Jump to content

Iceberg: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
removing extra file + MOS:SOB
 
(228 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Large piece of freshwater ice broken off a glacier or ice shelf and floating in open water}}
{{Other uses}}
{{Other uses}}
{{Short description|Large piece of freshwater ice broken off a glacier or ice shelf and floating in open water}}

[[File:Iceberg in the Arctic with its underside exposed.jpg|thumb|300px|<center>An iceberg in the [[Arctic Ocean]].</center>]]

An '''iceberg''' is a large piece of [[Fresh water|freshwater]] [[ice]] that has broken off a [[glacier]] or an [[ice shelf]] and is floating freely in open (salt) water.<ref>{{cite web|url=https://www.google.com/search?hl=en&q=define%3Aiceberg&btnG=Google+Search|title=Definitions of the word "Iceberg"|access-date=2006-12-20}}</ref><ref>{{cite web|url=http://beyondpenguins.ehe.osu.edu/issue/icebergs-and-glaciers/common-misconceptions-about-icebergs-and-glaciers|title=Common Misconceptions about Icebergs and Glaciers|publisher=Ohio State University|quote=Icebergs float in salt water, but they are formed from freshwater glacial ice.}}</ref> Small bits of disintegrating icebergs are called "growlers" or "bergy bits".<ref>{{Cite web|url=https://nsidc.org/cryosphere/glossary/term/bergy-bit|title=bergy bit {{!}} National Snow and Ice Data Center|website=nsidc.org|access-date=2019-12-01}}</ref><ref>{{Cite web|url=https://www.athropolis.com/arctic-facts/fact-bergy-bits.htm|title=Bergy Bits and Growlers|website=www.athropolis.com|access-date=2019-12-01}}</ref>


[[File:Iceberg in the Arctic with its underside exposed.jpg|thumb|upright=1.3|An iceberg in the [[Arctic Ocean]]]]
Icebergs [[Ice calving|calved]] by glaciers that face the open sea, such as in Greenland, are irregular shaped piles. In the continent of [[Antarctica]], ice shelves calve off large tabular (table top) icebergs. The biggest iceberg ever recorded was [[Iceberg B-15A]] which split off the [[Ross Ice Shelf]] in Antarctica in 2000.


An '''iceberg''' is a piece of [[fresh water]] ice more than {{convert|15|m|yd|sp=us|abbr=off}} long<ref name=":0">{{Cite web|title=Iceberg Formation: International Ice Patrol|url=https://www.navcen.uscg.gov/pdf/iip/Iceberg_Formation.pdf|url-status=dead|website=International Ice Patrol|access-date=2021-08-23|archive-date=2017-05-09|archive-url=https://web.archive.org/web/20170509054249/https://www.navcen.uscg.gov/pdf/iip/Iceberg_Formation.pdf}}</ref> that has broken off a [[glacier]] or an [[ice shelf]] and is floating freely in open water.<ref>{{cite web |url=https://dictionary.cambridge.org/us/dictionary/english/iceberg |title=iceberg |access-date=2024-07-06|work=Cambridge Dictionary}}</ref><ref>{{cite web |url=http://beyondpenguins.ehe.osu.edu/issue/icebergs-and-glaciers/common-misconceptions-about-icebergs-and-glaciers |title=Common Misconceptions about Icebergs and Glaciers |date=19 July 2011 |publisher=Ohio State University |quote=Icebergs float in salt water, but they are formed from freshwater glacial ice.}}</ref> Smaller chunks of floating glacially derived ice are called "growlers" or "bergy bits".<ref>{{Cite web |url=https://nsidc.org/learn/cryosphere-glossary/bergy-bit |title=bergy bit |website=National Snow and Ice Data Center |access-date=2024-07-16}}</ref><ref>{{Cite web |url=https://www.athropolis.com/arctic-facts/fact-bergy-bits.htm |title=Bergy Bits and Growlers |website=www.athropolis.com |access-date=2019-12-01}}</ref> Much of an iceberg is below the water's surface, which led to the expression "[[wikt:tip of the iceberg|tip of the iceberg]]" to illustrate a small part of a larger unseen issue. Icebergs are considered a [[List of ships sunk by icebergs|serious maritime hazard]].
Much of an iceberg is below the surface which led to the expression "[[wikt:tip of the iceberg|tip of the iceberg]]" to illustrate a small part of a larger unseen issue. Icebergs are considered a [[List of ships sunk by icebergs|serious maritime hazard]]. The 1912 loss of the [[RMS Titanic|RMS ''Titanic'']] led to the formation of the [[International Ice Patrol]] in 1914.


Icebergs vary considerably in size and shape. Icebergs that [[Ice calving|calve]] from glaciers in [[Greenland]] are often irregularly shaped while [[Antarctica|Antarctic]] ice shelves often produce large tabular (table top) icebergs. The largest iceberg in recent history, named [[Iceberg B-15|B-15]], was measured at nearly {{convert|300|by|40|km}} in 2000.<ref name=":1">{{Cite journal|last1=Remy|first1=J.-P.|last2=Becquevort|first2=S.|last3=Haskell|first3=T.G.|last4=Tison|first4=J.-L.|date=December 2008|title=Impact of the B-15 iceberg "stranding event" on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica|url=https://www.cambridge.org/core/product/identifier/S0954102008001284/type/journal_article|journal=Antarctic Science|language=en|volume=20|issue=6|pages=593–604|doi=10.1017/S0954102008001284|bibcode=2008AntSc..20..593R|s2cid=73604210|issn=0954-1020}}</ref> The largest iceberg on record was an Antarctic tabular iceberg measuring {{convert|335|by|97|km|mi}} sighted {{convert|150|mi|km|order=flip}} west of [[Scott Island]], in the South Pacific Ocean, by the [[USS Glacier (AGB-4)|USS ''Glacier'']] on November 12, 1956. This iceberg was larger than [[Belgium]].<ref>{{cite journal|date=1956|title=Antarctica shed a 208-mile-long berg in 1956|volume=43|page=18|journal=[[The Polar Times]]|url=https://www.usatoday.com/weather/resources/coldscience/2005-01-20-1956-antarctic-iceberg_x.htm |via=[[USA Today]] |archive-url=https://web.archive.org/web/20060522193438/https://www.usatoday.com/weather/resources/coldscience/2005-01-20-1956-antarctic-iceberg_x.htm |archive-date=2006-05-22 |url-status=dead}}</ref>
[[File:Research on Iceberg B-15A by Josh Landis, National Science Foundation (Image 4) (NSF).jpg|thumb|upright=1.35|Northern edge of [[Iceberg B-15|Iceberg B-15A]] in the Ross Sea, Antarctica, 29 January 2001]]


==Etymology==
==Etymology==
The word ''iceberg'' is a partial [[loan translation]] from the [[Dutch language|Dutch]] word [[wikt:ijsberg#Dutch|''ijsberg'']], literally meaning ''ice mountain'',<ref>{{cite web|work=Online Etymology Dictionary|url=http://www.etymonline.com/index.php?search=iceberg&searchmode=none|title=Iceberg|access-date=2006-03-26}}</ref> cognate to [[Danish language|Danish]] [[wikt:isbjerg#Danish|''isbjerg'']], [[German language|German]] [[wikt:Eisberg#German|''Eisberg'']], [[Northern Low Saxon|Low Saxon]] ''<span lang="nds-nl" dir="ltr">Iesbarg</span>'' and [[Swedish language|Swedish]] ''<span lang="sv" dir="ltr">[[wikt:isberg#Swedish|isberg]]</span>''.
[[File:GreenlandReel Icebergs 2160APR.webm|thumb|right|300px|Icebergs in [[Greenland]] as filmed by [[NASA]] in 2015]]
The word ''iceberg'' is a partial [[loan translation]] from the [[Dutch language|Dutch]] word [[wikt:ijsberg#Dutch|''ijsberg'']], literally meaning '' ice mountain'',<ref>{{cite web|work=Online Etymology Dictionary|url=http://www.etymonline.com/index.php?search=iceberg&searchmode=none|title=Iceberg|access-date=2006-03-26}}</ref> cognate to [[Danish language|Danish]] [[wikt:isbjerg#Danish|''isbjerg'']], [[German language|German]] [[wikt:Eisberg#German|''Eisberg'']], [[Northern Low Saxon|Low Saxon]] ''<span lang="nds-nl" dir="ltr">Iesbarg</span>'' and [[Swedish language|Swedish]] ''<span lang="sv" dir="ltr">[[wikt:isberg#Swedish|isberg]]</span>''.


==Overview==
==Overview==
Typically about one-tenth of the volume of an iceberg is above water, which follows from [[Buoyancy|Archimedes's Principle of buoyancy]]; the [[density]] of pure ice is about 920&nbsp;[[kilogram per cubic metre|kg/m<sup>3</sup>]] (57&nbsp;lb/cu&nbsp;ft), and that of [[seawater]] about {{convert|1025|kg/m3|lb/ft3|abbr=on|0}}. The contour of the underwater portion can be difficult to judge by looking at the portion above the surface.
Because the [[density]] of pure ice is about 920 [[kilogram per cubic metre|kg/m<sup>3</sup>]] (57 lb/cu ft), and that of [[seawater]] about {{convert|1025|kg/m3|lb/ft3|abbr=on|0}}, typically about one-tenth of the volume of an iceberg is above water (which follows from [[Buoyancy|Archimedes's Principle of buoyancy]]). The contour of the underwater portion can be difficult to judge by looking at the portion above the surface. Icebergs are often compared in size to the area of [[Manhattan]].<ref>{{cite web|url=https://www.cnn.com/2020/09/14/europe/greenland-arctic-ice-shelf-intl/index.html|title=A chunk of ice twice the size of Manhattan has broken off Greenland in the last two years|author=Zamira Rahim|publisher=CNN|date=September 14, 2020|access-date=September 23, 2020}}</ref><ref>{{cite web|url=https://earther.gizmodo.com/an-iceberg-30-times-the-size-of-manhattan-is-about-to-b-1832764641|title=An Iceberg 30 Times the Size of Manhattan Is About to Break Off Antarctica|author=Maddie Stone|website=[[Gizmodo]]|date=February 21, 2019|access-date=September 23, 2020|archive-url=https://web.archive.org/web/20191027051022/https://earther.gizmodo.com/an-iceberg-30-times-the-size-of-manhattan-is-about-to-b-1832764641|archive-date=October 27, 2019|url-status=dead}}</ref><ref>{{cite web|url=https://www.businessinsider.com/iceberg-bigger-manhattan-broke-antarctica-2018-11|title=An iceberg 5 times bigger than Manhattan just broke off from Antarctica|author=Lorraine Chow|website=[[Business Insider]]|date=November 1, 2018|access-date=September 23, 2020|archive-url=https://web.archive.org/web/20191027051017/https://www.businessinsider.com/iceberg-bigger-manhattan-broke-antarctica-2018-11|archive-date=October 27, 2019|url-status=live}}</ref>
[[File:Research on Iceberg B-15A by Josh Landis, National Science Foundation (Image 4) (NSF).jpg|thumb|upright=1.2|Northern edge of [[Iceberg B-15]]A in the Ross Sea, Antarctica, 29 January 2001]]


{| class="wikitable"
Icebergs may reach a height of more than {{convert|100|m|ft|sigfig=1}} above the sea surface, and have mass ranging from about 100,000 tonnes up to more than 10 million tonnes. Icebergs or pieces of floating ice smaller than 5 meters above the sea surface are classified as "bergy bits"; smaller than 1 meter—"growlers".<ref>{{Cite web|url=https://www.universalcompendium.com/tables/science/iceb.htm|title = Iceberg Classification Systems}}</ref> The largest known iceberg in the [[Atlantic Ocean#Northern Atlantic|North Atlantic]] was {{convert|168|m|ft}} above sea level, reported by the USCG icebreaker [[USCGC Eastwind (WAGB-279)|''Eastwind'']] in 1958, making it the height of a 55-story building. These icebergs originate from the glaciers of western [[Greenland]] and may have interior temperatures of {{convert|-15|to|-20|C|F}}.<ref name="cgfoi">{{cite web|url=http://www.canadiangeographic.ca/magazine/MA06/indepth/justthefacts.asp|work=Canadian Geographic|title=Facts on Icebergs|date=2006|archive-url=https://web.archive.org/web/20060331032737/https://www.canadiangeographic.ca/magazine/MA06/indepth/justthefacts.asp|archive-date=2006-03-31|url-status=dead}}</ref>
|+ Iceberg size classifications according to the International Ice Patrol<ref name=":0" />
! Size class
! Height (m)
! Length (m)
|-
| Growler
| <1
| <5
|-
| Bergy bit
| 1–5
| 5–15
|-
| Small
| 5–15
| 15–60
|-
| Medium
| 15–45
| 60–122
|-
| Large
| 45–75
| 122–213
|-
| Very large
| >75
| >213
|}


The largest icebergs recorded have been [[Ice calving|calved]], or broken off, from the [[Ross Ice Shelf]] of [[Antarctica]]. Icebergs may reach a height of more than {{convert|100|m|ft|sigfig=1}} above the sea surface and have mass ranging from about 100,000 tonnes up to more than 10&nbsp;million tonnes. Icebergs or pieces of floating ice smaller than 5&nbsp;meters above the sea surface are classified as "bergy bits"; smaller than 1&nbsp;meter—"growlers".<ref>{{Cite web |url=https://www.universalcompendium.com/tables/science/iceb.htm |title=Iceberg Classification Systems}}</ref> The largest known iceberg in the [[Atlantic Ocean#Northern Atlantic|North Atlantic]] was {{convert|168|m|ft}} above sea level, reported by the USCG icebreaker [[USCGC Eastwind (WAGB-279)|''Eastwind'']] in 1958, making it the height of a 55-story building. These icebergs originate from the glaciers of western Greenland and may have interior temperatures of {{convert|-15|to|-20|C|F}}.<ref name="cgfoi">{{cite web |url=http://www.canadiangeographic.ca/magazine/MA06/indepth/justthefacts.asp |work=Canadian Geographic |title=Facts on Icebergs |date=2006 |archive-url=https://web.archive.org/web/20060331032737/https://www.canadiangeographic.ca/magazine/MA06/indepth/justthefacts.asp |archive-date=2006-03-31 |url-status=dead}}</ref>
[[File:Grotto in an iceberg.jpg|thumbnail|[[Grotto]] in an iceberg, photographed during the [[Terra Nova Expedition|British Antarctic Expedition]] of 1911–1913, 5 Jan 1911]]
Winds and currents tend to move icebergs close to coastlines, where they can become frozen into [[Drift ice|pack ice]] (one form of [[sea ice]]), or drift into shallow waters, where they can come into contact with the seabed, a phenomenon called [[seabed gouging by ice|seabed gouging]].


