number and Pattern in African Culture. Chicago Review Press. ISBN 978-1-61374-115-3. OCLC 843204342.
  74. ^ Kline 1990, Chapter 1.
  75. ^ Mesopotamia pg 10. Retrieved June 1, 2024
  76. ^ Boyer 1991, "Mesopotamia" pp. 24–27.
  77. ^ Heath, Thomas Little (1981) [1921]. A History of Greek Mathematics: From Thales to Euclid. New York: Dover Publications. p. 1. ISBN 978-0-486-24073-2.
  78. ^ Mueller, I. (1969). "Euclid's Elements and the Axiomatic Method". The British Journal for the Philosophy of Science. 20 (4): 289–309. doi:10.1093/bjps/20.4.289. ISSN 0007-0882. JSTOR 686258.
  79. ^ Boyer 1991, "Euclid of Alexandria" p. 119.
  80. ^ Boyer 1991, "Archimedes of Syracuse" p. 120.
  81. ^ Boyer 1991, "Archimedes of Syracuse" p. 130.
  82. ^ Boyer 1991, "Apollonius of Perga" p. 145.
  83. ^ Boyer 1991, "Greek Trigonometry and Mensuration" p. 162.
  84. ^ Boyer 1991, "Revival and Decline of Greek Mathematics" p. 180.
  85. ^ Ore, Øystein (1988). Number Theory and Its History. Courier Corporation. pp. 19–24. ISBN 978-0-486-65620-5. Retrieved November 14, 2022.
  86. ^ Singh, A. N. (January 1936). "On the Use of Series in Hindu Mathematics". Osiris. 1: 606–628. doi:10.1086/368443. JSTOR 301627. S2CID 144760421.
  87. ^ Kolachana, A.; Mahesh, K.; Ramasubramanian, K. (2019). "Use of series in India". Studies in Indian Mathematics and Astronomy. Sources and Studies in the History of Mathematics and Physical Sciences. Singapore: Springer. pp. 438–461. doi:10.1007/978-981-13-7326-8_20. ISBN 978-981-13-7325-1. S2CID 190176726.
  88. ^ Saliba, George (1994). A history of Arabic astronomy: planetary theories during the golden age of Islam. New York University Press. ISBN 978-0-8147-7962-0. OCLC 28723059.
  89. ^ Faruqi, Yasmeen M. (2006). "Contributions of Islamic scholars to the scientific enterprise". International Education Journal. 7 (4). Shannon Research Press: 391–399. Archived from the original on November 14, 2022. Retrieved November 14, 2022.
  90. ^ Lorch, Richard (June 2001). "Greek-Arabic-Latin: The Transmission of Mathematical Texts in the Middle Ages" (PDF). Science in Context. 14 (1–2). Cambridge University Press: 313–331. doi:10.1017/S0269889701000114. S2CID 146539132. Archived (PDF) from the original on December 17, 2022. Retrieved December 5, 2022.
  91. ^ Kent, Benjamin (2022). History of Science (PDF). Vol. 2. Bibliotex Digital Library. ISBN 978-1-984668-67-7.
  92. ^ Archibald, Raymond Clare (January 1949). "History of Mathematics After the Sixteenth Century". The American Mathematical Monthly. Part 2: Outline of the History of Mathematics. 56 (1): 35–56. doi:10.2307/2304570. JSTOR 2304570.
  93. ^ Sevryuk 2006, pp. 101–109.
  94. ^ Wolfram, Stephan (October 2000). Mathematical Notation: Past and Future. MathML and Math on the Web: MathML International Conference 2000, Urbana Champaign, USA. Archived from the original on November 16, 2022. Retrieved February 3, 2024.
  95. ^ Douglas, Heather; Headley, Marcia Gail; Hadden, Stephanie; LeFevre, Jo-Anne (December 3, 2020). "Knowledge of Mathematical Symbols Goes Beyond Numbers". Journal of Numerical Cognition. 6 (3): 322–354. doi:10.5964/jnc.v6i3.293. eISSN 2363-8761. S2CID 228085700.
  96. ^ Letourneau, Mary; Wright Sharp, Jennifer (October 2017). "AMS Style Guide" (PDF). American Mathematical Society. p. 75. Archived (PDF) from the original on December 8, 2022. Retrieved February 3, 2024.
