Jump to content

List of logic symbols: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1262360335 by 196.129.110.238 (talk)
Tags: Undo nowiki added
 
(71 intermediate revisions by 47 users not shown)
Line 1: Line 1:
{{short description|Wikipedia list article}}
{{Short description|List of symbols used to express logical relations}}
{{ SpecialChars
{{ SpecialChars
| special = logic symbols
| special = logic symbols
Line 10: Line 10:
==Basic logic symbols==
==Basic logic symbols==
{| class="wikitable"
{| class="wikitable"
|- bgcolor=#a0e0a0
! scope="col" |Symbol
! scope="col" |Symbol
! scope="col" |Unicode<br />value<br />(hexadecimal)
!Name
! scope="col" |HTML<br />codes
! scope="col" |[[LaTeX]]<br />symbol
!Logic Name
!Read as
!Read as
!Category
!Category
! scope="col" |Explanation
! scope="col" |Explanation
! scope="col" |Examples
! scope="col" |Examples
! scope="col" |Unicode<br />value<br />(hexadecimal)
! scope="col" |HTML<br />value<br />(decimal)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |[[LaTeX]]<br />symbol
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⇒<br />→<br />⊃</div>
! scope"row" align="center" |<div style="font-size:200%;">⇒<br />→<br />⊃</div>
||[[material conditional|material implication]]
|implies; if ... then
|[[propositional logic]], [[Heyting algebra]]
|<math>A \Rightarrow B</math> is false when {{mvar|A}} is true and {{mvar|B}} is false but true otherwise.<ref>{{Cite web | url=https://en.wikipedia.org/wiki/Material_conditional |title = Material conditional}}</ref>{{Circular reference|date=May 2020}}<br /><br /><math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a [[function (mathematics)|function]]; see [[table of mathematical symbols]]).<br /><br /><math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean [[superset]]).
|<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since {{mvar|x}} could be −2).
| style="text-align:left;font-family:monospace" |U+21D2<br /><br />U+2192<br /><br />U+2283
| style="text-align:left;font-family:monospace" |U+21D2<br /><br />U+2192<br /><br />U+2283
| style="text-align:left;font-family:monospace" |&amp;#8658;<br /><br />&amp;#8594;<br /><br />&amp;#8835;
| style="text-align:left;font-family:monospace" |&amp;#8658;<br />&amp;#8594;<br />&amp;#8835;
| style="text-align:left;font-family:monospace" |&amp;rArr;<br /><br />&amp;rarr;<br /><br />&amp;sup;
&amp;rArr;<br />&amp;rarr;<br />&amp;sup;
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div>
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\implies</math>\implies<br />
<math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /></div>
||[[material conditional|material conditional (material implication)]]
|implies,<br> if P then Q,<br> it is not the case that P and not Q
|[[propositional logic|propositional&nbsp;logic]], [[Boolean algebra (logic)|Boolean&nbsp;algebra]], [[Heyting algebra | Heyting&nbsp;algebra]]
|<math>A \Rightarrow B</math> is&nbsp;false when {{mvar|A}} is true and {{mvar|B}} is false but&nbsp;true&nbsp;otherwise.<br /><br /><math>\rightarrow</math> may mean the same as <math>\Rightarrow</math><br>(the symbol may also indicate the domain and codomain of a [[function (mathematics)|function]]; see [[table of mathematical symbols]]).<br /><br /><math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean [[superset]]).
| scope"row" align="center" |<div style="font-size:90%;"><math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general&nbsp;false<br> (since {{mvar|x}} could be −2).</div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⇔<br /><br /></div>
! scope"row" align="center" |<div style="font-size:200%;">⇔<br /><br /></div>
| style="text-align:left;font-family:monospace" |U+21D4<br /><br />U+2194<br /><br />U+2261
||[[material equivalence]]
| style="text-align:left;font-family:monospace" |&amp;#8660;<br />&amp;#8596;<br />&amp;#8801;
|if and only if; iff; means the same as
&amp;hArr;<br />&amp;LeftRightArrow;<br />&amp;equiv;
|[[propositional logic]]
| style="text-align:left;font-family:monospace" |<math>\Leftrightarrow</math>\Leftrightarrow<br /><math>\iff</math>\iff<br /><math>\leftrightarrow</math>\leftrightarrow<br /><math>\equiv</math>\equiv
|<math>A \Leftrightarrow B</math> is true only if both {{mvar|A}} and {{mvar|B}} are false, or both {{mvar|A}} and {{mvar|B}} are true.
||[[material biconditional|material biconditional (material equivalence)]]
|<math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math>
|if and only if, iff, xnor
| style="text-align:left;font-family:monospace" |U+21D4<br /><br />U+2261<br /><br />U+27F7
|[[propositional logic]], [[Boolean algebra (logic)|Boolean&nbsp;algebra]]
| style="text-align:left;font-family:monospace" |&amp;#8660;<br /><br />&amp;#8801;<br /><br />&amp;#10231;
|<math>A \Leftrightarrow B</math> is true only if both&nbsp;{{mvar|A}}&nbsp;and&nbsp;{{mvar|B}}&nbsp;are false, or both {{mvar|A}}&nbsp;and&nbsp;{{mvar|B}}&nbsp;are&nbsp;true. Whether a symbol means a [[material biconditional]] or a [[logical equivalence]], depends on the author’s style.
| style="text-align:left;font-family:monospace" |&amp;hArr;<br /><br />&amp;equiv;<br /><br />&amp;#10231;
| scope"row" align="center" |<div style="font-size:90%;"><math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math></div>
| style="text-align:left;font-family:monospace" |<math>\Leftrightarrow</math>\Leftrightarrow<br /><math>\equiv</math>\equiv<br /><math>\leftrightarrow</math>\leftrightarrow<br /><math>\iff</math>\iff
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">¬<br />˜<br />!</div>
! scope"row" align="center" |<div style="font-size:200%;">¬<br />~<br />!</div>
| style="text-align:left;font-family:monospace" |U+00AC<br /><br />U+007E<br /><br />U+0021
| style="text-align:left;font-family:monospace" |&amp;#172;<br />&amp;#732;<br />&amp;#33;
&amp;not;<br />&amp;tilde;<br />&amp;excl;
| style="text-align:left;font-family:monospace" |<math>\neg</math>\lnot or \neg<br /><br /><math>\sim</math>\sim<br /><br /><br />
||[[negation]]
||[[negation]]
|not
|not
|[[propositional logic]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean&nbsp;algebra]]
|The statement <math>\lnot A</math> is true if and only if {{mvar|A}} is false.<br /><br />A slash placed through another operator is the same as <math>\neg</math> placed in front.
|The statement <math>\lnot A</math> is true if&nbsp;and&nbsp;only&nbsp;if {{mvar|A}}&nbsp;is&nbsp;false.<br /><br />A slash placed through another operator is the same as <math>\neg</math> placed in front.
|<math>\neg (\neg A) \Leftrightarrow A</math><br /> <math>x \neq y \Leftrightarrow \neg (x = y)</math>
| scope"row" align="center" |<div style="font-size:90%;"><math>\neg (\neg A) \Leftrightarrow A</math><br /> <math>x \neq y \Leftrightarrow \neg (x = y)</math></div>
| style="text-align:left;font-family:monospace" |U+00AC<br /><br />U+02DC<br /><br />U+0021
| style="text-align:left;font-family:monospace" |&amp;#172;<br /><br />&amp;#732;<br /><br />&amp;#33;
| style="text-align:left;font-family:monospace" |&amp;not;<br /><br />&amp;tilde;<br /><br />&amp;excl;
| style="text-align:left;font-family:monospace" |<div><math>\neg</math>\lnot or \neg

