Absorption (electromagnetic radiation): Difference between revisions
Add a section on earth surface overview |
No edit summary |
||
(293 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Physical process by which matter takes up a photon's energy and stores it}} |
|||
In [[physics]], '''absorption''' is the process by which the [[energy]] of a [[photon]] is taken up by another entity, for example, by an [[atom]] whose [[Electron shell#Valence shell|valence electrons]] make transition between two [[electron]]ic [[energy level]]s. The photon is destroyed in the process. The absorbed energy may be re-emitted as [[radiant energy]] or transformed into heat energy. The absorption of light during [[wave propagation]] is often called [[attenuation (electromagnetic radiation)|attenuation]]. |
|||
{{More footnotes|date=November 2010}} |
|||
[[File:Spectroscopy overview.svg|thumb|upright=2|right|An overview of absorption of [[electromagnetic radiation]]. This example shows the general principle using [[visible spectrum|visible light]] as a specific example. A white [[light source]]—emitting light of multiple [[wavelength]]s—is focused on a sample (the pairs of [[complementary color]]s are indicated by the yellow dotted lines). Upon striking the sample, [[photon]]s that match the [[energy gap]] of the [[molecule]]s present (green light in this example) are ''absorbed'', exciting the molecules. Other photons are scattered (not shown here) or transmitted unaffected; if the radiation is in the visible region (400–700 nm), the transmitted light appears as the complementary color (here red). By recording the [[attenuation]] of light for various wavelengths, an [[absorption spectroscopy|absorption spectrum]] can be obtained.]] |
|||
⚫ | |||
In [[physics]], '''absorption''' of [[electromagnetic radiation]] is how [[matter]] (typically [[electrons]] bound in [[atom]]s) takes up a [[photon]]'s [[energy]]—and so transforms [[radiant energy|electromagnetic energy]] into [[internal energy]] of the absorber (for example, [[thermal energy]]).<ref>{{Cite journal|title=Absorption of electromagnetic radiation|url=http://accessscience.com/content/Absorption-of-electromagnetic-radiation/001600|date=September 2019|first=Christopher S.|last=Baird|journal=AccessScience|publisher=McGraw-Hill|access-date=17 June 2023|doi=10.1036/1097-8542.001600|url-access=subscription}}</ref> |
|||
For most substances, the amount of absorption varies with the [[wavelength]] of the light, leading to the appearance of [[colour]] in [[pigment]]s that absorb some wavelengths but not others. For example, an object that absorbs [[blue]], [[green]] and [[yellow]] light will appear [[red]] when viewed under white light. More precise measurements at many wavelengths allow the identification of a substance via [[absorption spectroscopy]]. |
|||
A notable effect of the absorption of electromagnetic radiation is [[attenuation]] of the radiation; attenuation is the gradual reduction of the [[Intensity (physics)|intensity]] of [[light waves]] as they [[wave propagation|propagate]] through the medium. |
|||
==Earth surface== |
|||
The specific phenomena involving absorption of electromagnetic radiation at the Earth's surface have several important aspects. These phenomena include regulating the temperature of the Earth's crust, surface waters and lower atmosphere. Changes in the earth's crust (e.g. glaciation, [[deforestation]], polar ice melting) will necessarily alter the quantity and wavelength selectivity of electromagnetic absorption at the Earth's surface; correspondingly changes in climate such as [[global warming]] may accompany changes in electomagnetic absorption (or its inverse the [[albedo]]). |
|||
Although the absorption of waves does not usually depend on their intensity (linear absorption), in certain conditions ([[optics]]) the medium's transparency changes by a factor that varies as a function of wave intensity, and [[saturable absorption]] (or nonlinear absorption) occurs. |
|||
== External links == |