  97. ^ Jansen, Anthony R.; Marriott, Kim; Yelland, Greg W. (2000). "Constituent Structure in Mathematical Expressions" (PDF). Proceedings of the Annual Meeting of the Cognitive Science Society. 22. University of California Merced. eISSN 1069-7977. OCLC 68713073. Archived (PDF) from the original on November 16, 2022. Retrieved February 3, 2024.
  98. ^ Rossi, Richard J. (2006). Theorems, Corollaries, Lemmas, and Methods of Proof. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. John Wiley & Sons. pp. 1–14, 47–48. ISBN 978-0-470-04295-3. LCCN 2006041609. OCLC 64085024.
  99. ^ "Earliest Uses of Some Words of Mathematics". MacTutor. Scotland, UK: University of St. Andrews. Archived from the original on September 29, 2022. Retrieved February 3, 2024.
  100. ^ Silver, Daniel S. (November–December 2017). "The New Language of Mathematics". The American Scientist. 105 (6). Sigma Xi: 364–371. doi:10.1511/2017.105.6.364. ISSN 0003-0996. LCCN 43020253. OCLC 1480717. S2CID 125455764.
  101. ^ Bellomo, Nicola; Preziosi, Luigi (December 22, 1994). Modelling Mathematical Methods and Scientific Computation. Mathematical Modeling. Vol. 1. CRC Press. p. 1. ISBN 978-0-8493-8331-1. Retrieved November 16, 2022.
  102. ^ Hennig, Christian (2010). "Mathematical Models and Reality: A Constructivist Perspective". Foundations of Science. 15: 29–48. doi:10.1007/s10699-009-9167-x. S2CID 6229200. Retrieved November 17, 2022.
  103. ^ Frigg, Roman; Hartmann, Stephan (February 4, 2020). "Models in Science". Stanford Encyclopedia of Philosophy. Archived from the original on November 17, 2022. Retrieved November 17, 2022.
  104. ^ Stewart, Ian (2018). "Mathematics, Maps, and Models". In Wuppuluri, Shyam; Doria, Francisco Antonio (eds.). The Map and the Territory: Exploring the Foundations of Science, Thought and Reality. The Frontiers Collection. Springer. pp. 345–356. doi:10.1007/978-3-319-72478-2_18. ISBN 978-3-319-72478-2. Retrieved November 17, 2022.
  105. ^ "The science checklist applied: Mathematics". Understanding Science. University of California, Berkeley. Archived from the original on October 27, 2019. Retrieved October 27, 2019.
  106. ^ Mackay, A. L. (1991). Dictionary of Scientific Quotations. London: Taylor & Francis. p. 100. ISBN 978-0-7503-0106-0. Retrieved March 19, 2023.
  107. ^ Bishop, Alan (1991). "Environmental activities and mathematical culture". Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN 978-0-7923-1270-3. Retrieved April 5, 2020.
  108. ^ Shasha, Dennis Elliot; Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. p. 228. ISBN 978-0-387-98269-4.
  109. ^ Nickles, Thomas (2013). "The Problem of Demarcation". Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104. ISBN 978-0-226-05182-6.
  110. ^ Pigliucci, Massimo (2014). "Are There 'Other' Ways of Knowing?". Philosophy Now. Archived from the original on May 13, 2020. Retrieved April 6, 2020.
  111. ^ a b Ferreirós, J. (2007). "Ό Θεὸς Άριθμητίζει: The Rise of Pure Mathematics as Arithmetic with Gauss". In Goldstein, Catherine; Schappacher, Norbert; Schwermer, Joachim (eds.). The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae. Springer Science & Business Media. pp. 235–268. ISBN 978-3-540-34720-0.
  112. ^ Kuhn, Thomas S. (1976). "Mathematical vs. Experimental Traditions in the Development of Physical Science". The Journal of Interdisciplinary History. 7 (1). The MIT Press: 1–31. doi:10.2307/202372. JSTOR 202372.
