Moons of Jupiter: Difference between revisions
Quick update. |
IznoRepeat (talk | contribs) m →External links: add WP:TEMPLATECAT to remove from template; genfixes |
||
(242 intermediate revisions by 99 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Natural satellites of the planet Jupiter}} |
{{short description|Natural satellites of the planet Jupiter}} |
||
{{other uses}} |
{{other uses}} |
||
{{featured list}} |
|||
{{Use dmy dates|date=July 2018}} |
{{Use dmy dates|date=July 2018}} |
||
[[File:Jupiter |
[[File:Jupiter Family of Moons by Juno.png|thumb|upright=1.5|A montage of Jupiter and its four largest moons (distance and sizes not to scale)]] |
||
There are 95 [[Natural satellite|moons]] of [[Jupiter]] with confirmed [[orbit]]s {{as of|2024|02|05|lc=y}}.<ref name="jplsats-disc"/>{{efn|group=note|The most-recently announced moons of Jupiter are [[S/2022 J 1]], [[S/2022 J 2]], and [[S/2022 J 3]], published in [[Minor Planet Center#Publications|MPECs]] 2023-D44 to 2023-D46.<ref name="MPEC-2023-D46"/> These add three more to the previous count of 92 from January 2023, bringing the total up to 95.<ref name="Hecht2023"/>}} This number does not include a number of meter-sized [[moonlets]] thought to be shed from the [[inner moon]]s, nor hundreds of possible kilometer-sized outer irregular moons that were only briefly captured by telescopes.<ref name="SheppardMoons"/> All together, Jupiter's moons form a [[satellite system (astronomy)|satellite system]] called the '''Jovian system'''. The most massive of the moons are the four [[Galilean moons]]: [[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]], and [[Callisto (moon)|Callisto]], which were independently discovered in 1610 by [[Galileo Galilei]] and [[Simon Marius]] and were [[Timeline of discovery of Solar System planets and their moons|the first objects found]] to orbit a body that was neither [[Earth]] nor the [[Sun]]. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers (or other sexual partners) or daughters of the [[Roman mythology|Roman god]] [[Jupiter (mythology)|Jupiter]] or his [[Greek mythology|Greek equivalent]] [[Zeus]]. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 91 known moons and [[Rings of Jupiter|the rings]] together comprising just 0.003% of the total orbiting mass. |
|||
Of [[Jupiter]]'s moons, eight are [[Regular moon|regular satellites]] with [[Direct motion|prograde]] and nearly circular orbits that are not greatly [[Inclination|inclined]] with respect to Jupiter's equatorial plane. The Galilean satellites are nearly spherical in shape due to their [[Planemo|planetary mass]], and are just massive enough that they would be considered major planets if they were in direct orbit around the Sun.<!--Margot's planetary discriminant for all of them exceeds 1--> The other four regular satellites, known as the inner moons, are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings. The remainder of Jupiter's moons are outer [[Irregular moon|irregular satellites]] whose prograde and [[retrograde orbit]]s are much farther from Jupiter and have high [[Orbital inclination|inclinations]] and [[Orbital eccentricity|eccentricities]]. The largest of these moons were likely [[asteroid]]s that were [[asteroid capture|captured]] from solar orbits by Jupiter before [[impact event|impact]]s with other small bodies shattered them into many kilometer-sized fragments, forming [[collisional family|collisional families]] of moons sharing similar orbits. Jupiter is expected to have about 100 irregular moons larger than {{cvt|1|km|mi|sigfig=1}} in diameter, plus around 500 more smaller retrograde moons down to diameters of {{cvt|0.8|km|mi|sigfig=1}}.<ref name="Ashton2020"/> Of the 87 known irregular moons of Jupiter, 38 of them have not yet been officially given names. |
|||
There are 92 known [[Natural satellite|moons]] of [[Jupiter]] with confirmed [[orbit]]s {{asof|2023|lc=y}}, not counting a number of meter-sized [[moonlets]] likely shed from the [[inner moon]]s as well as hundreds of potential kilometer-sized outer moons that were briefly seen by telescopes.<ref name="SheppardMoons"/> All together, they form a [[satellite system (astronomy)|satellite system]] which is called the '''Jovian system'''. The most massive of the moons are the four [[Galilean moons]]: [[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]], and [[Callisto (moon)|Callisto]], which were independently discovered in 1610 by [[Galileo Galilei]] and [[Simon Marius]] and were [[Timeline of discovery of Solar System planets and their moons|the first objects found]] to orbit a body that was neither [[Earth]] nor the [[Sun]]. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers (or other sexual partners) or daughters of the [[Roman mythology|Roman god]] [[Jupiter (mythology)|Jupiter]] or his [[Greek mythology|Greek equivalent]] [[Zeus]]. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 87 known moons and [[Rings of Jupiter|the rings]] together composing just 0.003% of the total orbiting mass. |
|||
Of [[Jupiter]]'s moons, eight are [[Regular moon|regular satellites]] with [[Direct motion|prograde]] and nearly circular orbits that are not greatly [[Inclination|inclined]] with respect to Jupiter's equatorial plane. The Galilean satellites are nearly spherical in shape due to their [[Planemo|planetary mass]], and are just massive enough that they would be considered major planets if they were in direct orbit around the Sun.<!--Margot's planetary discriminant for all of them exceeds 1--> The other four regular satellites, known as the inner moons, are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings. The remainder of Jupiter's moons are outer [[Irregular moon|irregular satellites]] whose prograde and [[retrograde orbit]]s are much farther from Jupiter and have high [[Orbital inclination|inclinations]] and [[Orbital eccentricity|eccentricities]]. The largest of these moons were likely [[asteroid]]s that were [[asteroid capture|captured]] from solar orbits by Jupiter before [[impact event|impact]]s with other small bodies shattered them into many kilometer-sized fragments, forming [[collisional family|collisional families]] of moons sharing similar orbits. Jupiter is expected to have about 100 irregular moons larger than {{cvt|1|km|mi|sigfig=1}} in diameter, plus around 500 more smaller retrograde moons down to diameters of {{cvt|0.8|km|mi|sigfig=1}}.<ref name="Ashton2020"/> Of the 83 known irregular moons of Jupiter, 34 of them have not yet been officially named. |
|||
==Characteristics== |
==Characteristics== |
||
[[File:The Galilean satellites (the four largest moons of Jupiter).tif|thumb|upright=1.3|The Galilean moons. From left to right, in order of increasing distance from Jupiter: [[Io (moon)|Io]]; [[Europa (moon)|Europa]]; [[Ganymede (moon)|Ganymede]]; [[Callisto (moon)|Callisto]].]] |
[[File:The Galilean satellites (the four largest moons of Jupiter).tif|thumb|upright=1.3|The Galilean moons. From left to right, in order of increasing distance from Jupiter: [[Io (moon)|Io]]; [[Europa (moon)|Europa]]; [[Ganymede (moon)|Ganymede]]; [[Callisto (moon)|Callisto]].]] |
||
The physical and orbital characteristics of the moons vary widely. The four Galileans are all over {{convert|3100|km}} in diameter; the largest Galilean, [[Ganymede (moon)|Ganymede]], is the ninth [[List of Solar System objects by size|largest object]] in the [[Solar System]], after the Sun and seven of the [[planet]]s, Ganymede being larger than [[Mercury (planet)|Mercury]]. All other Jovian moons are less than {{convert|250|km}} in diameter, with most barely exceeding {{convert|5|km}}.<ref group="note">For comparison, the area of a sphere with diameter 250 km is about the area of [[Senegal]] and comparable to the area of [[Belarus]], [[Syria]] and [[Uruguay]]. The area of a sphere with a diameter of 5 km is about the area of [[Guernsey]] and somewhat more than the area of [[San Marino]]. (But note that these smaller moons are not spherical.)</ref> Their [[Orbit|orbital shapes]] range from nearly perfectly circular to highly [[Orbital eccentricity|eccentric]] and [[inclination|inclined]], and many revolve in the direction opposite to Jupiter's rotation ([[retrograde motion]] |
The physical and orbital characteristics of the moons vary widely. The four Galileans are all over {{convert|3100|km}} in diameter;<ref>{{Cite web |title=Solar System Small Worlds Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/galileanfact_table.html |access-date=2024-05-02 |website=nssdc.gsfc.nasa.gov}}</ref> the largest Galilean, [[Ganymede (moon)|Ganymede]], is the ninth [[List of Solar System objects by size|largest object]] in the [[Solar System]], after the Sun and seven of the [[planet]]s, Ganymede being larger than [[Mercury (planet)|Mercury]].<ref>{{Cite web |title=Ganymede: Facts - NASA Science |url=https://science.nasa.gov/jupiter/moons/ganymede/facts/ |access-date=2024-05-02 |website=science.nasa.gov |language=en-US}}</ref> All other Jovian moons are less than {{convert|250|km}} in diameter, with most barely exceeding {{convert|5|km}}.<ref group="note">For comparison, the area of a sphere with diameter 250 km is about the area of [[Senegal]] and comparable to the area of [[Belarus]], [[Syria]] and [[Uruguay]]. The area of a sphere with a diameter of 5 km is about the area of [[Guernsey]] and somewhat more than the area of [[San Marino]]. (But note that these smaller moons are not spherical.)</ref> Their [[Orbit|orbital shapes]] range from nearly perfectly circular to highly [[Orbital eccentricity|eccentric]] and [[inclination|inclined]], and many revolve in the direction opposite to Jupiter's rotation ([[retrograde motion]]). |
||
==Origin and evolution== |
==Origin and evolution== |
||
[[File:Relative Masses of Jovian Satellites.png|thumb|upright=1.3|The relative masses of the Jovian moons. Those smaller than Europa are not visible at this scale, and combined would only be visible at 100× magnification.]] |
[[File:Relative Masses of Jovian Satellites.png|thumb|upright=1.3|The relative masses of the Jovian moons. Those smaller than Europa are not visible at this scale, and combined would only be visible at 100× magnification.]] |
||
Jupiter's regular satellites are believed to have formed from a circumplanetary disk, a ring of accreting gas and solid debris analogous to a [[protoplanetary disk]].<ref name="Canup2009">{{ |
Jupiter's regular satellites are believed to have formed from a circumplanetary disk, a ring of accreting gas and solid debris analogous to a [[protoplanetary disk]].<ref name="Canup2009">{{Cite book |last1=Canup |first1=Robert M. |author-link=Robin Canup |title=Europa |last2=Ward |first2=William R. |date=2009 |publisher=University of Arizona Press (in press) |chapter=Origin of Europa and the Galilean Satellites |bibcode=2009euro.book...59C |arxiv=0812.4995}}</ref><ref name="Alibert2005">{{cite journal|last1=Alibert|first1=Y. |last2=Mousis|first2=O. |last3=Benz|first3=W. |title=Modeling the Jovian subnebula I. Thermodynamic conditions and migration of proto-satellites|date=2005|journal=Astronomy & Astrophysics|volume=439|issue=3|pages=1205–13|bibcode=2005A&A...439.1205A|doi=10.1051/0004-6361:20052841|arxiv = astro-ph/0505367 |s2cid=2260100 }}</ref> They may be the remnants of a score of Galilean-mass satellites that formed early in Jupiter's history.<ref name="Canup2009" /><ref name="newsci" /> |
||
Simulations suggest that, while the disk had a relatively high mass at any given moment, over time a substantial fraction (several tens of a percent) of the mass of Jupiter captured from the solar nebula was passed through it. However, only 2% of the proto-disk mass of Jupiter is required to explain the existing satellites.<ref name=Canup2009/> Thus, several generations of Galilean-mass satellites may have been in Jupiter's early history. Each generation of moons might have spiraled into Jupiter, because of drag from the disk, with new moons then forming from the new debris captured from the solar nebula.<ref name=Canup2009/> By the time the present (possibly fifth) generation formed, the disk had thinned so that it no longer greatly interfered with the moons' orbits.<ref name="newsci">{{cite web|url=https://www.newscientist.com/article/mg20126984.300-cannibalistic-jupiter-ate-its-early-moons.html|title=Cannibalistic Jupiter ate its early moons|last=Chown|first=Marcus|date=7 March 2009|work=[[New Scientist]]|access-date=18 March 2009}}</ref> The current Galilean moons were still affected, falling into and being partially protected by an [[orbital resonance]] with each other, which still exists for [[Io (moon)|Io]], [[Europa (moon)|Europa]], and [[Ganymede (moon)|Ganymede]]: they are in a 1:2:4 resonance. Ganymede's larger mass means that it would have migrated inward at a faster rate than Europa or Io.<ref name=Canup2009/> Tidal dissipation in the Jovian system is still ongoing and [[Callisto (moon)|Callisto]] will likely be captured into the resonance in about 1.5 billion years, creating a 1:2:4:8 chain.<ref>{{cite journal |last1=Lari |first1=Giacomo |last2=Saillenfest |first2=Melaine |first3=Marco |last3=Fenucci |date=2020 |title=Long-term evolution of the Galilean satellites: the capture of Callisto into resonance |url=https://www.aanda.org/articles/aa/full_html/2020/07/aa37445-20/aa37445-20.html |journal=Astronomy & Astrophysics |volume=639 |pages=A40 |doi=10.1051/0004-6361/202037445 |s2cid=209862163 |access-date=1 August 2022}}</ref> |
Simulations suggest that, while the disk had a relatively high mass at any given moment, over time a substantial fraction (several tens of a percent) of the mass of Jupiter captured from the solar nebula was passed through it. However, only 2% of the proto-disk mass of Jupiter is required to explain the existing satellites.<ref name=Canup2009/> Thus, several generations of Galilean-mass satellites may have been in Jupiter's early history. Each generation of moons might have spiraled into Jupiter, because of drag from the disk, with new moons then forming from the new debris captured from the solar nebula.<ref name=Canup2009/> By the time the present (possibly fifth) generation formed, the disk had thinned so that it no longer greatly interfered with the moons' orbits.<ref name="newsci">{{cite web|url=https://www.newscientist.com/article/mg20126984.300-cannibalistic-jupiter-ate-its-early-moons.html|title=Cannibalistic Jupiter ate its early moons|last=Chown|first=Marcus|date=7 March 2009|work=[[New Scientist]]|access-date=18 March 2009|archive-date=23 March 2009|archive-url=https://web.archive.org/web/20090323013754/http://www.newscientist.com/article/mg20126984.300-cannibalistic-jupiter-ate-its-early-moons.html|url-status=live}}</ref> The current Galilean moons were still affected, falling into and being partially protected by an [[orbital resonance]] with each other, which still exists for [[Io (moon)|Io]], [[Europa (moon)|Europa]], and [[Ganymede (moon)|Ganymede]]: they are in a 1:2:4 resonance. Ganymede's larger mass means that it would have migrated inward at a faster rate than Europa or Io.<ref name=Canup2009/> Tidal dissipation in the Jovian system is still ongoing and [[Callisto (moon)|Callisto]] will likely be captured into the resonance in about 1.5 billion years, creating a 1:2:4:8 chain.<ref>{{cite journal |last1=Lari |first1=Giacomo |last2=Saillenfest |first2=Melaine |first3=Marco |last3=Fenucci |date=2020 |title=Long-term evolution of the Galilean satellites: the capture of Callisto into resonance |url=https://www.aanda.org/articles/aa/full_html/2020/07/aa37445-20/aa37445-20.html |journal=Astronomy & Astrophysics |volume=639 |pages=A40 |doi=10.1051/0004-6361/202037445 |arxiv=2001.01106 |bibcode=2020A&A...639A..40L |s2cid=209862163 |access-date=1 August 2022 |archive-date=11 June 2022 |archive-url=https://web.archive.org/web/20220611193930/https://www.aanda.org/articles/aa/full_html/2020/07/aa37445-20/aa37445-20.html |url-status=live }}</ref> |
