Luciferin: Difference between revisions
m Added references |
No edit summary |
||
(9 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Class of light-emitting chemical compounds}} |
|||
{{Expand German|Luciferine|date=November 2014}} |
{{Expand German|Luciferine|date=November 2014}} |
||
[[ |
[[File:Firefly-luciferin-3D-vdW.png|thumb|right|300px|This is a [[space-filling model]] of [[firefly]] '''luciferin'''. Color coding: yellow=[[sulfur]]; blue=[[nitrogen]]; black=[[carbon]]; red=[[oxygen]]; white=[[hydrogen]].]] |
||
'''Luciferin''' ( |
'''Luciferin''' ({{etymology|la|{{wikt-lang|la|lucifer}}|light-bearer}}) is a generic term for the light-emitting [[chemical compound|compound]] found in organisms that generate [[bioluminescence]]. Luciferins typically undergo an [[enzyme]]-catalyzed reaction with [[Oxygen|molecular oxygen]]. The resulting transformation, which usually involves breaking off a molecular fragment, produces an [[excited state]] intermediate that emits light upon decaying to its [[ground state]]. The term may refer to molecules that are substrates for both [[luciferase]]s and [[photoprotein]]s.<ref name="pmid8707056">{{cite journal | vauthors = Hastings JW | title = Chemistries and colors of bioluminescent reactions: a review | journal = Gene | volume = 173 | issue = 1 Spec No | pages = 5–11 | date = 1996 | pmid = 8707056 | doi = 10.1016/0378-1119(95)00676-1 }}</ref> |
||
== Types == |
== Types == |
||
Luciferins are a class of small-molecule [[substrate (biochemistry)|substrates]] that react with oxygen in the presence of a [[luciferase]] (an enzyme) to release [[energy]] in the form of [[light]]. It is not known just how many types of luciferins there are, but some of the better-studied compounds are listed below. |
Luciferins are a class of small-molecule [[substrate (biochemistry)|substrates]] that react with oxygen in the presence of a [[luciferase]] (an enzyme) to release [[energy]] in the form of [[light]]. It is not known just how many types of luciferins there are, but some of the better-studied compounds are listed below. |
||
Because of the chemical diversity of luciferins, there is no clear unifying mechanism of action, except that all require molecular oxygen,<ref name="pmid6358519">{{cite journal| |
Because of the chemical diversity of luciferins, there is no clear unifying mechanism of action, except that all require molecular oxygen,<ref name="pmid6358519">{{cite journal | vauthors = Hastings JW | title = Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems | journal = Journal of Molecular Evolution | volume = 19 | issue = 5 | pages = 309–321 | date = 1983 | pmid = 6358519 | doi = 10.1007/BF02101634 | bibcode = 1983JMolE..19..309H | s2cid = 875590 }}</ref> The variety of luciferins and luciferases, their diverse reaction mechanisms and the scattered phylogenetic distribution indicate that many of them have arisen independently in the course of evolution.<ref name="pmid6358519" /> |
||
=== Firefly === |
=== Firefly === |
||
{{main|Firefly luciferin}} |
{{main|Firefly luciferin}} |
||
[[Image:Firefly luciferin.svg|thumb|200px|This structure of firefly luciferin is reversed (left to right) from the space-filling model shown above]] |
[[Image:Firefly luciferin.svg|thumb|200px|This structure of firefly luciferin is reversed (left to right) from the space-filling model shown above]] |
||
[[Firefly luciferin]] is the luciferin found in many [[Lampyridae]] species. It is the substrate of [[firefly luciferase|beetle luciferases]] ([[Enzyme Commission number|EC]] 1.13.12.7) responsible for the characteristic yellow light emission from fireflies, though can cross-react to produce light with related enzymes from non-luminous species.<ref name="viviani1996">{{cite journal | |