  113. ^ Asper, Markus (2009). "The two cultures of mathematics in ancient Greece". In Robson, Eleanor; Stedall, Jacqueline (eds.). The Oxford Handbook of the History of Mathematics. Oxford Handbooks in Mathematics. OUP Oxford. pp. 107–132. ISBN 978-0-19-921312-2. Retrieved November 18, 2022.
  114. ^ Gozwami, Pinkimani; Singh, Madan Mohan (2019). "Integer Factorization Problem". In Ahmad, Khaleel; Doja, M. N.; Udzir, Nur Izura; Singh, Manu Pratap (eds.). Emerging Security Algorithms and Techniques. CRC Press. pp. 59–60. ISBN 978-0-8153-6145-9. LCCN 2019010556. OCLC 1082226900.
  115. ^ Maddy, P. (2008). "How applied mathematics became pure" (PDF). The Review of Symbolic Logic. 1 (1): 16–41. doi:10.1017/S1755020308080027. S2CID 18122406. Archived (PDF) from the original on August 12, 2017. Retrieved November 19, 2022.
  116. ^ Silver, Daniel S. (2017). "In Defense of Pure Mathematics". In Pitici, Mircea (ed.). The Best Writing on Mathematics, 2016. Princeton University Press. pp. 17–26. ISBN 978-0-691-17529-4. Retrieved November 19, 2022.
  117. ^ Parshall, Karen Hunger (2022). "The American Mathematical Society and Applied Mathematics from the 1920s to the 1950s: A Revisionist Account". Bulletin of the American Mathematical Society. 59 (3): 405–427. doi:10.1090/bull/1754. S2CID 249561106. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
  118. ^ Stolz, Michael (2002). "The History Of Applied Mathematics And The History Of Society". Synthese. 133: 43–57. doi:10.1023/A:1020823608217. S2CID 34271623. Retrieved November 20, 2022.
  119. ^ Lin, C. C . (March 1976). "On the role of applied mathematics". Advances in Mathematics. 19 (3): 267–288. doi:10.1016/0001-8708(76)90024-4.
  120. ^ Peressini, Anthony (September 1999). Applying Pure Mathematics (PDF). Philosophy of Science. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part I: Contributed Papers. Vol. 66. pp. S1–S13. JSTOR 188757. Archived (PDF) from the original on January 2, 2024. Retrieved November 30, 2022.
  121. ^ Lützen, J. (2011). "Examples and reflections on the interplay between mathematics and physics in the 19th and 20th century". In Schlote, K. H.; Schneider, M. (eds.). Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century. Frankfurt am Main: Verlag Harri Deutsch. Archived from the original on March 23, 2023. Retrieved November 19, 2022.
  122. ^ Marker, Dave (July 1996). "Model theory and exponentiation". Notices of the American Mathematical Society. 43 (7): 753–759. Archived from the original on March 13, 2014. Retrieved November 19, 2022.
  123. ^ Chen, Changbo; Maza, Marc Moreno (August 2014). Cylindrical Algebraic Decomposition in the RegularChains Library. International Congress on Mathematical Software 2014. Lecture Notes in Computer Science. Vol. 8592. Berlin: Springer. doi:10.1007/978-3-662-44199-2_65. Retrieved November 19, 2022.
  124. ^ Pérez-Escobar, José Antonio; Sarikaya, Deniz (2021). "Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy". European Journal for Philosophy of Science. 12 (1): 1–22. doi:10.1007/s13194-021-00435-9. S2CID 245465895.
  125. ^ Takase, M. (2014). "Pure Mathematics and Applied Mathematics are Inseparably Intertwined: Observation of the Early Analysis of the Infinity". A Mathematical Approach to Research Problems of Science and Technology. Mathematics for Industry. Vol. 5. Tokyo: Springer. pp. 393–399. doi:10.1007/978-4-431-55060-0_29. ISBN 978-4-431-55059-4. Retrieved November 20, 2022.
  126. ^ Sarukkai, Sundar (February 10, 2005). "Revisiting the 'unreasonable effectiveness' of mathematics". Current Science. 88 (3): 415–423. JSTOR 24110208.