||
The outer, irregular moons are thought to have originated from captured [[asteroid]]s, whereas the protolunar disk was still massive enough to absorb much of their momentum and thus capture them into orbit. Many are believed to have broken up by mechanical stresses during capture, or afterward by collisions with other small bodies, producing the moons we see today.<ref name="Jewitt2007"/> |
The outer, irregular moons are thought to have originated from captured [[asteroid]]s, whereas the protolunar disk was still massive enough to absorb much of their momentum and thus capture them into orbit. Many are believed to have been broken up by mechanical stresses during capture, or afterward by collisions with other small bodies, producing the moons we see today.<ref name="Jewitt2007"/> |
||
==History and discovery== |
|||
==Discovery== |
|||
{{see also|Timeline of discovery of Solar System planets and their moons}} |
{{see also|Timeline of discovery of Solar System planets and their moons}} |
||
Line 27: | Line 26: | ||
[[File:Jupiter-moons.jpg|thumb|Jupiter and the [[Galilean moons]] as seen through a {{convert|25|cm|in|0|abbr=on}} [[Meade LX200]] telescope]] |
[[File:Jupiter-moons.jpg|thumb|Jupiter and the [[Galilean moons]] as seen through a {{convert|25|cm|in|0|abbr=on}} [[Meade LX200]] telescope]] |
||
Chinese historian [[Xi Zezong]] claimed that the earliest record of a Jovian moon (Ganymede or Callisto) was a note by Chinese astronomer [[Gan De]] of an observation around 364 BC regarding a "reddish star".<ref>{{cite journal|last=Xi|first=Zezong Z.|date=February 1981|title=The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo|url=http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTWL198102000.htm|journal=Acta Astrophysica Sinica|volume=1|issue=2|pages=87|bibcode=1981AcApS...1...85X}}</ref> However, the first certain observations of Jupiter's satellites were those of [[Galileo Galilei]] in 1609.<ref name="Galileo89">{{ |
Chinese historian [[Xi Zezong]] claimed that the earliest record of a Jovian moon (Ganymede or Callisto) was a note by Chinese astronomer [[Gan De]] of an observation around 364 BC regarding a "reddish star".<ref>{{cite journal|last=Xi|first=Zezong Z.|date=February 1981|title=The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo|url=http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTWL198102000.htm|journal=Acta Astrophysica Sinica|volume=1|issue=2|pages=87|bibcode=1981AcApS...1...85X|access-date=18 July 2018|archive-date=4 November 2020|archive-url=https://web.archive.org/web/20201104160900/http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTWL198102000.htm|url-status=dead}}</ref> However, the first certain observations of Jupiter's satellites were those of [[Galileo Galilei]] in 1609.<ref name="Galileo89">{{Cite book |last=Galilei |first=Galileo |url=https://archive.org/details/sidereusnunciuso00gali |title=Sidereus Nuncius |date=1989 |publisher=University of Chicago Press |isbn=0-226-27903-0 |editor-last=Translated and prefaced by Albert Van Helden |location=Chicago & London |pages=14–16 |url-access=limited}}</ref> By January 1610, he had sighted the four massive [[Galilean moons]] with his 20× [[magnification]] [[telescope]], and he published his results in March 1610.<ref>{{Cite journal |last=Van Helden |first=Albert |date=March 1974 |title=The Telescope in the Seventeenth Century |journal=Isis |language=en |publisher=The University of Chicago Press on behalf of The History of Science Society |volume=65 |issue=1 |pages=38–58 |doi=10.1086/351216 |issn=0021-1753 |s2cid=224838258}}</ref> |
||
Simon Marius had independently discovered the moons one day after Galileo, although he did not publish his book on the subject until 1614. Even so, the names Marius assigned are used today: [[Ganymede (moon)|Ganymede]], [[Callisto (moon)|Callisto]], [[Io (moon)|Io]], and [[Europa (moon)|Europa]].<ref name="Pasachoff2015"/> No additional satellites were discovered until [[Edward Emerson Barnard|E. E. Barnard]] observed [[Amalthea (moon)|Amalthea]] in 1892.<ref name="Barnard1892"/> |
Simon Marius had independently discovered the moons one day after Galileo, although he did not publish his book on the subject until 1614. Even so, the names Marius assigned are used today: [[Ganymede (moon)|Ganymede]], [[Callisto (moon)|Callisto]], [[Io (moon)|Io]], and [[Europa (moon)|Europa]].<ref name="Pasachoff2015"/> No additional satellites were discovered until [[Edward Emerson Barnard|E. E. Barnard]] observed [[Amalthea (moon)|Amalthea]] in 1892.<ref name="Barnard1892"/> |
||
Line 35: | Line 34: | ||
With the aid of telescopic photography with [[photographic plate]]s, further discoveries followed quickly over the course of the 20th century. [[Himalia (moon)|Himalia]] was discovered in 1904,<ref name="Campbell1905"/> [[Elara (moon)|Elara]] in 1905,<ref name="Perrine1905"/> [[Pasiphae (moon)|Pasiphae]] in 1908,<ref name="Melotte1908"/> [[Sinope (moon)|Sinope]] in 1914,<ref name="Nicholson1914"/> [[Lysithea (moon)|Lysithea]] and [[Carme (moon)|Carme]] in 1938,<ref name="Nicholson1938"/> [[Ananke (moon)|Ananke]] in 1951,<ref name="Nicolson1951"/> and [[Leda (moon)|Leda]] in 1974.<ref name="Kowal1975"/> |
With the aid of telescopic photography with [[photographic plate]]s, further discoveries followed quickly over the course of the 20th century. [[Himalia (moon)|Himalia]] was discovered in 1904,<ref name="Campbell1905"/> [[Elara (moon)|Elara]] in 1905,<ref name="Perrine1905"/> [[Pasiphae (moon)|Pasiphae]] in 1908,<ref name="Melotte1908"/> [[Sinope (moon)|Sinope]] in 1914,<ref name="Nicholson1914"/> [[Lysithea (moon)|Lysithea]] and [[Carme (moon)|Carme]] in 1938,<ref name="Nicholson1938"/> [[Ananke (moon)|Ananke]] in 1951,<ref name="Nicolson1951"/> and [[Leda (moon)|Leda]] in 1974.<ref name="Kowal1975"/> |
||
By the time that the [[Voyager program|Voyager space probes]] reached Jupiter, around 1979, thirteen moons had been discovered, not including [[Themisto (moon)|Themisto]], which had been observed in 1975,<ref name="Marsden1975"/> but was [[lost minor planet|lost]] until 2000 due to insufficient initial observation data. The Voyager spacecraft discovered an additional three [[inner moon]]s in 1979: [[Metis (moon)|Metis]], [[Adrastea (moon)|Adrastea]], and [[Thebe (moon)|Thebe]].<ref name="Synnott1980"/> |
By the time that the [[Voyager program|Voyager space probes]] reached Jupiter, around 1979, thirteen moons had been discovered, not including [[Themisto (moon)|Themisto]], which had been observed in 1975,<ref name="Marsden1975" /> but was [[lost minor planet|lost]] until 2000 due to insufficient initial observation data. The Voyager spacecraft discovered an additional three [[inner moon]]s in 1979: [[Metis (moon)|Metis]], [[Adrastea (moon)|Adrastea]], and [[Thebe (moon)|Thebe]].<ref name="Synnott1980"/> |
||
===Digital telescopic observations=== |
===Digital telescopic observations=== |
||
[[File:Outer_planet_moons.svg|thumb|upright=2.5|The number of moons known for each of the four outer planets up to October 2019. Jupiter currently has 91 known satellites.]] |
|||
No additional moons were discovered until two decades later, with the fortuitous discovery of [[Callirrhoe (moon)|Callirrhoe]] by the [[Spacewatch]] survey in October 1999.<ref name="Callirrhoe"/> During the 1990s, photographic plates phased out as digital [[charge-coupled device]] (CCD) cameras began emerging in telescopes on Earth, allowing for wide-field surveys of the sky at unprecedented sensitivities and ushering in a wave of new moon discoveries.<ref name="Nicholson2008"/> [[Scott S. Sheppard|Scott Sheppard]], then a graduate student of [[David C. Jewitt|David Jewitt]], demonstrated this extended capability of CCD cameras in a survey conducted with the [[Mauna Kea Observatory]]'s {{convert|88|in|m|adj=on|sp=us|order=flip}} [[UH88]] telescope in November 2000, discovering eleven new irregular moons of Jupiter including the previously lost Themisto with the aid of automated computer algorithms.<ref name="Sheppard2003"/> |
No additional moons were discovered until two decades later, with the fortuitous discovery of [[Callirrhoe (moon)|Callirrhoe]] by the [[Spacewatch]] survey in October 1999.<ref name="Callirrhoe"/> During the 1990s, photographic plates phased out as digital [[charge-coupled device]] (CCD) cameras began emerging in telescopes on Earth, allowing for wide-field surveys of the sky at unprecedented sensitivities and ushering in a wave of new moon discoveries.<ref name="Nicholson2008"/> [[Scott S. Sheppard|Scott Sheppard]], then a graduate student of [[David C. Jewitt|David Jewitt]], demonstrated this extended capability of CCD cameras in a survey conducted with the [[Mauna Kea Observatory]]'s {{convert|88|in|m|adj=on|sp=us|order=flip}} [[UH88]] telescope in November 2000, discovering eleven new irregular moons of Jupiter including the previously lost Themisto with the aid of automated computer algorithms.<ref name="Sheppard2003"/> |
||
From 2001 onward, Sheppard and Jewitt alongside other collaborators continued surveying for Jovian irregular moons with the {{convert|3.6|m|ft|adj=on|sp=us}} [[Canada-France-Hawaii Telescope]] (CFHT), discovering an additional eleven in December 2001, one in October 2002, and nineteen in February 2003.<ref name="Sheppard2003"/><ref name="jplsats-disc"/> At the same time, another independent team led by [[Brett J. |
From 2001 onward, Sheppard and Jewitt alongside other collaborators continued surveying for Jovian irregular moons with the {{convert|3.6|m|ft|adj=on|sp=us}} [[Canada-France-Hawaii Telescope]] (CFHT), discovering an additional eleven in December 2001, one in October 2002, and nineteen in February 2003.<ref name="Sheppard2003"/><ref name="jplsats-disc"/> At the same time, another independent team led by [[Brett J. Gladman]] also used the CFHT in 2003 to search for Jovian irregular moons, discovering four and co-discovering two with Sheppard.<ref name="jplsats-disc"/><ref name="Sheppard-jup2003"/><ref name="UBC2003"/> From the start to end of these CCD-based surveys in 2000–2004, Jupiter's known moon count had grown from 17 to 63.<ref name="Callirrhoe"/><ref name="Sheppard-jup2003"/> All of these moons discovered after 2000 are faint and tiny, with [[apparent magnitude]]s between 22–23 and diameters less than {{cvt|10|km|mi}}.<ref name="Sheppard2003"/> As a result, many could not be reliably tracked and ended up becoming lost.<ref name="Jacobson2012"/> |
||
Beginning in 2009, a team of astronomers, namely Mike Alexandersen, Marina Brozović, Brett Gladman, Robert Jacobson, and Christian Veillet, began a campaign to recover Jupiter's lost irregular moons using the CFHT and [[Palomar Observatory]]'s {{convert|5.1|m|ft|adj=on|sp=us}} [[Hale Telescope]].<ref name="Alexandersen2012"/><ref name="Jacobson2012"/> They discovered two previously unknown Jovian irregular moons during recovery efforts in September 2010, prompting further follow-up observations to confirm these by 2011.<ref name="Alexandersen2012"/><ref name="CBET2734"/> One of these moons, [[Jupiter LII|S/2010 J 2]] (now Jupiter LII), has an apparent magnitude of 24 and a diameter of only {{cvt|1–2|km|mi|sigfig=2}}, making it one of the faintest and smallest confirmed moons of Jupiter even {{ |
Beginning in 2009, a team of astronomers, namely Mike Alexandersen, Marina Brozović, Brett Gladman, Robert Jacobson, and Christian Veillet, began a campaign to recover Jupiter's lost irregular moons using the CFHT and [[Palomar Observatory]]'s {{convert|5.1|m|ft|adj=on|sp=us}} [[Hale Telescope]].<ref name="Alexandersen2012"/><ref name="Jacobson2012"/> They discovered two previously unknown Jovian irregular moons during recovery efforts in September 2010, prompting further follow-up observations to confirm these by 2011.<ref name="Alexandersen2012"/><ref name="CBET2734"/> One of these moons, [[Jupiter LII|S/2010 J 2]] (now Jupiter LII), has an apparent magnitude of 24 and a diameter of only {{cvt|1–2|km|mi|sigfig=2}}, making it one of the faintest and smallest confirmed moons of Jupiter even {{as of|2023|lc=y}}.<ref name="UBC2012"/><ref name="SheppardMoons"/> Meanwhile, in September 2011, Scott Sheppard, now a faculty member of the [[Carnegie Institution for Science]],<ref name="SheppardMoons"/> discovered two more irregular moons using the institution's {{convert|6.5|m|ft|adj=on|sp=us}} [[Magellan Telescopes]] at [[Las Campanas Observatory]], raising Jupiter's known moon count to 67.<ref name="Carnegie2012"/> Although Sheppard's two moons were followed up and confirmed by 2012, both became lost due to insufficient observational coverage.<ref name="Jacobson2012"/><ref name="Brozovic2017"/> |
||
In 2016, while surveying for distant [[trans-Neptunian objects]] with the Magellan Telescopes, Sheppard serendipitously observed a region of the sky located near Jupiter, enticing him to search for Jovian irregular moons as a detour. In collaboration with [[Chadwick Trujillo]] and [[David Tholen]], Sheppard continued surveying around Jupiter from 2016 to 2018 using the [[Cerro Tololo Observatory]]'s {{convert|4.0|m|ft|adj=on|sp=us|0}} [[Víctor M. Blanco Telescope]] and Mauna Kea Observatory's {{convert|8.2|m|ft|adj=on|sp=us}} [[Subaru Telescope]].<ref name="Beatty2018"/><ref name="Sheppard2018"/> In the process, Sheppard's team recovered several lost moons of Jupiter from 2003 to 2011 and reported two new Jovian irregular moons in June 2017.<ref name="Beatty2017"/> Then in July 2018, Sheppard's team announced ten more irregular moons confirmed from 2016 to 2018 observations, bringing Jupiter's known moon count to 79. Among these was [[Valetudo (moon)|Valetudo]], which has an unusually distant prograde orbit that crosses paths with the retrograde irregular moons.<ref name="Beatty2018"/><ref name="Sheppard2018"/> Several more unidentified Jovian irregular satellites were detected in Sheppard's 2016–2018 search, but were too faint for follow-up confirmation.<ref name="Sheppard2018"/><ref name="NOAO2018"/>{{rp|page=10}} |
In 2016, while surveying for distant [[trans-Neptunian objects]] with the Magellan Telescopes, Sheppard serendipitously observed a region of the sky located near Jupiter, enticing him to search for Jovian irregular moons as a detour. In collaboration with [[Chadwick Trujillo]] and [[David Tholen]], Sheppard continued surveying around Jupiter from 2016 to 2018 using the [[Cerro Tololo Observatory]]'s {{convert|4.0|m|ft|adj=on|sp=us|0}} [[Víctor M. Blanco Telescope]] and Mauna Kea Observatory's {{convert|8.2|m|ft|adj=on|sp=us}} [[Subaru Telescope]].<ref name="Beatty2018"/><ref name="Sheppard2018"/> In the process, Sheppard's team recovered several lost moons of Jupiter from 2003 to 2011 and reported two new Jovian irregular moons in June 2017.<ref name="Beatty2017"/> Then in July 2018, Sheppard's team announced ten more irregular moons confirmed from 2016 to 2018 observations, bringing Jupiter's known moon count to 79. Among these was [[Valetudo (moon)|Valetudo]], which has an unusually distant prograde orbit that crosses paths with the retrograde irregular moons.<ref name="Beatty2018"/><ref name="Sheppard2018"/> Several more unidentified Jovian irregular satellites were detected in Sheppard's 2016–2018 search, but were too faint for follow-up confirmation.<ref name="Sheppard2018"/><ref name="NOAO2018"/>{{rp|page=10}} |