[[Firefly luciferin]] is the luciferin found in many [[Lampyridae]] species, such as ''[[Photinus pyralis|P. pyralis]]''. It is the substrate of [[firefly luciferase|beetle luciferases]] ([[Enzyme Commission number|EC]] 1.13.12.7) responsible for the characteristic yellow light emission from fireflies, though can cross-react to produce light with related enzymes from non-luminous species.<ref name="viviani1996">{{cite journal | vauthors = Viviani VR, Bechara EJ | title = Larval Tenebrio molitor (Coleoptera: Tenebrionidae) Fat Body Extracts Catalyze Firefly D-Luciferin-and ATP-Dependent Chemiluminescence: A Luciferase-like Enzyme | journal = Photochemistry and Photobiology | volume = 63 | issue = 6 | pages = 713–718 | year = 1996 | doi = 10.1111/j.1751-1097.1996.tb09620.x | s2cid = 83498776 }}</ref> The chemistry is unusual, as [[adenosine triphosphate]] (ATP) is required for light emission, in addition to molecular [[oxygen]].<ref name="pmid13363432">{{cite journal | vauthors = Green A, Mcelroy WD | title = Function of adenosine triphosphate in the activation of luciferin | journal = Archives of Biochemistry and Biophysics | volume = 64 | issue = 2 | pages = 257–271 | date = October 1956 | pmid = 13363432 | doi = 10.1016/0003-9861(56)90268-5 }}</ref> |
||
=== Snail === |
=== Snail === |
||
Line 20: | Line 21: | ||
=== Bacterial === |
=== Bacterial === |
||
[[File:Luciferin bacterial.png|thumb|200px|Bacterial luciferin (FMN)]] |
[[File:Luciferin bacterial.png|thumb|200px|Bacterial luciferin (FMN)]] |
||
Bacterial luciferin is two-component system consisting of [[flavin mononucleotide]] and a [[fatty aldehyde]] found in [[bioluminescent bacteria]].<ref>{{Cite journal | |
Bacterial luciferin is two-component system consisting of [[flavin mononucleotide]] and a [[fatty aldehyde]] found in [[bioluminescent bacteria]].<ref>{{Cite journal | vauthors = Madden D, Lidesten BM |date=2001 |title=Bacterial illumination |url=https://medarbetarportalen.gu.se/digitalAssets/1566/1566430_photoen.pdf |journal=Bioscience Explained |volume=1 |issue=1}}</ref> |
||
=== Coelenterazine === |
=== Coelenterazine === |
||
{{main|Coelenterazine}} |
{{main|Coelenterazine}} |
||
[[Image:Coelenterazine.svg|thumb|200px|Coelenterazine]] |
[[Image:Coelenterazine.svg|thumb|200px|Coelenterazine]] |
||
[[Coelenterazine]] is found in [[radiolarian]]s, [[ctenophore]]s, [[cnidarian]]s, [[squid]], [[brittle star]]s, [[copepod]]s, [[chaetognath]]s, fish, and shrimp. It is the prosthetic group in the protein [[aequorin]] responsible for the blue light emission.<ref name="pmid236561">{{cite journal |vauthors=Shimomura O, Johnson FH | title = Chemical nature of bioluminescence systems in coelenterates | journal = |
[[Coelenterazine]] is found in [[radiolarian]]s, [[ctenophore]]s, [[cnidarian]]s, [[squid]], [[brittle star]]s, [[copepod]]s, [[chaetognath]]s, fish, and shrimp. It is the prosthetic group in the protein [[aequorin]] responsible for the blue light emission.<ref name="pmid236561">{{cite journal | vauthors = Shimomura O, Johnson FH | title = Chemical nature of bioluminescence systems in coelenterates | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 72 | issue = 4 | pages = 1546–1549 | date = April 1975 | pmid = 236561 | pmc = 432574 | doi = 10.1073/pnas.72.4.1546 | doi-access = free | bibcode = 1975PNAS...72.1546S }}</ref> |
||
=== Dinoflagellate === |
=== Dinoflagellate === |
||
{{main|Dinoflagellate luciferase}} |
{{main|Dinoflagellate luciferase}} |
||
[[File:Luciferin dinoflagellate.svg|thumb|200px|Luciferin of dinoflagellates (R = H) resp. of euphausiid shrimps (R = OH). The latter is also called ''Component F''.]] |
[[File:Luciferin dinoflagellate.svg|thumb|200px|Luciferin of dinoflagellates (R = H) resp. of euphausiid shrimps (R = OH). The latter is also called ''Component F''.]] |
||
[[Dinoflagellate]] luciferin is a [[chlorophyll]] derivative (i. e. a [[tetrapyrrole]]) and is found in some [[dinoflagellate]]s, which are often responsible for the phenomenon of nighttime [[bioluminescence|glowing waves]] (historically this was called [[phosphorescence]], but is a misleading term). A very similar type of luciferin is found in some types of [[krill|euphausiid shrimp]].<ref>{{cite journal | |