<br /><math>\sim</math>\sim



</div>
|-
! scope"row" align="center" |<div style="font-size:200%;"><math>\mathbb{D}</math></div>
||[[Domain of discourse]]
|Domain of predicate
|[[Predicate (mathematical logic)]]
|
| <math>\mathbb D\mathbb :\mathbb R</math>
| style="text-align:left;font-family:monospace" |U+1D53B
| style="text-align:left;font-family:monospace" |&amp;#120123;
| style="text-align:left;font-family:monospace" |&amp;Dopf;
| style="text-align:left;font-family:monospace" |\mathbb{D}
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∧<br/>·<br/>&</div>
! scope"row" align="center" |<div style="font-size:200%;">∧<br/>·<br/>&</div>
| style="text-align:left;font-family:monospace" |U+2227<br /><br />U+00B7<br /><br />U+0026
| style="text-align:left;font-family:monospace" |&amp;#8743;<br />&amp;#183;<br />&amp;#38;
&amp;and;<br />&amp;middot;<br />&amp;amp;<br />
| style="text-align:left;font-family:monospace" |<div><math>\wedge</math>\wedge or \land<br /><math>\cdot</math>\cdot
<br /><br /><math>\&</math>\&<ref>Although this character is available in LaTeX, the [[MediaWiki]] TeX system does not support it.</ref></div>
||[[logical conjunction]]
||[[logical conjunction]]
|and
|and
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean&nbsp;algebra]]
|The statement ''A'' ''B'' is true if ''A'' and ''B'' are both true; otherwise, it is false.
|The statement ''A''&nbsp;&nbsp;''B'' is true if ''A''&nbsp;and&nbsp;''B'' are both true; otherwise, it is false.
|{{math|''n''&nbsp;< 4&nbsp;&nbsp;∧&nbsp;}} {{math|''n''&nbsp;>2&nbsp;&nbsp;⇔&nbsp;}} {{math|1=''n''&nbsp;= 3}} when ''n'' is a [[natural number]].
| scope"row" align="center" |<div style="font-size:90%;">{{math|''n''&nbsp;< 4&nbsp;&nbsp;∧&nbsp;}} {{math|''n''&nbsp;>2&nbsp;&nbsp;⇔&nbsp;}} {{math|1=''n''&nbsp;= 3}} when ''n'' is a [[natural number]].</div>
| style="text-align:left;font-family:monospace" |U+2227<br /><br />U+00B7<br /><br />U+0026
| style="text-align:left;font-family:monospace" |&amp;#8743;<br /><br />&amp;#183;<br /><br />&amp;#38;<br />
| style="text-align:left;font-family:monospace" |&amp;and;<br /><br />&amp;middot;<br /><br />&amp;amp;
| style="text-align:left;font-family:monospace" |<div><math>\wedge</math>\wedge or \land<br /><math>\cdot</math>\cdot
<math>\&</math>\&<ref>Although this character is available in LaTeX, the [[MediaWiki]] TeX system does not support it.</ref></div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∨<br />+<br />∥</div>
! scope"row" align="center" |<div style="font-size:200%;">∨<br />+<br />∥</div>
| style="text-align:left;font-family:monospace" |U+2228<br /><br />U+002B<br /><br />U+2225
| style="text-align:left;font-family:monospace" |&amp;#8744;<br />&amp;#43;<br />&amp;#8741;
&amp;or;<br />&amp;plus;<br />&amp;parallel;
| style="text-align:left;font-family:monospace" |<math>\lor</math>\lor or \vee<br /><br /><br /><br /><math>\parallel</math>\parallel
||[[logical disjunction|logical (inclusive) disjunction]]
||[[logical disjunction|logical (inclusive) disjunction]]
|or
|or
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean&nbsp;algebra]]
|The statement ''A'' ''B'' is true if ''A'' or ''B'' (or both) are true; if both are false, the statement is false.
|The statement ''A''&nbsp;&nbsp;''B'' is true if ''A'' or ''B'' (or both) are true; if both are false, the statement is false.
|{{math|''n''&nbsp;≥ 4&nbsp;&nbsp;∨&nbsp; ''n''&nbsp;≤ 2&nbsp;&nbsp;⇔ ''n''&nbsp;≠ 3}} when ''n'' is a [[natural number]].
| scope"row" align="center" |<div style="font-size:90%;">{{math|''n''&nbsp;≥ 4&nbsp;&nbsp;∨&nbsp; ''n''&nbsp;≤ 2&nbsp;&nbsp;⇔ ''n''&nbsp;≠ 3}} when ''n'' is a [[natural number]].</div>
| style="text-align:left;font-family:monospace" |U+2228<br /><br />U+002B<br /><br />U+2225
| style="text-align:left;font-family:monospace" |&amp;#8744;<br /><br />&amp;#43;<br /><br />&amp;#8741;
| style="text-align:left;font-family:monospace" |&amp;or;
<br />&amp;plus;


&amp;parallel;
| style="text-align:left;font-family:monospace" |<math>\lor</math>\lor or \vee



<br /><math>\parallel</math>\parallel
|-
|-
! scope"row" align="center" |<br /><div style="font-size:200%;"><br /><br /><br />≢</div>
! scope"row" align="center" |<br /><div style="font-size:200%;"><br /><br /><br />≢</div>
| style="text-align:left;font-family:monospace" |U+2295<br /><br />U+22BB<br /><br />U+21AE<br /><br />U+2262
| style="text-align:left;font-family:monospace" |&amp;#8853;<br />&amp;#8891;<br />&amp;#8622;<br />&amp;#8802;
&amp;oplus;<br />&amp;veebar;<br />—<br />&amp;nequiv;
| style="text-align:left;font-family:monospace" |<math>\oplus</math>\oplus<br /><br /><math>\veebar</math>\veebar<br /><br /><br /><br /><math>\not\equiv</math>\not\equiv
| [[exclusive or|exclusive disjunction]]
| [[exclusive or|exclusive disjunction]]
|xor; either ... or
|xor,<br> either ... or ... (but not both)
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
| The statement ''A'' ''B'' is true when either A or B, but not both, are true. ''A'' ''B'' means the same.
| The statement <math> A \oplus B </math> is true when either A or B, but&nbsp;not both, are true. This is equivalent to<br> ¬(A B), hence the symbols <math>\nleftrightarrow</math> and <math>\not\equiv</math> .
| (¬''A'') ''A'' is always true, and ''A'' ''A'' always false, if [[vacuous truth]] is excluded.
| scope"row" align="center" |<div style="font-size:90%;"><math>\lnot A \oplus A</math> is always true and <math>A \oplus A</math> is always false (if [[vacuous truth]] is excluded).</div>
| style="text-align:left;font-family:monospace" |U+21AE<br /><br />U+2295<br /><br />U+22BB