[[File:Grotto in an iceberg.jpg|thumb|upright|[[Grotto]] in an iceberg, photographed during the [[Terra Nova Expedition|British Antarctic Expedition]] of 1911–1913, 5&nbsp;Jan 1911]]
The largest icebergs recorded have been [[Ice calving|calved]], or broken off, from the [[Ross Ice Shelf]] of [[Antarctica]]. [[Iceberg B-15]], photographed by satellite in 2000, measured {{convert|295|by|37|km|mi}}, with a surface area of {{convert|11000|km2|mi2}}. The largest iceberg on record was an Antarctic tabular iceberg of over {{convert|31000|km2|mi2}} [{{convert|335|by|97|km|mi}}] sighted {{convert|150|mi|km|order=flip}} west of [[Scott Island]], in the South Pacific Ocean, by the [[USS Glacier (AGB-4)|USS ''Glacier'']] on November 12, 1956. This iceberg was larger than [[Belgium]].<ref>{{cite news|url=https://www.usatoday.com/weather/resources/coldscience/2005-01-20-1956-antarctic-iceberg_x.htm |title=Antarctica shed a 208-mile-long berg in 1956|newspaper=Polar Times|volume=43|page=18|date=2005-01-20}}</ref>


=== Drift ===
A small iceberg less than {{convert|2|m|ft|abbr=off|sp=us}} across that floats with less than {{convert|1|m|ft|abbr=off|sp=us}} showing above water is called a ''growler'',<ref>{{Cite web|url=https://nsidc.org/cryosphere/glossary/term/growler|title = Growler &#124; National Snow and Ice Data Center}}</ref> and is smaller than a ''bergy bit'', which is usually less than {{convert|5|m|ft|round=5|abbr=off|sp=us}} in size. Both are generally spawned from disintegrating icebergs.<ref>{{Cite web|url=https://nsidc.org/cryosphere/glossary/term/bergy-bit|title = Bergy bit &#124; National Snow and Ice Data Center}}</ref>
A given iceberg's trajectory through the ocean can be modelled by integrating the equation


: <math>m \frac{d\vec{v}}{dt} = -mf\vec{k} \times \vec{v} + \vec{F}_\text{a} + \vec{F}_\text{w} + \vec{F}_\text{r} + \vec{F}_\text{s} + \vec{F}_\text{p},</math>
As a piece of iceberg ice melts, it produces a fizzing sound called the "Bergie [[Carbonated water|Seltzer]]". This sound results when the water-ice interface reaches compressed air bubbles trapped in the ice. As this happens, each bubble bursts, making a "popping" sound. The bubbles contain air trapped in snow layers very early in the history of the ice, that eventually got buried to a given depth (up to several kilometers) and pressurized as it transformed into [[firn]] then to glacial ice.<ref name="cgfoi"/>


where ''m'' is the iceberg mass, ''v'' the drift velocity, and the variables ''f'', ''k'', and ''F'' correspond to the [[Coriolis force]], the vertical unit vector, and a given force. The subscripts a, w, r, s, and p correspond to the air drag, water drag, wave radiation force, sea ice drag, and the horizontal pressure gradient force.<ref>{{Cite journal |last1=Carlson |first1=Daniel F. |last2=Boone |first2=Wieter |last3=Meire |first3=Lorenz |last4=Abermann |first4=Jakob |last5=Rysgaard |first5=Søren |date=2017-08-28 |title=Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed by the Expendable Ice Tracker |journal=Frontiers in Marine Science |volume=4 |pages=276 |doi=10.3389/fmars.2017.00276 |issn=2296-7745 |doi-access=free}}</ref><ref name=":2">{{Cite journal |last1=Bigg |first1=Grant R. |last2=Wadley |first2=Martin R. |last3=Stevens |first3=David P. |last4=Johnson |first4=John A. |date=October 1997 |title=Modelling the dynamics and thermodynamics of icebergs |url=https://linkinghub.elsevier.com/retrieve/pii/S0165232X97000128 |journal=Cold Regions Science and Technology |language=en |volume=26 |issue=2 |pages=113–135 |doi=10.1016/S0165-232X(97)00012-8|bibcode=1997CRST...26..113B }}</ref>
An iceberg will flip in the water as it melts and breaks apart because gravity continually pulls the heavier side downward. Most flipping occurs when the iceberg is young and establishing balance. Flipping can occur anytime and without warning. Large icebergs that break off from a glacier front and flip onto the glacier face can push the entire glacier backwards for a few minutes, producing earthquakes that give off as much energy as an atomic bomb.<ref>{{cite web |url=https://www.sciencenewsforstudents.org/article/flipping-icebergs |title=Flipping Icebergs |work=ScienceNews for Students |author=Stephen Ornes |date=April 3, 2012 |access-date=June 9, 2019}}</ref><ref>{{cite web |url=https://www.npr.org/sections/thetwo-way/2015/06/25/417457888/study-reveals-what-happens-during-a-glacial-earthquake |title=Study Reveals What Happens During A 'Glacial Earthquake' |work=npr.org |author=Nell Greenfieldboyce |date=June 25, 2015 |accessdate=March 9, 2021}}</ref>

Icebergs deteriorate through melting and fracturing, which changes the mass ''m'', as well as the surface area, volume, and stability of the iceberg.<ref name=":2" /><ref>{{Cite journal |last1=Crawford |first1=Anna |last2=Mueller |first2=Derek |last3=Joyal |first3=Gabriel |date=2018-04-08 |title=Surveying Drifting Icebergs and Ice Islands: Deterioration Detection and Mass Estimation with Aerial Photogrammetry and Laser Scanning |journal=Remote Sensing |language=en |volume=10 |issue=4 |pages=575 |doi=10.3390/rs10040575 |bibcode=2018RemS...10..575C |issn=2072-4292 |doi-access=free|hdl=10023/16996 |hdl-access=free }}</ref> Iceberg deterioration and drift, therefore, are interconnected ie. iceberg thermodynamics, and fracturing must be considered when modelling iceberg drift.<ref name=":2" />

Winds and currents may move icebergs close to coastlines, where they can become frozen into [[Drift ice|pack ice]] (one form of [[sea ice]]), or drift into shallow waters, where they can come into contact with the seabed, a phenomenon called [[seabed gouging by ice|seabed gouging]].

=== Mass loss ===
Icebergs lose mass due to melting, and [[Ice calving|calving]]. Melting can be due to solar radiation, or heat and salt transport from the ocean. Iceberg calving is generally enhanced by waves impacting the iceberg.

Melting tends to be driven by the ocean, rather than solar radiation. Ocean driven melting is often modelled as

: <math>M_{b} = K \Delta u^{0.8} \frac{T_0-T}{L^{0.2}},</math>

where <math>M_\text{b}</math> is the melt rate in m/day, <math>\Delta u</math> is the relative velocity between the iceberg and the ocean, <math>T_0-T</math> is the temperature difference between the ocean and the iceberg, and <math>L</math> is the length of the iceberg. <math>K</math> is a constant based on properties of the iceberg and the ocean and is approximately <math>0.75^\circ \text{C}^{-1} \text{m}^{0.4} \text{day}^{-1} \text{s}^{0.8}</math> in the polar ocean.<ref name="Cenedese">{{cite journal |last1=Cenedese |first1=Claudia |last2=Straneo |first2=Fiamma |title=Icebergs Melting |journal=Annual Review of Fluid Mechanics |date=19 January 2023 |volume=55 |issue=1 |pages=377–402 |doi=10.1146/annurev-fluid-032522-100734|doi-access=free |bibcode=2023AnRFM..55..377C }}</ref>

The influence of the shape of an iceberg<ref>{{cite journal |last1=Hester |first1=Eric W. |last2=McConnochie |first2=Craig D. |last3=Cenedese |first3=Claudia |last4=Couston |first4=Louis-Alexandre |last5=Vasil |first5=Geoffrey |title=Aspect ratio affects iceberg melting |journal=Physical Review Fluids |date=12 February 2021 |volume=6 |issue=2 |page=023802 |doi=10.1103/PhysRevFluids.6.023802|arxiv=2009.10281 |bibcode=2021PhRvF...6b3802H }}</ref> and of the Coriolis force<ref>{{cite journal |last1=Meroni |first1=Agostino N. |last2=McConnochie |first2=Craig D. |last3=Cenedese |first3=Claudia |last4=Sutherland |first4=Bruce |last5=Snow |first5=Kate |title=Nonlinear influence of the Earth's rotation on iceberg melting |journal=Journal of Fluid Mechanics |date=10 January 2019 |volume=858 |pages=832–851 |doi=10.1017/jfm.2018.798|bibcode=2019JFM...858..832M |s2cid=126234419 }}</ref> on iceberg melting rates has been demonstrated in laboratory experiments.

Wave erosion is more poorly constrained but can be estimated by

: <math> M_\text{e} = cS_s(T_\text{s}+2)[1+\text{cos}(I_\text{c}^3\pi)],</math>

where <math>M_\text{e}</math> is the wave erosion rate in m/day, <math>c = \frac{1}{12} \text{m day}^{-1}</math>, <math>S_\text{S}</math> describes the sea state, <math>T_\text{S}</math> is the sea surface temperature, and <math>I_\text{c}</math> is the [[sea ice]] concentration.<ref name="Cenedese" />

=== Bubbles ===
Air trapped in snow forms bubbles as the snow is compressed to form firn and then glacial ice.<ref name=":3">{{Cite journal |last1=Scholander |first1=P. F. |last2=Nutt |first2=D. C. |date=1960 |title=Bubble Pressure in Greenland Icebergs |journal=Journal of Glaciology |language=en |volume=3 |issue=28 |pages=671–678 |doi=10.3189/S0022143000017950 |issn=0022-1430 |doi-access=free}}</ref> Icebergs can contain up to 10% air bubbles by volume.<ref name=":3" />{{not in source|reason=The article only reports gas pressures in the bubbles up to 20 atm, without volume estimations, but saying that "At high pressures the bubbles are compressed so the difference in density between glacier ice and bubble-free ice becomes only a small fraction of 1 per cent". Since air even at 20 atm is ≳30 times lighter than pure ice, this by no means can be interpreted as "10% air bubbles by volume".|date=August 2022}} These bubbles are released during melting, producing a fizzing sound that some may call "Bergie [[Carbonated water|Seltzer]]". This sound results when the water-ice interface reaches compressed air bubbles trapped in the ice. As each bubble bursts it makes a "popping" sound<ref name="cgfoi" /> and the acoustic properties of these bubbles can be used to study iceberg melt.<ref>{{Cite journal |last1=Glowacki |first1=Oskar |last2=Deane |first2=Grant B. |last3=Moskalik |first3=Mateusz |date=2018-05-16 |title=The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs |journal=Geophysical Research Letters |language=en |volume=45 |issue=9 |pages=4105–4113 |doi=10.1029/2018GL077632 |bibcode=2018GeoRL..45.4105G |s2cid=135352794 |issn=0094-8276|doi-access=free }}</ref>