||
From November 2021 to January 2023, |
From November 2021 to January 2023, Sheppard discovered twelve more irregular moons of Jupiter and confirmed them in archival survey imagery from 2003 to 2018, bringing the total count to 92.<ref name="MPEC-2021-V333"/><ref name="MPEC-2023-D46"/><ref name="Hecht2023"/> Among these was [[S/2018 J 4]], a highly inclined prograde moon that is now known to be in same orbital grouping as the moon [[Carpo (moon)|Carpo]], which was previously thought to be solitary.<ref name="Hecht2023"/> On 22 February 2023, Sheppard announced three more moons discovered in a 2022 survey, now bringing Jupiter's total known moon count to 95.<ref name="MPEC-2023-D46"/> In a February 2023 interview with ''[[NPR]]'', Sheppard noted that he and his team are currently tracking even more moons of Jupiter, which should place Jupiter's moon count over 100 once confirmed over the next two years.<ref name="Greenfieldboyce2023"/> |
||
Many more irregular moons of Jupiter will |
Many more irregular moons of Jupiter will inevitably be discovered in the future, especially after the beginning of deep sky surveys by the upcoming [[Vera C. Rubin Observatory]] and [[Nancy Grace Roman Space Telescope]] in the mid-2020s.<ref name="Jones2016"/><ref name="Holler2018"/> The Rubin Observatory's {{convert|8.4|m|ft|adj=on|sp=us}} aperture telescope and 3.5 square-degree field of view will probe Jupiter's irregular moons down to diameters of {{cvt|1|km|mi|sigfig=1}}<ref name="Jewitt2007"/>{{rp|page=265}} at apparent magnitudes of 24.5, with the potential of increasing the known population by up to tenfold.<ref name="Jones2016"/>{{rp|page=292}} Likewise, the Roman Space Telescope's {{convert|2.4|m|ft|adj=on|sp=us}} aperture and 0.28 square-degree field of view will probe Jupiter's irregular moons down to diameters of {{cvt|0.3|km|mi|sigfig=1}} at magnitude 27.7, with the potential of discovering approximately 1,000 Jovian moons above this size.<ref name="Holler2018"/>{{rp|page=24}} Discovering these many irregular satellites will help reveal their population's size distribution and collisional histories, which will place further constraints to how the Solar System formed.<ref name="Holler2018"/>{{rp|page=24–25}} |
||
{{Outer_planet_moons}} |
|||
==Naming== |
==Naming== |
||
Line 55: | Line 55: | ||
[[File:Galilean moons around Jupiter.gif|thumb|right|Galilean moons around Jupiter {{legend2|Lime|Jupiter}}{{·}}{{legend2|OrangeRed|Io}}{{·}}{{legend2|RoyalBlue|Europa}}{{·}}{{legend2|Gold|Ganymede}}{{·}}{{legend2|Cyan|Callisto}}]] |
[[File:Galilean moons around Jupiter.gif|thumb|right|Galilean moons around Jupiter {{legend2|Lime|Jupiter}}{{·}}{{legend2|OrangeRed|Io}}{{·}}{{legend2|RoyalBlue|Europa}}{{·}}{{legend2|Gold|Ganymede}}{{·}}{{legend2|Cyan|Callisto}}]] |
||
[[File:PIA01627 Ringe.jpg|thumb|Orbits of Jupiter's inner moons within its rings]] |
[[File:PIA01627 Ringe.jpg|thumb|Orbits of Jupiter's inner moons within its rings]] |
||
The Galilean moons of Jupiter ([[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]], and [[Callisto (moon)|Callisto]]) were named by [[Simon Marius]] soon after their discovery in 1610.<ref name="Marazzini">{{cite journal|last=Marazzini|first= C.|date=2005 |title=The names of the satellites of Jupiter: from Galileo to Simon Marius |journal=Lettere Italiane|volume= 57|issue= 3|pages=391–407|language=it }}</ref> However, these names fell out of favor until the 20th century. The astronomical literature instead simply referred to "Jupiter I", "Jupiter II", etc., or "the first satellite of Jupiter", "Jupiter's second satellite", and so on.<ref name="Marazzini" /> The names Io, Europa, Ganymede, and Callisto became popular in the mid-20th century,<ref name="marazzini">{{cite journal |last=Marazzini |first=Claudio |date=2005 |title=I nomi dei satelliti di Giove: da Galileo a Simon Marius (The names of the satellites of Jupiter: from Galileo to Simon Marius) |journal=Lettere Italiane |volume=57 |issue=3 |pages=391–407 }}</ref> whereas the rest of the moons remained unnamed and were usually numbered in Roman numerals V (5) to XII (12).<ref name="Nicholson">{{cite journal|last=Nicholson|first=Seth Barnes|date=April 1939|title=The Satellites of Jupiter|journal=Publications of the Astronomical Society of the Pacific|volume=51|issue=300|pages=85–94|doi=10.1086/125010|bibcode=1939PASP...51...85N|s2cid=122937855 }}</ref><ref name="Owen">{{cite journal |last=Owen |first=Tobias |date=September 1976 |title=Jovian Satellite Nomenclature |journal=Icarus |volume=29 |issue=1 |pages=159–163 |bibcode=1976Icar...29..159O |doi=10.1016/0019-1035(76)90113-5}}</ref> Jupiter V was discovered in 1892 and given the name ''[[Amalthea (moon)|Amalthea]]'' by a popular though unofficial convention, a name first used by French astronomer [[Camille Flammarion]].<ref name="Gazetteer"/><ref name="Sagan">{{cite journal |last=Sagan |first=Carl |date=April 1976 |title=On Solar System Nomenclature |journal=Icarus |volume=27 |issue=4 |pages=575–576 |bibcode=1976Icar...27..575S |doi=10.1016/0019-1035(76)90175-5}}</ref> |
The Galilean moons of Jupiter ([[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]], and [[Callisto (moon)|Callisto]]) were named by [[Simon Marius]] soon after their discovery in 1610.<ref name="Marazzini">{{cite journal|last=Marazzini|first= C.|date=2005 |title=The names of the satellites of Jupiter: from Galileo to Simon Marius |journal=Lettere Italiane|volume= 57|issue= 3|pages=391–407|language=it }}</ref> However, these names fell out of favor until the 20th century. The astronomical literature instead simply referred to "Jupiter I", "Jupiter II", etc., or "the first satellite of Jupiter", "Jupiter's second satellite", and so on.<ref name="Marazzini" /> The names Io, Europa, Ganymede, and Callisto became popular in the mid-20th century,<ref name="marazzini">{{cite journal |last=Marazzini |first=Claudio |date=2005 |title=I nomi dei satelliti di Giove: da Galileo a Simon Marius (The names of the satellites of Jupiter: from Galileo to Simon Marius) |journal=Lettere Italiane |volume=57 |issue=3 |pages=391–407 }}</ref> whereas the rest of the moons remained unnamed and were usually numbered in Roman numerals V (5) to XII (12).<ref name="Nicholson">{{cite journal|last=Nicholson|first=Seth Barnes|date=April 1939|title=The Satellites of Jupiter|journal=Publications of the Astronomical Society of the Pacific|volume=51|issue=300|pages=85–94|doi=10.1086/125010|bibcode=1939PASP...51...85N|s2cid=122937855 |doi-access=free}}</ref><ref name="Owen">{{cite journal |last=Owen |first=Tobias |date=September 1976 |title=Jovian Satellite Nomenclature |journal=Icarus |volume=29 |issue=1 |pages=159–163 |bibcode=1976Icar...29..159O |doi=10.1016/0019-1035(76)90113-5}}</ref> Jupiter V was discovered in 1892 and given the name ''[[Amalthea (moon)|Amalthea]]'' by a popular though unofficial convention, a name first used by French astronomer [[Camille Flammarion]].<ref name="Gazetteer"/><ref name="Sagan">{{cite journal |last=Sagan |first=Carl |date=April 1976 |title=On Solar System Nomenclature |journal=Icarus |volume=27 |issue=4 |pages=575–576 |bibcode=1976Icar...27..575S |doi=10.1016/0019-1035(76)90175-5}}</ref> |
||
The other moons were simply labeled by their Roman numeral (e.g. Jupiter IX) in the majority of astronomical literature until the 1970s.<ref name="Gaposchkin">{{ |
The other moons were simply labeled by their Roman numeral (e.g. Jupiter IX) in the majority of astronomical literature until the 1970s.<ref name="Gaposchkin">{{Cite book |last1=Payne-Gaposchkin |first1=Cecilia |title=Introduction to Astronomy |last2=Haramundanis |first2=Katherine |date=1970 |publisher=Prentice-Hall |isbn=0-13-478107-4 |location=Englewood Cliffs, N.J.}}</ref> Several different suggestions were made for names of Jupiter's outer satellites, but none were universally accepted until 1975 when the [[International Astronomical Union]]'s (IAU) Task Group for Outer Solar System Nomenclature granted names to satellites V–XIII,<ref name="iau75">{{Cite journal |last=Marsden |first=Brian G. |date=3 October 1975 |title=Satellites of Jupiter |url=http://www.cbat.eps.harvard.edu/iauc/02800/02846.html#Item6 |url-status=live |journal=IAU Circular |volume=2846 |archive-url=https://web.archive.org/web/20140222215122/http://www.cbat.eps.harvard.edu/iauc/02800/02846.html#Item6 |archive-date=22 February 2014 |access-date=8 January 2011}}</ref> and provided for a formal naming process for future satellites still to be discovered.<ref name="iau75" /> The practice was to name newly discovered moons of Jupiter after lovers and favorites of the god [[Jupiter (god)|Jupiter]] ([[Zeus]]) and, since 2004, also after their descendants.<ref name="Gazetteer">{{cite web|title=Planet and Satellite Names and Discoverers|work=Gazetteer of Planetary Nomenclature|publisher=IAU Working Group for Planetary System Nomenclature|url=https://planetarynames.wr.usgs.gov/Page/Planets|access-date=22 January 2023|archive-date=21 August 2014|archive-url=https://web.archive.org/web/20140821014052/http://planetarynames.wr.usgs.gov/Page/Planets|url-status=live}}</ref> All of Jupiter's satellites from XXXIV ([[Euporie (moon)|Euporie]]) onward are named after descendants of Jupiter or Zeus,<ref name="Gazetteer"/> except LIII ([[Dia (moon)|Dia]]), named after a lover of Jupiter. Names ending with "a" or "o" are used for prograde irregular satellites (the latter for highly inclined satellites), and names ending with "e" are used for retrograde irregulars.<ref name="Nicholson2008"/> With the discovery of smaller, kilometre-sized moons around Jupiter, the IAU has established an additional convention to limit the naming of small moons with [[absolute magnitude]]s greater than 18 or diameters smaller than {{cvt|1|km|mi|sigfig=1}}.<ref>{{cite web|title=IAU Rules and Conventions|url=https://planetarynames.wr.usgs.gov/Page/Rules|work=Working Group for Planetary System Nomenclature|publisher=U.S. Geological Survey|access-date=10 September 2020|archive-date=13 April 2020|archive-url=https://web.archive.org/web/20200413072608/https://planetarynames.wr.usgs.gov/Page/Rules|url-status=live}}</ref> Some of the most recently confirmed moons have not received names.<ref name="SheppardMoons"/> |
||
|url=https://planetarynames.wr.usgs.gov/Page/Rules|work=Working Group for Planetary System Nomenclature|publisher=U.S. Geological Survey|access-date=10 September 2020}}</ref> Some of the most recently confirmed moons have not received names.<ref name="SheppardMoons"/> |
|||
Some [[asteroid]]s share [[Name conflicts of solar system objects|the same names]] as moons of Jupiter: [[9 Metis]], [[38 Leda]], [[52 Europa]], [[85 Io]], [[113 Amalthea]], [[239 Adrastea]]. Two more asteroids previously shared the names of Jovian moons until spelling differences were made permanent by the IAU: [[Ganymede (moon)|Ganymede]] and asteroid [[1036 Ganymed]]; and [[Callisto (moon)|Callisto]] and asteroid [[204 Kallisto]]. |
Some [[asteroid]]s share [[Name conflicts of solar system objects|the same names]] as moons of Jupiter: [[9 Metis]], [[38 Leda]], [[52 Europa]], [[85 Io]], [[113 Amalthea]], [[239 Adrastea]]. Two more asteroids previously shared the names of Jovian moons until spelling differences were made permanent by the IAU: [[Ganymede (moon)|Ganymede]] and asteroid [[1036 Ganymed]]; and [[Callisto (moon)|Callisto]] and asteroid [[204 Kallisto]]. |
||
Line 65: | Line 64: | ||
===Regular satellites=== |
===Regular satellites=== |
||
These have prograde and nearly circular orbits of low inclination and are split into two groups: |
These have prograde and nearly circular orbits of low inclination and are split into two groups: |
||
*'''''Inner satellites''''' or '''''Amalthea group''''': [[Metis (moon)|Metis]], [[Adrastea (moon)|Adrastea]], [[Amalthea (moon)|Amalthea]], and [[Thebe (moon)|Thebe]]. These orbit very close to Jupiter; the innermost two orbit in less than a Jovian day. The latter two are respectively the fifth and seventh largest moons in the |
*'''''Inner satellites''''' or '''''Amalthea group''''': [[Metis (moon)|Metis]], [[Adrastea (moon)|Adrastea]], [[Amalthea (moon)|Amalthea]], and [[Thebe (moon)|Thebe]]. These orbit very close to Jupiter; the innermost two orbit in less than a Jovian day. The latter two are respectively the fifth and seventh largest moons in the Jovian system. Observations suggest that at least the largest member, Amalthea, did not form on its present orbit, but farther from the planet, or that it is a captured Solar System body.<ref>{{Cite journal |last1=Anderson |first1=John D. |last2=Johnson |first2=Torrence V. |last3=Schubert |first3=Gerald |last4=Asmar |first4=Sami |last5=Jacobson |first5=Robert A. |last6=Johnston |first6=Douglas |last7=Lau |first7=Eunice L. |last8=Lewis |first8=George |last9=Moore |first9=William B. |last10=Taylor |first10=Anthony |last11=Thomas |first11=Peter C. |last12=Weinwurm |first12=Gudrun |display-authors=etal |date=2005-05-27 |title=Amalthea's Density Is Less Than That of Water |journal=Science |language=en |volume=308 |issue=5726 |pages=1291–1293 |bibcode=2005Sci...308.1291A |doi=10.1126/science.1110422 |issn=0036-8075 |pmid=15919987 |s2cid=924257}}</ref> These moons, along with a number of seen and as-yet-unseen inner moonlets (see [[Amalthea moonlets]]), replenish and maintain Jupiter's faint [[Rings of Jupiter|ring system]]. Metis and Adrastea help to maintain Jupiter's main ring, whereas Amalthea and Thebe each maintain their own faint outer rings.<ref name="list" /><ref>{{Cite journal |last1=Burns |first1=Joseph A. |last2=Showalter |first2=Mark R. |last3=Hamilton |first3=Douglas P. |display-authors=etal |date=1999-05-14 |title=The Formation of Jupiter's Faint Rings |journal=Science |language=en |volume=284 |issue=5417 |pages=1146–1150 |bibcode=1999Sci...284.1146B |doi=10.1126/science.284.5417.1146 |issn=0036-8075 |pmid=10325220 |s2cid=21272762}}</ref> |
||
*''Main group'' or ''[[Galilean moons]]'': [[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]] and [[Callisto (moon)|Callisto]]. They are some of [[List of moons|the largest objects]] in the [[Solar System]] outside the [[Sun]] and the eight planets in terms of mass, larger than any known [[dwarf planet]]. Ganymede exceeds (and Callisto nearly equals) even the planet [[Mercury (planet)|Mercury]] in diameter, though they are less massive. They are respectively the fourth-, sixth-, first-, and third-largest [[natural satellite]]s in the Solar System, containing approximately 99.997% of the total mass in orbit around Jupiter, while Jupiter is almost 5,000 times more massive than the Galilean moons.{{#tag:ref|Jupiter Mass of 1.8986{{E-sp|27}} kg / [http://ssd.jpl.nasa.gov/?sat_phys_par Mass of Galilean moons] 3.93{{E-sp|23}} kg = 4,828|group=note|name=Big4Mass}} The inner moons are in a 1:2:4 [[orbital resonance]]. Models suggest that they formed by slow [[accretion (astrophysics)|accretion]] in the low-density Jovian [[solar nebula|subnebula]]—a disc of the gas and dust that existed around Jupiter after its formation—which lasted up to 10 million years in the case of Callisto.<ref>{{ |