[[Mathematical Operators|U+]]2262
| style="text-align:left;font-family:monospace" |&amp;#8622;<br /><br />&amp;#8853;<br /><br />&amp;#8891;


&amp;#8802;
| style="text-align:left;font-family:monospace" |&amp;oplus;
<br />&amp;veebar;<br /><br />&amp;nequiv;
| style="text-align:left;font-family:monospace" |<math>\oplus</math>\oplus


<math>\veebar</math>\veebar


<math>\not\equiv</math>\not\equiv
|-
|-
! scope"row" align="center" |<br /><div style="font-size:200%;">⊤<br />T<br />1<br />■</div>
! scope"row" align="center" |<br /><div style="font-size:200%;">⊤<br />T<br />1</div>
| style="text-align:left;font-family:monospace" |<br /><br />U+22A4<br /><br /> <br /> <br /> <br /> <br />
|[[Tautology (logic)|Tautology]]
| style="text-align:left;font-family:monospace" |&amp;#8868;
|top, truth, full clause
<br />&amp;top;<br />
| style="text-align:left;font-family:monospace" |<math>\top</math>\top<br /><br /> <br /> <br />
|[[Tautology (logic)|true (tautology)]]
|top, truth, tautology, verum, full clause
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
|<math>\top</math> denotes a proposition that is always true.
| The statement {{math|⊤}} is unconditionally true.
| scope"row" align="center" |<div style="font-size:90%;">The proposition <math>\top \lor P</math> is always true since at least one of the two is unconditionally true.</div>
|⊤(''A'') ⇒ ''A'' is always true.
| style="text-align:left;font-family:monospace" |U+22A4<br /><br />U+25A0<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8868;<br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;top;


| style="text-align:left;font-family:monospace" |<math>\top</math>\top
|-
|-
|-
! scope"row" align="center" |<br/><div style="font-size:200%;">⊥<br/>F<br/>0<br/>□</div>
! scope"row" align="center" |<br/><div style="font-size:200%;">⊥<br />F<br />0</div>
| style="text-align:left;font-family:monospace" |<br /><br />U+22A5<br /><br /> <br /> <br /> <br /> <br />
|[[Contradiction]]
| style="text-align:left;font-family:monospace" |&amp;#8869;
|bottom, falsum, falsity, empty clause
&amp;perp;<br /><br /> <br /> <br />
| style="text-align:left;font-family:monospace" |<math>\bot</math>\bot<br /><br /> <br /> <br />
|[[False (logic)|false (contradiction)]]
|bottom, falsity, contradiction, falsum, empty clause
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
| The statement is unconditionally false. (The symbol ⊥ may also refer to [[perpendicular]] lines.)
|<math>\bot</math> denotes a proposition that is always false. <br>The symbol ⊥ may also refer to [[perpendicular]]&nbsp;lines.
| scope"row" align="center" |<div style="font-size:90%;">The proposition <math>\bot \wedge P</math> is always false since at least one of the two is unconditionally false.</div>
| ⊥(''A'') ⇒ ''A'' is always false.
| style="text-align:left;font-family:monospace" |U+22A5<br /><br />U+25A1<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8869;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;perp;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |<math>\bot</math>\bot
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∀<br />()</div>
! scope"row" align="center" |<div style="font-size:200%;">∀<br />()</div>
| style="text-align:left;font-family:monospace" |U+2200<br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8704;
&amp;forall;<br /><br /><br />
| style="text-align:left;font-family:monospace" |<math>\forall</math>\forall<br /><br /><br />
||[[universal quantification]]
||[[universal quantification]]
|for all; for any; for each
|given any, for all, for every, for each, for any
|[[first-order logic]]
|[[first-order logic]]
|{{math|∀&nbsp;''x'':&nbsp;''P''(''x'')}} or {{math|(''x'')&nbsp;''P''(''x'')}} means ''P''(''x'') is true for all ''x''.
|<math>\forall x </math>&nbsp;<math>P(x) </math> or<br> <math>(x) </math>&nbsp;<math>P(x) </math> says “given any <math>x </math>, <math>x </math> has property <math>P</math>.
|<math>\forall n \isin \mathbb{N}: n^2 \geq n.</math>
| scope"row" align="center" |<div style="font-size:90%;"><math>\forall n \isin \mathbb{N}: n^2 \geq n.</math></div>
| style="text-align:left;font-family:monospace" |U+2200<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8704;<br /><br />
| style="text-align:left;font-family:monospace" |&amp;forall;<br /><br />
| style="text-align:left;font-family:monospace" |<math>\forall</math>\forall
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∃</div>
! scope"row" align="center" |<div style="font-size:200%;">∃</div>
||[[existential quantification]]
|there exists
|[[first-order logic]]
|{{math|∃&nbsp;''x'': ''P''(''x'')}} means there is at least one ''x'' such that ''P''(''x'') is true.
|<math>\exists n \isin \mathbb{N}:</math> ''n'' is even.
| style="text-align:left;font-family:monospace" |U+2203
| style="text-align:left;font-family:monospace" |U+2203
| style="text-align:left;font-family:monospace" |&amp;#8707;
| style="text-align:left;font-family:monospace" |&amp;#8707;
&amp;exist;
| style="text-align:left;font-family:monospace" |&amp;exist;
| style="text-align:left;font-family:monospace" |<math>\exists</math>\exists
| style="text-align:left;font-family:monospace" |<math>\exists</math>\exists
||[[existential quantification]]
|there exists, for some
|[[first-order logic]]
|<math>\exists x </math>&nbsp;<math>P(x) </math> says “there exists an <math>x </math> (at least one) such that <math>x</math> has property <math>P</math>.”
| scope"row" align="center" |<div style="font-size:90%;"><math>\exists n \isin \mathbb{N}:</math> ''n'' is even.</div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;" class="texhtml">∃!</div>
! scope"row" align="center" |<div style="font-size:200%;">∃!</div>
||[[uniqueness quantification]]
|there exists exactly one
|[[first-order logic]]
|{{math|∃!&nbsp;''x'': ''P''(''x'')}} means there is exactly one ''x'' such that ''P''(''x'') is true.
|<math>\exists! n \isin \mathbb{N}: n+5=2n.</math>
| style="text-align:left;font-family:monospace" |U+2203&nbsp;U+0021
| style="text-align:left;font-family:monospace" |U+2203&nbsp;U+0021
| style="text-align:left;font-family:monospace" |&amp;#8707; &amp;#33;
| style="text-align:left;font-family:monospace" |&amp;#8707; &amp;#33;
&amp;exist;!
| style="text-align:left;font-family:monospace" |&amp;exist;!
| style="text-align:left;font-family:monospace" |<math>\exists !</math>\exists !
| style="text-align:left;font-family:monospace" |<math>\exists !</math>\exists !
||[[uniqueness quantification]]
|-
|there exists ''exactly&nbsp;one''
|-
|[[first-order logic | first-order logic (abbreviation)]]
! scope"row" align="center" |<div style="font-size:200%;">≔<br/>≡<br/>:⇔</div>
|<math>\exists! x</math> <math>P ( x )</math> says “there exists exactly one <math>x </math> such that <math>x </math> has property <math>P</math>.” Only <math>\forall</math> and <math>\exists</math> are part of formal logic.<br> <math>\exists! x</math> <math>P ( x )</math> is an abbreviation for <div style="font-size:86%;"><math>\exists x \forall y(P(y) \leftrightarrow y = x)</math></div>
||[[definition]]
| scope"row" align="center" |<div style="font-size:90%;"><math>\exists! n \isin \mathbb{N}: n+5=2n.</math></div>
|is defined as
|everywhere
|{{math|1=''x''&nbsp;≔ ''y''}} or {{math|''x''&nbsp;≡ ''y''}} means ''x'' is defined to be another name for ''y'' (but note that ≡ can also mean other things, such as [[congruence relation|congruence]]).<br /><br />{{math|''P''&nbsp;:⇔ ''Q''}} means ''P'' is defined to be [[Logical equivalence|logically equivalent]] to ''Q''.
|<math>\cosh x := \frac {e^x + e^{-x}} {2}</math><br /><br />{{math|''A''&nbsp;XOR&nbsp;''B'' :⇔ (''A''&nbsp;∨&nbsp;''B'')&nbsp;∧&nbsp;¬(''A''&nbsp;∧&nbsp;''B'')}}
| style="text-align:left;font-family:monospace" |U+2254 (U+003A&nbsp;U+003D)<br /><br />U+2261<br /><br />U+003A&nbsp;U+229C
| style="text-align:left;font-family:monospace" |&amp;#8788; (&amp;#58; &amp;#61;)
<br />&amp;#8801;<br /><br />&amp;#8860;
| style="text-align:left;font-family:monospace" |&amp;coloneq;
<br />&amp;equiv;<br /><br />&amp;hArr;
| style="text-align:left;font-family:monospace" |<div><math>:=</math>:=