=== Stability ===
An iceberg may flip, or capsize, as it melts and breaks apart, changing the [[Center of mass|center of gravity]]. Capsizing can occur shortly after calving when the iceberg is young and establishing balance.<ref>{{Cite journal|last1=MacAyeal|first1=Douglas R.|last2=Abbot|first2=Dorian S.|last3=Sergienko|first3=Olga V.|date=2011|title=Iceberg-capsize tsunamigenesis|journal=Annals of Glaciology|language=en|volume=52|issue=58|pages=51–56|doi=10.3189/172756411797252103|bibcode=2011AnGla..52...51M|issn=0260-3055|doi-access=free}}</ref> Icebergs are unpredictable and can capsize anytime and without warning. Large icebergs that break off from a glacier front and flip onto the glacier face can push the entire glacier backwards momentarily, producing 'glacial earthquakes' that generate as much energy as an atomic bomb.<ref>{{cite web |url=https://www.sciencenewsforstudents.org/article/flipping-icebergs |title=Flipping Icebergs |work=ScienceNews for Students |author=Stephen Ornes |date=April 3, 2012 |access-date=June 9, 2019}}</ref><ref>{{cite web |url=https://www.npr.org/sections/thetwo-way/2015/06/25/417457888/study-reveals-what-happens-during-a-glacial-earthquake |title=Study Reveals What Happens During A 'Glacial Earthquake' |work=NPR |author=Nell Greenfieldboyce |date=June 25, 2015 |accessdate=March 9, 2021}}</ref>


===Color===
===Color===
Icebergs are generally white because they are covered in snow, but can be green, blue, yellow, black, striped, or even [[rainbow]]-colored.<ref>{{cite web |url=https://www.scientificamerican.com/article/icebergs-can-be-green-black-striped-even-rainbow-slide-show/ |title=Icebergs Can Be Green, Black, Striped, Even Rainbow |work=Scientific American |author=Katherine Wright |date=January 5, 2018 |access-date=June 9, 2019}}</ref> Seawater, algae and lack of air bubbles in the ice can create diverse colors. Sediment can create the dirty black coloration present in some icebergs.<ref name="Image of the Week - Super-cool colours of icebergs">{{cite web |last1=Roach |first1=Lettie |title=Image of the Week - Super-cool colours of icebergs |url=https://blogs.egu.eu/divisions/cr/2018/03/30/image-of-the-week-super-cool-colours-of-icebergs/ |website=EGU Blogs |publisher=European Geosciences Union |access-date=6 November 2020}}</ref>
Icebergs are generally white because they are covered in snow, but can be green, blue, yellow, black, striped, or even [[rainbow]]-colored.<ref>{{cite web |url=https://www.scientificamerican.com/article/icebergs-can-be-green-black-striped-even-rainbow-slide-show/ |title=Icebergs Can Be Green, Black, Striped, Even Rainbow |work=Scientific American |author=Katherine Wright |date=January 5, 2018 |access-date=June 9, 2019}}</ref> Seawater, algae and lack of air bubbles in the ice can create diverse colors. Sediment can create the dirty black coloration present in some icebergs.<ref name="Image of the Week - Super-cool colours of icebergs">{{cite web |last1=Roach |first1=Lettie |title=Image of the Week - Super-cool colours of icebergs |url=https://blogs.egu.eu/divisions/cr/2018/03/30/image-of-the-week-super-cool-colours-of-icebergs/ |website=EGU Blogs |date=11 January 2019 |publisher=European Geosciences Union |access-date=6 November 2020}}</ref>


===Shape===
===Shape===
[[File:Iceberg Shape.svg|thumb|Different shapes of icebergs]]
[[File:Antarctic Sound-2016-Iceberg 02.jpg|thumb|Tabular iceberg, near [[Brown Bluff]] in the [[Antarctic Sound]] off [[Tabarin Peninsula]]]]
[[File:Antarctic Sound-2016-Iceberg 02.jpg|thumb|Tabular iceberg, near [[Brown Bluff]] in the [[Antarctic Sound]] off [[Tabarin Peninsula]]]]
[[File:Types of Icebergs.svg|left|thumb|Different shapes of icebergs. 1: Tabular; 2: Wedge; 3: Dome; 4: Drydock; 5: Pinnacled; 6: Blocky.]]
[[File:South Shetland-2016-Southern Ocean (off Elephant Island)–Iceberg 01.jpg|thumb|Non-tabular iceberg off [[Elephant Island]] in the [[Southern Ocean]]]]


In addition to size classification, icebergs can be classified on the basis of their shapes. The two basic types of iceberg forms are ''tabular'' and ''non-tabular''. Tabular icebergs have steep sides and a flat top, much like a [[plateau]], with a length-to-height ratio of more than 5:1.<ref name="iipssc">{{cite web|url=http://www.uscg.mil/lantarea/iip/docs/AOS_2011.pdf|title=Sizes and Shapes of Icebergs|publisher=International Ice Patrol|access-date=2006-12-20}}</ref>
In addition to size classification (Table 1), icebergs can be classified on the basis of their shapes. The two basic types of iceberg forms are ''tabular'' and ''non-tabular''. Tabular icebergs have steep sides and a flat top, much like a [[plateau]], with a length-to-height ratio of more than 5:1.<ref name="iipssc">{{cite web|url=http://www.uscg.mil/lantarea/iip/docs/AOS_2011.pdf|title=Sizes and Shapes of Icebergs|publisher=International Ice Patrol|access-date=2006-12-20}}</ref>


This type of iceberg, also known as an ''ice island'',<ref>Weeks, W.F. (2010), On Sea Ice, University of Alaska Press, p. 399</ref> can be quite large, as in the case of [[Pobeda Ice Island]]. [[Antarctic]] icebergs formed by breaking off from an [[ice shelf]], such as the [[Ross Ice Shelf]] or [[Filchner-Ronne Ice Shelf]], are typically tabular. The largest icebergs in the world are formed this way.
This type of iceberg, also known as an ''ice island'',<ref>Weeks, W.F. (2010), On Sea Ice, University of Alaska Press, p. 399</ref> can be quite large, as in the case of [[Pobeda Ice Island]]. [[Antarctic]] icebergs formed by breaking off from an [[ice shelf]], such as the [[Ross Ice Shelf]] or [[Filchner–Ronne Ice Shelf]], are typically tabular. The largest icebergs in the world are formed this way.


Non-tabular icebergs have different shapes and include:<ref>{{cite web|url=http://www.canadiangeographic.ca/magazine/ma06/indepth/nathistory.asp|title=Iceberg Physiology|publisher=Canadian Geographic|date=2006|archive-url=https://web.archive.org/web/20060331032649/https://www.canadiangeographic.ca/magazine/ma06/indepth/nathistory.asp|archive-date=2006-03-31|url-status=dead|author=Holly Gordon}}</ref>
Non-tabular icebergs have different shapes and include:<ref>{{cite web|url=http://www.canadiangeographic.ca/magazine/ma06/indepth/nathistory.asp|title=Iceberg Physiology|publisher=Canadian Geographic|date=2006|archive-url=https://web.archive.org/web/20060331032649/https://www.canadiangeographic.ca/magazine/ma06/indepth/nathistory.asp|archive-date=2006-03-31|url-status=dead|author=Holly Gordon}}</ref>
Line 49: Line 100:
* ''Pinnacle'': An iceberg with one or more [[spire]]s.
* ''Pinnacle'': An iceberg with one or more [[spire]]s.
* ''Wedge'': An iceberg with a steep edge on one side and a slope on the opposite side.
* ''Wedge'': An iceberg with a steep edge on one side and a slope on the opposite side.
* ''Dry-Dock'': An iceberg that has [[Erosion|eroded]] to form a slot or [[Channel (geography)|channel]].
* ''Dry-dock'': An iceberg that has [[Erosion|eroded]] to form a slot or [[Channel (geography)|channel]].
* ''Blocky'': An iceberg with steep, vertical sides and a flat top. It differs from tabular icebergs in that its [[aspect ratio]], the ratio between its width and height, is small, more like that of a block than a flat sheet.
* ''Blocky'': An iceberg with steep, vertical sides and a flat top. It differs from tabular icebergs in that its [[aspect ratio]], the ratio between its width and height, is small, more like that of a block than a flat sheet.


==Monitoring==
==Monitoring and control==


===History===
===History===
[[Image:Titanic iceberg.jpg|thumb|One of the icebergs suspected of sinking the [[RMS Titanic|RMS ''Titanic'']]; a smudge of red paint much like the ''Titanic''{{'s}} red hull stripe was seen near its base at the waterline.]]
[[Image:Titanic iceberg.jpg|thumb|The [[Iceberg that struck the Titanic|iceberg suspected of sinking]] the [[RMS Titanic|RMS ''Titanic'']]; a smudge of red paint much like the ''Titanic''{{'s}} red hull stripe runs along its base at the waterline.]]


Before the early 1910s, although there had been many [[List of ships sunk by icebergs|fatal sinkings]] of ships by icebergs, there was no system in place to track icebergs to guard ships against collisions.{{cn|date=June 2020}} In 1907, ''[[SS Kronprinz Wilhelm]]'', a German liner, had rammed an iceberg and suffered a crushed bow, but was still able to complete her voyage. The advent of steel ship construction led designers to declare their ships "unsinkable".
Prior to 1914 there was no system in place to track icebergs to guard ships against collisions{{citation needed|date=June 2020}} despite [[List of ships sunk by icebergs|fatal sinkings]] of ships by icebergs. In 1907, ''[[SS Kronprinz Wilhelm]]'', a German liner, rammed an iceberg and suffered a crushed bow, but she was still able to complete her voyage. The advent of [[Compartment (ship)|watertight compartmentalization]] in ship construction led designers to declare their ships "unsinkable".


The April 1912 [[sinking of the Titanic|sinking]] of the ''[[Titanic]]'', which killed 1,496 of its 2,223 passengers and crew, discredited this claim. For the remainder of the ice season of that year, the [[United States Navy]] patrolled the waters and monitored ice flow. In November 1913, the [[International Conference on the Safety of Life at Sea]] met in [[London]] to devise a more permanent system of observing icebergs. Within three months the participating maritime nations had formed the [[International Ice Patrol]] (IIP). The goal of the IIP was to collect data on [[meteorology]] and [[oceanography]] to measure currents, ice-flow, ocean temperature, and salinity levels. They monitored iceberg dangers near the [[Grand Banks]] of Newfoundland and provided the "limits of all known ice" in that vicinity to the maritime community. The IIP published their first records in 1921, which allowed for a year-by-year comparison of iceberg movement.
During the [[sinking of the Titanic|1912 sinking of the ''Titanic'']], the [[iceberg that sank the Titanic]] killed more than 1,500 of its estimated 2,224 passengers and crew, seriously damaging the 'unsinkable' claim. For the remainder of the ice season of that year, the [[United States Navy]] patrolled the waters and monitored ice movements. In November 1913, the [[International Conference on the Safety of Life at Sea]] met in [[London]] to devise a more permanent system of observing icebergs. Within three months the participating maritime nations had formed the [[International Ice Patrol]] (IIP). The goal of the IIP was to collect data on [[meteorology]] and [[oceanography]] to measure currents, ice-flow, [[ocean temperature]], and salinity levels. They monitored iceberg dangers near the [[Grand Banks]] of Newfoundland and provided the "limits of all known ice" in that vicinity to the maritime community. The IIP published their first records in 1921, which allowed for a year-by-year comparison of iceberg movement.


===Technological development===
===Technological development===
[[File:Burton Island, Atka, and Glacier push iceberg in McMurdo Sound (827218l).jpg|thumb|An iceberg being pushed by three [[U.S. Navy]] ships in [[McMurdo Sound]], Antarctica]]
[[File:Burton Island, Atka, and Glacier push iceberg in McMurdo Sound (827218l).jpg|thumb|An iceberg being pushed by three [[U.S. Navy]] ships in [[McMurdo Sound]], Antarctica]]
Aerial surveillance of the seas in the early 1930s allowed for the development of charter systems that could accurately detail the ocean currents and iceberg locations. In 1945, experiments tested the effectiveness of [[radar]] in detecting icebergs. A decade later, oceanographic monitoring outposts were established for the purpose of collecting data; these outposts continue to serve in environmental study. A computer was first installed on a ship for the purpose of oceanographic monitoring in 1964, which allowed for a faster evaluation of data. By the 1970s, [[icebreaking]] ships were equipped with automatic transmissions of [[satellite]] photographs of ice in Antarctica. Systems for optical satellites had been developed but were still limited by weather conditions. In the 1980s, drifting [[buoy]]s were used in Antarctic waters for oceanographic and [[climate research]]. They are equipped with sensors that measure ocean temperature and currents.
Aerial surveillance of the seas in the early 1930s allowed for the development of charter systems that could accurately detail the ocean currents and iceberg locations. In 1945, experiments tested the effectiveness of [[radar]] in detecting icebergs. A decade later, oceanographic monitoring outposts were established for the purpose of collecting data; these outposts continue to serve in environmental study. A computer was first installed on a ship for the purpose of oceanographic monitoring in 1964, which allowed for a faster evaluation of data. By the 1970s, [[icebreaking|ice-breaking]] ships were equipped with automatic transmissions of [[satellite]] photographs of ice in Antarctica. Systems for optical satellites had been developed but were still limited by weather conditions. In the 1980s, drifting [[buoy]]s were used in Antarctic waters for oceanographic and [[climate research]]. They are equipped with sensors that measure ocean temperature and currents.