*'''''Main group''''' or '''''[[Galilean moons]]''''': [[Io (moon)|Io]], [[Europa (moon)|Europa]], [[Ganymede (moon)|Ganymede]] and [[Callisto (moon)|Callisto]]. They are some of [[List of moons|the largest objects]] in the [[Solar System]] outside the [[Sun]] and the eight planets in terms of mass, larger than any known [[dwarf planet]]. Ganymede exceeds (and Callisto nearly equals) even the planet [[Mercury (planet)|Mercury]] in diameter, though they are less massive. They are respectively the fourth-, sixth-, first-, and third-largest [[natural satellite]]s in the Solar System, containing approximately 99.997% of the total mass in orbit around Jupiter, while Jupiter is almost 5,000 times more massive than the Galilean moons.{{#tag:ref|Jupiter Mass of 1.8986{{E-sp|27}} kg / [http://ssd.jpl.nasa.gov/?sat_phys_par Mass of Galilean moons] 3.93{{E-sp|23}} kg = 4,828|group=note|name=Big4Mass}} The inner moons are in a 1:2:4 [[orbital resonance]]. Models suggest that they formed by slow [[accretion (astrophysics)|accretion]] in the low-density Jovian [[solar nebula|subnebula]]—a disc of the gas and dust that existed around Jupiter after its formation—which lasted up to 10 million years in the case of Callisto.<ref>{{Cite journal |last1=Canup |first1=Robin M. |last2=Ward |first2=William R. |date=December 2002 |title=Formation of the Galilean Satellites: Conditions of Accretion |url=http://www.boulder.swri.edu/~robin/cw02final.pdf |url-status=live |journal=The Astronomical Journal |volume=124 |issue=6 |pages=3404–3423 |bibcode=2002AJ....124.3404C |doi=10.1086/344684 |s2cid=47631608 |archive-url=https://web.archive.org/web/20190615104621/https://www.boulder.swri.edu/~robin/cw02final.pdf |archive-date=15 June 2019 |access-date=31 August 2008}}</ref> Europa, Ganymede, and Callisto are suspected of having [[Extraterrestrial oceans|subsurface water oceans]],<ref name="clubsandwich 2014">{{cite news |last=Clavin |first=Whitney |url=http://www.jpl.nasa.gov/news/news.php?release=2014-138 |title=Ganymede May Harbor 'Club Sandwich' of Oceans and Ice |work=NASA |publisher=Jet Propulsion Laboratory |date=May 1, 2014 |access-date=2014-05-01 |archive-date=31 January 2020 |archive-url=https://web.archive.org/web/20200131231329/https://www.jpl.nasa.gov/news/news.php?release=2014-138 |url-status=live }}</ref><ref name="Vance">{{cite journal |title=Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice |journal=Planetary and Space Science |date=12 April 2014 |last1=Vance |first1=Steve |last2=Bouffard |first2=Mathieu |last3=Choukroun |first3=Mathieu |last4=Sotina |first4=Christophe |doi=10.1016/j.pss.2014.03.011 |bibcode=2014P&SS...96...62V |volume=96 |pages=62–70}}</ref> and Io may have a subsurface [[magma]] ocean.<ref>{{cite journal |last1=Khurana |first1=K. K. |last2=Jia |first2=X. |last3=Kivelson |first3=M. G. |last4=Nimmo |first4=F. |last5=Schubert |first5=G. |last6=Russell |first6=C. T. |title=Evidence of a Global Magma Ocean in Io's Interior |journal=Science |date=12 May 2011 |volume=332 |issue=6034 |pages=1186–1189 |doi=10.1126/science.1201425|pmid=21566160 |bibcode=2011Sci...332.1186K |s2cid=19389957 |doi-access=free }}</ref> |
||
===Irregular satellites=== |
===Irregular satellites=== |
||
[[File:Jupiter irregular moon orbits Jan 2021.png|thumb|300px|Orbits and positions of Jupiter's irregular satellites as of 1 January 2021. Prograde orbits are colored blue while retrograde orbits are colored red.]] |
[[File:Jupiter irregular moon orbits Jan 2021.png|thumb|300px|Orbits and positions of Jupiter's irregular satellites as of 1 January 2021. Prograde orbits are colored blue while retrograde orbits are colored red.]] |
||
[[File:Jupiter moons e vs i.png|thumb|300px|Inclinations (°) vs. eccentricities of Jupiter's irregular satellites, with the major groups identified. Data as of 2021.]] |
|||
{{main|Irregular satellite}} |
{{main|Irregular satellite}} |
||
The irregular satellites are substantially smaller objects with more distant and eccentric orbits. They form families with shared similarities in orbit ([[semi-major axis]], [[inclination]], [[Orbital eccentricity|eccentricity]]) and composition; it is believed that these are at least partially [[Collisional family|collisional families]] that were created when larger (but still small) parent bodies were shattered by [[impact event|impact]]s from asteroids captured by Jupiter's gravitational field. These families bear the names of their largest members. The identification of satellite families is tentative, but the following are typically listed:<ref name="SheppardMoons"/><ref name="Grav2003"/><ref name=list>{{ |
The irregular satellites are substantially smaller objects with more distant and eccentric orbits. They form families with shared similarities in orbit ([[semi-major axis]], [[inclination]], [[Orbital eccentricity|eccentricity]]) and composition; it is believed that these are at least partially [[Collisional family|collisional families]] that were created when larger (but still small) parent bodies were shattered by [[impact event|impact]]s from asteroids captured by Jupiter's gravitational field. These families bear the names of their largest members. The identification of satellite families is tentative, but the following are typically listed:<ref name="SheppardMoons"/><ref name="Grav2003"/><ref name="list">{{Cite book |last1=Bagenal |first1=Fran |title=Jupiter: the planet, satellites and magnetosphere |last2=Dowling |first2=Timothy Edward |last3=McKinnon |first3=William B. |date=2004 |publisher=Cambridge University Press |isbn=978-0-521-81808-7 |editor-last=Bagenal |editor-first=Fran |series=Cambridge planetary science |volume=1 |location=Cambridge (GB) |pages=263–280 |chapter=Jupiter's outer satellites and Trojans |editor-last2=Dowling |editor-first2=Timothy E. |editor-last3=McKinnon |editor-first3=William B. |chapter-url=http://www.ifa.hawaii.edu/~jewitt/papers/JUPITER/JSP.2003.pdf |archive-url=https://web.archive.org/web/20090326065151/http://www.ifa.hawaii.edu/~jewitt/papers/JUPITER/JSP.2003.pdf |archive-date=26 March 2009 |url-status=dead}}</ref> |
||
* [[Direct motion|Prograde]] satellites: |
* [[Direct motion|Prograde]] satellites: |
||
**[[Themisto (moon)|Themisto]] is the innermost irregular moon and is not part of a known family.<ref name="SheppardMoons"/><ref name="Grav2003"/> |
**[[Themisto (moon)|Themisto]] is the innermost irregular moon and is not part of a known family.<ref name="SheppardMoons"/><ref name="Grav2003"/> |
||
**The [[Himalia group]] is |
**The [[Himalia group]] is confined within semi-major axes between {{convert|11–12|e6km|e6mi|abbr=unit}}, inclinations between 27 and 29°, and eccentricities between 0.12 and 0.21.<ref name="jplsats-elem"/> It has been suggested that the group could be a remnant of the break-up of an asteroid from the [[asteroid belt]].<ref name="Grav2003"/> The largest two members, [[Himalia (moon)|Himalia]] and [[Elara (moon)|Elara]], are respectively the sixth- and eighth-largest Jovian moons. |
||
**The [[Carpo (moon)|Carpo]] group includes two known moons on very high orbital inclinations of 50° and semi-major axes between {{convert|16–17|e6km|e6mi|abbr=unit}}.<ref name="SheppardMoons"/> Due to their exceptionally high inclinations, the moons of the Carpo group are subject to gravitational [[perturbation (astronomy)|perturbation]]s that induce the [[Kozai mechanism|Lidov–Kozai resonance]] in their orbits, which cause their eccentricities and inclinations to periodically oscillate in correspondence with each other.<ref name="Brozovic2017"/> The Lidov–Kozai resonance can significantly alter the orbits of these moons: for example, the eccentricity and inclination of the group's namesake Carpo can fluctuate between 0.19–0.69 and 44–59°, respectively.<ref name="Brozovic2017"/> |
|||
**[[Carpo (moon)|Carpo]] is another prograde moon and is not part of a known family. It has the highest orbital inclination and eccentricity of all of the prograde moons.<ref name="SheppardMoons"/> [[S/2018 J 4]], another prograde moon, has a high orbital inclination around 50° similar to Carpo, but has a nearly circular orbit.<ref name="MPEC-2023-B51"/> |
|||
**[[Valetudo (moon)|Valetudo]] is the outermost prograde moon and is not part of a known family. Its prograde orbit crosses paths with several moons that have retrograde orbits and may in the future collide with them.<ref name="Sheppard2018"/> |
**[[Valetudo (moon)|Valetudo]] is the outermost prograde moon and is not part of a known family. Its prograde orbit crosses paths with several moons that have retrograde orbits and may in the future collide with them.<ref name="Sheppard2018"/> |
||
* [[Retrograde motion|Retrograde]] satellites: |
* [[Retrograde motion|Retrograde]] satellites: |
||
**The [[Carme group]] is |
**The [[Carme group]] is tightly confined within semi-major axes between {{convert|22–24|e6km|e6mi|abbr=unit}}, inclinations between 164 and 166°, and eccentricities between 0.25 and 0.28.<ref name="jplsats-elem"/> It is very homogeneous in color (light red) and is believed to have originated as collisional fragments from a [[D-type asteroid]] progenitor, possibly a [[Jupiter trojan]].<ref name="Sheppard2003"/> |
||
**The [[Ananke group]] has a relatively wider spread than the previous groups, |
**The [[Ananke group]] has a relatively wider spread than the previous groups, with semi-major axes between {{convert|19–22|e6km|e6mi|abbr=unit}}, inclinations between 144 and 156°, and eccentricities between 0.09 and 0.25.<ref name="jplsats-elem"/> Most of the members appear gray, and are believed to have formed from the breakup of a captured asteroid.<ref name="Sheppard2003"/> |
||
**The [[Pasiphae group]] is quite dispersed, with |
**The [[Pasiphae group]] is quite dispersed, with semi-major axes spread over {{convert|22–25|e6km|e6mi|abbr=unit}}, inclinations between 141° and 157°, and higher eccentricities between 0.23 and 0.44.<ref name="jplsats-elem"/> The colors also vary significantly, from red to grey, which might be the result of multiple collisions. [[Sinope (moon)|Sinope]], sometimes included in the Pasiphae group,<ref name="Sheppard2003"/> is red and, given the difference in inclination, it could have been captured independently;<ref name="Grav2003"/> Pasiphae and Sinope are also trapped in [[secular resonance]]s with Jupiter.<ref name="Nesvorny2004"/> |
||
Based on their survey discoveries in 2000–2003, Sheppard and Jewitt predicted that Jupiter should have approximately 100 irregular satellites larger than {{cvt|1|km|mi|sigfig=1}} in diameter, or brighter than magnitude 24.<ref name="Sheppard2003"/>{{rp|page=262}} Survey observations by Alexandersen et al. in 2010–2011 agreed with this prediction, estimating that approximately 40 Jovian irregular satellites of this size remained undiscovered in 2012.<ref name="Alexandersen2012"/>{{rp|page=4}} |
Based on their survey discoveries in 2000–2003, Sheppard and Jewitt predicted that Jupiter should have approximately 100 irregular satellites larger than {{cvt|1|km|mi|sigfig=1}} in diameter, or brighter than magnitude 24.<ref name="Sheppard2003"/>{{rp|page=262}} Survey observations by Alexandersen et al. in 2010–2011 agreed with this prediction, estimating that approximately 40 Jovian irregular satellites of this size remained undiscovered in 2012.<ref name="Alexandersen2012"/>{{rp|page=4}} |
||
In September 2020, researchers from the [[University of British Columbia]] identified 45 candidate irregular moons from an analysis of archival images taken in 2010 by the CFHT.<ref name="Schilling2020"/> These candidates were mainly small and faint, down to magnitude of 25.7 or above {{cvt|0.8|km|mi|sigfig=1}} in diameter. From the number of candidate moons detected within a sky area of one square degree, the team extrapolated that the population of retrograde Jovian moons brighter than magnitude 25.7 is around {{val|600|600|300}} within a factor of 2.<ref name="Ashton2020"/>{{rp|page=6}} Although the team considers their characterized candidates to be likely moons of Jupiter, they all remain unconfirmed due to insufficient observation data for determining reliable orbits.<ref name="Schilling2020"/> The true population of Jovian irregular moons is likely complete down to magnitude 23.2 at diameters over {{cvt|3|km|mi}} {{ |
In September 2020, researchers from the [[University of British Columbia]] identified 45 candidate irregular moons from an analysis of archival images taken in 2010 by the CFHT.<ref name="Schilling2020"/> These candidates were mainly small and faint, down to magnitude of 25.7 or above {{cvt|0.8|km|mi|sigfig=1}} in diameter. From the number of candidate moons detected within a sky area of one square degree, the team extrapolated that the population of retrograde Jovian moons brighter than magnitude 25.7 is around {{val|600|600|300}} within a factor of 2.<ref name="Ashton2020"/>{{rp|page=6}} Although the team considers their characterized candidates to be likely moons of Jupiter, they all remain unconfirmed due to insufficient observation data for determining reliable orbits.<ref name="Schilling2020"/> The true population of Jovian irregular moons is likely complete down to magnitude 23.2 at diameters over {{cvt|3|km|mi}} {{as of|2020|lc=y}}.<ref name="Ashton2020"/>{{rp|page=6}}<ref name="Alexandersen2012"/>{{rp|page=4}} |
||
==List== |
==List== |
||
[[File:Jupitermoonsdiagram.png|thumb| |
[[File:Jupitermoonsdiagram.png|thumb|upright=4|center|Orbital diagram of the [[orbital inclination]] and orbital distances for Jupiter's rings and moon system at various scales. Notable moons, moon groups, and rings are individually labeled. Open the image for full resolution.]] |
||
The moons of Jupiter are listed below by orbital period. Moons massive enough for their surfaces to have [[hydrostatic equilibrium|collapsed]] into a [[spheroid]] are highlighted in bold. These are the four [[Galilean moons]], which are comparable in size to the [[Moon]]. The other moons are much smaller |
The moons of Jupiter are listed below by orbital period. Moons massive enough for their surfaces to have [[hydrostatic equilibrium|collapsed]] into a [[spheroid]] are highlighted in bold. These are the four [[Galilean moons]], which are comparable in size to the [[Moon]]. The other moons are much smaller. The Galilean moon with the smallest amount of mass is greater than 7,000 times more massive than the most massive of the other moons. The [[Irregular satellite|irregular]] captured moons are shaded light gray and orange when [[Direct motion|prograde]] and yellow, red, and dark gray when [[Retrograde motion|retrograde]]. |
||