<math>\equiv</math>\equiv<br />

<math>:\Leftrightarrow</math>:\Leftrightarrow
</div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">( )</div>
! scope"row" align="center" |<div style="font-size:200%;">( )</div>
|[[precedence grouping]]
|parentheses; brackets
|everywhere
| Perform the operations inside the parentheses first.
|{{math|1=(8 ÷ 4) ÷ 2&nbsp;= 2 ÷ 2&nbsp;= 1}}, but {{math|1=8 ÷ (4 ÷ 2)&nbsp;= 8 ÷ 2&nbsp;= 4}}.
| style="text-align:left;font-family:monospace" | U+0028&nbsp;U+0029
| style="text-align:left;font-family:monospace" | U+0028&nbsp;U+0029
| style="text-align:left;font-family:monospace" |&amp;#40; &amp;#41;
| style="text-align:left;font-family:monospace" |&amp;#40; &amp;#41;
&amp;lpar;<br> &amp;rpar;
| style="text-align:left;font-family:monospace" |&amp;lpar;

&amp;rpar;
| style="text-align:left;font-family:monospace" |<math>(~)</math> ( )
| style="text-align:left;font-family:monospace" |<math>(~)</math> ( )
|[[precedence grouping]]
|parentheses; brackets
|almost all logic syntaxes, as well as metalanguage
| Perform the operations inside the parentheses&nbsp;first.
| scope"row" align="center" |<div style="font-size:90%;">{{math|1=(8 ÷ 4) ÷ 2&nbsp;= 2 ÷ 2&nbsp;= 1}}, but {{math|1=8 ÷ (4 ÷ 2)&nbsp;= 8 ÷ 2&nbsp;= 4}}.</div>
|-
! scope"row" align="center" |<div style="font-size:200%;"><math>\mathbb{D}</math></div>
| style="text-align:left;font-family:monospace" |U+1D53B
| style="text-align:left;font-family:monospace" |&amp;#120123;
&amp;Dopf;
| style="text-align:left;font-family:monospace" |\mathbb{D}
||[[domain of discourse]]
|domain of discourse
|[[metalanguage | metalanguage (first-order logic semantics)]]
|
| scope"row" align="center" |<div style="font-size:90%;"><math>\mathbb D\mathbb :\mathbb R</math></div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⊢</div>
! scope"row" align="center" |<div style="font-size:200%;">⊢</div>
||[[Turnstile (symbol)|turnstile]]
|[[Logical consequence|proves]]
|[[propositional logic]], [[first-order logic]]
|''x'' ⊢ ''y'' means ''x'' proves (syntactically entails) ''y''
| (''A'' → ''B'') ⊢ (¬''B'' → ¬''A'')
| style="text-align:left;font-family:monospace" |U+22A2
| style="text-align:left;font-family:monospace" |U+22A2
| style="text-align:left;font-family:monospace" |&amp;#8866;
| style="text-align:left;font-family:monospace" |&amp;#8866;
&amp;vdash;
| style="text-align:left;font-family:monospace" |&amp;vdash;
| style="text-align:left;font-family:monospace" |<math>\vdash</math>\vdash
| style="text-align:left;font-family:monospace" |<math>\vdash</math>\vdash
||[[Turnstile (symbol)|turnstile]]
|[[Logical consequence|syntactically entails (proves)]]
|[[metalanguage | metalanguage (metalogic)]]
|<math>A \vdash B </math> says “<math>B</math> is<br> a theorem of <math>A</math>”.<br> In other words,<br> <math>A</math> proves <math>B</math> via a deductive system.
| scope"row" align="center" |<div style="font-size:90%;"><math>(A \rightarrow B) \vdash (\lnot B \rightarrow \lnot A) </math><br> (eg. by using [[natural deduction]])</div>
|-
|-
! scope"row" align="center" | <div style="font-size:200%;">⊨</div>
! scope"row" align="center" | <div style="font-size:200%;">⊨</div>
||[[double turnstile]]
|[[Logical consequence|models]]
|[[propositional logic]], [[first-order logic]]
|''x'' ⊨ ''y'' means ''x'' models (semantically entails) ''y''
| (''A'' → ''B'') ⊨ (¬''B'' → ¬''A'')
| style="text-align:left;font-family:monospace" |U+22A8
| style="text-align:left;font-family:monospace" |U+22A8
| style="text-align:left;font-family:monospace" |&amp;#8872;
| style="text-align:left;font-family:monospace" |&amp;#8872;
&amp;vDash;
| style="text-align:left;font-family:monospace" |&amp;vDash;
| style="text-align:left;font-family:monospace" |<math>\vDash</math>\vDash, \models
| style="text-align:left;font-family:monospace" |<math>\vDash</math>\vDash, \models
||[[double turnstile]]
|[[Double turnstile|semantically entails]]
|[[metalanguage | metalanguage (metalogic)]]
|<math>A \vDash B </math> says<br> “in every [[Structure (mathematical logic)|model]],<br> it is not the case that <math>A</math> is true and <math>B</math> is false”.
| scope"row" align="center" |<div style="font-size:90%;"><math>(A \rightarrow B) \vDash (\lnot B \rightarrow \lnot A) </math><br> (eg. by using [[truth tables]])</div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">≡<br />⟚<br />⇔</div>
|}
| style="text-align:left;font-family:monospace" |U+2261<br /><br />U+27DA<br /><br />U+21D4