[[File:Singing iceberg.oga|thumb|Acoustic monitoring of an iceberg.]]
[[File:Singing iceberg.oga|thumb|Acoustic monitoring of an iceberg]]
[[Side looking airborne radar]] (SLAR) made it possible to acquire images regardless of weather conditions. On November 4, 1995, [[Canada]] launched [[RADARSAT-1]]. Developed by the [[Canadian Space Agency]], it provides images of Earth for scientific and commercial purposes. This system was the first to use [[synthetic aperture radar]] (SAR), which sends [[microwave]] energy to the ocean surface and records the reflections to track icebergs. The [[European Space Agency]] launched [[ENVISAT]] (an observation satellite that orbits the Earth's poles)<ref>{{cite web|url=https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat|title=Envisat|publisher=European Space Agency|access-date=2011-03-09}}</ref> on March 1, 2002. ENVISAT employs advanced synthetic aperture radar (ASAR) technology, which can detect changes in surface height accurately. The Canadian Space Agency launched [[RADARSAT-2]] in December 2007, which uses SAR and multi-polarization modes and follows the same [[orbit]] path as RADARSAT-1.<ref>{{cite web|publisher=Canadian Geographic|author=Ainslie MacLellan|url=http://www.canadiangeographic.ca/magazine/MA06/indepth/technology_side2.asp|title=Tracking Monsters|date=2006|archive-url=https://web.archive.org/web/20061031234546/http://www.canadiangeographic.ca/magazine/ma06/indepth/technology.asp|archive-date=2006-10-31|url-status=dead}}</ref>
[[Side looking airborne radar]] (SLAR) made it possible to acquire images regardless of weather conditions. On November 4, 1995, [[Canada]] launched [[RADARSAT-1]]. Developed by the [[Canadian Space Agency]], it provides images of Earth for scientific and commercial purposes. This system was the first to use [[synthetic aperture radar]] (SAR), which sends [[microwave]] energy to the ocean surface and records the reflections to track icebergs. The [[European Space Agency]] launched [[ENVISAT]] (an observation satellite that orbits the Earth's poles)<ref>{{cite web|url=https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat|title=Envisat|publisher=European Space Agency|access-date=2011-03-09}}</ref> on March 1, 2002. ENVISAT employs advanced synthetic aperture radar (ASAR) technology, which can detect changes in surface height accurately. The Canadian Space Agency launched [[RADARSAT-2]] in December 2007, which uses SAR and multi-polarization modes and follows the same [[orbit]] path as RADARSAT-1.<ref>{{cite web|publisher=Canadian Geographic|author=Ainslie MacLellan|url=http://www.canadiangeographic.ca/magazine/MA06/indepth/technology_side2.asp|title=Tracking Monsters|date=2006|archive-url=https://web.archive.org/web/20061031234546/http://www.canadiangeographic.ca/magazine/ma06/indepth/technology.asp|archive-date=2006-10-31|url-status=dead}}</ref>


===Modern monitoring===
===Modern monitoring===

Icebergs are monitored worldwide by the U.S. [[National Ice Center]] (NIC), established in 1995, which produces analyses and forecasts of [[Arctic]], [[Antarctic Circle|Antarctic]], [[Great Lakes]] and [[Chesapeake Bay]] ice conditions. More than 95% of the data used in its sea ice analyses are derived from the remote sensors on polar-orbiting satellites that survey these remote regions of the Earth.
Iceberg concentrations and size distributions are monitored worldwide by the U.S. [[National Ice Center]] (NIC), established in 1995, which produces analyses and forecasts of [[Arctic]], [[Antarctic Circle|Antarctic]], [[Great Lakes]] and [[Chesapeake Bay]] ice conditions. More than 95% of the data used in its sea ice analyses are derived from the remote sensors on polar-orbiting satellites that survey these remote regions of the Earth.
[[Image:Iceberg A22A, South Atlantic Ocean.jpg|thumb|Iceberg A22A in the South [[Atlantic Ocean]]]]
[[Image:Iceberg A22A, South Atlantic Ocean.jpg|thumb|Iceberg A22A in the South [[Atlantic Ocean]]]]
The NIC is the only organization that names and tracks all Antarctic Icebergs. It assigns each iceberg larger than {{convert|10|nmi|km}} along at least one axis a name composed of a letter indicating its point of origin and a running number. The letters used are as follows:<ref>{{cite web|url=http://www.xs4all.nl/~carlkop/ronne.html|publisher=NOAA|date=15 October 1998|title=New Iceberg Breaks off Ronne Ice Shelf in Antarctica|access-date=2011-03-09}}</ref>
The NIC is the only organization that names and tracks all Antarctic Icebergs. It assigns each iceberg larger than {{convert|10|nmi|km}} along at least one axis a name composed of a letter indicating its point of origin and a running number. The letters used are as follows:<ref>{{cite web|url=http://www.xs4all.nl/~carlkop/ronne.html|publisher=NOAA|date=15 October 1998|title=New Iceberg Breaks off Ronne Ice Shelf in Antarctica|access-date=2011-03-09}}</ref>
Line 76: Line 128:
:'''C''' &ndash; longitude 90°&nbsp;E to 180° (Western Ross Sea, [[Wilkes Land]])
:'''C''' &ndash; longitude 90°&nbsp;E to 180° (Western Ross Sea, [[Wilkes Land]])
:'''D''' &ndash; longitude 0° to 90°&nbsp;E ([[Amery Ice Shelf]], Eastern Weddell Sea)
:'''D''' &ndash; longitude 0° to 90°&nbsp;E ([[Amery Ice Shelf]], Eastern Weddell Sea)
The [[Danish Meteorological Institute]] monitors [http://polarportal.dk/en/sea-ice-and-icebergs/icebergs/ iceberg populations around Greenland] using data collected by the [[Synthetic-aperture radar|synthetic aperture radar]] (SAR) on the [[Sentinel-1A|Sentinel-1 satellites]].


=== Iceberg management ===
[[Iceberg B15]] calved from the [[Ross Ice Shelf]] in 2000 and initially had an area of {{convert|11000|km2|mi2}}. It broke apart in November 2002. The largest remaining piece of it, [[Iceberg B-15A]], with an area of {{convert|3000|km2|mi2}}, was still the largest iceberg on Earth until it ran aground and split into several pieces October 27, 2005, an event that was observed by seismographs both on the iceberg and across Antarctica.<ref>{{Cite journal|doi=10.1029/2009JB006700|title=Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica|journal=Journal of Geophysical Research|volume=115|year=2010|last1=Martin|first1=Seelye|last2=Drucker|first2=Robert|last3=Aster|first3=Richard|last4=Davey|first4=Fred|last5=Okal|first5=Emile|last6=Scambos|first6=Ted|last7=MacAyeal|first7=Douglas|issue=B6|pages=B06311|bibcode=2010JGRB..115.6311M|s2cid=16420188|doi-access=free}}</ref> It has been hypothesized that this breakup may also have been abetted by ocean swell generated by an [[Alaska]]n storm 6 days earlier and {{convert|13500|km|mi}} away.<ref>{{cite web|url=http://www.physorg.com/news79026480.html|title=Alaskan storm cracks giant iceberg to pieces in faraway Antarctica}}</ref><ref>{{Cite journal|doi=10.1029/2006GL027235|title=Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere|journal=Geophysical Research Letters|volume=33|issue=17|year=2006|last1=MacAyeal|first1=Douglas R|last2=Okal|first2=Emile A|last3=Aster|first3=Richard C|last4=Bassis|first4=Jeremy N|last5=Brunt|first5=Kelly M|last6=Cathles|first6=L. Mac|last7=Drucker|first7=Robert|last8=Fricker|first8=Helen A|last9=Kim|first9=Young-Jin|last10=Martin|first10=Seelye|last11=Okal|first11=Marianne H|last12=Sergienko|first12=Olga V|last13=Sponsler|first13=Mark P|last14=Thom|first14=Jonathan E|pages=L17502|bibcode=2006GeoRL..3317502M|doi-access=free}}</ref>
In Labrador and Newfoundland, iceberg management plans have been developed to protect offshore installations from impacts with icebergs.<ref>[https://atlanticcanadaoffshore.ca/ice-management-newfoundland-labradors-offshore-industry/ Ice-management, Newfoundland Labrador offshore-industry]</ref>

=== Commercial use ===
The idea of towing large icebergs to other regions as a source of water has been raised since at least the 1950s, without having been put into practice.<ref name="abc"/> In 2017, a business from the [[United Arab Emirates|UAE]] announced plans to tow an iceberg from Antarctica to the Middle East; in 2019 salvage engineer [[Nick Sloane]] announced a plan to move one to South Africa<ref>{{cite news |last1=Maynard |first1=Matt |title=Iceberg towing: a bizarre 'solution' to the freshwater crisis |url=https://geographical.co.uk/science-environment/iceberg-towing-a-bizarre-solution-to-the-freshwater-crisis |access-date=15 January 2024 |work=Geographical |date=12 June 2022}}</ref> at an estimated cost of $200 million.<ref name="abc">{{Cite web|url=https://www.abc.net.au/news/2019-08-14/why-a-middle-eastern-business-cant-just-tow-antarctica-iceberg/11318638?nw=0|title = Why a Middle Eastern business thirsty for water can't just tow an iceberg from Antarctica|website = [[Australian Broadcasting Corporation]]|date = 14 August 2019}}</ref> In 2019, a German company, Polewater, announced plans to tow Antarctic icebergs to places like South Africa.<ref name="Jacobs" /><ref>{{cite web |url=http://www.polewater.com/?lang=en |title=Home Page |work=Polewater |author= |date= |accessdate=September 8, 2021}}</ref>

Companies have used iceberg water in products such as [[bottled water]], fizzy ice cubes and alcoholic drinks.<ref name="Jacobs">{{cite web |url=https://www.theatlantic.com/science/archive/2019/10/iceberg-water-and-race-exploit-arctic/601147/ |title=$166 Water Could Dictate International Iceberg Law |work=[[The Atlantic]] |author=Matthew H. Birkhold |date=October 31, 2019 |accessdate=September 8, 2021}}</ref> For example, Iceberg Beer by [[Quidi Vidi Brewing Company]] is made from icebergs found around [[St. John's, Newfoundland]].<ref>{{cite web |url=https://www.npr.org/sections/thesalt/2012/02/29/147581630/newfoundland-gives-whole-new-meaning-to-ice-cold-beer |title=Newfoundland Gives Whole New Meaning To Ice Cold Beer |work=[[Morning Edition]] |author=Emma Jacobs |date=February 29, 2012 |accessdate=September 8, 2021}}</ref> Although annual iceberg supply in [[Newfoundland and Labrador]] exceeds the total freshwater consumption of the United States, in 2016 the province introduced a tax on iceberg harvesting and imposed a limit on how much fresh water can be exported yearly.<ref name="Jacobs" />

== Oceanography and ecology ==
[[File:Scenic_view_of_Greenland_icebergs_in_Baffin_Bay_in_Disko_Bay_07.jpg|thumb|Icebergs in [[Disko Bay]]]]The freshwater injected into the ocean by melting icebergs can change the density of the seawater in the vicinity of the iceberg.<ref name=":4">{{Cite journal|last1=Yankovsky|first1=Alexander E.|last2=Yashayaev|first2=Igor|date=September 2014|title=Surface buoyant plumes from melting icebergs in the Labrador Sea|url=https://linkinghub.elsevier.com/retrieve/pii/S0967063714000879|journal=Deep Sea Research Part I: Oceanographic Research Papers|language=en|volume=91|pages=1–9|doi=10.1016/j.dsr.2014.05.014|bibcode=2014DSRI...91....1Y}}</ref><ref name=":5">{{Cite journal|last1=Stephenson|first1=Gordon R.|last2=Sprintall|first2=Janet|last3=Gille|first3=Sarah T.|last4=Vernet|first4=Maria|last5=Helly|first5=John J.|last6=Kaufmann|first6=Ronald S.|date=June 2011|title=Subsurface melting of a free-floating Antarctic iceberg|url=https://linkinghub.elsevier.com/retrieve/pii/S0967064510003656|journal=Deep Sea Research Part II: Topical Studies in Oceanography|language=en|volume=58|issue=11–12|pages=1336–1345|doi=10.1016/j.dsr2.2010.11.009|bibcode=2011DSRII..58.1336S}}</ref> Fresh melt water released at depth is lighter, and therefore more buoyant, than the surrounding seawater causing it to rise towards the surface.<ref name=":4" /><ref name=":5" /> Icebergs can also act as floating [[Breakwater (structure)|breakwaters]], impacting ocean waves.<ref>{{Cite journal|last1=Ardhuin|first1=Fabrice|last2=Tournadre|first2=Jean|last3=Queffeulou|first3=Pierre|last4=Girard-Ardhuin|first4=Fanny|last5=Collard|first5=Fabrice|date=January 2011|title=Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean|url=https://linkinghub.elsevier.com/retrieve/pii/S146350031100062X|journal=Ocean Modelling|language=en|volume=39|issue=3–4|pages=405–410|doi=10.1016/j.ocemod.2011.03.004|bibcode=2011OcMod..39..405A}}</ref>