[[Dinoflagellate]] luciferin is a [[chlorophyll]] derivative (i. e. a [[tetrapyrrole]]) and is found in some [[dinoflagellate]]s, which are often responsible for the phenomenon of nighttime [[bioluminescence|glowing waves]] (historically this was called [[phosphorescence]], but is a misleading term). A very similar type of luciferin is found in some types of [[krill|euphausiid shrimp]].<ref>{{cite journal | vauthors = Dunlap JC, Hastings JW, Shimomura O | title = Crossreactivity between the light-emitting systems of distantly related organisms: Novel type of light-emitting compound | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 77 | issue = 3 | pages = 1394–1397 | date = March 1980 | pmid = 16592787 | pmc = 348501 | doi = 10.1073/pnas.77.3.1394 | doi-access = free | bibcode = 1980PNAS...77.1394D }}</ref> |
||
=== Vargulin === |
=== Vargulin === |
||
Line 39: | Line 40: | ||
=== Fungi === |
=== Fungi === |
||
[[File:Fungal luciferin.svg|thumb|100px|right|3-hydroxy hispidin from ''[[Neonothopanus nambi|N. nambi]]'' ]] |
[[File:Fungal luciferin.svg|thumb|100px|right|3-hydroxy hispidin from ''[[Neonothopanus nambi|N. nambi]]'' ]] |
||
[[Foxfire]] is the bioluminescence created by some species of fungi present in decaying wood. While there may be multiple different luciferins within the kingdom of [[fungi]], 3-hydroxy [[hispidin]] was determined to be the luciferin in the [[fruiting bodies]] of several species of fungi, including ''[[Neonothopanus nambi]]'', ''[[Omphalotus olearius]]'', ''[[Omphalotus nidiformis]]'', and ''[[Panellus stipticus]]''.<ref name="purtov2015">{{cite journal |vauthors=Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, Tsarkova AS, Petunin AI, Bondar VS, Rodicheva EK, Medvedeva SE, Oba Y, Arseniev AS, Lukyanov S, |
[[Foxfire]] is the bioluminescence created by some species of fungi present in decaying wood. While there may be multiple different luciferins within the kingdom of [[fungi]], 3-hydroxy [[hispidin]] was determined to be the luciferin in the [[fruiting bodies]] of several species of fungi, including ''[[Neonothopanus nambi]]'', ''[[Omphalotus olearius]]'', ''[[Omphalotus nidiformis]]'', and ''[[Panellus stipticus]]''.<ref name="purtov2015">{{cite journal | vauthors = Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, Tsarkova AS, Petunin AI, Bondar VS, Rodicheva EK, Medvedeva SE, Oba Y, Oba Y, Arseniev AS, Lukyanov S, Gitelson JI, Yampolsky IV | display-authors = 6 | title = The Chemical Basis of Fungal Bioluminescence | journal = Angewandte Chemie | volume = 54 | issue = 28 | pages = 8124–8128 | date = July 2015 | pmid = 26094784 | doi = 10.1002/anie.201501779 }}</ref> |
||
== Usage in science == |
== Usage in science == |
||
⚫ | Luciferin is widely used in science and medicine as a method of [[In vivo imaging|''in vivo'' imaging]], using living organisms to non-invasively detect images and in molecular imaging. The reaction between luciferin substrate paired with the receptor enzyme luciferase produces a catalytic reaction, generating bioluminescence.<ref>{{cite journal | vauthors = Badr CE, Tannous BA | title = Bioluminescence imaging: progress and applications | journal = Trends in Biotechnology | volume = 29 | issue = 12 | pages = 624–633 | date = December 2011 | pmid = 21788092 | pmc = 4314955 | doi = 10.1016/j.tibtech.2011.06.010 }}</ref> This reaction and the luminescence produced is useful for imaging such as detecting tumors from cancer or capable of measuring [[gene expression]]. |
||
{{Unreferenced section|date=August 2022}} |
|||
⚫ | Luciferin is widely used in science and medicine as a method of [[In vivo imaging|''in vivo'' imaging]], using living organisms to non-invasively detect images and in molecular imaging. The reaction between luciferin substrate paired with the receptor enzyme luciferase produces a catalytic reaction, generating bioluminescence.<ref>{{ |
||
== References == |
== References == |
Latest revision as of 20:20, 25 April 2024
You can help expand this article with text translated from the corresponding article in German. (November 2014) Click [show] for important translation instructions.
|
Luciferin (from Latin lucifer 'light-bearer') is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves breaking off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.[1]
Types
[edit]Luciferins are a class of small-molecule substrates that react with oxygen in the presence of a luciferase (an enzyme) to release energy in the form of light. It is not known just how many types of luciferins there are, but some of the better-studied compounds are listed below.