|||
*[http://www.spectralcalc.com/ Spectral Calculator] - Fast and accurate online calculation of molecular absorption spectra. |
|||
*[http://www.spectralcalc.com/ Molecular Database Browser] - Browse the HITRAN and GEISA databases. Plot absorption lines by position or intensity. |
|||
==Quantifying absorption== |
|||
{{Main|Mathematical descriptions of opacity}} |
|||
Many approaches can potentially quantify radiation absorption, with key examples following. |
|||
{{physics-stub}} |
|||
{{optics-stub}} |
|||
* The absorption coefficient along with some closely related derived quantities |
|||
* The [[attenuation coefficient]] (NB used infrequently with meaning synonymous with "absorption coefficient"){{citation needed|date=October 2018}} |
|||
* The [[Molar attenuation coefficient]] (also called "molar absorptivity"), which is the absorption coefficient divided by molarity (see also [[Beer–Lambert law]]) |
|||
* The [[mass attenuation coefficient]] (also called "mass extinction coefficient"), which is the absorption coefficient divided by density |
|||
* The [[absorption cross section]] and [[scattering cross-section]], related closely to the absorption and attenuation coefficients, respectively |
|||
* [[Extinction (astronomy)|"Extinction" in astronomy]], which is equivalent to the attenuation coefficient |
|||
* Other measures of radiation absorption, including [[penetration depth]] and [[skin effect]], [[propagation constant]], [[propagation constant#Attenuation constant|attenuation constant]], [[propagation constant#Phase constant|phase constant]], and complex [[wavenumber]], [[Refractive index|complex refractive index]] and [[refractive index#Dispersion and absorption|extinction coefficient]], [[Relative permittivity|complex dielectric constant]], [[electrical resistivity and conductivity]]. |
|||
* Related measures, including [[absorbance]] (also called "optical density") and [[optical depth]] (also called "optical thickness") |
|||
All these quantities measure, at least to some extent, how well a medium absorbs radiation. Which among them practitioners use varies by field and technique, often due simply to the convention. |
|||
==Measuring absorption== |
|||
⚫ | |||
Precise measurements of the absorbance at many wavelengths allow the identification of a substance via [[absorption spectroscopy]], where a sample is illuminated from one side, and the intensity of the light that exits from the sample in every direction is measured. A few examples of absorption are [[ultraviolet–visible spectroscopy]], [[infrared spectroscopy]], and [[X-ray absorption spectroscopy]]. |
|||
==Applications== |
|||
[[File:Openstax Astronomy EM spectrum and atmosphere.jpg|thumb|right|Rough plot of Earth's atmospheric [[transmittance]] (or opacity) to various wavelengths of electromagnetic radiation, including [[visible light]]]] |
|||
Understanding and measuring the absorption of electromagnetic radiation has a variety of applications. |
|||
* In [[radio propagation]], it is represented in [[non-line-of-sight propagation]]. For example, see [[computation of radiowave attenuation in the atmosphere|computation of radio wave attenuation in the atmosphere]] used in satellite link design. |
|||
* In [[meteorology]] and [[climatology]], global and local temperatures depend in part on the absorption of radiation by [[atmospheric gases]] (such as in the [[greenhouse effect]]) and land and ocean surfaces (see [[albedo]]). |
|||
* In [[medicine]], [[X-ray]]s are absorbed to different extents by different tissues ([[bone]] in particular), which is the basis for [[Projectional radiography|X-ray imaging]]. |
|||
* In [[chemistry]] and [[materials science]], different materials and molecules absorb radiation to different extents at different frequencies, which allows for material identification. |
|||
* In [[optics]], sunglasses, colored filters, dyes, and other such materials are designed specifically with respect to which visible wavelengths they absorb, and in what proportions they are in. |