Icebergs contain variable concentrations of nutrients and minerals that are released into the ocean during melting.<ref name=":6">{{Cite journal|last1=Duprat|first1=Luis P. A. M.|last2=Bigg|first2=Grant R.|last3=Wilton|first3=David J.|date=March 2016|title=Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs|url=http://www.nature.com/articles/ngeo2633|journal=Nature Geoscience|language=en|volume=9|issue=3|pages=219–221|doi=10.1038/ngeo2633|bibcode=2016NatGe...9..219D|issn=1752-0894}}</ref><ref name=":7">{{Cite journal|last1=Hopwood|first1=Mark J.|last2=Carroll|first2=Dustin|last3=Höfer|first3=Juan|last4=Achterberg|first4=Eric P.|last5=Meire|first5=Lorenz|last6=Le Moigne|first6=Frédéric A. C.|last7=Bach|first7=Lennart T.|last8=Eich|first8=Charlotte|last9=Sutherland|first9=David A.|last10=González|first10=Humberto E.|date=December 2019|title=Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export|journal=Nature Communications|language=en|volume=10|issue=1|pages=5261|doi=10.1038/s41467-019-13231-0|issn=2041-1723|pmc=6868171|pmid=31748607|bibcode=2019NatCo..10.5261H}}</ref> Iceberg-derived nutrients, particularly the iron contained in sediments, can fuel blooms of phytoplankton.<ref name=":6" /><ref>{{Cite journal|last1=Wu|first1=Shuang-Ye|last2=Hou|first2=Shugui|date=2017-03-17|title=Impact of icebergs on net primary productivity in the Southern Ocean|url=https://tc.copernicus.org/articles/11/707/2017/|journal=The Cryosphere|language=en|volume=11|issue=2|pages=707–722|doi=10.5194/tc-11-707-2017|bibcode=2017TCry...11..707W|issn=1994-0424|doi-access=free}}</ref> Samples collected from icebergs in Antarctica, Patagonia, Greenland, Svalbard, and Iceland, however, show that iron concentrations vary significantly,<ref name=":7" /> complicating efforts to generalize the impacts of icebergs on marine ecosystems.


==Recent large icebergs==
==Recent large icebergs==
[[File:Iceberg A-38.jpg|thumb|The [[Ice calving|calving]] of Iceberg A-38 off [[Filchner-Ronne Ice Shelf]]]][[Iceberg B15]] calved from the [[Ross Ice Shelf]] in 2000 and initially had an area of {{convert|11000|km2|mi2}}. It broke apart in November 2002. The largest remaining piece of it, [[Iceberg B-15A]], with an area of {{convert|3000|km2|mi2}}, was still the largest iceberg on Earth until it ran aground and split into several pieces October 27, 2005, an event that was observed by seismographs both on the iceberg and across Antarctica.<ref>{{Cite journal|last1=Martin|first1=Seelye|last2=Drucker|first2=Robert|last3=Aster|first3=Richard|last4=Davey|first4=Fred|last5=Okal|first5=Emile|last6=Scambos|first6=Ted|last7=MacAyeal|first7=Douglas|year=2010|title=Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica|journal=Journal of Geophysical Research|volume=115|issue=B6|pages=B06311|bibcode=2010JGRB..115.6311M|doi=10.1029/2009JB006700|doi-access=|s2cid=16420188}}</ref> It has been hypothesized that this breakup may also have been abetted by ocean swell generated by an [[Alaska]]n storm 6 days earlier and {{convert|13500|km|mi}} away.<ref>{{cite web|title=Alaskan storm cracks giant iceberg to pieces in faraway Antarctica|url=http://www.physorg.com/news79026480.html}}</ref><ref>{{Cite journal|last1=MacAyeal|first1=Douglas R|last2=Okal|first2=Emile A|last3=Aster|first3=Richard C|last4=Bassis|first4=Jeremy N|last5=Brunt|first5=Kelly M|last6=Cathles|first6=L. Mac|last7=Drucker|first7=Robert|last8=Fricker|first8=Helen A|last9=Kim|first9=Young-Jin|last10=Martin|first10=Seelye|last11=Okal|first11=Marianne H|year=2006|title=Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere|journal=Geophysical Research Letters|volume=33|issue=17|pages=L17502|bibcode=2006GeoRL..3317502M|doi=10.1029/2006GL027235|doi-access=free|last13=Sponsler|first13=Mark P|last14=Thom|first14=Jonathan E|first12=Olga V|last12=Sergienko}}</ref>
[[File:Iceberg A-38.jpg|thumb|The [[Ice calving|calving]] of Iceberg A-38 off [[Filchner-Ronne Ice Shelf]]]]
*1987, [[Iceberg B-9]], {{convert|5390|km2|sqmi|abbr=on}}
*1987, [[Iceberg B-9]], {{convert|5390|km2|sqmi|abbr=on}}
*1998, [[Iceberg A-38]], about {{convert|6900|km2|sqmi|abbr=on}}<ref>{{cite web|url=http://visibleearth.nasa.gov/view_rec.php?id=6831|work=Visible Earth|title=Iceberg A-38B off South Georgia|access-date=2011-03-09|url-status=dead|archive-url=https://web.archive.org/web/20081005164529/http://visibleearth.nasa.gov/view_rec.php?id=6831|archive-date=2008-10-05}}</ref>
*1998, [[Iceberg A-38]], about {{convert|6900|km2|sqmi|abbr=on}}<ref>{{cite web|url=http://visibleearth.nasa.gov/view_rec.php?id=6831|work=Visible Earth|title=Iceberg A-38B off South Georgia|access-date=2011-03-09|url-status=dead|archive-url=https://web.archive.org/web/20081005164529/http://visibleearth.nasa.gov/view_rec.php?id=6831|archive-date=2008-10-05}}</ref>
*1999, [[Iceberg B-17B]] {{convert|140|km2|sqmi|abbr=on}}, [[sea lane|shipping]] alert issued December 2009.<ref>{{cite news|url=http://www.nbcnews.com/id/34380916|title=Shipping alert issued over giant iceberg|newspaper=Associated Press|date=December 11, 2009}}</ref>
*1999, [[Iceberg B-17B]] {{convert|140|km2|sqmi|abbr=on}}, [[sea lane|shipping]] alert issued December 2009.<ref>{{cite news|url=https://www.nbcnews.com/id/wbna34380916|title=Shipping alert issued over giant iceberg|newspaper=Associated Press|date=December 11, 2009}}</ref>
*2000, [[Iceberg B-15]] {{convert|11000|km2|sqmi|abbr=on}}
*2000, [[Iceberg B-15]] {{convert|11000|km2|sqmi|abbr=on}}
*2002, [[Iceberg C-19]], {{convert|5500|km2|sqmi|abbr=on}}
*2002, [[Iceberg C-19]], {{convert|5500|km2|sqmi|abbr=on}}
Line 89: Line 153:
*2003 broke off, [[Iceberg B-15]]A, {{convert|3100|km2|sqmi|abbr=on}}
*2003 broke off, [[Iceberg B-15]]A, {{convert|3100|km2|sqmi|abbr=on}}
*2006, [[Iceberg D-16]], {{convert|120|sqmi|km2|abbr=on|order=flip}}
*2006, [[Iceberg D-16]], {{convert|120|sqmi|km2|abbr=on|order=flip}}
*2010, Ice sheet, {{convert|100|sqmi|km2|abbr=on|order=flip}}, broken off of [[Petermann Glacier]] in northern Greenland on August 5, 2010, considered to be the largest Arctic iceberg since 1962.<ref>{{cite news |url=https://www.bbc.co.uk/news/science-environment-10900235|title=Huge ice sheet breaks from Greenland glacier|publisher=BBC|access-date=2011-03-09|date=2010-08-07}}</ref> About a month later, this iceberg split into two pieces upon crashing into Joe Island in the [[Nares Strait]] next to Greenland.<ref>{{cite web|url=http://www.aolnews.com/2010/09/11/giant-ice-island-splits-near-greenland/|title=Massive Iceberg Crashes into Island, Splits in Two|url-status=dead|archive-url=https://web.archive.org/web/20110310053924/http://www.aolnews.com/2010/09/11/giant-ice-island-splits-near-greenland/|archive-date=2011-03-10}}</ref> In June 2011, large fragments of the Petermann Ice Islands were observed off the Labrador coast.<ref>{{cite news |url=http://www.cbc.ca/news/canada/newfoundland-labrador/story/2011/06/23/nl-ice-labrador-623.html|title=Massive ice island heading for southern Labrador | work=CBC News | date=2011-06-23}}</ref>
*2010, Ice sheet, {{convert|100|sqmi|km2|abbr=on|order=flip}}, broken off of [[Petermann Glacier]] in northern Greenland on August 5, 2010, considered to be the largest Arctic iceberg since 1962.<ref>{{cite news |url=https://www.bbc.co.uk/news/science-environment-10900235|title=Huge ice sheet breaks from Greenland glacier|publisher=BBC|access-date=2011-03-09|date=2010-08-07}}</ref> About a month later, this iceberg split into two pieces upon crashing into Joe Island in the [[Nares Strait]] next to Greenland.<ref>{{cite web|url=http://www.aolnews.com/2010/09/11/giant-ice-island-splits-near-greenland/|title=Massive Iceberg Crashes into Island, Splits in Two|url-status=dead|archive-url=https://web.archive.org/web/20110310053924/http://www.aolnews.com/2010/09/11/giant-ice-island-splits-near-greenland/|archive-date=2011-03-10}}</ref> In June 2011, large fragments of the Petermann Ice Islands were observed off the Labrador coast.<ref>{{cite news |url=https://www.cbc.ca/news/canada/newfoundland-labrador/massive-ice-island-heading-for-southern-labrador-1.1105031|title=Massive ice island heading for southern Labrador | work=CBC News | date=2011-06-23}}</ref>
*2014, [[Iceberg B-31]], {{convert|615|km2|sqmi|abbr=on}}, 2014<ref>{{cite web|url=http://www.cnn.com/2014/04/22/world/asia/antarctic-iceberg/index.html?hpt=hp_t1|title=Iceberg is twice the size of Atlanta - CNN.com|author=Brad Lendon, CNN|date=22 April 2014|work=CNN}}</ref>
*2014, [[Iceberg B-31]], {{convert|615|km2|sqmi|abbr=on}}, 2014<ref>{{cite news|author=Lendon |first=Brad |date=22 April 2014 |title=Iceberg is twice the size of Atlanta |url=http://www.cnn.com/2014/04/22/world/asia/antarctic-iceberg/index.html?hpt=hp_t1 |work=CNN}}</ref>
*2017, [[Iceberg A-68]], (Larsen C) {{convert|5800|km2|sqmi|abbr=on}}<ref name="IcebergA68">{{cite news|title=Iceberg four times the size of London breaks off from Antarctica ice shelf|url=https://www.telegraph.co.uk/science/2017/07/12/iceberg-four-times-size-london-breaks-antarctica-ice-shelf/|access-date=14 July 2017|newspaper=[[The Daily Telegraph|The Telegraph]]}}</ref>
*2017, [[Iceberg A-68]], (Larsen C) {{convert|5800|km2|sqmi|abbr=on}}<ref name="IcebergA68">{{cite news|title=Iceberg four times the size of London breaks off from Antarctica ice shelf|url=https://www.telegraph.co.uk/science/2017/07/12/iceberg-four-times-size-london-breaks-antarctica-ice-shelf/ |archive-url=https://ghostarchive.org/archive/20220112/https://www.telegraph.co.uk/science/2017/07/12/iceberg-four-times-size-london-breaks-antarctica-ice-shelf/ |archive-date=2022-01-12 |url-access=subscription |url-status=live|access-date=14 July 2017|newspaper=[[The Daily Telegraph|The Telegraph]]}}{{cbignore}}</ref>
*2018, [[Iceberg B-46]], {{convert|225|km2|sqmi|abbr=on}}<ref name='NASA'>{{cite web|title=Pine Island Glacier Quickly Drops Another Iceberg|url=https://earthobservatory.nasa.gov/images/144212/pine-island-glacier-quickly-drops-another-iceberg|work=Nasa Earth Observatory|date=8 November 2018|publisher=[[NASA]]|access-date=12 November 2018}}</ref>
*2018, [[Iceberg B-46]], {{convert|225|km2|sqmi|abbr=on}}<ref name='NASA'>{{cite web|title=Pine Island Glacier Quickly Drops Another Iceberg|url=https://earthobservatory.nasa.gov/images/144212/pine-island-glacier-quickly-drops-another-iceberg|work=Nasa Earth Observatory|date=8 November 2018|publisher=[[NASA]]|access-date=12 November 2018}}</ref>
*2019, [[Iceberg D-28]], {{convert|1636|km2|sqmi|abbr=on}}<ref name='IcebergD28'>{{cite web|url=https://www.theguardian.com/world/2019/oct/01/giant-iceberg-breaks-off-east-antarctica|title=Giant iceberg breaks off east Antarctica|last=Cox|first=Lisa|website=[[The Guardian]]|date=1 September 2019|access-date=1 September 2019|df=dmy-all}}</ref>
*2019, [[Iceberg D-28]], {{convert|1636|km2|sqmi|abbr=on}}<ref name='IcebergD28'>{{cite web|url=https://www.theguardian.com/world/2019/oct/01/giant-iceberg-breaks-off-east-antarctica|title=Giant iceberg breaks off east Antarctica|last=Cox|first=Lisa|website=[[The Guardian]]|date=1 September 2019|access-date=1 September 2019|df=dmy-all}}</ref>
*2021, Iceberg A-74 from the [[Brunt Ice Shelf]], {{convert|1270|km2|sqmi|abbr=on}}<ref>{{cite web | url=https://www.bas.ac.uk/media-post/brunt-ice-shelf-in-antarctica-calves/ | title=Brunt Ice Shelf in Antarctica calves | date=26 February 2021 | publisher=[[British Antarctic Survey]]}}</ref><ref>{{cite web | url=https://usicecenter.gov/PressRelease/IcebergA74 | title=Iceberg A-74 Calves from the Brunt Ice Shelf in the Weddell Sea | author=LT Falon M. Essary | date=1 March 2021 | publisher=U.S. National Ice Center}}</ref>
*2021, [[Iceberg A-74]] from the [[Brunt Ice Shelf]], {{convert|1270|km2|sqmi|abbr=on}}<ref>{{cite web | url=https://www.bas.ac.uk/media-post/brunt-ice-shelf-in-antarctica-calves/ | title=Brunt Ice Shelf in Antarctica calves | date=26 February 2021 | publisher=[[British Antarctic Survey]]}}</ref><ref>{{cite web | url=https://usicecenter.gov/PressRelease/IcebergA74 | title=Iceberg A-74 Calves from the Brunt Ice Shelf in the Weddell Sea | author=LT Falon M. Essary | date=1 March 2021 | publisher=U.S. National Ice Center}}</ref>
*2021, Iceberg A-76 from the [[Ronne Ice Shelf]], {{convert|4320|km2|sqmi|abbr=on}}<ref>{{cite web | url=https://www.cnn.com/2021/05/19/world/iceberg-a-76-antarctica-intl/index.html | title=World's largest iceberg breaks off from Antarctica | date=19 May 2021 | publisher=[[CNN.com]]}}</ref>
*2021, [[Iceberg A-76]] from the [[Ronne Ice Shelf]], {{convert|4320|km2|sqmi|abbr=on}}<ref>{{cite web | url=https://www.cnn.com/2021/05/19/world/iceberg-a-76-antarctica-intl/index.html | title=World's largest iceberg breaks off from Antarctica | date=19 May 2021 | publisher=[[CNN.com]]}}</ref>