  127. ^ Wagstaff, Samuel S. Jr. (2021). "History of Integer Factoring" (PDF). In Bos, Joppe W.; Stam, Martijn (eds.). Computational Cryptography, Algorithmic Aspects of Cryptography, A Tribute to AKL. London Mathematical Society Lecture Notes Series 469. Cambridge University Press. pp. 41–77. Archived (PDF) from the original on November 20, 2022. Retrieved November 20, 2022.
  128. ^ "Curves: Ellipse". MacTutor. School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on October 14, 2022. Retrieved November 20, 2022.
  129. ^ Mukunth, Vasudevan (September 10, 2015). "Beyond the Surface of Einstein's Relativity Lay a Chimerical Geometry". The Wire. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
  130. ^ Wilson, Edwin B.; Lewis, Gilbert N. (November 1912). "The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics". Proceedings of the American Academy of Arts and Sciences. 48 (11): 389–507. doi:10.2307/20022840. JSTOR 20022840.
  131. ^ a b c Borel, Armand (1983). "Mathematics: Art and Science". The Mathematical Intelligencer. 5 (4). Springer: 9–17. doi:10.4171/news/103/8. ISSN 1027-488X.
  132. ^ Hanson, Norwood Russell (November 1961). "Discovering the Positron (I)". The British Journal for the Philosophy of Science. 12 (47). The University of Chicago Press: 194–214. doi:10.1093/bjps/xiii.49.54. JSTOR 685207.
  133. ^ Ginammi, Michele (February 2016). "Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the Ω particle". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 53: 20–27. Bibcode:2016SHPMP..53...20G. doi:10.1016/j.shpsb.2015.12.001.
  134. ^ Wagh, Sanjay Moreshwar; Deshpande, Dilip Abasaheb (September 27, 2012). Essentials of Physics. PHI Learning Pvt. Ltd. p. 3. ISBN 978-81-203-4642-0. Retrieved January 3, 2023.
  135. ^ Atiyah, Michael (1990). On the Work of Edward Witten (PDF). Proceedings of the International Congress of Mathematicians. p. 31. Archived from the original (PDF) on September 28, 2013. Retrieved December 29, 2022.
  136. ^ "Course 18C Mathematics with Computer Science". math.mit.edu. Retrieved June 1, 2024.
  137. ^ "Theoretical Computer Science". math.mit.edu. Retrieved June 1, 2024.
  138. ^ "Real-Life Applications of Discrete Mathematics". GeeksforGeeks. April 8, 2024. Retrieved May 19, 2024.
  139. ^ Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; Mclaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi. 5: e2. doi:10.1017/fmp.2017.1. hdl:2066/176365. ISSN 2050-5086. S2CID 216912822. Archived from the original on December 4, 2020. Retrieved February 25, 2023.
  140. ^ a b c Millstein, Roberta (September 8, 2016). "Probability in Biology: The Case of Fitness" (PDF). In Hájek, Alan; Hitchcock, Christopher (eds.). The Oxford Handbook of Probability and Philosophy. pp. 601–622. doi:10.1093/oxfordhb/9780199607617.013.27. Archived (PDF) from the original on March 7, 2023. Retrieved December 29, 2022.
  141. ^ See for example Anne Laurent, Roland Gamet, Jérôme Pantel, Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés» 15–17 janvier 1996, CNRS
  142. ^ Bouleau 1999, pp. 282–283.
  143. ^ Bouleau 1999, p. 285.
  144. ^ "1.4: The Lotka-Volterra Predator-Prey Model". Mathematics LibreTexts. January 5, 2022. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  145. ^ Salsburg, David (August 17, 1992). "Commentary" (PDF). The Use of Statistical Methods in the Analysis of Clinical Studies. 46: 17.
  146. ^ National Research Council (2003). "8". Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. NAP.edu. pp. 71–73. doi:10.17226/10633. ISBN 978-0-309-16839-7. PMID 25032300.
  147. ^ "Catastrophe Models (Property)". content.naic.org. Retrieved May 19, 2024.
  148. ^ "MAM2001 Essay". ww2.amstat.org. Retrieved May 19, 2024.
  149. ^ Hill, Mullica (September 7, 2022). "HOW MATH IS USED IN WEATHER FORECASTING". mathnasium.com. Retrieved May 19, 2024.