The orbits and mean distances of the irregular moons are highly variable over short timescales due to frequent planetary and solar [[perturbation (astronomy)|perturbations]],<ref name="Brozovic2017"/> so [[proper orbital elements]] which are averaged over a period of time are preferably used. The proper orbital elements of the irregular moons listed here are averaged over a 400-year [[numerical integration]] by the [[Jet Propulsion Laboratory]]: for the above reasons, they may strongly differ from [[osculating orbit|osculating]] orbital elements provided by other sources.<ref name="jplsats-elem"/> Otherwise, recently discovered irregular moons without published proper elements are temporarily listed here with inaccurate [[Osculating orbit|osculating orbital elements]] that are ''italicized'' to distinguish them from other irregular moons with proper orbital elements. Some of the irregular moons' proper orbital periods in this list may not scale accordingly with their proper semi-major axes due to the aforementioned perturbations. The irregular moons' proper orbital elements are all based on the reference [[Epoch (astronomy)|epoch]] of 1 January 2000.<ref name="jplsats-elem"/> |
|||
The moon S/2016 J 4<ref=https://minorplanetcenter.net/mpec/K23/K23B96.html> is not included in the table. |
|||
Some irregular moons have only been observed briefly for a year or two, but their orbits are known accurately enough that they will not be [[lost minor planet|lost]] to positional [[Uncertainty parameter|uncertainties]].<ref name="Brozovic2017"/><ref name="SheppardMoons"/> |
|||
<div style="float: left; width:30em; "> |
|||
{| class="wikitable" style="margin:0; font-size:90%" |
|||
<div style="float:left"> |
|||
{| class="wikitable" style="margin:0; font-size:90%; text-align:left" |
|||
|- |
|- |
||
|+ Key |
|||
! style="background:#eaeaea" colspan=8|Key |
|||
|- |
|||
|- style="text-align:center;" |
|||
| style= |
| style="background:#fff;" | ''Inner moons (4)'' |
||
| style="background:#ccf; |
| style="background:#ccf;" | ♠ '''''[[Galilean moons]]''' (4)'' |
||
| style="background:# |
| style="background:#ffe0fc"| † Themisto (1) |
||
|- |
|||
| style="background:#fdd5b1; width:14.2%; "|♣<br /> [[Himalia group]] |
|||
| style="background:# |
| style="background:#fdd5b1"| ♣ ''[[Himalia group]] (9)'' |
||
| style="background:# |
| style="background:#d5fbff"| § ''Carpo group (2)'' |
||
| style="background:# |
| style="background:#d0f0d0"| ± Valetudo (1) |
||
|- |
|||
| style="background:#d3d3d3; width:14.2%; "|‡<br /> [[Pasiphae group]] |
|||
| style="background:#f0f0b0"| ♦ ''[[Ananke group]] (26)'' |
|||
| style="background:#f4c2c2"| ♥ ''[[Carme group]] (30)'' |
|||
| style="background:#d3d3d3"| ‡ ''[[Pasiphae group]] (18)'' |
|||
|}</div> |
|}</div> |
||
{{clear}} |
{{clear}} |
||
{{sort under}} |
|||
{{sticky table start}} |
|||
{| class="wikitable sortable" style="width:100%; font-size:85%" |
|||
{| class="wikitable sortable sort-under sticky-table-row1 sticky-table-col1" style="font-size:85%" |
|||
|- style="background:#efefef;" |
|- style="background:#efefef;" |
||
! |
! Label<br /><ref group=note>Label refers to the [[Roman numeral]] attributed to each moon in order of their naming.</ref> |
||
! Name |
! Name |
||
! class="unsortable" |Pronunciation |
! class="unsortable" |Pronunciation |
||
! class="unsortable" |Image |
! class="unsortable" |Image |
||
! data-sort-type="number" | [[Absolute magnitude#Solar System bodies (H)|Abs.<br>magn.]]<ref name="MPC-NatSats"/> |
! data-sort-type="number" | [[Absolute magnitude#Solar System bodies (H)|Abs.<br>magn.]]<br /><ref name="MPC-NatSats"/> |
||
! data-sort-type="number" | [[List of Solar System objects by size|Diameter]] (km)<ref name="SheppardMoons"/><ref group=note>Diameters with multiple entries such as "60 × 40 × 34" reflect that the body is not a perfect [[spheroid]] and that each of its dimensions has been measured well enough.</ref> |
! data-sort-type="number" | [[List of Solar System objects by size|Diameter]] (km)<br /><ref name="SheppardMoons"/><ref group=note>Diameters with multiple entries such as "60 × 40 × 34" reflect that the body is not a perfect [[spheroid]] and that each of its dimensions has been measured well enough.</ref> |
||
! data-sort-type="number" | [[List of Solar System objects by mass|Mass]]<br />({{e| |
! data-sort-type="number" | [[List of Solar System objects by mass|Mass]]<br />({{e|15}} [[Kilogram|kg]])<br /><ref name="jplsats-phys">{{cite web|title=Planetary Satellite Physical Parameters|url=https://ssd.jpl.nasa.gov/sats/phys_par/|publisher=Jet Propulsion Laboratory|access-date=28 March 2022|archive-date=28 March 2022|archive-url=https://web.archive.org/web/20220328194721/https://ssd.jpl.nasa.gov/sats/phys_par/|url-status=live}}</ref><ref group=note>The only satellites with measured masses are Amalthea, Himalia, and the four Galilean moons. The masses of the inner satellites are estimated by assuming a density similar to Amalthea's ({{val|0.86|u=g/cm3}}), while the rest of the irregular satellites are estimated by assuming a spherical volume and a density of {{val|1|u=g/cm3}}.</ref> |
||
! data-sort-type="number" | [[Semi-major axis]]<br />(km)<ref name="jplsats"/> |
! data-sort-type="number" | [[Semi-major axis]]<br />(km)<br /><ref name="jplsats-elem"/> |
||
! data-sort-type="number" | [[Orbital period]] ([[Day|d]])<br /><ref name="jplsats"/><ref group=note>Periods with negative values are retrograde.</ref> |
! data-sort-type="number" | [[Orbital period]] ([[Day|d]])<br /><ref name="jplsats-elem"/><ref group=note>Periods with negative values are retrograde.</ref> |
||
! data-sort-type="number" | |
! data-sort-type="number" | [[Inclination]]<br />([[Degree (angle)|°]])<br /><ref name="jplsats-elem"/> |
||
! data-sort-type="number" | |
! data-sort-type="number" | [[Orbital eccentricity|Eccentricity]]<br /><ref name="SheppardMoons"/> |
||
! |
! [[Timeline of discovery of Solar System planets and their moons|Discovery<br> year]]<br /><ref name="jplsats-disc"/> |
||
! |
! Year announced |
||
! < |
! Discoverer<br /><ref name="Gazetteer"/><ref name="jplsats-disc"/> |
||
! Group<br /><ref group=note>"?" refers to group assignments that are not considered sure yet.</ref> |
! Group<br /><ref group=note>"?" refers to group assignments that are not considered sure yet.</ref> |
||
|- id="Metis" style="background:#fff;" |
|- id="Metis" style="background:#fff;" |
||
|{{sort|16|XVI}}|| [[Metis (moon)|Metis]] || {{IPAc-en|ˈ|m|iː|t|ə|s}} || style="background:black;"| [[File:Metis.jpg|50px|center]] ||align="right"| 10.5 ||align="right"| 43<br>(60 × 40 × 34) ||align="right"| {{sort| |
|{{sort|16|XVI}}|| [[Metis (moon)|Metis]] || {{IPAc-en|ˈ|m|iː|t|ə|s}} || style="background:black;"| [[File:Metis.jpg|50px|center]] ||align="right"| 10.5 ||align="right"| 43<br>(60 × 40 × 34) ||align="right"| {{sort|36|≈ 36}} ||align="right"| {{val|128000}} ||align="right"| {{sort|0.2948|+0.2948<br>(+7h 04m 29s)}} ||align="right"| 0.060 ||align="right"| 0.0002 ||align="right"| 1979 || 1980 || [[Stephen P. Synnott|Synnott]]<br />(''[[Voyager 1]]'') || Inner |
||
|- id="Adrastea" style="background:#fff;" |
|- id="Adrastea" style="background:#fff;" |
||
|{{sort|15|XV}}|| [[Adrastea (moon)|Adrastea]] || {{IPAc-en|æ|d|r|ə|ˈ|s|t|iː|ə}} || style="background:black;"| [[File:Adrastea.jpg|50px|center]] ||align="right"| 12.0 || style="text-align:right;"| {{sort|16.4|16.4<br>(20 × 16 × 14)}} ||align="right"| {{sort| |
|{{sort|15|XV}}|| [[Adrastea (moon)|Adrastea]] || {{IPAc-en|æ|d|r|ə|ˈ|s|t|iː|ə}} || style="background:black;"| [[File:Adrastea.jpg|50px|center]] ||align="right"| 12.0 || style="text-align:right;"| {{sort|16.4|16.4<br>(20 × 16 × 14)}} ||align="right"| {{sort|2.0|≈ 2.0}} ||align="right"|{{val|129000}} || align="right" |{{sort|0.2983|+0.2983<br>(+7h 09m 30s)}} ||align="right"| 0.030 ||align="right"| 0.0015 || style="text-align:right;"| 1979 || 1979 || [[David C. Jewitt|Jewitt]]<br />(''[[Voyager 2]]'')|| Inner |
||
|- id="Amalthea" style="background:#fff;" |
|- id="Amalthea" style="background:#fff;" |
||
|{{sort|05|V}}|| [[Amalthea (moon)|Amalthea]] || {{IPAc-en|æ|m|ə|l|ˈ|θ|iː|ə}}{{refn|{{MW|Amalthea}}}} || style="background:black;"| [[File:Amalthea (moon).png|50px|center]] ||align="right"| 7.1 || style="text-align:right;"| {{sort|167|167<br>(250 × 146 × 128)}} ||align="right"| |
|{{sort|05|V}}|| [[Amalthea (moon)|Amalthea]] || {{IPAc-en|æ|m|ə|l|ˈ|θ|iː|ə}}{{refn|{{MW|Amalthea}}}} || style="background:black;"| [[File:Amalthea (moon).png|50px|center]] ||align="right"| 7.1 || style="text-align:right;"| {{sort|167|167<br>(250 × 146 × 128)}} ||align="right"| {{val|2080}} ||align="right"|{{val|181400}} ||align="right"| {{sort|0.4999|+0.4999<br>(+11h 59m 53s)}} ||align="right"| 0.374 ||align="right"| 0.0032 || style="text-align:right;"| 1892 || 1892 || [[Edward Emerson Barnard|Barnard]] || Inner |
||
|- id="Thebe" style="background:#fff;" |
|- id="Thebe" style="background:#fff;" |
||
|{{sort|14|XIV}}|| [[Thebe (moon)|Thebe]] || {{IPAc-en|ˈ|θ|iː|b|iː}} || style="background:black;"| [[File:Thebe.jpg|50px|center]] ||align="right"| 9.0 || style="text-align:right;"| {{sort|98.6|98.6<br>(116 × 98 × 84)}} ||align="right"| {{sort| |
|{{sort|14|XIV}}|| [[Thebe (moon)|Thebe]] || {{IPAc-en|ˈ|θ|iː|b|iː}} || style="background:black;"| [[File:Thebe.jpg|50px|center]] ||align="right"| 9.0 || style="text-align:right;"| {{sort|98.6|98.6<br>(116 × 98 × 84)}} ||align="right"| {{sort|430|≈ 430}} ||align="right"| {{val|221900}} ||align="right"| {{sort|0.6761|+0.6761<br>(+16h 13m 35s)}} ||align="right"| 1.076 ||align="right"| 0.0175 || style="text-align:right;"| 1979 || 1980 ||Synnott<br />(''Voyager 1'') || Inner |
||
|- id="Io" style="background:#ccf;" |
|- id="Io" style="background:#ccf;" |
||
|{{sort|01|I}}|| '''[[Io (moon)|Io]]'''♠|| {{IPAc-en|ˈ|aɪ|oʊ}} || style="background:black;"|[[File: |
|{{sort|01|I}}|| '''[[Io (moon)|Io]]'''♠|| {{IPAc-en|ˈ|aɪ|oʊ}} || style="background:black;"|[[File:Io_imaged_by_Juno_spacecraft.png|alt=|center|50px]]|| align="right" | -1.7 || style="text-align:right;"| {{val|3643.2}}<br>{{nowrap|(3660 × 3637 × 3631)}} ||align="right"| {{val|89319000}} ||align="right"|{{val|421800}} ||align="right"| {{sort|1.7627|+1.7627<br>(+1d 18h 18m 20s)}} ||align="right"| 0.050<ref name="inclination">{{Cite report |url=http://www.hnsky.org/iau-iag.htm |title=The Planets and Satellites 2000 |last1=Siedelmann |first1=P.K. |last2=Abalakin |first2=V.K. |date=2000 |publisher=IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites |last3=Bursa |first3=M |last4=Davies |first4=M.E. |last5=de Bergh |first5=C. |last6=Lieske |first6=J.H. |last7=Obrest |first7=J. |last8=Simon |first8=J.L. |last9=Standish |first9=E.M. |last10=Stooke |first10=P. |last11=Thomas |first11=P.C. |access-date=31 August 2008 |archive-url=https://web.archive.org/web/20200512151452/http://www.hnsky.org/iau-iag.htm |archive-date=12 May 2020 |url-status=dead |display-authors=4}}</ref> ||align="right"| 0.0041 || style="text-align:right;"| 1610 || 1610 || [[Galileo Galilei|Galileo]] || [[Galilean moon|Galilean]] |
||
|- id="Europa" style="background:#ccf;" |
|- id="Europa" style="background:#ccf;" |
||
|{{sort|02|II}}|| '''[[Europa (moon)|Europa]]'''♠|| {{IPAc-en|j|ʊəˈr|oʊ|p|ə}}{{refn|{{cite web |url=https://www.oxforddictionaries.com/definition/english/europa |archive-url=https://web.archive.org/web/20120721053550/http://oxforddictionaries.com/definition/english/Europa |url-status=dead |archive-date=21 July 2012 |title=Europa - definition of Europa in English from the Oxford dictionary |publisher=[[OxfordDictionaries.com]] |access-date=20 January 2016 }} }}|| style="background:black;"| [[File:Europa |
|{{sort|02|II}}|| '''[[Europa (moon)|Europa]]'''♠|| {{IPAc-en|j|ʊəˈr|oʊ|p|ə}}{{refn|{{cite web |url=https://www.oxforddictionaries.com/definition/english/europa |archive-url=https://web.archive.org/web/20120721053550/http://oxforddictionaries.com/definition/english/Europa |url-status=dead |archive-date=21 July 2012 |title=Europa - definition of Europa in English from the Oxford dictionary |publisher=[[OxfordDictionaries.com]] |access-date=20 January 2016 }} }}|| style="background:black;"| [[File:Europa in natural color.png|50px|center]] ||align="right"| -1.4 || style="text-align:right;"| {{val|3121.6}} ||align="right"| {{val|47998000}} ||align="right"| {{val|671100}} ||align="right"| {{sort|3.5255|+3.5255<br>(+3d 12h 36m 40s)}} ||align="right"| 0.470<ref name=inclination/> ||align="right"| 0.0090 || style="text-align:right;"| 1610 || 1610 || Galileo ||[[Galilean moon|Galilean]] |
||
|- id="Ganymede" style="background:#ccf;" |
|- id="Ganymede" style="background:#ccf;" |
||
|{{sort|03|III}}|| '''[[Ganymede (moon)|Ganymede]]'''♠|| {{IPAc-en|ˈ|ɡ|æ|n| |
|{{sort|03|III}}|| '''[[Ganymede (moon)|Ganymede]]'''♠|| {{IPAc-en|ˈ|ɡ|æ|n|ɪ|m|iː|d}}{{refn|{{cite web |url=https://www.oxforddictionaries.com/definition/english/ganymede |archive-url=https://web.archive.org/web/20130314050724/http://oxforddictionaries.com/definition/english/Ganymede |url-status=dead |archive-date=14 March 2013 |title=Ganymede - definition of Ganymede in English from the Oxford dictionary |publisher=[[OxfordDictionaries.com]] |access-date=20 January 2016 }} }}{{refn|{{MerriamWebsterDictionary|Ganymede}}}} || style="background:black;" |[[File:Ganymede - Perijove 34 Composite.png|center|50x50px]]|| align="right" | -2.1 || style="text-align:right;"| {{val|5268.2}}|| align="right" | {{val|148190000}} ||align="right"| {{val|1070400}} ||align="right"| {{sort|7.1556|+{{val|7.1556}}}} ||align="right"| 0.200<ref name=inclination/> ||align="right"| 0.0013 || style="text-align:right;"| 1610 || 1610 || Galileo ||[[Galilean moon|Galilean]] |
||
|- id="Callisto" style="background:#ccf;" |
|- id="Callisto" style="background:#ccf;" |
||
|{{sort|04|IV}}|| '''[[Callisto (moon)|Callisto]]'''♠|| {{IPAc-en|k|ə|ˈ|l|ɪ|s|t|oʊ}} || style="background:black;"| [[File:Callisto.jpg|50px|center]] ||align="right"| |
|{{sort|04|IV}}|| '''[[Callisto (moon)|Callisto]]'''♠|| {{IPAc-en|k|ə|ˈ|l|ɪ|s|t|oʊ}} || style="background:black;"| [[File:Callisto.jpg|50px|center]] ||align="right"| -1.2 || style="text-align:right;"| {{val|4820.6}} ||align="right"| {{val|107590000}} ||align="right"| {{val|1882700}} ||align="right"| {{sort|016.690|+{{val|16.690}}}} ||align="right"| 0.192<ref name=inclination/> ||align="right"| 0.0074 || style="text-align:right;"| 1610 || 1610 || Galileo ||[[Galilean moon|Galilean]] |
||
|- id="Themisto" style="background:# |
|- id="Themisto" style="background:#ffe0fc" |
||
|{{sort|18|XVIII}}|| [[Themisto (moon)|Themisto]]†|| {{IPAc-en|θ|ə|ˈ|m|ɪ|s|t|oʊ}} || style="background:black;"| [[File:S 2000 J 1.jpg|50px|center]] ||align="right"| 13.3 || style="text-align:right;"| {{sort|9|≈ 9}} ||align="right"| {{sort|0. |
|{{sort|18|XVIII}}|| [[Themisto (moon)|Themisto]]†|| {{IPAc-en|θ|ə|ˈ|m|ɪ|s|t|oʊ}} || style="background:black;"| [[File:S 2000 J 1.jpg|50px|center]] ||align="right"| 13.3 || style="text-align:right;"| {{sort|9|≈ 9}} ||align="right"| {{sort|0.38|≈ {{val|0.38}}}} ||align="right"| {{val|7398500}} ||align="right"| {{sort|130.03|+{{val|130.03}}}} ||align="right"| 43.8 ||align="right"| 0.340 || style="text-align:right;"| 1975/2000 || 1975 || [[Charles T. Kowal|Kowal]] & [[Elizabeth Roemer|Roemer]]/<br />[[Scott S. Sheppard|Sheppard]] et al. || Themisto |
||
|- id="Ledo" style="background:#fdd5b1" |
|- id="Ledo" style="background:#fdd5b1" |
||
|{{sort|13|XIII}}|| [[Leda (moon)|Leda]]♣|| {{IPAc-en|ˈ|l|iː|d|ə}} || style="background:black;"| [[File:Leda WISE-W3.jpg|50px|center]] ||align="right"| 12.7 || style="text-align:right;"| 21.5 ||align="right"| {{sort| |