==Towing==
== In culture ==

In the late 2010s, a business from the [[United Arab Emirates|UAE]] wanted to tow an iceberg from Antarctica to the Middle East, but the plan failed as the estimated cost of $200 million was too high.<ref>{{Cite web|url=https://www.abc.net.au/news/2019-08-14/why-a-middle-eastern-business-cant-just-tow-antarctica-iceberg/11318638?nw=0|title = Why a Middle Eastern business thirsty for water can't just tow an iceberg from Antarctica|date = 14 August 2019}}</ref>
[[File:Albert Bierstadt - The_Iceberg.jpg|thumb|alt=Painting of an large iceberg and a small skiff in the foreground|[[Albert Bierstadt]]'s painting ''The Iceberg'']]

One of the most infamous icebergs in history is the [[Iceberg that sank the Titanic|iceberg that sank the ''Titanic'']]. The catastrophe led to the establishment of an [[International Ice Patrol]] shortly after. Icebergs in both the northern and southern hemispheres have often been compared in size to multiples of the {{convert|59.1|km2|sqmi}}-area of [[Manhattan Island]].<ref>{{cite news|url=https://www.cnn.com/2020/09/14/europe/greenland-arctic-ice-shelf-intl/index.html|title=A chunk of ice twice the size of Manhattan has broken off Greenland in the last two years|author=Zamira Rahim|publisher=CNN|date=September 14, 2020|access-date=September 19, 2020}}</ref><ref>{{cite web|url=https://earther.gizmodo.com/an-iceberg-30-times-the-size-of-manhattan-is-about-to-b-1832764641|title=An Iceberg 30 Times the Size of Manhattan Is About to Break Off Antarctica|author=Maddie Stone|website=[[Gizmodo]]|date=February 21, 2019|access-date=September 3, 2023|archive-date=October 27, 2019|archive-url=https://web.archive.org/web/20191027051022/https://earther.gizmodo.com/an-iceberg-30-times-the-size-of-manhattan-is-about-to-b-1832764641|url-status=dead}}</ref><ref>{{cite web|url=https://www.businessinsider.com/iceberg-bigger-manhattan-broke-antarctica-2018-11|title=An iceberg 5 times bigger than Manhattan just broke off from Antarctica|author=Lorraine Chow|website=[[Business Insider]]|date=November 1, 2018|access-date=October 27, 2019|archive-url=https://web.archive.org/web/20191027051017/https://www.businessinsider.com/iceberg-bigger-manhattan-broke-antarctica-2018-11|archive-date=October 27, 2019|url-status=live}}</ref><ref>{{cite web | url=https://news.yahoo.com/iceberg-70-times-size-manhattan-114459703.html | title=An iceberg about 70 times the size of Manhattan broke off from Antarctica, creating the world's largest iceberg | date=20 May 2021 }}</ref><ref>{{cite web | url=https://amp.cnn.com/cnn/2020/11/04/americas/worlds-biggest-iceberg-a68a-intl/index.html | title=An iceberg 80 times the size of Manhattan could destroy a fragile South Atlantic ecosystem }}</ref>

Artists have used icebergs as the subject matter for their paintings. [[Frederic Edwin Church]], ''[[The Icebergs]]'', 1861 was painted from sketches Church completed on a boat trip off Newfoundland and Labrador.<ref>{{Cite web |title=The Icebergs |url=https://dma.org/art/collection/object/4171219 |url-status=live |archive-url=https://web.archive.org/web/20230719235827/https://dma.org/art/collection/object/4171219 |archive-date=July 19, 2023 |access-date=March 7, 2024 |website=Dallas Museum of Art}}</ref> [[Caspar David Friedrich]], ''[[The Sea of Ice]],'' 1823–1824 is polar landscape with an iceberg and ship wreck depicting the dangers of such conditions''.''<ref>{{Cite web |title=Online Collection - Caspar David Friedrich, The Sea of Ice, 1823/24 |url=https://online-sammlung.hamburger-kunsthalle.de/en/objekt/HK-1051 |url-status=live |archive-url=https://web.archive.org/web/20220922122857/https://online-sammlung.hamburger-kunsthalle.de/en/objekt/HK-1051 |archive-date=September 22, 2022 |access-date=March 7, 2024 |website=Hamburger Kunsthalle |language=German}}</ref> [[William Bradford (painter)|William Bradford]] created detailed paintings of sailing ships set in arctic coasts and was fascinated by icebergs.<ref>{{Cite journal |last=Overeem |first=Irina |date=January 28, 2018 |title=Full article/ William Bradford/ Sailing Ships and Arctic Seas |url=https://www.tandfonline.com/doi/full/10.1657/1523-0430%282003%29035%5B0541%3ABR%5D2.0.CO%3B2 |url-status=live |archive-url=https://web.archive.org/web/20220426024031/https://www.tandfonline.com/doi/full/10.1657/1523-0430(2003)035[0541%3ABR]2.0.CO%3B2 |archive-date=April 26, 2022 |access-date=March 7, 2024 |journal=Arctic, Antarctic, and Alpine Research|volume=35 |issue=4 |pages=541 |doi=10.1657/1523-0430(2003)035[0541:BR]2.0.CO;2 |issn=1523-0430 }}</ref> [[Albert Bierstadt]] made studies on arctic trips aboard steamships in 1883 and 1884 that were the basis of his paintings of arctic scenes with colossal icebergs made in the studio.<ref>{{Cite web |title=Albert Bierstadt (1830-1902), Icebergs |url=https://www.christies.com.cn/en/lot/lot-6134527 |url-status=live |archive-url=https://web.archive.org/web/20240308004355/https://www.christies.com.cn/en/lot/lot-6134527 |archive-date=March 8, 2024 |access-date=March 8, 2024 |website=Christie's}}</ref>

American poet, [[Lydia Sigourney]], wrote the poem [[:s:Poems_for_the_Sea/Icebergs|"Icebergs"]]. While on a return journey from Europe in 1841, her steamship encountered a field of icebergs overnight, during an [[Aurora Borealis]]. The ship made it through unscathed to the next morning, when the sun rose and "touched the crowns, Of all those arctic kings."<ref>{{cite book |last=Sigourney |first=Lydia |author-link=Lydia Sigourney |chapter=[[:s:Poems_for_the_Sea/Icebergs|Icebergs]] |title=[[:s:Poems for the Sea|Poems for the Sea]] |year=1850 |publisher=H. S. Parsons & Company}}</ref>


==See also==
==See also==
Line 104: Line 175:
{{col div|colwidth=30em}}
{{col div|colwidth=30em}}
* [[List of recorded icebergs by area]]
* [[List of recorded icebergs by area]]
* [[Drift ice station]]
* [[Drifting ice station]]
* [[Ice calving]]
* [[Ice calving]]
* [[Ice drift]]
* [[Sea ice]]
* [[Polar ice cap]]
* [[Polar ice cap]]
* [[Polar ice pack (disambiguation)]]
* [[Polar ice pack (disambiguation)]]
* [[Polynya]]
* [[Polynya]]
* [[Sea ice]]
* [[Seabed gouging by ice]]
* [[Seabed gouging by ice]]
* [[Shelf ice]]
* [[Shelf ice]]
Line 131: Line 201:
[[Category:Ice in transportation]]
[[Category:Ice in transportation]]
[[Category:Oceanographical terminology]]
[[Category:Oceanographical terminology]]
[[Category:Snow or ice weather phenomena]]
[[Category:Water ice]]

Latest revision as of 21:55, 14 December 2024

An iceberg in the Arctic Ocean

An iceberg is a piece of fresh water ice more than 15 meters (16 yards) long[1] that has broken off a glacier or an ice shelf and is floating freely in open water.[2][3] Smaller chunks of floating glacially derived ice are called "growlers" or "bergy bits".[4][5] Much of an iceberg is below the water's surface, which led to the expression "tip of the iceberg" to illustrate a small part of a larger unseen issue. Icebergs are considered a serious maritime hazard.

Icebergs vary considerably in size and shape. Icebergs that calve from glaciers in Greenland are often irregularly shaped while Antarctic ice shelves often produce large tabular (table top) icebergs. The largest iceberg in recent history, named B-15, was measured at nearly 300 by 40 kilometres (186 by 25 mi) in 2000.[6] The largest iceberg on record was an Antarctic tabular iceberg measuring 335 by 97 kilometres (208 by 60 mi) sighted 240 kilometres (150 mi) west of Scott Island, in the South Pacific Ocean, by the USS Glacier on November 12, 1956. This iceberg was larger than Belgium.[7]

Etymology

[edit]

The word iceberg is a partial loan translation from the Dutch word ijsberg, literally meaning ice mountain,[8] cognate to Danish isbjerg, German Eisberg, Low Saxon Iesbarg and Swedish isberg.

Overview

[edit]

Typically about one-tenth of the volume of an iceberg is above water, which follows from Archimedes's Principle of buoyancy; the density of pure ice is about 920 kg/m3 (57 lb/cu ft), and that of seawater about 1,025 kg/m3 (64 lb/cu ft). The contour of the underwater portion can be difficult to judge by looking at the portion above the surface.