  150. ^ "Using Mathematical Models to Investigate Planetary Habitability" (PDF). NASA. Retrieved May 19, 2024.
  151. ^ Edling, Christofer R. (2002). "Mathematics in Sociology". Annual Review of Sociology. 28 (1): 197–220. doi:10.1146/annurev.soc.28.110601.140942. ISSN 0360-0572.
  152. ^ Batchelder, William H. (January 1, 2015). "Mathematical Psychology: History". In Wright, James D. (ed.). International Encyclopedia of the Social & Behavioral Sciences (Second Edition). Oxford: Elsevier. pp. 808–815. ISBN 978-0-08-097087-5. Retrieved September 30, 2023.
  153. ^ a b Zak, Paul J. (2010). Moral Markets: The Critical Role of Values in the Economy. Princeton University Press. p. 158. ISBN 978-1-4008-3736-6. Retrieved January 3, 2023.
  154. ^ Levin, Jonathan; Milgrom, Paul (September 2004). Introduction to Choice Theory (PDF).
  155. ^ Kremer, Michael; Rao, Gautam; Schilbach, Frank (2019). "Chapter 5 Behavioral development economics". Handbook of Behavioral Economics: Applications and Foundations (PDF). Vol. 2.
  156. ^ "Mathematics". mdpi.com.
  157. ^ "Kondratiev, Nikolai Dmitrievich | Encyclopedia.com". www.encyclopedia.com. Archived from the original on July 1, 2016. Retrieved December 29, 2022.
  158. ^ "Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. | The Online Books Page". onlinebooks.library.upenn.edu.
  159. ^ "Cliodynamics: a science for predicting the future". ZDNet. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  160. ^ Sokal, Alan; Jean Bricmont (1998). Fashionable Nonsense. New York: Picador. ISBN 978-0-312-19545-8. OCLC 39605994.
  161. ^ "Biden's Misleading Unemployment Statistic – FactCheck.org".
  162. ^ "Modern Macroeconomic Models as Tools for Economic Policy | Federal Reserve Bank of Minneapolis". minneapolisfed.org.
  163. ^ Balaguer, Mark (2016). "Platonism in Metaphysics". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Spring 2016 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on January 30, 2022. Retrieved April 2, 2022.
  164. ^ See White, L. (1947). "The locus of mathematical reality: An anthropological footnote". Philosophy of Science. 14 (4): 289–303. doi:10.1086/286957. S2CID 119887253. 189303; also in Newman, J. R. (1956). The World of Mathematics. Vol. 4. New York: Simon and Schuster. pp. 2348–2364.
  165. ^ Dorato, Mauro (2005). "Why are laws mathematical?" (PDF). The Software of the Universe, An Introduction to the History and Philosophy of Laws of Nature. Ashgate. pp. 31–66. ISBN 978-0-7546-3994-7. Archived (PDF) from the original on August 17, 2023. Retrieved December 5, 2022.
  166. ^ Mura, Roberta (December 1993). "Images of Mathematics Held by University Teachers of Mathematical Sciences". Educational Studies in Mathematics. 25 (4): 375–85. doi:10.1007/BF01273907. JSTOR 3482762. S2CID 122351146.
  167. ^ Tobies, Renate; Neunzert, Helmut (2012). Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry. Springer. p. 9. ISBN 978-3-0348-0229-1. Retrieved June 20, 2015. [I]t is first necessary to ask what is meant by mathematics in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.
  168. ^ Ziegler, Günter M.; Loos, Andreas (November 2, 2017). Kaiser, G. (ed.). "What is Mathematics?" and why we should ask, where one should experience and learn that, and how to teach it. Proceedings of the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer. pp. 63–77. doi:10.1007/978-3-319-62597-3_5. ISBN 978-3-319-62596-6. (Sections "What is Mathematics?" and "What is Mathematics, Really?")
  169. ^ Mura 1993, pp. 379, 381.
  170. ^ Brown & Porter 1995, p. 326.
  171. ^ Strauss, Danie (2011). "Defining mathematics". Acta Academica. 43 (4): 1–28. Retrieved November 25, 2022.
  172. ^ Franklin, James (2009). Philosophy of Mathematics. Elsevier. pp. 104–106. ISBN 978-0-08-093058-9. Retrieved June 20, 2015.