|{{sort|13|XIII}}|| [[Leda (moon)|Leda]]♣|| {{IPAc-en|ˈ|l|iː|d|ə}} || style="background:black;"| [[File:Leda WISE-W3.jpg|50px|center]] ||align="right"| 12.7 || style="text-align:right;"| 21.5 ||align="right"| {{sort|5.2|≈ 5.2}} ||align="right"| {{val|11146400}} ||align="right"| {{sort|240.93|+{{val|240.93}}}} ||align="right"| 28.6 ||align="right"| 0.162 || style="text-align:right;"| 1974 || 1974 || [[Charles T. Kowal|Kowal]] || [[Himalia group|Himalia]] |
||
|- id="Ersa" style="background:#fdd5b1" |
|- id="Ersa" style="background:#fdd5b1" |
||
|{{sort|71|LXXI}}|| [[Ersa (moon)|Ersa]]♣|| {{IPAc-en|ˈ|ɜr|s|ə}} || style="background:black;"| [[File:Ersa CFHT precovery 2003-02-24.png|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|71|LXXI}}|| [[Ersa (moon)|Ersa]]♣|| {{IPAc-en|ˈ|ɜr|s|ə}} || style="background:black;"| [[File:Ersa CFHT precovery 2003-02-24.png|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|11401000}} ||align="right"| {{sort|249.23|+{{val|249.23}}}} ||align="right"| 29.1 ||align="right"| 0.116 ||align="right"| 2018 || 2018 || Sheppard ||[[Himalia group|Himalia]] |
||
|- id="Himalia" style="background:#fdd5b1" |
|||
|{{sort|06|VI}}|| [[Himalia (moon)|Himalia]]♣|| {{IPAc-en|h|ɪ|ˈ|m|eɪ|l|i|ə}}|| style="background:black;"| [[File:Cassini-Huygens Image of Himalia.png|50px|center]] ||align="right"| 8.0 || style="text-align:right;"| 139.6<br>(150 × 120) ||align="right"| 420 ||align="right"| {{val|11440600}} ||align="right"| {{sort|250.56|+{{val|250.56}}}} ||align="right"| 28.1 ||align="right"| 0.160 ||align="right"| 1904 || 1905 || [[Charles Dillon Perrine|Perrine]] ||[[Himalia group|Himalia]] |
|||
|- id="S/2018 J 2" style="background:#fdd5b1" |
|- id="S/2018 J 2" style="background:#fdd5b1" |
||
|{{sort| |
|{{sort|L| }}|| [[S/2018 J 2]]♣|| || style="background:black;"| ||align="right"| 16.5 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|11419700}} ||align="right"| {{sort|249.92|+{{val|249.92}}}} ||align="right"| 28.3 ||align="right"| 0.152 ||align="right"| 2018 || 2022 || Sheppard ||[[Himalia group|Himalia]] |
||
|- id="Himalia" style="background:#fdd5b1" |
|||
|{{sort|06|VI}}|| [[Himalia (moon)|Himalia]]♣|| {{IPAc-en|h|ɪ|ˈ|m|eɪ|l|i|ə}}|| style="background:black;"| [[File:Cassini-Huygens Image of Himalia.png|50px|center]] ||align="right"| 8.0 || style="text-align:right;"| 139.6<br>(150 × 120) ||align="right"| {{val|4200}} ||align="right"| {{val|11440600}} ||align="right"| {{sort|250.56|+{{val|250.56}}}} ||align="right"| 28.1 ||align="right"| 0.160 ||align="right"| 1904 || 1905 || [[Charles Dillon Perrine|Perrine]] ||[[Himalia group|Himalia]] |
|||
|- id="Pandia" style="background:#fdd5b1" |
|- id="Pandia" style="background:#fdd5b1" |
||
|{{sort|65|LXV}}|| [[Pandia (moon)|Pandia]]♣|| {{IPAc-en|p|æ|n|ˈ|d|aɪ|ə}} || style="background:black;"| [[File:Pandia CFHT precovery 2003-02-28.png|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|65|LXV}}|| [[Pandia (moon)|Pandia]]♣|| {{IPAc-en|p|æ|n|ˈ|d|aɪ|ə}} || style="background:black;"| [[File:Pandia CFHT precovery 2003-02-28.png|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|11481000}} ||align="right"| {{sort|251.91|+{{val|251.91}}}} ||align="right"| 29.0 ||align="right"| 0.179 ||align="right"| 2017 || 2018 || Sheppard ||[[Himalia group|Himalia]] |
||
|- id="Lysithea" style="background:#fdd5b1" |
|- id="Lysithea" style="background:#fdd5b1" |
||
|{{sort|10|X}}|| [[Lysithea (moon)|Lysithea]]♣|| {{IPAc-en|l|aɪ|ˈ|s|ɪ|θ|i|ə}} || style="background:black;"| [[File:Lysithea 2MASS JHK color composite.png|50px|center]] ||align="right"| 11.2 || style="text-align:right;"| 42.2 ||align="right"| {{sort| |
|{{sort|10|X}}|| [[Lysithea (moon)|Lysithea]]♣|| {{IPAc-en|l|aɪ|ˈ|s|ɪ|θ|i|ə}} || style="background:black;"| [[File:Lysithea 2MASS JHK color composite.png|50px|center]] ||align="right"| 11.2 || style="text-align:right;"| 42.2 ||align="right"| {{sort|39|≈ 39}} ||align="right"| {{val|11700800}} ||align="right"| {{sort|259.20|+{{val|259.20}}}} ||align="right"| 27.2 ||align="right"| 0.117 || style="text-align:right;"| 1938 || 1938 || [[Seth Barnes Nicholson|Nicholson]] ||[[Himalia group|Himalia]] |
||
|- id="Elara" style="background:#fdd5b1" |
|- id="Elara" style="background:#fdd5b1" |
||
|{{sort|07|VII}}|| [[Elara (moon)|Elara]]♣|| {{IPAc-en|ˈ|ɛ|l|ər|ə}} || style="background:black;"| [[File:Elara - New Horizons.png|50px|center]] ||align="right"| 9.7 || style="text-align:right;"| 79.9 ||align="right"| {{sort| |
|{{sort|07|VII}}|| [[Elara (moon)|Elara]]♣|| {{IPAc-en|ˈ|ɛ|l|ər|ə}} || style="background:black;"| [[File:Elara - New Horizons.png|50px|center]] ||align="right"| 9.7 || style="text-align:right;"| 79.9 ||align="right"| {{sort|270|≈ 270}} ||align="right"| {{val|11712300}} ||align="right"| {{sort|259.64|+{{val|259.64}}}} || align="right" | 27.9 ||align="right"| 0.211 || style="text-align:right;"| 1905 || 1905 || Perrine ||[[Himalia group|Himalia]] |
||
|- id="S/2011 J 3" style="background:#fdd5b1" |
|- id="S/2011 J 3" style="background:#fdd5b1" |
||
|{{sort|I| }}|| [[S/2011 J 3]]♣|| || style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|I| }}|| [[S/2011 J 3]]♣|| || style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|11716800}} ||align="right"| {{sort|259.84|+{{val|259.84}}}} ||align="right"| 27.6 ||align="right"| 0.192 || style="text-align:right;"| 2011 || 2022 || Sheppard || [[Himalia group|Himalia]] |
||
|- id="Dia" style="background:#fdd5b1" |
|- id="Dia" style="background:#fdd5b1" |
||
|{{sort|53|LIII}}|| [[Dia (moon)|Dia]]♣|| {{IPAc-en|ˈ|d|aɪ|ə}} || style="background:black;"| [[File:Dia-Jewitt-CFHT image-crop.png|50px|center]] ||align="right"| 16.1 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0. |
|{{sort|53|LIII}}|| [[Dia (moon)|Dia]]♣|| {{IPAc-en|ˈ|d|aɪ|ə}} || style="background:black;"| [[File:Dia-Jewitt-CFHT image-crop.png|50px|center]] ||align="right"| 16.1 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|12260300}} ||align="right"| {{sort|278.21|+{{val|278.21}}}} ||align="right"| 29.0 ||align="right"| 0.232 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Himalia group|Himalia]] |
||
|- id="S/2018 J 4" style="background:# |
|- id="S/2018 J 4" style="background:#d5fbff" |
||
|{{sort| |
|{{sort|N| }}|| [[S/2018 J 4]]§|| || style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|16328500}} ||align="right"| {{sort|427.63|+{{val|427.63}}}} ||align="right"| 50.2 ||align="right"| 0.177 ||align="right"| 2018 || 2023 || Sheppard || Carpo |
||
|- id="Carpo" style="background:# |
|- id="Carpo" style="background:#d5fbff" |
||
|{{sort|46|XLVI}}|| [[Carpo (moon)|Carpo]]§|| {{IPAc-en|ˈ|k|ɑːr|p|oʊ}} || style="background:black;"| [[File:Carpo CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|46|XLVI}}|| [[Carpo (moon)|Carpo]]§|| {{IPAc-en|ˈ|k|ɑːr|p|oʊ}} || style="background:black;"| [[File:Carpo CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|17042300}} ||align="right"| {{sort|456.29|+{{val|456.29}}}} ||align="right"| 53.2 ||align="right"| 0.416 ||align="right"| 2003 || 2003 || Sheppard || Carpo |
||
|- id="Valetudo" style="background:# |
|- id="Valetudo" style="background:#d0f0d0" |
||
|{{sort|62|LXII}}|| [[Valetudo (moon)|Valetudo]] |
|{{sort|62|LXII}}|| [[Valetudo (moon)|Valetudo]]±|| {{IPAc-en|v|æ|l|ə|ˈ|tj|uː|d|oʊ}} || style="background:black;"| [[File:Valetudo CFHT precovery 2003-02-28 annotated.gif|50px|center]] ||align="right"| 17.0 || style="text-align:right;"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|18694200}} ||align="right"| {{sort|527.61|+{{val|527.61}}}} ||align="right"| 34.5 ||align="right"| 0.217 ||align="right"| 2016 || 2018 || Sheppard || Valetudo |
||
|- id="Euporie" style="background:#f0f0b0" |
|- id="Euporie" style="background:#f0f0b0" |
||
|{{sort|34|XXXIV}}|| [[Euporie (moon)|Euporie]]♦|| {{IPAc-en|ˈ|j|uː|p|ə|r|iː}} || style="background:black;"| [[File:Euporie-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|34|XXXIV}}|| [[Euporie (moon)|Euporie]]♦|| {{IPAc-en|ˈ|j|uː|p|ə|r|iː}} || style="background:black;"| [[File:Euporie-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|19265800}} ||align="right"| {{sort|550.69|{{val|−550.69}}}} ||align="right"| 145.7 ||align="right"| 0.148 ||align="right"| 2001 || 2002 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="Jupiter LV" style="background:#f0f0b0" |
|- id="Jupiter LV" style="background:#f0f0b0" |
||
|{{sort|55|[[Jupiter LV|LV]]}}|| [[S/2003 J 18]]♦|| || style="background:black;"| [[File:2003 J 18 CFHT recovery full.gif|50px|center]] ||align="right"| 16.4 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|55|[[Jupiter LV|LV]]}}|| [[S/2003 J 18]]♦|| || style="background:black;"| [[File:2003 J 18 CFHT recovery full.gif|50px|center]] ||align="right"| 16.4 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20336300}} ||align="right"| {{sort|598.12|{{val|−598.12}}}} ||align="right"| 145.3 ||align="right"| 0.090 || style="text-align:right;"| 2003 || 2003 || Gladman || [[Ananke group|Ananke]] |
||
|- id="S/2021 J 1" style="background:#f0f0b0" |
|||
|{{sort|N| }} || [[S/2021 J 1]]♦|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.00042|≈ {{val|0.00042}}}} ||align="right"| {{val|20667200}} ||align="right"| {{sort|606.99|{{val|−606.99}}}} ||align="right"| 149.8 ||align="right"| 0.246 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="Eupheme" style="background:#f0f0b0" |
|- id="Eupheme" style="background:#f0f0b0" |
||
|{{sort|60|LX}}|| [[Eupheme (moon)|Eupheme]]♦|| {{IPAc-en|j|uː|ˈ|f|iː|m|iː}} || style="background:black;"| [[File:Eupheme CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|60|LX}}|| [[Eupheme (moon)|Eupheme]]♦|| {{IPAc-en|j|uː|ˈ|f|iː|m|iː}} || style="background:black;"| [[File:Eupheme CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20768600}} ||align="right"| {{sort|617.73|{{val|−617.73}}}} ||align="right"| 148.0 ||align="right"| 0.241 ||align="right"| 2003 || 2003 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="S/2021 J 3" style="background:#f0f0b0" |
|||
|{{sort|Q| }} || [[S/2021 J 3]]♦|| || style="background:black;"| ||align="right"| 17.2 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20776700}} ||align="right"| {{sort|618.33|{{val|−618.33}}}} ||align="right"| 147.9 ||align="right"| 0.239 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="Jupiter LII" style="background:#f0f0b0" |
|- id="Jupiter LII" style="background:#f0f0b0" |
||
|{{sort|52|[[Jupiter LII|LII]]}}|| [[S/2010 J 2]]♦|| || style="background:black;"| [[File:2010 J 2 CFHT discovery full.gif|50px|center]] ||align="right"| 17.4 || style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0. |
|{{sort|52|[[Jupiter LII|LII]]}}|| [[S/2010 J 2]]♦|| || style="background:black;"| [[File:2010 J 2 CFHT discovery full.gif|50px|center]] ||align="right"| 17.4 || style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|20793000}} ||align="right"| {{sort|618.84|{{val|−618.84}}}} ||align="right"| 148.1 ||align="right"| 0.248 ||align="right"| 2010 || 2011 || Veillet || [[Ananke group|Ananke]] |
||
|- id="Jupiter LIV" style="background:#f0f0b0" |
|- id="Jupiter LIV" style="background:#f0f0b0" |
||
|{{sort|54|[[Jupiter LIV|LIV]]}}|| [[S/2016 J 1]]♦|| || style="background:black;"| [[File:2016 J 1 CFHT 2003-02-26 annotated.gif|50px|center]] ||align="right"| 17.0 || align="right"| {{sort|1|≈ 1}} ||style="text-align:right;"| {{sort|0. |
|{{sort|54|[[Jupiter LIV|LIV]]}}|| [[S/2016 J 1]]♦|| || style="background:black;"| [[File:2016 J 1 CFHT 2003-02-26 annotated.gif|50px|center]] ||align="right"| 17.0 || align="right"| {{sort|1|≈ 1}} ||style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|20802600}} ||align="right"| {{sort|618.49|{{val|−618.49}}}} ||align="right"| 144.7 ||align="right"| 0.232 || style="text-align:right;"| 2016 || 2017 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="Mneme" style="background:#f0f0b0" |
|- id="Mneme" style="background:#f0f0b0" |
||
|{{sort|40|XL}}|| [[Mneme (moon)|Mneme]]♦|| {{IPAc-en|ˈ|n|iː|m|iː}} || style="background:black;"| [[File:Mneme Discovery Image.jpg|50px|center]]|| align="right" | 16.3 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|40|XL}}|| [[Mneme (moon)|Mneme]]♦|| {{IPAc-en|ˈ|n|iː|m|iː}} || style="background:black;"| [[File:Mneme Discovery Image.jpg|50px|center]]|| align="right" | 16.3 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20821000}} ||align="right"| {{sort|620.07|{{val|−620.07}}}} ||align="right"| 148.0 ||align="right"| 0.247 || style="text-align:right;"| 2003 || 2003 || Sheppard & [[Brett J. Gladman|Gladman]] || [[Ananke group|Ananke]] |
||
|- id="Euanthe" style="background:#f0f0b0" |
|- id="Euanthe" style="background:#f0f0b0" |
||
|{{sort|33|XXXIII}}|| [[Euanthe (moon)|Euanthe]]♦|| {{IPAc-en|j|uː|ˈ|æ|n|θ|iː}}|| style="background:black;"| [[File:Euanthe-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.4 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|33|XXXIII}}|| [[Euanthe (moon)|Euanthe]]♦|| {{IPAc-en|j|uː|ˈ|æ|n|θ|iː}}|| style="background:black;"| [[File:Euanthe-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.4 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|20827000}} ||align="right"| {{sort|620.44|{{val|−620.44}}}} ||align="right"| 148.0 ||align="right"| 0.239 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="S/2003 J 16" style="background:#f0f0b0" |
|- id="S/2003 J 16" style="background:#f0f0b0" |
||
|{{sort|F| }} || [[S/2003 J 16]]♦|| || style="background:black;"| [[File:2003 J 16 CFHT recovery full.gif|50px|center]] ||align="right"| 16.3 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|F| }} || [[S/2003 J 16]]♦|| || style="background:black;"| [[File:2003 J 16 CFHT recovery full.gif|50px|center]] ||align="right"| 16.3 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20882600}} ||align="right"| {{sort|622.88|{{val|−622.88}}}} ||align="right"| 148.0 ||align="right"| 0.243 || style="text-align:right;"| 2003 || 2003 || Gladman || [[Ananke group|Ananke]] |
||
|- id="Harpalyke" style="background:#f0f0b0" |
|- id="Harpalyke" style="background:#f0f0b0" |
||
|{{sort|22|XXII}}|| [[Harpalyke (moon)|Harpalyke]]♦|| {{IPAc-en|h|ɑːr|ˈ|p|æ|l|ə|k|iː}} || style="background:black;"| [[File:Harpalyke-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.9 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|22|XXII}}|| [[Harpalyke (moon)|Harpalyke]]♦|| {{IPAc-en|h|ɑːr|ˈ|p|æ|l|ə|k|iː}} || style="background:black;"| [[File:Harpalyke-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.9 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|20892100}} ||align="right"| {{sort|623.32|{{val|−623.32}}}} ||align="right"| 147.7 ||align="right"| 0.232 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="Orthosie" style="background:#f0f0b0" |
|- id="Orthosie" style="background:#f0f0b0" |
||
|{{sort|35|XXXV}}|| [[Orthosie (moon)|Orthosie]]♦|| {{IPAc-en|ɔːr|ˈ|θ|oʊ|z|iː}}|| style="background:black;"| [[File:Orthosie-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|35|XXXV}}|| [[Orthosie (moon)|Orthosie]]♦|| {{IPAc-en|ɔːr|ˈ|θ|oʊ|z|iː}}|| style="background:black;"| [[File:Orthosie-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20901000}} ||align="right"| {{sort|622.59|{{val|−622.59}}}} ||align="right"| 144.3 ||align="right"| 0.299 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="Helike" style="background:#f0f0b0" |
|- id="Helike" style="background:#f0f0b0" |
||