| style="text-align:left;font-family:monospace" |&amp;#8801;
==Advanced and rarely used logical symbols==
—<br />&amp;#8660;
<!--sum1 plz make a table 4 this, and also some copy editing i am horrible at writing anything that does not look like P&Q...-->
&amp;equiv;
These symbols are sorted by their Unicode value:
{| class="wikitable"
&amp;hArr;
|- bgcolor="#a0e0a0"
| style="text-align:left;font-family:monospace" |<math>\equiv</math>\equiv<br /><br /><br /><br /><math>\Leftrightarrow</math>\Leftrightarrow
! scope="col" |Symbol
|[[logical equivalence]]
! scope="col" |Name
|is logically equivalent to
! scope="col" |Read as
|[[metalanguage | metalanguage (metalogic)]]
! scope="col" |Category
|It’s when <math>A \vDash B</math> and <math>B \vDash A</math>. Whether a symbol means a [[material biconditional]] or a [[logical equivalence]], depends on the author’s style.
! scope="col" |Explanation
| scope"row" align="center" |<div style="font-size:90%;"><math>(A \rightarrow B) \equiv (\lnot A \lor B)</math></div>
!Examples
!Unicode<br />value<br />(hexadecimal)
!HTML<br />value<br />(decimal)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |[[LaTeX]]<br />symbol
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">̅</div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+22AC
|[[Overline|COMBINING OVERLINE]]
|
|
|used format for denoting [[Gödel numbering|Gödel numbers]].
denoting negation used primarily in electronics.
|using HTML style "4̅" is a shorthand for the standard numeral "SSSS0".
"<span style="text-decoration: overline">A ∨ B</span>" says the Gödel number of "(A ∨ B)".
"<span style="text-decoration: overline">A ∨ B</span>" is the same as "¬(A ∨ B)".
|U+0305
|
|
|
|style="text-align:left;font-family:monospace" |⊬\nvdash
|
|
|does not syntactically entail (does not prove)
|[[metalanguage | metalanguage (metalogic)]]
|<math>A \nvdash B </math> says “<math>B</math> is<br> not a theorem of <math>A</math>”.<br> In other words,<br> <math>B</math> is not derivable from <math>A</math> via a deductive system.
| scope"row" align="center" |<div style="font-size:90%;"><math>A \lor B \nvdash A \wedge B </math></div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">↑<br><nowiki>|</nowiki></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+22AD
|UPWARDS ARROW<br>VERTICAL LINE
|
|
|[[Sheffer stroke]], the sign for the NAND operator (negation of conjunction).
|
|U+2191<br>U+007C
|
|
|
|style="text-align:left;font-family:monospace" |⊭\nvDash
|
|
|does not semantically entail
|[[metalanguage | metalanguage (metalogic)]]
|<math>A \nvDash B </math> says “<math>A</math> does not guarantee the truth of <math>B</math>&nbsp;”.<br> In other words,<br> <math>A</math> does not make <math>B</math> true.
| scope"row" align="center" |<div style="font-size:90%;"><math>A \lor B \nvDash A \wedge B </math></div>
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+25A1
|DOWNWARDS ARROW
|
|
|[[Peirce arrow|Peirce Arrow]], the sign for the NOR operator (negation of disjunction).
|
|U+2193
|
|
|
|
| style="text-align:left;font-family:monospace" |<math>\Box</math>\Box
|[[Modal logic#Modal_logics_in_philosophy|necessity (in a model)]]
|box; it is necessary that
|[[modal logic]]
|modal operator for “it&nbsp;is&nbsp;necessary&nbsp;that”<br>in [[modal logic|alethic logic]], “it&nbsp;is&nbsp;provable&nbsp;that”<br>in [[provability logic]], “it&nbsp;is&nbsp;obligatory&nbsp;that”<br>in [[deontic logic]], “it&nbsp;is&nbsp;believed&nbsp;that”<br>in [[doxastic logic]].
| scope"row" align="center" |<div style="font-size:90%;"><math>\Box \forall x P(x)</math> says “it is necessary that everything has property <math>P</math>”</div>
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+25C7
|CIRCLED DOT OPERATOR
|
|
|the sign for the XNOR operator (negation of exclusive disjunction).
|
|U+2299
|
|
|
|<math>\odot</math>\odot
| style="text-align:left;font-family:monospace" |<math>\Diamond</math>\Diamond
|[[Modal logic#Modal_logics_in_philosophy|possibility (in a model)]]
|diamond;<br />it is possible that
|[[modal logic]]
|modal operator for “it&nbsp;is&nbsp;possible&nbsp;that”, (in most modal logics it is defined as “¬□¬”, “it is not necessarily not”).
| scope"row" align="center" |<div style="font-size:90%;"><math>\Diamond \exists x P(x)</math> says “it is possible that something has property <math>P</math>”</div>
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+2234
|[[Complement (set theory)|COMPLEMENT]]
|
|
|
|
|U+2201
|
|
|
|style="text-align:left;font-family:monospace" |∴\therefore
|[[Therefore sign|therefore]]
|[[Therefore sign|therefore]]
|[[metalanguage]]
|abbreviation for “therefore”.
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|style="text-align:left;font-family:monospace" |U+2235
|THERE DOES NOT EXIST
|
|
|strike out existential quantifier, same as "¬∃"
|
|U+2204
|
|
|
|style="text-align:left;font-family:monospace" |∵\because
|[[Therefore sign#Similar signs|because]]
|[[Therefore sign#Similar signs|because]]
|[[metalanguage]]
|abbreviation for “because”.
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
! scope"row" align="center" |<div style="font-size:200%;">≔<br />≜<br />≝</div>
| style="text-align:left;font-family:monospace" |U+2254<br /><br />U+225C<br /><br />U+225D
|[[Therefore sign|THEREFORE]]
| style="text-align:left;font-family:monospace" |&amp;#8788;
|[[Therefore sign|Therefore]]
&amp;coloneq;<br /><br /><br /><br /><br />
|
| style="text-align:left;font-family:monospace" |<br /><br /><div><math>:=</math>:=<br /><br /><math>\triangleq</math>\triangleq<br /><br />
|
<math> \stackrel{\scriptscriptstyle \mathrm{def}}{=}</math><br />\stackrel{
|

|U+2234
<nowiki>\scriptscriptstyle \mathrm{def}}{=}</nowiki>
|
</div>
|
|[[definition]]
|∴\therefore
|is defined as
|[[metalanguage]]
|<math>a:=b </math> means "from now on, <math>a</math> is defined to be another name for <math>b</math>." This is a statement in the metalanguage, not the object language. The notation <math>a \equiv b </math> may occasionally be seen in physics, meaning the same as <math>a:=b </math>.
| scope"row" align="center" |<div style="font-size:90%;"><math>\cosh x := \frac {e^x + e^{-x}} {2}</math></div>
|}