  173. ^ Cajori, Florian (1893). A History of Mathematics. American Mathematical Society (1991 reprint). pp. 285–286. ISBN 978-0-8218-2102-2. Retrieved June 20, 2015.
  174. ^ Devlin 2018, p. 3.
  175. ^ Saunders Maclane (1986). Mathematics, form and function. Springer., page 409
  176. ^ Brown, Ronald; Porter, Timothy (1995). "The Methodology of Mathematics". The Mathematical Gazette. 79 (485): 321–334. doi:10.2307/3618304. JSTOR 3618304. S2CID 178923299. Archived from the original on March 23, 2023. Retrieved November 25, 2022.
  177. ^ Hamami, Yacin (June 2022). "Mathematical Rigor and Proof" (PDF). The Review of Symbolic Logic. 15 (2): 409–449. doi:10.1017/S1755020319000443. S2CID 209980693. Archived (PDF) from the original on December 5, 2022. Retrieved November 21, 2022.
  178. ^ Peterson 1988, p. 4: "A few complain that the computer program can't be verified properly." (in reference to the Haken–Apple proof of the Four Color Theorem)
  179. ^ Perminov, V. Ya. (1988). "On the Reliability of Mathematical Proofs". Philosophy of Mathematics. 42 (167 (4)). Revue Internationale de Philosophie: 500–508.
  180. ^ Davis, Jon D.; McDuffie, Amy Roth; Drake, Corey; Seiwell, Amanda L. (2019). "Teachers' perceptions of the official curriculum: Problem solving and rigor". International Journal of Educational Research. 93: 91–100. doi:10.1016/j.ijer.2018.10.002. S2CID 149753721.
  181. ^ Endsley, Kezia (2021). Mathematicians and Statisticians: A Practical Career Guide. Practical Career Guides. Rowman & Littlefield. pp. 1–3. ISBN 978-1-5381-4517-3. Retrieved November 29, 2022.
  182. ^ Robson, Eleanor (2009). "Mathematics education in an Old Babylonian scribal school". In Robson, Eleanor; Stedall, Jacqueline (eds.). The Oxford Handbook of the History of Mathematics. OUP Oxford. ISBN 978-0-19-921312-2. Retrieved November 24, 2022.
  183. ^ Bernard, Alain; Proust, Christine; Ross, Micah (2014). "Mathematics Education in Antiquity". In Karp, A.; Schubring, G. (eds.). Handbook on the History of Mathematics Education. New York: Springer. pp. 27–53. doi:10.1007/978-1-4614-9155-2_3. ISBN 978-1-4614-9154-5.
  184. ^ Dudley, Underwood (April 2002). "The World's First Mathematics Textbook". Math Horizons. 9 (4). Taylor & Francis, Ltd.: 8–11. doi:10.1080/10724117.2002.11975154. JSTOR 25678363. S2CID 126067145.
  185. ^ Subramarian, F. Indian pedagogy and problem solving in ancient Thamizhakam (PDF). History and Pedagogy of Mathematics conference, July 16–20, 2012. Archived (PDF) from the original on November 28, 2022. Retrieved November 29, 2022.
  186. ^ Siu, Man Keung (2004). "Official Curriculum in Mathematics in Ancient China: How did Candidates Study for the Examination?". How Chinese Learn Mathematics (PDF). Series on Mathematics Education. Vol. 1. pp. 157–185. doi:10.1142/9789812562241_0006. ISBN 978-981-256-014-8. Retrieved November 26, 2022.
  187. ^ Jones, Phillip S. (1967). "The History of Mathematical Education". The American Mathematical Monthly. 74 (1). Taylor & Francis, Ltd.: 38–55. doi:10.2307/2314867. JSTOR 2314867.
  188. ^ Schubring, Gert; Furinghetti, Fulvia; Siu, Man Keung (August 2012). "Introduction: the history of mathematics teaching. Indicators for modernization processes in societies". ZDM Mathematics Education. 44 (4): 457–459. doi:10.1007/s11858-012-0445-7. S2CID 145507519.