Northern edge of Iceberg B-15A in the Ross Sea, Antarctica, 29 January 2001
Iceberg size classifications according to the International Ice Patrol[1]
Size class Height (m) Length (m)
Growler <1 <5
Bergy bit 1–5 5–15
Small 5–15 15–60
Medium 15–45 60–122
Large 45–75 122–213
Very large >75 >213

The largest icebergs recorded have been calved, or broken off, from the Ross Ice Shelf of Antarctica. Icebergs may reach a height of more than 100 metres (300 ft) above the sea surface and have mass ranging from about 100,000 tonnes up to more than 10 million tonnes. Icebergs or pieces of floating ice smaller than 5 meters above the sea surface are classified as "bergy bits"; smaller than 1 meter—"growlers".[9] The largest known iceberg in the North Atlantic was 168 metres (551 ft) above sea level, reported by the USCG icebreaker Eastwind in 1958, making it the height of a 55-story building. These icebergs originate from the glaciers of western Greenland and may have interior temperatures of −15 to −20 °C (5 to −4 °F).[10]

Grotto in an iceberg, photographed during the British Antarctic Expedition of 1911–1913, 5 Jan 1911

Drift

[edit]

A given iceberg's trajectory through the ocean can be modelled by integrating the equation

where m is the iceberg mass, v the drift velocity, and the variables f, k, and F correspond to the Coriolis force, the vertical unit vector, and a given force. The subscripts a, w, r, s, and p correspond to the air drag, water drag, wave radiation force, sea ice drag, and the horizontal pressure gradient force.[11][12]

Icebergs deteriorate through melting and fracturing, which changes the mass m, as well as the surface area, volume, and stability of the iceberg.[12][13] Iceberg deterioration and drift, therefore, are interconnected ie. iceberg thermodynamics, and fracturing must be considered when modelling iceberg drift.[12]

Winds and currents may move icebergs close to coastlines, where they can become frozen into pack ice (one form of sea ice), or drift into shallow waters, where they can come into contact with the seabed, a phenomenon called seabed gouging.

Mass loss

[edit]

Icebergs lose mass due to melting, and calving. Melting can be due to solar radiation, or heat and salt transport from the ocean. Iceberg calving is generally enhanced by waves impacting the iceberg.

Melting tends to be driven by the ocean, rather than solar radiation. Ocean driven melting is often modelled as

where is the melt rate in m/day, is the relative velocity between the iceberg and the ocean, is the temperature difference between the ocean and the iceberg, and is the length of the iceberg. is a constant based on properties of the iceberg and the ocean and is approximately in the polar ocean.[14]

The influence of the shape of an iceberg[15] and of the Coriolis force[16] on iceberg melting rates has been demonstrated in laboratory experiments.

Wave erosion is more poorly constrained but can be estimated by

where is the wave erosion rate in m/day, , describes the sea state, is the sea surface temperature, and is the sea ice concentration.[14]

Bubbles

[edit]

Air trapped in snow forms bubbles as the snow is compressed to form firn and then glacial ice.[17] Icebergs can contain up to 10% air bubbles by volume.[17][failed verification] These bubbles are released during melting, producing a fizzing sound that some may call "Bergie Seltzer". This sound results when the water-ice interface reaches compressed air bubbles trapped in the ice. As each bubble bursts it makes a "popping" sound[10] and the acoustic properties of these bubbles can be used to study iceberg melt.[18]

Stability

[edit]

An iceberg may flip, or capsize, as it melts and breaks apart, changing the center of gravity. Capsizing can occur shortly after calving when the iceberg is young and establishing balance.[19] Icebergs are unpredictable and can capsize anytime and without warning. Large icebergs that break off from a glacier front and flip onto the glacier face can push the entire glacier backwards momentarily, producing 'glacial earthquakes' that generate as much energy as an atomic bomb.[20][21]

Color

[edit]

Icebergs are generally white because they are covered in snow, but can be green, blue, yellow, black, striped, or even rainbow-colored.[22] Seawater, algae and lack of air bubbles in the ice can create diverse colors. Sediment can create the dirty black coloration present in some icebergs.[23]

Shape

[edit]
Different shapes of icebergs
Tabular iceberg, near Brown Bluff in the Antarctic Sound off Tabarin Peninsula

In addition to size classification (Table 1), icebergs can be classified on the basis of their shapes. The two basic types of iceberg forms are tabular and non-tabular. Tabular icebergs have steep sides and a flat top, much like a plateau, with a length-to-height ratio of more than 5:1.[24]

This type of iceberg, also known as an ice island,[25] can be quite large, as in the case of Pobeda Ice Island. Antarctic icebergs formed by breaking off from an ice shelf, such as the Ross Ice Shelf or Filchner–Ronne Ice Shelf, are typically tabular. The largest icebergs in the world are formed this way.

Non-tabular icebergs have different shapes and include:[26]

  • Dome: An iceberg with a rounded top.
  • Pinnacle: An iceberg with one or more spires.
  • Wedge: An iceberg with a steep edge on one side and a slope on the opposite side.
  • Dry-dock: An iceberg that has eroded to form a slot or channel.
  • Blocky: An iceberg with steep, vertical sides and a flat top. It differs from tabular icebergs in that its aspect ratio, the ratio between its width and height, is small, more like that of a block than a flat sheet.

Monitoring and control

[edit]

History

[edit]
The iceberg suspected of sinking the RMS Titanic; a smudge of red paint much like the Titanic's red hull stripe runs along its base at the waterline.

Prior to 1914 there was no system in place to track icebergs to guard ships against collisions[citation needed] despite fatal sinkings of ships by icebergs. In 1907, SS Kronprinz Wilhelm, a German liner, rammed an iceberg and suffered a crushed bow, but she was still able to complete her voyage. The advent of watertight compartmentalization in ship construction led designers to declare their ships "unsinkable".

During the 1912 sinking of the Titanic, the iceberg that sank the Titanic killed more than 1,500 of its estimated 2,224 passengers and crew, seriously damaging the 'unsinkable' claim. For the remainder of the ice season of that year, the United States Navy patrolled the waters and monitored ice movements. In November 1913, the International Conference on the Safety of Life at Sea met in London to devise a more permanent system of observing icebergs. Within three months the participating maritime nations had formed the International Ice Patrol (IIP). The goal of the IIP was to collect data on meteorology and oceanography to measure currents, ice-flow, ocean temperature, and salinity levels. They monitored iceberg dangers near the Grand Banks of Newfoundland and provided the "limits of all known ice" in that vicinity to the maritime community. The IIP published their first records in 1921, which allowed for a year-by-year comparison of iceberg movement.

Technological development

[edit]
An iceberg being pushed by three U.S. Navy ships in McMurdo Sound, Antarctica

Aerial surveillance of the seas in the early 1930s allowed for the development of charter systems that could accurately detail the ocean currents and iceberg locations. In 1945, experiments tested the effectiveness of radar in detecting icebergs. A decade later, oceanographic monitoring outposts were established for the purpose of collecting data; these outposts continue to serve in environmental study. A computer was first installed on a ship for the purpose of oceanographic monitoring in 1964, which allowed for a faster evaluation of data. By the 1970s, ice-breaking ships were equipped with automatic transmissions of satellite photographs of ice in Antarctica. Systems for optical satellites had been developed but were still limited by weather conditions. In the 1980s, drifting buoys were used in Antarctic waters for oceanographic and climate research. They are equipped with sensors that measure ocean temperature and currents.

Acoustic monitoring of an iceberg

Side looking airborne radar (SLAR) made it possible to acquire images regardless of weather conditions. On November 4, 1995, Canada launched RADARSAT-1. Developed by the Canadian Space Agency, it provides images of Earth for scientific and commercial purposes. This system was the first to use synthetic aperture radar (SAR), which sends microwave energy to the ocean surface and records the reflections to track icebergs. The European Space Agency launched ENVISAT (an observation satellite that orbits the Earth's poles)[27] on March 1, 2002. ENVISAT employs advanced synthetic aperture radar (ASAR) technology, which can detect changes in surface height accurately. The Canadian Space Agency launched RADARSAT-2 in December 2007, which uses SAR and multi-polarization modes and follows the same orbit path as RADARSAT-1.[28]

Modern monitoring

[edit]

Iceberg concentrations and size distributions are monitored worldwide by the U.S. National Ice Center (NIC), established in 1995, which produces analyses and forecasts of Arctic, Antarctic, Great Lakes and Chesapeake Bay ice conditions. More than 95% of the data used in its sea ice analyses are derived from the remote sensors on polar-orbiting satellites that survey these remote regions of the Earth.

Iceberg A22A in the South Atlantic Ocean

The NIC is the only organization that names and tracks all Antarctic Icebergs. It assigns each iceberg larger than 10 nautical miles (19 km) along at least one axis a name composed of a letter indicating its point of origin and a running number. The letters used are as follows:[29]

Alongitude 0° to 90° W (Bellingshausen Sea, Weddell Sea)
B – longitude 90° W to 180° (Amundsen Sea, Eastern Ross Sea)
C – longitude 90° E to 180° (Western Ross Sea, Wilkes Land)
D – longitude 0° to 90° E (Amery Ice Shelf, Eastern Weddell Sea)

The Danish Meteorological Institute monitors iceberg populations around Greenland using data collected by the synthetic aperture radar (SAR) on the Sentinel-1 satellites.

Iceberg management

[edit]

In Labrador and Newfoundland, iceberg management plans have been developed to protect offshore installations from impacts with icebergs.[30]

Commercial use

[edit]

The idea of towing large icebergs to other regions as a source of water has been raised since at least the 1950s, without having been put into practice.[31] In 2017, a business from the UAE announced plans to tow an iceberg from Antarctica to the Middle East; in 2019 salvage engineer Nick Sloane announced a plan to move one to South Africa[32] at an estimated cost of $200 million.[31] In 2019, a German company, Polewater, announced plans to tow Antarctic icebergs to places like South Africa.[33][34]

Companies have used iceberg water in products such as bottled water, fizzy ice cubes and alcoholic drinks.[33] For example, Iceberg Beer by Quidi Vidi Brewing Company is made from icebergs found around St. John's, Newfoundland.[35] Although annual iceberg supply in Newfoundland and Labrador exceeds the total freshwater consumption of the United States, in 2016 the province introduced a tax on iceberg harvesting and imposed a limit on how much fresh water can be exported yearly.[33]

Oceanography and ecology

[edit]
Icebergs in Disko Bay

The freshwater injected into the ocean by melting icebergs can change the density of the seawater in the vicinity of the iceberg.[36][37] Fresh melt water released at depth is lighter, and therefore more buoyant, than the surrounding seawater causing it to rise towards the surface.[36][37] Icebergs can also act as floating breakwaters, impacting ocean waves.[38]

Icebergs contain variable concentrations of nutrients and minerals that are released into the ocean during melting.[39][40] Iceberg-derived nutrients, particularly the iron contained in sediments, can fuel blooms of phytoplankton.[39][41] Samples collected from icebergs in Antarctica, Patagonia, Greenland, Svalbard, and Iceland, however, show that iron concentrations vary significantly,[40] complicating efforts to generalize the impacts of icebergs on marine ecosystems.

Recent large icebergs

[edit]
The calving of Iceberg A-38 off Filchner-Ronne Ice Shelf

Iceberg B15 calved from the Ross Ice Shelf in 2000 and initially had an area of 11,000 square kilometres (4,200 sq mi). It broke apart in November 2002. The largest remaining piece of it, Iceberg B-15A, with an area of 3,000 square kilometres (1,200 sq mi), was still the largest iceberg on Earth until it ran aground and split into several pieces October 27, 2005, an event that was observed by seismographs both on the iceberg and across Antarctica.[42] It has been hypothesized that this breakup may also have been abetted by ocean swell generated by an Alaskan storm 6 days earlier and 13,500 kilometres (8,400 mi) away.[43][44]

In culture

[edit]
Painting of an large iceberg and a small skiff in the foreground
Albert Bierstadt's painting The Iceberg

One of the most infamous icebergs in history is the iceberg that sank the Titanic. The catastrophe led to the establishment of an International Ice Patrol shortly after. Icebergs in both the northern and southern hemispheres have often been compared in size to multiples of the 59.1 square kilometres (22.8 sq mi)-area of Manhattan Island.[57][58][59][60][61]

Artists have used icebergs as the subject matter for their paintings. Frederic Edwin Church, The Icebergs, 1861 was painted from sketches Church completed on a boat trip off Newfoundland and Labrador.[62] Caspar David Friedrich, The Sea of Ice, 1823–1824 is polar landscape with an iceberg and ship wreck depicting the dangers of such conditions.[63] William Bradford created detailed paintings of sailing ships set in arctic coasts and was fascinated by icebergs.[64] Albert Bierstadt made studies on arctic trips aboard steamships in 1883 and 1884 that were the basis of his paintings of arctic scenes with colossal icebergs made in the studio.[65]

American poet, Lydia Sigourney, wrote the poem "Icebergs". While on a return journey from Europe in 1841, her steamship encountered a field of icebergs overnight, during an Aurora Borealis. The ship made it through unscathed to the next morning, when the sun rose and "touched the crowns, Of all those arctic kings."[66]

See also

[edit]