==Advanced or rarely used logical symbols==
<!--sum1 plz make a table 4 this, and also some copy editing i am horrible at writing anything that does not look like P&Q...-->
The following symbols are either advanced and context-sensitive or very rarely used:
{| class="wikitable"
! scope="col" |Symbol
!Unicode<br />value<br />(hexadecimal)
!HTML<br />value<br />(decimal)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |[[LaTeX]]<br />symbol
! scope="col" |Logic Name
! scope="col" |Read as
! scope="col" |Category
! scope="col" |Explanation
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+297D
|[[Therefore sign#Related%20signs|BECAUSE]]
|because
|
|
|
|
|\strictif
|
|right fish tail
|U+2235
|
|
|
|
|
|Sometimes used for “relation”, also used for denoting various ad hoc relations (for example, for denoting “witnessing” in the context of [[Rosser's trick]]). The fish hook is also used as strict implication by C.I.Lewis <math> p </math> ⥽ <math> q \equiv \Box(p\rightarrow q)</math>.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
! scope"row" align="center" |<div style="font-size:200%;">̅</div>
|U+0305
|MODELS
|
|
|
|
|is a [[Model (logic)|model]] of (or "is a [[Valuation (logic)|valuation]] satisfying")
|
|U+22A7
|
|
|[[Overline|combining overline]]
|
|
|
|
|Used&nbsp;format&nbsp;for&nbsp;denoting [[Gödel numbering|Gödel&nbsp;numbers]]. Using&nbsp;HTML&nbsp;style “4̅” is an abbreviation for the standard&nbsp;numeral “SSSS0”.
It may also denote a negation (used primarily in electronics).
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;">⌜<br>⌝</div>
|U+231C<br>U+231D
|TRUE
|is true of
|
|
|
|
|\ulcorner
|
\urcorner
|U+22A8
|top left corner<br>top right corner
|
|
|
|
|
|Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions;<ref>[[Willard Van Orman Quine|Quine, W.V.]] (1981): ''Mathematical Logic'', §6</ref> also used for denoting [[Gödel number]];<ref>{{citation|last=Hintikka|first=Jaakko|title=The Principles of Mathematics Revisited|url=https://books.google.com/books?id=JHBnE0EQ6VgC&pg=PA113|page=113|year=1998|publisher=Cambridge University Press|isbn=9780521624985}}.</ref> for example “⌜G⌝” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they are not symmetrical in some fonts. In some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode.)
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+2204
|DOES NOT PROVE
|
|
|
|
|\nexists
|negated ⊢, the sign for "does not prove"
|there does not exist
|''T'' ⊬ ''P'' says "''P'' is not a theorem of ''T''"
|U+22AC
|
|
|
|
|
|Strike out existential quantifier. “¬∃” is recommended instead. {{By whom|date=September 2024}}
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
! scope"row" align="center" |<div style="font-size:200%;">↑<br><nowiki>|</nowiki></div>
|U+2191<br>U+007C
|NOT TRUE
|is not true of
|
|
|
|
|
|
|upwards arrow<br>vertical line
|U+22AD
|
|
|
|
|
|[[Sheffer stroke]],<br>the sign for the NAND operator (negation of conjunction).
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+2193
|DAGGER
|it is true that ...
|
|
|Affirmation operator
|
|
|U+2020
|
|
|downwards arrow
|
|
|
|
|[[Peirce arrow|Peirce Arrow]], <br>a sign for the NOR operator (negation of disjunction).
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊼</div>
!scope"row" align="center" |<div style="font-size:200%;">⊼</div>
|U+22BC
|NAND
|
|
|
|
|NAND operator
|
|U+22BC
|
|
|NAND
|
|
|
|
|A new symbol made specifically for the NAND operator.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊽</div>
!scope"row" align="center" |<div style="font-size:200%;">⊽</div>
|NOR
|
|
|NOR operator
|
|U+22BD
|U+22BD
|
|
|
|
|
|
|-
|NOR
!scope"row" align="center" |<div style="font-size:200%;">◇</div>
|WHITE DIAMOND
|
|
|modal operator for "it is possible that", "it is not necessarily not" or rarely "it is not probably not" (in most modal logics it is defined as "¬◻¬")
|
|U+25C7
|
|
|
|
|
|A new symbol made specifically for the NOR operator.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+2299
|STAR OPERATOR
|
|
|
|
|\odot
|usually used for ad-hoc operators
|circled dot operator
|
|U+22C6
|
|
|
|
|
|A sign for the XNOR operator (material biconditional and XNOR are the same operation).
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊥<br>↓</div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+27DB
|[[Up tack|UP TACK]]<br>DOWNWARDS ARROW
|
|
|
|
|Webb-operator or Peirce arrow, the sign for [[Logical NOR|NOR]]. Confusingly, "⊥" is also the sign for contradiction or absurdity.
|
|U+22A5<br>U+2193
|
|
|left and right tack
|
|
|
|
|“Proves and is proved by”.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+22A7
|REVERSED NOT SIGN
|
|
|
|
|
|
|models
|
|U+2310
|
|
|
|
|
|“Is a [[Model (logic)|model]] of” or “is a [[Valuation (logic)|valuation]] satisfying”.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⌜<br>⌝</div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+22A9
|TOP LEFT CORNER<br>TOP RIGHT CORNER
|
|
|
|
|corner quotes, also called "Quine quotes"; for quasi-quotation, i.e. quoting specific context of unspecified ("variable") expressions;<ref>[[Willard Van Orman Quine|Quine, W.V.]] (1981): ''Mathematical Logic'', §6</ref> also used for denoting [[Gödel number]];<ref>{{citation|last=Hintikka|first=Jaakko|title=The Principles of Mathematics Revisited|url=https://books.google.com/books?id=JHBnE0EQ6VgC&pg=PA113|page=113|year=1998|publisher=Cambridge University Press|isbn=9780521624985}}.</ref> for example "⌜G⌝" denotes the Gödel number of G. (Typographical note: although the quotes appears as a "pair" in unicode (231C and 231D), they are not symmetrical in some fonts. And in some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode. )
|
|
|forces
|U+231C<br>U+231D
|
|
|
|
|One of this symbol’s uses is to mean “truthmakes” in the truthmaker theory of truth. It is also used to mean “forces” in the set theory method of [[forcing (mathematics) | forcing]].
|\ulcorner
\urcorner
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">◻<br>□</div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+27E1
|WHITE MEDIUM SQUARE<br>WHITE SQUARE
|
|
|
|
|modal operator for "it is necessary that" (in [[modal logic]]), or "it is provable that" (in [[provability logic]]), or "it is obligatory that" (in [[deontic logic]]), or "it is believed that" (in [[doxastic logic]]); also as [[Clause (logic)#Empty clauses|empty clause]] (alternatives: <math>\empty</math> and ⊥)
|
|
|white concave-sided diamond
|U+25FB<br>U+25A1
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟛</div>
|LEFT AND RIGHT TACK
|
|semantic equivalent
|
|
|U+27DB
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟡</div>
|WHITE CONCAVE-SIDED DIAMOND
|never
|never
|modal operator
|modal operator
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟢</div>
|U+27E2
|
|
|U+27E1
|
|
|
|
|white concave-sided diamond with leftwards tick
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟢</div>
|WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
|was never
|was never
|modal operator
|modal operator
|
|
|U+27E2
|
|
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⟣</div>
!scope"row" align="center" |<div style="font-size:200%;">⟣</div>
|WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
|will never be
|modal operator
|
|
|U+27E3
|U+27E3
|
|
|
|
|
|
|white concave-sided diamond with rightwards tick
|-
|will never be
!scope"row" align="center" |<div style="font-size:200%;">□</div>
|WHITE SQUARE
|always
|modal operator
|modal operator
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟤</div>
|U+25A4
|
|
|U+25A1
|
|
|
|
|white square with leftwards tick
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟤</div>
|WHITE SQUARE WITH LEFTWARDS TICK
|was always
|was always
|modal operator
|modal operator
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟥</div>
|U+25A5
|
|
|U+25A4
|
|
|
|
|white square with rightwards tick
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟥</div>
|WHITE SQUARE WITH RIGHTWARDS TIC
|will always be
|will always be
|modal operator
|modal operator
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⋆</div>
|U+22C6
|
|
|U+25A5
|
|
|
|
|star operator
|
|
|
|May sometimes be used for ad-hoc operators.
|-
|-
!scope"row" align="center" |<div style="font-size:200%;"></div>
!scope"row" align="center" |<div style="font-size:200%;"></div>
|U+2310
|RIGHT FISH TAIL
|
|
|
|
|sometimes used for "relation", also used for denoting various ad hoc relations (for example, for denoting "witnessing" in the context of [[Rosser's trick]]) The fish hook is also used as strict implication by C.I.Lewis <math> p </math> ⥽ <math> q \equiv \Box(p\rightarrow q)</math>, the corresponding LaTeX macro is \strictif. [https://www.fileformat.info/info/unicode/char/297d/index.htm See here] for an image of glyph. Added to Unicode 3.2.0.
|
|
|reversed not sign
|U+297D
|
|
|
|
Line 582: Line 484:
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⨇</div>
!scope"row" align="center" |<div style="font-size:200%;">⨇</div>
|U+2A07
|TWO LOGICAL AND OPERATOR
|
|
|
|
|
|
|two logical AND operator
|
|U+2A07
|
|
|
|
|
|
|}
|}