  189. ^ von Davier, Matthias; Foy, Pierre; Martin, Michael O.; Mullis, Ina V.S. (2020). "Examining eTIMSS Country Differences Between eTIMSS Data and Bridge Data: A Look at Country-Level Mode of Administration Effects". TIMSS 2019 International Results in Mathematics and Science (PDF). TIMSS & PIRLS International Study Center, Lynch School of Education and Human Development and International Association for the Evaluation of Educational Achievement. p. 13.1. ISBN 978-1-889938-54-7. Archived (PDF) from the original on November 29, 2022. Retrieved November 29, 2022.
  190. ^ Rowan-Kenyon, Heather T.; Swan, Amy K.; Creager, Marie F. (March 2012). "Social Cognitive Factors, Support, and Engagement: Early Adolescents' Math Interests as Precursors to Choice of Career" (PDF). The Career Development Quarterly. 60 (1): 2–15. doi:10.1002/j.2161-0045.2012.00001.x. Archived (PDF) from the original on November 22, 2023. Retrieved November 29, 2022.
  191. ^ Luttenberger, Silke; Wimmer, Sigrid; Paechter, Manuela (2018). "Spotlight on math anxiety". Psychology Research and Behavior Management. 11: 311–322. doi:10.2147/PRBM.S141421. PMC 6087017. PMID 30123014.
  192. ^ Yaftian, Narges (June 2, 2015). "The Outlook of the Mathematicians' Creative Processes". Procedia – Social and Behavioral Sciences. 191: 2519–2525. doi:10.1016/j.sbspro.2015.04.617.
  193. ^ Nadjafikhah, Mehdi; Yaftian, Narges (October 10, 2013). "The Frontage of Creativity and Mathematical Creativity". Procedia – Social and Behavioral Sciences. 90: 344–350. doi:10.1016/j.sbspro.2013.07.101.
  194. ^ van der Poorten, A. (1979). "A proof that Euler missed... Apéry's Proof of the irrationality of ζ(3)" (PDF). The Mathematical Intelligencer. 1 (4): 195–203. doi:10.1007/BF03028234. S2CID 121589323. Archived (PDF) from the original on September 6, 2015. Retrieved November 22, 2022.
  195. ^ Petkovi, Miodrag (September 2, 2009). Famous Puzzles of Great Mathematicians. American Mathematical Society. pp. xiii–xiv. ISBN 978-0-8218-4814-2. Retrieved November 25, 2022.
  196. ^ Hardy, G. H. (1940). A Mathematician's Apology. Cambridge University Press. ISBN 978-0-521-42706-7. Retrieved November 22, 2022. See also A Mathematician's Apology.
  197. ^ Alon, Noga; Goldston, Dan; Sárközy, András; Szabados, József; Tenenbaum, Gérald; Garcia, Stephan Ramon; Shoemaker, Amy L. (March 2015). Alladi, Krishnaswami; Krantz, Steven G. (eds.). "Reflections on Paul Erdős on His Birth Centenary, Part II". Notices of the American Mathematical Society. 62 (3): 226–247. doi:10.1090/noti1223.
  198. ^ See, for example Bertrand Russell's statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his History of Western Philosophy. 1919. p. 60.
  199. ^ Cazden, Norman (October 1959). "Musical intervals and simple number ratios". Journal of Research in Music Education. 7 (2): 197–220. doi:10.1177/002242945900700205. JSTOR 3344215. S2CID 220636812.
  200. ^ Budden, F. J. (October 1967). "Modern mathematics and music". The Mathematical Gazette. 51 (377). Cambridge University Press ({CUP}): 204–215. doi:10.2307/3613237. JSTOR 3613237. S2CID 126119711.
  201. ^ Enquist, Magnus; Arak, Anthony (November 1994). "Symmetry, beauty and evolution". Nature. 372 (6502): 169–172. Bibcode:1994Natur.372..169E. doi:10.1038/372169a0. ISSN 1476-4687. PMID 7969448. S2CID 4310147. Archived from the original on December 28, 2022. Retrieved December 29, 2022.
  202. ^ Hestenes, David (1999). "Symmetry Groups" (PDF).