References

[edit]
  1. ^ a b "Iceberg Formation: International Ice Patrol" (PDF). International Ice Patrol. Archived from the original (PDF) on 2017-05-09. Retrieved 2021-08-23.
  2. ^ "iceberg". Cambridge Dictionary. Retrieved 2024-07-06.
  3. ^ "Common Misconceptions about Icebergs and Glaciers". Ohio State University. 19 July 2011. Icebergs float in salt water, but they are formed from freshwater glacial ice.
  4. ^ "bergy bit". National Snow and Ice Data Center. Retrieved 2024-07-16.
  5. ^ "Bergy Bits and Growlers". www.athropolis.com. Retrieved 2019-12-01.
  6. ^ Remy, J.-P.; Becquevort, S.; Haskell, T.G.; Tison, J.-L. (December 2008). "Impact of the B-15 iceberg "stranding event" on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica". Antarctic Science. 20 (6): 593–604. Bibcode:2008AntSc..20..593R. doi:10.1017/S0954102008001284. ISSN 0954-1020. S2CID 73604210.
  7. ^ "Antarctica shed a 208-mile-long berg in 1956". The Polar Times. 43: 18. 1956. Archived from the original on 2006-05-22 – via USA Today.
  8. ^ "Iceberg". Online Etymology Dictionary. Retrieved 2006-03-26.
  9. ^ "Iceberg Classification Systems".
  10. ^ a b "Facts on Icebergs". Canadian Geographic. 2006. Archived from the original on 2006-03-31.
  11. ^ Carlson, Daniel F.; Boone, Wieter; Meire, Lorenz; Abermann, Jakob; Rysgaard, Søren (2017-08-28). "Bergy Bit and Melt Water Trajectories in Godthåbsfjord (SW Greenland) Observed by the Expendable Ice Tracker". Frontiers in Marine Science. 4: 276. doi:10.3389/fmars.2017.00276. ISSN 2296-7745.
  12. ^ a b c Bigg, Grant R.; Wadley, Martin R.; Stevens, David P.; Johnson, John A. (October 1997). "Modelling the dynamics and thermodynamics of icebergs". Cold Regions Science and Technology. 26 (2): 113–135. Bibcode:1997CRST...26..113B. doi:10.1016/S0165-232X(97)00012-8.
  13. ^ Crawford, Anna; Mueller, Derek; Joyal, Gabriel (2018-04-08). "Surveying Drifting Icebergs and Ice Islands: Deterioration Detection and Mass Estimation with Aerial Photogrammetry and Laser Scanning". Remote Sensing. 10 (4): 575. Bibcode:2018RemS...10..575C. doi:10.3390/rs10040575. hdl:10023/16996. ISSN 2072-4292.
  14. ^ a b Cenedese, Claudia; Straneo, Fiamma (19 January 2023). "Icebergs Melting". Annual Review of Fluid Mechanics. 55 (1): 377–402. Bibcode:2023AnRFM..55..377C. doi:10.1146/annurev-fluid-032522-100734.
  15. ^ Hester, Eric W.; McConnochie, Craig D.; Cenedese, Claudia; Couston, Louis-Alexandre; Vasil, Geoffrey (12 February 2021). "Aspect ratio affects iceberg melting". Physical Review Fluids. 6 (2): 023802. arXiv:2009.10281. Bibcode:2021PhRvF...6b3802H. doi:10.1103/PhysRevFluids.6.023802.
  16. ^ Meroni, Agostino N.; McConnochie, Craig D.; Cenedese, Claudia; Sutherland, Bruce; Snow, Kate (10 January 2019). "Nonlinear influence of the Earth's rotation on iceberg melting". Journal of Fluid Mechanics. 858: 832–851. Bibcode:2019JFM...858..832M. doi:10.1017/jfm.2018.798. S2CID 126234419.
  17. ^ a b Scholander, P. F.; Nutt, D. C. (1960). "Bubble Pressure in Greenland Icebergs". Journal of Glaciology. 3 (28): 671–678. doi:10.3189/S0022143000017950. ISSN 0022-1430.
  18. ^ Glowacki, Oskar; Deane, Grant B.; Moskalik, Mateusz (2018-05-16). "The Intensity, Directionality, and Statistics of Underwater Noise From Melting Icebergs". Geophysical Research Letters. 45 (9): 4105–4113. Bibcode:2018GeoRL..45.4105G. doi:10.1029/2018GL077632. ISSN 0094-8276. S2CID 135352794.
  19. ^ MacAyeal, Douglas R.; Abbot, Dorian S.; Sergienko, Olga V. (2011). "Iceberg-capsize tsunamigenesis". Annals of Glaciology. 52 (58): 51–56. Bibcode:2011AnGla..52...51M. doi:10.3189/172756411797252103. ISSN 0260-3055.
  20. ^ Stephen Ornes (April 3, 2012). "Flipping Icebergs". ScienceNews for Students. Retrieved June 9, 2019.
  21. ^ Nell Greenfieldboyce (June 25, 2015). "Study Reveals What Happens During A 'Glacial Earthquake'". NPR. Retrieved March 9, 2021.
  22. ^ Katherine Wright (January 5, 2018). "Icebergs Can Be Green, Black, Striped, Even Rainbow". Scientific American. Retrieved June 9, 2019.
  23. ^ Roach, Lettie (11 January 2019). "Image of the Week - Super-cool colours of icebergs". EGU Blogs. European Geosciences Union. Retrieved 6 November 2020.
  24. ^ "Sizes and Shapes of Icebergs" (PDF). International Ice Patrol. Retrieved 2006-12-20.
  25. ^ Weeks, W.F. (2010), On Sea Ice, University of Alaska Press, p. 399
  26. ^ Holly Gordon (2006). "Iceberg Physiology". Canadian Geographic. Archived from the original on 2006-03-31.
  27. ^ "Envisat". European Space Agency. Retrieved 2011-03-09.
  28. ^ Ainslie MacLellan (2006). "Tracking Monsters". Canadian Geographic. Archived from the original on 2006-10-31.
  29. ^ "New Iceberg Breaks off Ronne Ice Shelf in Antarctica". NOAA. 15 October 1998. Retrieved 2011-03-09.
  30. ^ Ice-management, Newfoundland Labrador offshore-industry
  31. ^ a b "Why a Middle Eastern business thirsty for water can't just tow an iceberg from Antarctica". Australian Broadcasting Corporation. 14 August 2019.
  32. ^ Maynard, Matt (12 June 2022). "Iceberg towing: a bizarre 'solution' to the freshwater crisis". Geographical. Retrieved 15 January 2024.
  33. ^ a b c Matthew H. Birkhold (October 31, 2019). "$166 Water Could Dictate International Iceberg Law". The Atlantic. Retrieved September 8, 2021.
  34. ^ "Home Page". Polewater. Retrieved September 8, 2021.
  35. ^ Emma Jacobs (February 29, 2012). "Newfoundland Gives Whole New Meaning To Ice Cold Beer". Morning Edition. Retrieved September 8, 2021.
  36. ^ a b Yankovsky, Alexander E.; Yashayaev, Igor (September 2014). "Surface buoyant plumes from melting icebergs in the Labrador Sea". Deep Sea Research Part I: Oceanographic Research Papers. 91: 1–9. Bibcode:2014DSRI...91....1Y. doi:10.1016/j.dsr.2014.05.014.
  37. ^ a b Stephenson, Gordon R.; Sprintall, Janet; Gille, Sarah T.; Vernet, Maria; Helly, John J.; Kaufmann, Ronald S. (June 2011). "Subsurface melting of a free-floating Antarctic iceberg". Deep Sea Research Part II: Topical Studies in Oceanography. 58 (11–12): 1336–1345. Bibcode:2011DSRII..58.1336S. doi:10.1016/j.dsr2.2010.11.009.
  38. ^ Ardhuin, Fabrice; Tournadre, Jean; Queffeulou, Pierre; Girard-Ardhuin, Fanny; Collard, Fabrice (January 2011). "Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean". Ocean Modelling. 39 (3–4): 405–410. Bibcode:2011OcMod..39..405A. doi:10.1016/j.ocemod.2011.03.004.
  39. ^ a b Duprat, Luis P. A. M.; Bigg, Grant R.; Wilton, David J. (March 2016). "Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs". Nature Geoscience. 9 (3): 219–221. Bibcode:2016NatGe...9..219D. doi:10.1038/ngeo2633. ISSN 1752-0894.
  40. ^ a b Hopwood, Mark J.; Carroll, Dustin; Höfer, Juan; Achterberg, Eric P.; Meire, Lorenz; Le Moigne, Frédéric A. C.; Bach, Lennart T.; Eich, Charlotte; Sutherland, David A.; González, Humberto E. (December 2019). "Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export". Nature Communications. 10 (1): 5261. Bibcode:2019NatCo..10.5261H. doi:10.1038/s41467-019-13231-0. ISSN 2041-1723. PMC 6868171. PMID 31748607.
  41. ^ Wu, Shuang-Ye; Hou, Shugui (2017-03-17). "Impact of icebergs on net primary productivity in the Southern Ocean". The Cryosphere. 11 (2): 707–722. Bibcode:2017TCry...11..707W. doi:10.5194/tc-11-707-2017. ISSN 1994-0424.
  42. ^ Martin, Seelye; Drucker, Robert; Aster, Richard; Davey, Fred; Okal, Emile; Scambos, Ted; MacAyeal, Douglas (2010). "Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica". Journal of Geophysical Research. 115 (B6): B06311. Bibcode:2010JGRB..115.6311M. doi:10.1029/2009JB006700. S2CID 16420188.
  43. ^ "Alaskan storm cracks giant iceberg to pieces in faraway Antarctica".
  44. ^ MacAyeal, Douglas R; Okal, Emile A; Aster, Richard C; Bassis, Jeremy N; Brunt, Kelly M; Cathles, L. Mac; Drucker, Robert; Fricker, Helen A; Kim, Young-Jin; Martin, Seelye; Okal, Marianne H; Sergienko, Olga V; Sponsler, Mark P; Thom, Jonathan E (2006). "Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere". Geophysical Research Letters. 33 (17): L17502. Bibcode:2006GeoRL..3317502M. doi:10.1029/2006GL027235.
  45. ^ "Iceberg A-38B off South Georgia". Visible Earth. Archived from the original on 2008-10-05. Retrieved 2011-03-09.
  46. ^ "Shipping alert issued over giant iceberg". Associated Press. December 11, 2009.
  47. ^ "Huge ice sheet breaks from Greenland glacier". BBC. 2010-08-07. Retrieved 2011-03-09.
  48. ^ "Massive Iceberg Crashes into Island, Splits in Two". Archived from the original on 2011-03-10.
  49. ^ "Massive ice island heading for southern Labrador". CBC News. 2011-06-23.
  50. ^ Lendon, Brad (22 April 2014). "Iceberg is twice the size of Atlanta". CNN.
  51. ^ "Iceberg four times the size of London breaks off from Antarctica ice shelf". The Telegraph. Archived from the original on 2022-01-12. Retrieved 14 July 2017.
  52. ^ "Pine Island Glacier Quickly Drops Another Iceberg". Nasa Earth Observatory. NASA. 8 November 2018. Retrieved 12 November 2018.
  53. ^ Cox, Lisa (1 September 2019). "Giant iceberg breaks off east Antarctica". The Guardian. Retrieved 1 September 2019.
  54. ^ "Brunt Ice Shelf in Antarctica calves". British Antarctic Survey. 26 February 2021.
  55. ^ LT Falon M. Essary (1 March 2021). "Iceberg A-74 Calves from the Brunt Ice Shelf in the Weddell Sea". U.S. National Ice Center.
  56. ^ "World's largest iceberg breaks off from Antarctica". CNN.com. 19 May 2021.
  57. ^ Zamira Rahim (September 14, 2020). "A chunk of ice twice the size of Manhattan has broken off Greenland in the last two years". CNN. Retrieved September 19, 2020.
  58. ^ Maddie Stone (February 21, 2019). "An Iceberg 30 Times the Size of Manhattan Is About to Break Off Antarctica". Gizmodo. Archived from the original on October 27, 2019. Retrieved September 3, 2023.
  59. ^ Lorraine Chow (November 1, 2018). "An iceberg 5 times bigger than Manhattan just broke off from Antarctica". Business Insider. Archived from the original on October 27, 2019. Retrieved October 27, 2019.
  60. ^ "An iceberg about 70 times the size of Manhattan broke off from Antarctica, creating the world's largest iceberg". 20 May 2021.
  61. ^ "An iceberg 80 times the size of Manhattan could destroy a fragile South Atlantic ecosystem".
  62. ^ "The Icebergs". Dallas Museum of Art. Archived from the original on July 19, 2023. Retrieved March 7, 2024.
  63. ^ "Online Collection - Caspar David Friedrich, The Sea of Ice, 1823/24". Hamburger Kunsthalle (in German). Archived from the original on September 22, 2022. Retrieved March 7, 2024.
  64. ^ Overeem, Irina (January 28, 2018). "Full article/ William Bradford/ Sailing Ships and Arctic Seas". Arctic, Antarctic, and Alpine Research. 35 (4): 541. doi:10.1657/1523-0430(2003)035[0541:BR]2.0.CO;2. ISSN 1523-0430. Archived from the original on April 26, 2022. Retrieved March 7, 2024.
  65. ^ "Albert Bierstadt (1830-1902), Icebergs". Christie's. Archived from the original on March 8, 2024. Retrieved March 8, 2024.
  66. ^ Sigourney, Lydia (1850). "Icebergs". Poems for the Sea. H. S. Parsons & Company.
[edit]