|{{sort|45|XLV}}|| [[Helike (moon)|Helike]]♦|| {{IPAc-en|ˈ|h|ɛ|l|ə|k|iː}}|| style="background:black;"| [[File:Helike CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.0 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|45|XLV}}|| [[Helike (moon)|Helike]]♦|| {{IPAc-en|ˈ|h|ɛ|l|ə|k|iː}}|| style="background:black;"| [[File:Helike CFHT 2003-02-25 annotated.gif|50px|center]] ||align="right"| 16.0 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|20915700}} ||align="right"| {{sort|626.33|{{val|−626.33}}}} ||align="right"| 154.4 ||align="right"| 0.153 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="S/2021 J 2" style="background:#f0f0b0" |
|||
|{{sort|P| }} || [[S/2021 J 2]]♦|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|20926600}} ||align="right"| {{sort|625.14|{{val|−625.14}}}} ||align="right"| 148.1 ||align="right"| 0.242 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="Praxidike" style="background:#f0f0b0" |
|- id="Praxidike" style="background:#f0f0b0" |
||
|{{sort|27|XXVII}}|| [[Praxidike (moon)|Praxidike]]♦|| {{IPAc-en|p|r|æ|k|ˈ|s|ɪ|d|ə|k|iː}} || style="background:black;"| [[File:Praxidike-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 14.9 || style="text-align:right;"| 7 ||align="right"| {{sort|0. |
|{{sort|27|XXVII}}|| [[Praxidike (moon)|Praxidike]]♦|| {{IPAc-en|p|r|æ|k|ˈ|s|ɪ|d|ə|k|iː}} || style="background:black;"| [[File:Praxidike-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 14.9 || style="text-align:right;"| 7 ||align="right"| {{sort|0.18|≈ {{val|0.18}}}} ||align="right"| {{val|20935400}} ||align="right"| {{sort|625.39|{{val|−625.39}}}} ||align="right"| 148.3 ||align="right"| 0.246 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="Jupiter LXIV" style="background:#f0f0b0" |
|- id="Jupiter LXIV" style="background:#f0f0b0" |
||
|{{sort|64|[[Jupiter LXIV|LXIV]]}}|| [[S/2017 J 3]]♦|| || style="background:black;"| [[File:2017 J 3 CFHT 2003-12-25 annotated.gif|50px|center]] ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}}||align="right"| {{sort|0. |
|{{sort|64|[[Jupiter LXIV|LXIV]]}}|| [[S/2017 J 3]]♦|| || style="background:black;"| [[File:2017 J 3 CFHT 2003-12-25 annotated.gif|50px|center]] ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}}||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20941000}} ||align="right"| {{sort|625.60|{{val|−625.60}}}} ||align="right"| 147.9 ||align="right"| 0.231 ||style="text-align:right;"| 2017 || 2018 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="S/2021 J 1" style="background:#f0f0b0" |
|||
|{{sort|O| }} || [[S/2021 J 1]]♦|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|20954700}} ||align="right"| {{sort|627.14|{{val|−627.14}}}} ||align="right"| 150.5 ||align="right"| 0.228 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="S/2003 J 12" style="background:#f0f0b0" |
|- id="S/2003 J 12" style="background:#f0f0b0" |
||
|{{sort|E| }}|| [[S/2003 J 12]]♦|| || style="background:black;"| [[File:2003 J 12 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 17.0 || style="text-align:right;"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0. |
|{{sort|E| }}|| [[S/2003 J 12]]♦|| || style="background:black;"| [[File:2003 J 12 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 17.0 || style="text-align:right;"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"|{{val|20963100}} ||align="right"| {{sort|627.24|{{val|−627.24}}}} ||align="right"| 150.0 ||align="right"| 0.235 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="Jupiter LXVIII" style="background:#f0f0b0" |
|- id="Jupiter LXVIII" style="background:#f0f0b0" |
||
|{{sort|68|[[Jupiter LXVIII|LXVIII]]}}|| [[S/2017 J 7]]♦ || ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|68|[[Jupiter LXVIII|LXVIII]]}}|| [[S/2017 J 7]]♦ || ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20964800}} ||align="right"| {{sort|626.56|{{val|−626.56}}}} ||align="right"| 147.3 ||align="right"| 0.233 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="Thelxinoe" style="background:#f0f0b0" |
|- id="Thelxinoe" style="background:#f0f0b0" |
||
|{{sort|42|XLII}}|| [[Thelxinoe (moon)|Thelxinoe]]♦|| {{IPAc-en|θ|ɛ|l|k|ˈ|s|ɪ|n|oʊ|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|42|XLII}}|| [[Thelxinoe (moon)|Thelxinoe]]♦|| {{IPAc-en|θ|ɛ|l|k|ˈ|s|ɪ|n|oʊ|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20976000}} ||align="right"| {{sort|628.03|{{val|−628.03}}}} ||align="right"| 150.6 ||align="right"| 0.228 || style="text-align:right;"| 2003 || 2004 || Sheppard & Gladman et al. || [[Ananke group|Ananke]] |
||
|- id="Thyone" style="background:#f0f0b0" |
|- id="Thyone" style="background:#f0f0b0" |
||
|{{sort|29|XXIX}}|| [[Thyone (moon)|Thyone]]♦|| {{IPAc-en|θ|aɪ|ˈ|oʊ|n|iː}}|| style="background:black;"| [[File:Thyone-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 15.8 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|29|XXIX}}|| [[Thyone (moon)|Thyone]]♦|| {{IPAc-en|θ|aɪ|ˈ|oʊ|n|iː}}|| style="background:black;"| [[File:Thyone-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 15.8 ||align="right"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|20978000}} ||align="right"| {{sort|627.18|{{val|−627.18}}}} ||align="right"| 147.5 ||align="right"| 0.233 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="S/2003 J 2" style="background:#f0f0b0" |
|- id="S/2003 J 2" style="background:#f0f0b0" |
||
|{{sort|A| }}|| [[S/2003 J 2]]♦|| || style="background:black;"| [[File:2003 J 2 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|A| }}|| [[S/2003 J 2]]♦|| || style="background:black;"| [[File:2003 J 2 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|20997700}} ||align="right"| {{sort|628.79|{{val|-628.79}}}} ||align="right"| 150.2 ||align="right"| 0.225 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="Ananke" style="background:#f0f0b0" |
|- id="Ananke" style="background:#f0f0b0" |
||
|{{sort|12|XII}}|| [[Ananke (moon)|Ananke]]♦|| {{IPAc-en|ə|ˈ|n|æ|ŋ|k|iː}}|| style="background:black;"| [[File:Ananké.jpg|50px|center]] ||align="right"| 11.7 || style="text-align:right;"| 29.1 ||align="right"| {{sort| |
|{{sort|12|XII}}|| [[Ananke (moon)|Ananke]]♦|| {{IPAc-en|ə|ˈ|n|æ|ŋ|k|iː}}|| style="background:black;"| [[File:Ananké.jpg|50px|center]] ||align="right"| 11.7 || style="text-align:right;"| 29.1 ||align="right"| {{sort|13|≈ 13}} ||align="right"| {{val|21034500}} ||align="right"| {{sort|629.79|{{val|−629.79}}}} ||align="right"| 147.6 ||align="right"| 0.237 || style="text-align:right;"| 1951 || 1951 || Nicholson || [[Ananke group|Ananke]] |
||
|- id="S/2022 J 3" style="background:#f0f0b0" |
|||
|{{sort|W| }} || [[S/2022 J 3]]♦|| || style="background:black;"| ||align="right"| 17.4 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|21047700}} ||align="right"| {{sort|630.67|{{val|−630.67}}}} ||align="right"| 148.2 ||align="right"| 0.249 || style="text-align:right;"| 2022 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="Iocaste" style="background:#f0f0b0" |
|- id="Iocaste" style="background:#f0f0b0" |
||
|{{sort|24|XXIV}}|| [[Iocaste (moon)|Iocaste]]♦|| {{IPAc-en|aɪ|ə|ˈ|k|æ|s|t|iː}} || style="background:black;"| [[File:Iocaste-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|5|≈ 5}} ||align="right"| {{sort|0. |
|{{sort|24|XXIV}}|| [[Iocaste (moon)|Iocaste]]♦|| {{IPAc-en|aɪ|ə|ˈ|k|æ|s|t|iː}} || style="background:black;"| [[File:Iocaste-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|5|≈ 5}} ||align="right"| {{sort|0.065|≈ {{val|0.065}}}} ||align="right"| {{val|21066700}} ||align="right"| {{sort|631.59|{{val|−631.59}}}} ||align="right"| 148.8 ||align="right"| 0.227 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="Hermippe" style="background:#f0f0b0" |
|- id="Hermippe" style="background:#f0f0b0" |
||
|{{sort|30|XXX}}|| [[Hermippe (moon)|Hermippe]]♦|| {{IPAc-en|h|ər|ˈ|m|ɪ|p|iː}} || style="background:black;"| [[File:Ερμίππη.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|30|XXX}}|| [[Hermippe (moon)|Hermippe]]♦|| {{IPAc-en|h|ər|ˈ|m|ɪ|p|iː}} || style="background:black;"| [[File:Ερμίππη.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|21108500}} ||align="right"| {{sort|633.90|{{val|−633.90}}}} ||align="right"| 150.2 ||align="right"| 0.219 ||align="right"| 2001 || 2002 || Sheppard et al. || [[Ananke group|Ananke]] |
||
|- id="S/2021 J 2" style="background:#f0f0b0" |
|||
|{{sort|O| }} || [[S/2021 J 2]]♦|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.000052|≈ {{val|0.000052}}}} ||align="right"| {{val|21140600}} ||align="right"| {{sort|627.96|{{val|−627.96}}}} ||align="right"| 150.1 ||align="right"| 0.341 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="S/2021 J 3" style="background:#f0f0b0" |
|||
|{{sort|P| }} || [[S/2021 J 3]]♦|| || style="background:black;"| ||align="right"| 17.2 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.00042|≈ {{val|0.00042}}}} ||align="right"| {{val|21495700}} ||align="right"| {{sort|643.85|{{val|−643.85}}}} ||align="right"| 150.1 ||align="right"| 0.356 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Ananke group|Ananke]] |
|||
|- id="Jupiter LXX" style="background:#f0f0b0" |
|- id="Jupiter LXX" style="background:#f0f0b0" |
||
|{{sort|70|[[Jupiter LXX|LXX]]}}|| [[S/2017 J 9]]♦|| ||style="background:black;"| ||align="right"| 16.2 ||style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|70|[[Jupiter LXX|LXX]]}}|| [[S/2017 J 9]]♦|| ||style="background:black;"| ||align="right"| 16.2 ||style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|21768700}} ||align="right"| {{sort|666.11|{{val|−666.11}}}} ||align="right"| 155.5 ||align="right"| 0.200 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Ananke group|Ananke]] |
||
|- id="S/2016 J 3" style="background:#f4c2c2" |
|||
|{{sort|J| }}|| [[S/2016 J 3]]♥|| || style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.00042|≈ {{val|0.00042}}}} ||align="right"| {{val|22213500}} ||align="right"| {{sort|676.37|{{val|−676.37}}}} ||align="right"| 164.1 ||align="right"| 0.236 ||align="right"| 2016 || 2023 || Sheppard || [[Carme group|Carme]] |
|||
|- id="Philophrosyne" style="background:#d3d3d3" |
|- id="Philophrosyne" style="background:#d3d3d3" |
||
|{{sort|58|LVIII}}|| [[Philophrosyne (moon)|Philophrosyne]]‡|| {{IPAc-en|f|ɪ|l|ə|ˈ|f|r|ɒ|z|ə|n|iː}} ||style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|58|LVIII}}|| [[Philophrosyne (moon)|Philophrosyne]]‡|| {{IPAc-en|f|ɪ|l|ə|ˈ|f|r|ɒ|z|ə|n|iː}} ||style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22604600}} ||align="right"| {{sort|702.54|{{val|−702.54}}}} ||align="right"| 146.3 ||align="right"| 0.229 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="S/ |
|- id="S/2016 J 3" style="background:#f4c2c2" |
||
|{{sort| |
|{{sort|J| }}|| [[S/2016 J 3]]♥|| || style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22719300}} ||align="right"| {{sort|713.64|{{val|−713.64}}}} ||align="right"| 164.6 ||align="right"| 0.251 ||align="right"| 2016 || 2023 || Sheppard || [[Carme group|Carme]] |
||
|- id="S/ |
|- id="S/2022 J 1" style="background:#f4c2c2" |
||
|{{sort| |
|{{sort|U| }} || [[S/2022 J 1]]♥|| || style="background:black;"| ||align="right"| 17.0 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|22725200}} ||align="right"| {{sort|738.33|{{val|−738.33}}}} ||align="right"| 164.5 ||align="right"| 0.257 || style="text-align:right;"| 2022 || 2023 || Sheppard || [[Carme group|Carme]] |
||
|- id="Pasithee" style="background:#f4c2c2" |
|- id="Pasithee" style="background:#f4c2c2" |
||
|{{sort|38|XXXVIII}}|| [[Pasithee (moon)|Pasithee]]♥|| {{IPAc-en|ˈ|p|æ|s|ə|θ|iː}} || style="background:black;"| [[File:Pasithee-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.8 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|38|XXXVIII}}|| [[Pasithee (moon)|Pasithee]]♥|| {{IPAc-en|ˈ|p|æ|s|ə|θ|iː}} || style="background:black;"| [[File:Pasithee-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.8 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22846700}} ||align="right"| {{sort|719.47|{{val|−719.47}}}} ||align="right"| 164.6 ||align="right"| 0.270 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Jupiter LXIX" style="background:#f4c2c2" |
|- id="Jupiter LXIX" style="background:#f4c2c2" |
||
|{{sort|69|[[Jupiter LXIX|LXIX]]}}|| [[S/2017 J 8]]♥|| || style="background:black;"| [[File:2017 J 8 CFHT precovery full.gif|50px|center]] ||align="right"| 17.1 ||style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0. |
|{{sort|69|[[Jupiter LXIX|LXIX]]}}|| [[S/2017 J 8]]♥|| || style="background:black;"| [[File:2017 J 8 CFHT precovery full.gif|50px|center]] ||align="right"| 17.1 ||style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|22849500}} ||align="right"| {{sort|719.76|{{val|−719.76}}}} ||align="right"| 164.8 ||align="right"| 0.255 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Carme group|Carme]] |
||
|- id="S/2021 J 6" style="background:#f4c2c2" |
|||
|{{sort|T| }} || [[S/2021 J 6]]♥|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|22870300}} ||align="right"| {{sort|720.97|{{val|−720.97}}}} ||align="right"| 164.9 ||align="right"| 0.271 || style="text-align:right;"| 2021 || 2023 || Sheppard et al. || [[Carme group|Carme]] |
|||
|- id="S/2003 J 24" style="background:#f4c2c2" |
|- id="S/2003 J 24" style="background:#f4c2c2" |
||
|{{sort|H| }}|| [[S/2003 J 24]]♥|| ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|H| }}|| [[S/2003 J 24]]♥|| ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22887400}} ||align="right"| {{sort|721.60|{{val|−721.60}}}} ||align="right"| 164.5 ||align="right"| 0.259 || style="text-align:right;"| 2003 || 2021 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Eurydome" style="background:#d3d3d3" |
|- id="Eurydome" style="background:#d3d3d3" |
||
|{{sort|32|XXXII}}|| [[Eurydome (moon)|Eurydome]]‡|| {{IPAc-en|j|ʊəˈr|ɪ|d|ə|m|iː}}|| style="background:black;"| [[File:Eurydome-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|32|XXXII}}|| [[Eurydome (moon)|Eurydome]]‡|| {{IPAc-en|j|ʊəˈr|ɪ|d|ə|m|iː}}|| style="background:black;"| [[File:Eurydome-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.2 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|22899000}} ||align="right"| {{sort|717.31|{{val|−717.31}}}} ||align="right"| 149.1 ||align="right"| 0.294 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Pasiphae group|Pasiphae]] |
||
|- id="Jupiter LVI" style="background:#d3d3d3" |
|- id="Jupiter LVI" style="background:#d3d3d3" |
||
|{{sort|56|[[Jupiter LVI|LVI]]}}|| [[S/2011 J 2]]‡|| ||style="background:black;"| ||align="right"| 16.8 || style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0. |
|{{sort|56|[[Jupiter LVI|LVI]]}}|| [[S/2011 J 2]]‡|| ||style="background:black;"| ||align="right"| 16.8 || style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"|{{val|22909200}} ||align="right"| {{sort|718.32|{{val|−718.32}}}} ||align="right"| 151.9 ||align="right"| 0.355 || style="text-align:right;"| 2011 || 2012 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="S/2003 J 4" style="background:#d3d3d3" |
|- id="S/2003 J 4" style="background:#d3d3d3" |
||
|{{sort|B| }} || [[S/2003 J 4]]‡|| || style="background:black;"| [[File:2003 J 4 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|B| }} || [[S/2003 J 4]]‡|| || style="background:black;"| [[File:2003 J 4 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22926500}} ||align="right"| {{sort|718.10|{{val|−718.10}}}} ||align="right"| 148.2 ||align="right"| 0.328 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Chaldene" style="background:#f4c2c2" |
|- id="Chaldene" style="background:#f4c2c2" |
||