|||
* In [[biology]], photosynthetic organisms require that light of the appropriate wavelengths be absorbed within the active area of [[chloroplast]]s, so that the [[light]] energy can be converted into [[chemical energy]] within sugars and other molecules. |
|||
* In [[physics]], the D-region of Earth's [[ionosphere]] is known to significantly absorb radio signals that fall within the high-frequency electromagnetic spectrum. |
|||
* In nuclear physics, absorption of nuclear radiations can be used for measuring the fluid levels, densitometry or thickness measurements.<ref>{{cite journal|last1=M. Falahati |display-authors=et al|title=Design, modelling and construction of a continuous nuclear gauge for measuring the fluid levels|journal=Journal of Instrumentation|date=2018|volume=13|issue=2|page=02028|doi=10.1088/1748-0221/13/02/P02028|bibcode=2018JInst..13P2028F|s2cid=125779702 }}</ref> |
|||
In scientific literature is known a system of mirrors and lenses that with a laser "can enable any material to absorb all light from a wide range of angles."<ref>{{cite web|url=https://physicsworld.com/a/anti-laser-enables-near-perfect-light-absorption/|title=Anti-laser enables near-perfect light absorption|date=August 31, 2022|publisher=[[Physics World]]}}</ref> |
|||
==See also== |
|||
⚫ | |||
*[[Albedo]] |
|||
*[[Attenuation]] |
|||
*[[Electromagnetic absorption by water]] |
|||
*[[Hydroxyl ion absorption]] |
|||
*[[Optoelectronics]] |
|||
*[[Photoelectric effect]] |
|||
*[[Photosynthesis]] |
|||
*[[Solar cell]] |
|||
*[[Spectral line]] |
|||
*[[Total absorption spectroscopy]] |
|||
*[[Ultraviolet-visible spectroscopy]] |
|||
==References== |
|||
{{Reflist}} |
|||
*{{cite book | last= Thomas | first= Michael E. | title= Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water | journal= Optical Propagation in Linear Media: Atmospheric Gases and Particles | publisher= Oxford University Press, USA | date= January 2006 | pages= 3... (Chapter 1, 2, 7) | url= https://books.google.com/books?id=EEodkQqPGs4C&q=absorption | isbn= 978-0-19-509161-8| bibcode= 2006oplm.book.....T }} |
|||
*{{cite web | author1= ProfHoff, Ken Mellendorf | author2= Vince Calder | title= Reflection and Absorption | work= Physics Archive - Ask a scientist | publisher= [[Argonne National Laboratory]] | date= November 2010 | url= http://www.newton.dep.anl.gov/askasci/phy00/phy00232.htm | access-date= 2010-11-14 | archive-date= 2010-11-21 | archive-url= https://web.archive.org/web/20101121094449/http://www.newton.dep.anl.gov/askasci/phy00/phy00232.htm | url-status= dead }} |
|||
{{Authority control}} |
|||
[[Category:Scattering, absorption and radiative transfer (optics)]] |
[[Category:Scattering, absorption and radiative transfer (optics)]] |
||
[[Category:Electromagnetic radiation]] |
[[Category:Electromagnetic radiation]] |
||
[[Category:Glass physics]] |
|||
[[ |
[[Category:Radiation]] |
||
[[Category:Spectroscopy]] |
|||
⚫ | |||
[[fr:Absorption]] |
|||
[[lt:Šviesos absorbcija]] |
|||
[[nl:Absorptie]] |
|||
[[ja:吸光]] |
|||
[[pl:Absorpcja (optyka)]] |
|||
[[ru:Абсорбция]] |
|||
[[sk:Absorpcia (žiarenie)]] |
|||
[[sl:Absorpcija]] |
|||
[[fi:Absorptio (sähkömagneettinen säteily)]] |
|||
[[uk:Абсорбція]] |
Latest revision as of 16:23, 1 December 2024
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (November 2010) |
In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy).[1]
A notable effect of the absorption of electromagnetic radiation is attenuation of the radiation; attenuation is the gradual reduction of the intensity of light waves as they propagate through the medium.
Although the absorption of waves does not usually depend on their intensity (linear absorption), in certain conditions (optics) the medium's transparency changes by a factor that varies as a function of wave intensity, and saturable absorption (or nonlinear absorption) occurs.
Quantifying absorption
[edit]Many approaches can potentially quantify radiation absorption, with key examples following.