== Usage in various countries ==
=== Poland and Germany ===
{{As of|2014}} in Poland, the [[universal quantifier]] is sometimes written <math>\wedge</math>, and the [[existential quantifier]] as <math>\vee</math>.<ref>{{cite web|url=https://pl.wikipedia.org/enwiki/w/index.php?title=Kwantyfikator_og%C3%B3lny&oldid=50508538|title=Kwantyfikator ogólny|date=2 October 2017|via=Wikipedia}}{{Circular reference|date=August 2021}}</ref><ref>{{cite web|url=https://pl.wikipedia.org/enwiki/w/index.php?title=Kwantyfikator_egzystencjalny&oldid=44737850|title=Kwantyfikator egzystencjalny|date=23 January 2016|via=Wikipedia}}{{Circular reference|date=August 2021}}</ref> The same applies for [[Germany]].<ref>{{cite web|url=https://de.wikipedia.org/enwiki/w/index.php?title=Quantor&oldid=173159978|title=Quantor|date=21 January 2018|via=Wikipedia}}{{Circular reference|date=August 2021}}</ref><ref>Hermes, Hans. Einführung in die mathematische Logik: klassische Prädikatenlogik. Springer-Verlag, 2013.</ref>

=== Japan ===
The ⇒ symbol is often used in text to mean "result" or "conclusion", as in "We examined whether to sell the product ⇒ We will not sell it". Also, the → symbol is often used to denote "changed to", as in the sentence "The interest rate changed. March 20% → April 21%".


==See also==
==See also==
{{Portal|Philosophy}}
{{Portal|Philosophy}}
* [[Glossary of logic]]
* [[Józef Maria Bocheński]]
* [[Józef Maria Bocheński]]
* [[List of notation used in Principia Mathematica]]
* [[List of notation used in Principia Mathematica]]
Line 626: Line 521:
{{Common logical symbols}}
{{Common logical symbols}}
{{Logic}}
{{Logic}}
{{Mathematical symbols notation language}}
{{MathematicalSymbolsNotationLanguage}}


[[Category:Mathematical notation|*]]
[[Category:Mathematical notation|*]]

Latest revision as of 18:48, 13 December 2024

In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents,[1] and the LaTeX symbol.

Basic logic symbols

[edit]
Symbol Unicode
value
(hexadecimal)
HTML
codes
LaTeX
symbol
Logic Name Read as Category Explanation Examples


U+21D2

U+2192

U+2283
&#8658;
&#8594;
&#8835;

&rArr;
&rarr;
&sup;

\Rightarrow
\implies
\to or \rightarrow
\supset
material conditional (material implication) implies,
if P then Q,
it is not the case that P and not Q
propositional logic, Boolean algebra, Heyting algebra is false when A is true and B is false but true otherwise.

may mean the same as
(the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

may mean the same as (the symbol may also mean superset).
is true, but is in general false
(since x could be −2).


U+21D4

U+2194

U+2261
&#8660;
&#8596;
&#8801;

&hArr;
&LeftRightArrow;
&equiv;

\Leftrightarrow
\iff
\leftrightarrow
\equiv
material biconditional (material equivalence) if and only if, iff, xnor propositional logic, Boolean algebra is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
¬
~
!
U+00AC

U+007E

U+0021
&#172;
&#732;
&#33;

&not;
&tilde;
&excl;

\lnot or \neg

\sim


negation not propositional logic, Boolean algebra The statement is true if and only if A is false.

A slash placed through another operator is the same as placed in front.


·
&
U+2227

U+00B7

U+0026
&#8743;
&#183;
&#38;

&and;
&middot;
&amp;

\wedge or \land
\cdot

\&[2]
logical conjunction and propositional logic, Boolean algebra The statement A ∧ B is true if A and B are both true; otherwise, it is false.
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.