  203. ^ Bender, Sara (September 2020). "The Rorschach Test". In Carducci, Bernardo J.; Nave, Christopher S.; Mio, Jeffrey S.; Riggio, Ronald E. (eds.). The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment. Wiley. pp. 367–376. doi:10.1002/9781119547167.ch131. ISBN 978-1-119-05751-2.
  204. ^ Weyl, Hermann (2015). Symmetry. Princeton Science Library. Vol. 47. Princeton University Press. p. 4. ISBN 978-1-4008-7434-7.
  205. ^ "Lecture 8: Translation Symmetry | Physics III: Vibrations and Waves | Physics". MIT OpenCourseWare.
  206. ^ Bradley, Larry (2010). "Fractals – Chaos & Fractals". stsci.edu. Archived from the original on March 7, 2023. Retrieved December 29, 2022.
  207. ^ "Self-similarity". math.bu.edu. Archived from the original on March 2, 2023. Retrieved December 29, 2022.
  208. ^ Kissane, Barry (July 2009). Popular mathematics. 22nd Biennial Conference of The Australian Association of Mathematics Teachers. Fremantle, Western Australia: Australian Association of Mathematics Teachers. pp. 125–126. Archived from the original on March 7, 2023. Retrieved December 29, 2022.
  209. ^ Steen, L. A. (2012). Mathematics Today Twelve Informal Essays. Springer Science & Business Media. p. 2. ISBN 978-1-4613-9435-8. Retrieved January 3, 2023.
  210. ^ Pitici, Mircea (2017). The Best Writing on Mathematics 2016. Princeton University Press. ISBN 978-1-4008-8560-2. Retrieved January 3, 2023.
  211. ^ Monastyrsky 2001, p. 1: "The Fields Medal is now indisputably the best known and most influential award in mathematics."
  212. ^ Riehm 2002, pp. 778–782.
  213. ^ "Fields Medal | International Mathematical Union (IMU)". www.mathunion.org. Archived from the original on December 26, 2018. Retrieved February 21, 2022.
  214. ^ a b "Fields Medal". Maths History. Archived from the original on March 22, 2019. Retrieved February 21, 2022.
  215. ^ "Honours/Prizes Index". MacTutor History of Mathematics Archive. Archived from the original on December 17, 2021. Retrieved February 20, 2023.
  216. ^ "About the Abel Prize". The Abel Prize. Archived from the original on April 14, 2022. Retrieved January 23, 2022.
  217. ^ "Abel Prize | mathematics award". Encyclopedia Britannica. Archived from the original on January 26, 2020. Retrieved January 23, 2022.
  218. ^ "Chern Medal Award" (PDF). mathunion.org. June 1, 2009. Archived (PDF) from the original on June 17, 2009. Retrieved February 21, 2022.
  219. ^ "Chern Medal Award". International Mathematical Union (IMU). Archived from the original on August 25, 2010. Retrieved January 23, 2022.
  220. ^ "The Leroy P Steele Prize of the AMS". School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on November 17, 2022. Retrieved November 17, 2022.
  221. ^ Chern, S. S.; Hirzebruch, F. (September 2000). Wolf Prize in Mathematics. doi:10.1142/4149. ISBN 978-981-02-3945-9. Archived from the original on February 21, 2022. Retrieved February 21, 2022.
  222. ^ "The Wolf Prize". Wolf Foundation. Archived from the original on January 12, 2020. Retrieved January 23, 2022.
  223. ^ a b "Hilbert's Problems: 23 and Math". Simons Foundation. May 6, 2020. Archived from the original on January 23, 2022. Retrieved January 23, 2022.
  224. ^ Feferman, Solomon (1998). "Deciding the undecidable: Wrestling with Hilbert's problems" (PDF). In the Light of Logic. Logic and Computation in Philosophy series. Oxford University Press. pp. 3–27. ISBN 978-0-19-508030-8. Retrieved November 29, 2022.
  225. ^ "The Millennium Prize Problems". Clay Mathematics Institute. Archived from the original on July 3, 2015. Retrieved January 23, 2022.
  226. ^ "Millennium Problems". Clay Mathematics Institute. Archived from the original on December 20, 2018. Retrieved January 23, 2022.

Sources

Further reading