- The absorption coefficient along with some closely related derived quantities
- The attenuation coefficient (NB used infrequently with meaning synonymous with "absorption coefficient")[citation needed]
- The Molar attenuation coefficient (also called "molar absorptivity"), which is the absorption coefficient divided by molarity (see also Beer–Lambert law)
- The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density
- The absorption cross section and scattering cross-section, related closely to the absorption and attenuation coefficients, respectively
- "Extinction" in astronomy, which is equivalent to the attenuation coefficient
- Other measures of radiation absorption, including penetration depth and skin effect, propagation constant, attenuation constant, phase constant, and complex wavenumber, complex refractive index and extinction coefficient, complex dielectric constant, electrical resistivity and conductivity.
- Related measures, including absorbance (also called "optical density") and optical depth (also called "optical thickness")
All these quantities measure, at least to some extent, how well a medium absorbs radiation. Which among them practitioners use varies by field and technique, often due simply to the convention.
Measuring absorption
[edit]The absorbance of an object quantifies how much of the incident light is absorbed by it (instead of being reflected or refracted). This may be related to other properties of the object through the Beer–Lambert law.
Precise measurements of the absorbance at many wavelengths allow the identification of a substance via absorption spectroscopy, where a sample is illuminated from one side, and the intensity of the light that exits from the sample in every direction is measured. A few examples of absorption are ultraviolet–visible spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy.
Applications
[edit]Understanding and measuring the absorption of electromagnetic radiation has a variety of applications.
- In radio propagation, it is represented in non-line-of-sight propagation. For example, see computation of radio wave attenuation in the atmosphere used in satellite link design.
- In meteorology and climatology, global and local temperatures depend in part on the absorption of radiation by atmospheric gases (such as in the greenhouse effect) and land and ocean surfaces (see albedo).
- In medicine, X-rays are absorbed to different extents by different tissues (bone in particular), which is the basis for X-ray imaging.
- In chemistry and materials science, different materials and molecules absorb radiation to different extents at different frequencies, which allows for material identification.
- In optics, sunglasses, colored filters, dyes, and other such materials are designed specifically with respect to which visible wavelengths they absorb, and in what proportions they are in.
- In biology, photosynthetic organisms require that light of the appropriate wavelengths be absorbed within the active area of chloroplasts, so that the light energy can be converted into chemical energy within sugars and other molecules.
- In physics, the D-region of Earth's ionosphere is known to significantly absorb radio signals that fall within the high-frequency electromagnetic spectrum.
- In nuclear physics, absorption of nuclear radiations can be used for measuring the fluid levels, densitometry or thickness measurements.[2]
In scientific literature is known a system of mirrors and lenses that with a laser "can enable any material to absorb all light from a wide range of angles."[3]
See also
[edit]- Absorption spectroscopy
- Albedo
- Attenuation
- Electromagnetic absorption by water
- Hydroxyl ion absorption
- Optoelectronics
- Photoelectric effect
- Photosynthesis
- Solar cell
- Spectral line
- Total absorption spectroscopy
- Ultraviolet-visible spectroscopy
References
[edit]- ^ Baird, Christopher S. (September 2019). "Absorption of electromagnetic radiation". AccessScience. McGraw-Hill. doi:10.1036/1097-8542.001600. Retrieved 17 June 2023.
- ^ M. Falahati; et al. (2018). "Design, modelling and construction of a continuous nuclear gauge for measuring the fluid levels". Journal of Instrumentation. 13 (2): 02028. Bibcode:2018JInst..13P2028F. doi:10.1088/1748-0221/13/02/P02028. S2CID 125779702.
- ^ "Anti-laser enables near-perfect light absorption". Physics World. August 31, 2022.
- Thomas, Michael E. (January 2006). Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water. Oxford University Press, USA. pp. 3... (Chapter 1, 2, 7). Bibcode:2006oplm.book.....T. ISBN 978-0-19-509161-8.
{{cite book}}
:|journal=
ignored (help) - ProfHoff, Ken Mellendorf; Vince Calder (November 2010). "Reflection and Absorption". Physics Archive - Ask a scientist. Argonne National Laboratory. Archived from the original on 2010-11-21. Retrieved 2010-11-14.