Because of the chemical diversity of luciferins, there is no clear unifying mechanism of action, except that all require molecular oxygen,[2] The variety of luciferins and luciferases, their diverse reaction mechanisms and the scattered phylogenetic distribution indicate that many of them have arisen independently in the course of evolution.[2]
Firefly
[edit]Firefly luciferin is the luciferin found in many Lampyridae species, such as P. pyralis. It is the substrate of beetle luciferases (EC 1.13.12.7) responsible for the characteristic yellow light emission from fireflies, though can cross-react to produce light with related enzymes from non-luminous species.[3] The chemistry is unusual, as adenosine triphosphate (ATP) is required for light emission, in addition to molecular oxygen.[4]
Snail
[edit]Latia luciferin is, in terms of chemistry, (E)-2-methyl-4-(2,6,6-trimethyl-1-cyclohex-1-yl)-1-buten-1-ol formate and is from the freshwater snail Latia neritoides.[5]
Bacterial
[edit]Bacterial luciferin is two-component system consisting of flavin mononucleotide and a fatty aldehyde found in bioluminescent bacteria.[6]
Coelenterazine
[edit]Coelenterazine is found in radiolarians, ctenophores, cnidarians, squid, brittle stars, copepods, chaetognaths, fish, and shrimp. It is the prosthetic group in the protein aequorin responsible for the blue light emission.[7]
Dinoflagellate
[edit]Dinoflagellate luciferin is a chlorophyll derivative (i. e. a tetrapyrrole) and is found in some dinoflagellates, which are often responsible for the phenomenon of nighttime glowing waves (historically this was called phosphorescence, but is a misleading term). A very similar type of luciferin is found in some types of euphausiid shrimp.[8]
Vargulin
[edit]Vargulin is found in certain ostracods and deep-sea fish, to be specific, Poricthys. Like the compound coelenterazine, it is an imidazopyrazinone and emits primarily blue light in the animals.
Fungi
[edit]Foxfire is the bioluminescence created by some species of fungi present in decaying wood. While there may be multiple different luciferins within the kingdom of fungi, 3-hydroxy hispidin was determined to be the luciferin in the fruiting bodies of several species of fungi, including Neonothopanus nambi, Omphalotus olearius, Omphalotus nidiformis, and Panellus stipticus.[9]
Usage in science
[edit]Luciferin is widely used in science and medicine as a method of in vivo imaging, using living organisms to non-invasively detect images and in molecular imaging. The reaction between luciferin substrate paired with the receptor enzyme luciferase produces a catalytic reaction, generating bioluminescence.[10] This reaction and the luminescence produced is useful for imaging such as detecting tumors from cancer or capable of measuring gene expression.
References
[edit]- ^ Hastings JW (1996). "Chemistries and colors of bioluminescent reactions: a review". Gene. 173 (1 Spec No): 5–11. doi:10.1016/0378-1119(95)00676-1. PMID 8707056.
- ^ a b Hastings JW (1983). "Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems". Journal of Molecular Evolution. 19 (5): 309–321. Bibcode:1983JMolE..19..309H. doi:10.1007/BF02101634. PMID 6358519. S2CID 875590.
- ^ Viviani VR, Bechara EJ (1996). "Larval Tenebrio molitor (Coleoptera: Tenebrionidae) Fat Body Extracts Catalyze Firefly D-Luciferin-and ATP-Dependent Chemiluminescence: A Luciferase-like Enzyme". Photochemistry and Photobiology. 63 (6): 713–718. doi:10.1111/j.1751-1097.1996.tb09620.x. S2CID 83498776.
- ^ Green A, Mcelroy WD (October 1956). "Function of adenosine triphosphate in the activation of luciferin". Archives of Biochemistry and Biophysics. 64 (2): 257–271. doi:10.1016/0003-9861(56)90268-5. PMID 13363432.
- ^ EC 1.14.99.21. ORENZA: a database of ORphan ENZyme Activities, accessed 27 November 2009.
- ^ Madden D, Lidesten BM (2001). "Bacterial illumination" (PDF). Bioscience Explained. 1 (1).
- ^ Shimomura O, Johnson FH (April 1975). "Chemical nature of bioluminescence systems in coelenterates". Proceedings of the National Academy of Sciences of the United States of America. 72 (4): 1546–1549. Bibcode:1975PNAS...72.1546S. doi:10.1073/pnas.72.4.1546. PMC 432574. PMID 236561.
- ^ Dunlap JC, Hastings JW, Shimomura O (March 1980). "Crossreactivity between the light-emitting systems of distantly related organisms: Novel type of light-emitting compound". Proceedings of the National Academy of Sciences of the United States of America. 77 (3): 1394–1397. Bibcode:1980PNAS...77.1394D. doi:10.1073/pnas.77.3.1394. PMC 348501. PMID 16592787.
- ^ Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, et al. (July 2015). "The Chemical Basis of Fungal Bioluminescence". Angewandte Chemie. 54 (28): 8124–8128. doi:10.1002/anie.201501779. PMID 26094784.
- ^ Badr CE, Tannous BA (December 2011). "Bioluminescence imaging: progress and applications". Trends in Biotechnology. 29 (12): 624–633. doi:10.1016/j.tibtech.2011.06.010. PMC 4314955. PMID 21788092.
External links
[edit]- "Major luciferin types". The Bioluminescence Web Page. University of California, Santa Barbara. 2009-01-09. Retrieved 2009-03-06.