+
U+2228

U+002B

U+2225
&#8744;
&#43;
&#8741;

&or;
&plus;
&parallel;

\lor or \vee



\parallel
logical (inclusive) disjunction or propositional logic, Boolean algebra The statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false.
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.




U+2295

U+22BB

U+21AE

U+2262
&#8853;
&#8891;
&#8622;
&#8802;

&oplus;
&veebar;

&nequiv;

\oplus

\veebar



\not\equiv
exclusive disjunction xor,
either ... or ... (but not both)
propositional logic, Boolean algebra The statement is true when either A or B, but not both, are true. This is equivalent to
¬(A ↔ B), hence the symbols and .
is always true and is always false (if vacuous truth is excluded).


T
1


U+22A4





&#8868;


&top;

\top



true (tautology) top, truth, tautology, verum, full clause propositional logic, Boolean algebra, first-order logic denotes a proposition that is always true.
The proposition is always true since at least one of the two is unconditionally true.


F
0


U+22A5





&#8869;

&perp;



\bot



false (contradiction) bottom, falsity, contradiction, falsum, empty clause propositional logic, Boolean algebra, first-order logic denotes a proposition that is always false.
The symbol ⊥ may also refer to perpendicular lines.
The proposition is always false since at least one of the two is unconditionally false.

()
U+2200


&#8704;

&forall;


\forall


universal quantification given any, for all, for every, for each, for any first-order logic   or
  says “given any , has property .”
U+2203 &#8707;

&exist;

\exists existential quantification there exists, for some first-order logic   says “there exists an (at least one) such that has property .”
n is even.
∃!
U+2203 U+0021 &#8707; &#33;

&exist;!

\exists ! uniqueness quantification there exists exactly one first-order logic (abbreviation) says “there exists exactly one such that has property .” Only and are part of formal logic.
is an abbreviation for
( )
U+0028 U+0029 &#40; &#41;

&lpar;
&rpar;

( ) precedence grouping parentheses; brackets almost all logic syntaxes, as well as metalanguage Perform the operations inside the parentheses first.
(8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4.
U+1D53B &#120123;

&Dopf;

\mathbb{D} domain of discourse domain of discourse metalanguage (first-order logic semantics)
U+22A2 &#8866;

&vdash;

\vdash turnstile syntactically entails (proves) metalanguage (metalogic) says “ is
a theorem of ”.
In other words,
proves via a deductive system.

(eg. by using natural deduction)
U+22A8 &#8872;

&vDash;

\vDash, \models double turnstile semantically entails metalanguage (metalogic) says
“in every model,
it is not the case that is true and is false”.

(eg. by using truth tables)


U+2261

U+27DA

U+21D4
&#8801;


&#8660; &equiv; — &hArr;

\equiv



\Leftrightarrow
logical equivalence is logically equivalent to metalanguage (metalogic) It’s when and . Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
U+22AC ⊬\nvdash does not syntactically entail (does not prove) metalanguage (metalogic) says “ is
not a theorem of ”.
In other words,
is not derivable from via a deductive system.
U+22AD ⊭\nvDash does not semantically entail metalanguage (metalogic) says “ does not guarantee the truth of  ”.
In other words,
does not make true.
U+25A1 \Box necessity (in a model) box; it is necessary that modal logic modal operator for “it is necessary that”
in alethic logic, “it is provable that”
in provability logic, “it is obligatory that”
in deontic logic, “it is believed that”
in doxastic logic.
says “it is necessary that everything has property
U+25C7 \Diamond possibility (in a model) diamond;
it is possible that
modal logic modal operator for “it is possible that”, (in most modal logics it is defined as “¬□¬”, “it is not necessarily not”).
says “it is possible that something has property
U+2234 ∴\therefore therefore therefore metalanguage abbreviation for “therefore”.
U+2235 ∵\because because because metalanguage abbreviation for “because”.


U+2254

U+225C

U+225D
&#8788;

&coloneq;






:=

\triangleq


\stackrel{

\scriptscriptstyle \mathrm{def}}{=}

definition is defined as metalanguage means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as .

Advanced or rarely used logical symbols

[edit]

The following symbols are either advanced and context-sensitive or very rarely used:

Symbol Unicode
value
(hexadecimal)
HTML
value
(decimal)
HTML
entity
(named)
LaTeX
symbol
Logic Name Read as Category Explanation
U+297D \strictif right fish tail Sometimes used for “relation”, also used for denoting various ad hoc relations (for example, for denoting “witnessing” in the context of Rosser's trick). The fish hook is also used as strict implication by C.I.Lewis .
̅
U+0305 combining overline Used format for denoting Gödel numbers. Using HTML style “4̅” is an abbreviation for the standard numeral “SSSS0”.

It may also denote a negation (used primarily in electronics).


U+231C
U+231D
\ulcorner

\urcorner

top left corner
top right corner
Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions;[3] also used for denoting Gödel number;[4] for example “⌜G⌝” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they are not symmetrical in some fonts. In some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode.)
U+2204 \nexists there does not exist Strike out existential quantifier. “¬∃” is recommended instead. [by whom?]

|
U+2191
U+007C
upwards arrow
vertical line
Sheffer stroke,
the sign for the NAND operator (negation of conjunction).
U+2193 downwards arrow Peirce Arrow,
a sign for the NOR operator (negation of disjunction).
U+22BC NAND A new symbol made specifically for the NAND operator.
U+22BD NOR A new symbol made specifically for the NOR operator.
U+2299 \odot circled dot operator A sign for the XNOR operator (material biconditional and XNOR are the same operation).
U+27DB left and right tack “Proves and is proved by”.
U+22A7 models “Is a model of” or “is a valuation satisfying”.
U+22A9 forces One of this symbol’s uses is to mean “truthmakes” in the truthmaker theory of truth. It is also used to mean “forces” in the set theory method of forcing.
U+27E1 white concave-sided diamond never modal operator
U+27E2 white concave-sided diamond with leftwards tick was never modal operator
U+27E3 white concave-sided diamond with rightwards tick will never be modal operator
U+25A4 white square with leftwards tick was always modal operator
U+25A5 white square with rightwards tick will always be modal operator
U+22C6 star operator May sometimes be used for ad-hoc operators.
U+2310 reversed not sign
U+2A07 two logical AND operator

See also

[edit]

References

[edit]
  1. ^ "Named character references". HTML 5.1 Nightly. W3C. Retrieved 9 September 2015.
  2. ^ Although this character is available in LaTeX, the MediaWiki TeX system does not support it.
  3. ^ Quine, W.V. (1981): Mathematical Logic, §6
  4. ^ Hintikka, Jaakko (1998), The Principles of Mathematics Revisited, Cambridge University Press, p. 113, ISBN 9780521624985.

Further reading

[edit]
  • Józef Maria Bocheński (1959), A Précis of Mathematical Logic, trans., Otto Bird, from the French and German editions, Dordrecht, South Holland: D. Reidel.
[edit]