|{{sort|21|XXI}}|| [[Chaldene]]♥|| {{IPAc-en|k|æ|l|ˈ|d|iː|n|iː}}|| style="background:black;"| [[File:Chaldene-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}} |
|{{sort|21|XXI}}|| [[Chaldene]]♥|| {{IPAc-en|k|æ|l|ˈ|d|iː|n|iː}}|| style="background:black;"| [[File:Chaldene-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}}|| align="right" | {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|22930500}} ||align="right"| {{sort|723.71|{{val|−723.71}}}} ||align="right"| 164.7 ||align="right"| 0.265 ||align="right"| 2000 || 2001 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="S/2021 J 4" style="background:#f4c2c2" |
|||
|{{sort|Q| }} || [[S/2021 J 4]]♥|| || style="background:black;"| ||align="right"| 17.4 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.000052|≈ {{val|0.000052}}}} ||align="right"| {{val|22946700}} ||align="right"| {{sort|710.13|{{val|−710.13}}}} ||align="right"| 164.5 ||align="right"| 0.159 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Carme group|Carme]] |
|||
|- id="Jupiter LXIII" style="background:#f4c2c2" |
|- id="Jupiter LXIII" style="background:#f4c2c2" |
||
|{{sort|63|[[Jupiter LXIII|LXIII]]}}|| [[S/2017 J 2]]♥|| || style="background:black;"| [[File:2017 J 2 CFHT 2003-02-26 annotated.gif|50px|center]] ||align="right"| 16.4 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|63|[[Jupiter LXIII|LXIII]]}}|| [[S/2017 J 2]]♥|| || style="background:black;"| [[File:2017 J 2 CFHT 2003-02-26 annotated.gif|50px|center]] ||align="right"| 16.4 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|22953200}} ||align="right"| {{sort|724.71|{{val|−724.71}}}} ||align="right"| 164.5 ||align="right"| 0.272 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Carme group|Carme]] |
||
|- id="Isonoe" style="background:#f4c2c2" |
|- id="Isonoe" style="background:#f4c2c2" |
||
|{{sort|26|XXVI}}|| [[Isonoe (moon)|Isonoe]]♥|| {{IPAc-en|aɪ|ˈ|s|ɒ|n|oʊ|iː}} || style="background:black;"| [[File:Isonoe-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0. |
|{{sort|26|XXVI}}|| [[Isonoe (moon)|Isonoe]]♥|| {{IPAc-en|aɪ|ˈ|s|ɒ|n|oʊ|iː}} || style="background:black;"| [[File:Isonoe-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|22981300}} ||align="right"| {{sort|726.27|{{val|−726.27}}}} ||align="right"| 164.8 ||align="right"| 0.249 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="S/2022 J 2" style="background:#f4c2c2" |
|||
|{{sort|V| }} || [[S/2022 J 2]]♥|| || style="background:black;"| ||align="right"| 17.6 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|23013800}} ||align="right"| {{sort|781.56|{{val|−781.56}}}} ||align="right"| 164.7 ||align="right"| 0.265 || style="text-align:right;"| 2022 || 2023 || Sheppard || [[Carme group|Carme]] |
|||
|- id="S/2021 J 4" style="background:#f4c2c2" |
|||
|{{sort|R| }} || [[S/2021 J 4]]♥|| || style="background:black;"| ||align="right"| 17.4 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|23019700}} ||align="right"| {{sort|728.28|{{val|−728.28}}}} ||align="right"| 164.6 ||align="right"| 0.265 || style="text-align:right;"| 2021 || 2023 || Sheppard || [[Carme group|Carme]] |
|||
|- id="Kallichore" style="background:#f4c2c2" |
|- id="Kallichore" style="background:#f4c2c2" |
||
|{{sort|44|XLIV}}|| [[Kallichore (moon)|Kallichore]]♥|| {{IPAc-en|k|ə|ˈ|l|ɪ|k|ə|r|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|44|XLIV}}|| [[Kallichore (moon)|Kallichore]]♥|| {{IPAc-en|k|ə|ˈ|l|ɪ|k|ə|r|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23021800}} ||align="right"| {{sort|728.26|{{val|−728.26}}}} ||align="right"| 164.8 ||align="right"| 0.252 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Carme group|Carme]] |
||
|- id="Erinome" style="background:#f4c2c2" |
|- id="Erinome" style="background:#f4c2c2" |
||
|{{sort|25|XXV}}|| [[Erinome]]♥|| {{IPAc-en|ɛ|ˈ|r|ɪ|n|ə|m|iː}} || style="background:black;"| [[File:Erinome-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|3|≈ 3}} |
|{{sort|25|XXV}}|| [[Erinome]]♥|| {{IPAc-en|ɛ|ˈ|r|ɪ|n|ə|m|iː}} || style="background:black;"| [[File:Erinome-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|3|≈ 3}}|| align="right" | {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|23032900}} ||align="right"| {{sort|728.48|{{val|−728.48}}}} ||align="right"| 164.4 ||align="right"| 0.276 ||align="right"| 2000 || 2001 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Kale" style="background:#f4c2c2" |
|- id="Kale" style="background:#f4c2c2" |
||
|{{sort|37|XXXVII}}|| [[Kale (moon)|Kale]]♥|| {{IPAc-en|ˈ|k|eɪ|l|iː}} || style="background:black;"| [[File:Kale-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|37|XXXVII}}|| [[Kale (moon)|Kale]]♥|| {{IPAc-en|ˈ|k|eɪ|l|iː}} || style="background:black;"| [[File:Kale-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23052600}} ||align="right"| {{sort|729.64|{{val|−729.64}}}} ||align="right"| 164.6 ||align="right"| 0.262 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Eirene" style="background:#f4c2c2" |
|- id="Eirene" style="background:#f4c2c2" |
||
|{{sort|57|LVII}}|| [[Eirene (moon)|Eirene]]♥|| {{IPAc-en|aɪ|ˈ|r|iː|n|iː}} ||style="background:black;"| ||align="right"| 15.8 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0. |
|{{sort|57|LVII}}|| [[Eirene (moon)|Eirene]]♥|| {{IPAc-en|aɪ|ˈ|r|iː|n|iː}} ||style="background:black;"| ||align="right"| 15.8 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0.034|≈ {{val|0.034}}}} || style="text-align:right;"| {{val|23055800}} ||align="right"| {{sort|729.84|{{val|−729.84}}}} ||align="right"| 164.6 ||align="right"| 0.258 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Carme group|Carme]] |
||
|- id="Aitne" style="background:#f4c2c2" |
|- id="Aitne" style="background:#f4c2c2" |
||
|{{sort|31|XXXI}}|| [[Aitne (moon)|Aitne]]♥|| {{IPAc-en|ˈ|eɪ|t|n|iː}} || style="background:black;"| [[File:Aitne-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 ||align="right"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|31|XXXI}}|| [[Aitne (moon)|Aitne]]♥|| {{IPAc-en|ˈ|eɪ|t|n|iː}} || style="background:black;"| [[File:Aitne-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.0 ||align="right"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|23064400}} ||align="right"| {{sort|730.10|{{val|−730.10}}}} ||align="right"| 164.6 ||align="right"| 0.277 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Eukelade" style="background:#f4c2c2" |
|- id="Eukelade" style="background:#f4c2c2" |
||
|{{sort|47|XLVII}}|| [[Eukelade]]♥|| {{IPAc-en|j|uː|ˈ|k|ɛ|l|ə|d|iː}} || style="background:black;"| [[File:Eukelade s2003j1movie arrow.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|47|XLVII}}|| [[Eukelade]]♥|| {{IPAc-en|j|uː|ˈ|k|ɛ|l|ə|d|iː}} || style="background:black;"| [[File:Eukelade s2003j1movie arrow.gif|50px|center]] ||align="right"| 16.0 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|23067400}} ||align="right"| {{sort|730.30|{{val|−730.30}}}} ||align="right"| 164.6 ||align="right"| 0.277 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Carme group|Carme]] |
||
|- id="Arche" style="background:#f4c2c2" |
|- id="Arche" style="background:#f4c2c2" |
||
|{{sort|43|XLIII}}|| [[Arche (moon)|Arche]]♥|| {{IPAc-en|ˈ|ɑːr|k|iː}} || style="background:black;"| [[File:Bigs2002j1barrow.png|50px|center]] ||align="right"| 16.2 ||align="right"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|43|XLIII}}|| [[Arche (moon)|Arche]]♥|| {{IPAc-en|ˈ|ɑːr|k|iː}} || style="background:black;"| [[File:Bigs2002j1barrow.png|50px|center]] ||align="right"| 16.2 ||align="right"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|23097800}} ||align="right"| {{sort|731.88|{{val|−731.88}}}} ||align="right"| 164.6 ||align="right"| 0.261 || style="text-align:right;"| 2002 || 2002 || Sheppard || [[Carme group|Carme]] |
||
|- id="Taygete" style="background:#f4c2c2" |
|- id="Taygete" style="background:#f4c2c2" |
||
|{{sort|20|XX}}|| [[Taygete (moon)|Taygete]]♥|| {{IPAc-en|t|eɪ|ˈ|ɪ|dʒ|ə|t|iː}} || style="background:black;"| [[File:Taygete-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.6 || style="text-align:right;"| {{sort|5|≈ 5}} ||align="right"| {{sort|0. |
|{{sort|20|XX}}|| [[Taygete (moon)|Taygete]]♥|| {{IPAc-en|t|eɪ|ˈ|ɪ|dʒ|ə|t|iː}} || style="background:black;"| [[File:Taygete-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.6 || style="text-align:right;"| {{sort|5|≈ 5}} ||align="right"| {{sort|0.065|≈ {{val|0.065}}}} ||align="right"| {{val|23108000}} ||align="right"| {{sort|732.45|{{val|−732.45}}}} ||align="right"| 164.7 ||align="right"| 0.253 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="S/2016 J 4" style="background:#d3d3d3" |
|||
|{{sort|K| }} || [[S/2016 J 4]]‡|| || style="background:black;"| ||align="right"| 17.3 || style="text-align:right;"| {{sort|1|≈ 1}} ||align="right"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|23113800}} ||align="right"| {{sort|727.01|{{val|−727.01}}}} ||align="right"| 147.1 ||align="right"| 0.294 ||align="right"| 2016 || 2023 || Sheppard || [[Pasiphae group|Pasiphae]] |
|||
|- id="Jupiter LXXII" style="background:#f4c2c2" |
|- id="Jupiter LXXII" style="background:#f4c2c2" |
||
|{{sort|72|[[Jupiter LXXII|LXXII]]}}|| [[S/2011 J 1]]♥|| ||style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|72|[[Jupiter LXXII|LXXII]]}}|| [[S/2011 J 1]]♥|| ||style="background:black;"| ||align="right"| 16.7 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23124500}} ||align="right"| {{sort|733.21|{{val|−733.21}}}} ||align="right"| 164.6 ||align="right"| 0.271 || style="text-align:right;"| 2011 || 2012 || Sheppard || [[Carme group|Carme]] |
||
|- id="Carme" style="background:#f4c2c2" |
|- id="Carme" style="background:#f4c2c2" |
||
|{{sort|11|XI}}|| [[Carme (moon)|Carme]]♥|| {{IPAc-en|ˈ|k|ɑːr|m|iː}} || style="background:black;"| [[File:Carmé.jpg|50px|center]] ||align="right"| 10.6 || style="text-align:right;"| 46.7 || style="text-align:right;"| {{sort| |
|{{sort|11|XI}}|| [[Carme (moon)|Carme]]♥|| {{IPAc-en|ˈ|k|ɑːr|m|iː}} || style="background:black;"| [[File:Carmé.jpg|50px|center]] ||align="right"| 10.6 || style="text-align:right;"| 46.7 || style="text-align:right;"| {{sort|53|≈ 53}} ||align="right"| {{val|23144400}} ||align="right"| {{sort|734.19|{{val|−734.19}}}} || align="right" | 164.6 ||align="right"| 0.256 || style="text-align:right;"| 1938 || 1938 || Nicholson || [[Carme group|Carme]] |
||
|- id="Herse" style="background:#f4c2c2" |
|- id="Herse" style="background:#f4c2c2" |
||
|{{sort|50|L}}|| [[Herse (moon)|Herse]]♥|| {{IPAc-en|ˈ|h|ɜːr|s|iː}}||style="background:black;"| ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|50|L}}|| [[Herse (moon)|Herse]]♥|| {{IPAc-en|ˈ|h|ɜːr|s|iː}}||style="background:black;"| ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23150500}} ||align="right"| {{sort|734.52|{{val|−734.52}}}} ||align="right"| 164.4 ||align="right"| 0.262 ||align="right"| 2003 || 2003 || Gladman et al. || [[Carme group|Carme]] |
||
|- id="Jupiter LXI" style="background:#f4c2c2" |
|- id="Jupiter LXI" style="background:#f4c2c2" |
||
|{{sort|61|[[Jupiter LXI|LXI]]}}|| [[S/2003 J 19]]♥|| ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|61|[[Jupiter LXI|LXI]]}}|| [[S/2003 J 19]]♥|| ||style="background:black;"| ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23156400}} ||align="right"| {{sort|734.78|{{val|−734.78}}}} ||align="right"| 164.7 ||align="right"| 0.265 ||align="right"| 2003 || 2003 || Gladman || [[Carme group|Carme]] |
||
|- id="Jupiter LI" style="background:#f4c2c2" |
|- id="Jupiter LI" style="background:#f4c2c2" |
||
|[[Jupiter LI|{{sort|51|LI}}]]|| [[S/2010 J 1]]♥|| || style="background:black;"| [[File:2010 J 1 CFHT image.gif|50px|center]] ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|[[Jupiter LI|{{sort|51|LI}}]]|| [[S/2010 J 1]]♥|| || style="background:black;"| [[File:2010 J 1 CFHT image.gif|50px|center]] ||align="right"| 16.5 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23189800}} ||align="right"| {{sort|736.51|{{val|−736.51}}}} || align="right" | 164.5 ||align="right"| 0.252 ||align="right"| 2010 || 2011 || Jacobson et al. || [[Carme group|Carme]] |
||
|- id="S/2003 J 9" style="background:#f4c2c2" |
|- id="S/2003 J 9" style="background:#f4c2c2" |
||
|{{sort|C| }} || [[S/2003 J 9]]♥|| || style="background:black;"| [[File:2003 J 9 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.9 || style="text-align:right;"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0. |
|{{sort|C| }} || [[S/2003 J 9]]♥|| || style="background:black;"| [[File:2003 J 9 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.9 || style="text-align:right;"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|23199400}} ||align="right"| {{sort|736.86|{{val|−736.86}}}} ||align="right"| 164.8 ||align="right"| 0.263 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Carme group|Carme]] |
||
|- id="Jupiter LXVI" style="background:#f4c2c2" |
|- id="Jupiter LXVI" style="background:#f4c2c2" |
||
|{{sort|66|[[Jupiter LXVI|LXVI]]}}|| [[S/2017 J 5]]♥|| ||style="background:black;"| ||align="right"| 16.5 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|66|[[Jupiter LXVI|LXVI]]}}|| [[S/2017 J 5]]♥|| ||style="background:black;"| ||align="right"| 16.5 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23206200}} ||align="right"| {{sort|737.28|{{val|−737.28}}}} ||align="right"| 164.8 ||align="right"| 0.257 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Carme group|Carme]] |
||
|- id="Jupiter LXVII" style="background:#d3d3d3" |
|- id="Jupiter LXVII" style="background:#d3d3d3" |
||
|{{sort|67|[[Jupiter LXVII|LXVII]]}}|| [[S/2017 J 6]]‡|| ||style="background:black;"| ||align="right"| 16.6 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|67|[[Jupiter LXVII|LXVII]]}}|| [[S/2017 J 6]]‡|| ||style="background:black;"| ||align="right"| 16.6 ||style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23245300}} ||align="right"| {{sort|733.99|{{val|−733.99}}}} ||align="right"| 149.7 ||align="right"| 0.336 || style="text-align:right;"| 2017 || 2018 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Kalyke" style="background:#f4c2c2" |
|- id="Kalyke" style="background:#f4c2c2" |
||
|{{sort|23|XXIII}}|| [[Kalyke]]♥|| {{IPAc-en|ˈ|k|æ|l|ə|k|iː}} || style="background:black;"| [[File:Kalyke-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.4 || style="text-align:right;"| 6.9 || style="text-align:right;"| {{sort|0. |
|{{sort|23|XXIII}}|| [[Kalyke]]♥|| {{IPAc-en|ˈ|k|æ|l|ə|k|iː}} || style="background:black;"| [[File:Kalyke-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.4 || style="text-align:right;"| 6.9 || style="text-align:right;"| {{sort|0.17|≈ {{val|0.17}}}} ||align="right"| {{val|23302600}} ||align="right"| {{sort|742.02|{{val|−742.02}}}} ||align="right"| 164.8 ||align="right"| 0.260 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Carme group|Carme]] |
||
|- id="Hegemone" style="background:#d3d3d3" |
|- id="Hegemone" style="background:#d3d3d3" |
||
|{{sort|39|XXXIX}}|| [[Hegemone (moon)|Hegemone]]‡|| {{IPAc-en|h|ə|ˈ|dʒ|ɛ|m|ə|n|iː}} ||style="background:black;"| ||align="right"| 15.9 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0. |
|{{sort|39|XXXIX}}|| [[Hegemone (moon)|Hegemone]]‡|| {{IPAc-en|h|ə|ˈ|dʒ|ɛ|m|ə|n|iː}} ||style="background:black;"| ||align="right"| 15.9 || style="text-align:right;"| {{sort|3|≈ 3}} ||align="right"| {{sort|0.014|≈ {{val|0.014}}}} ||align="right"| {{val|23348700}} ||align="right"| {{sort|739.81|{{val|−739.81}}}} ||align="right"| 152.6 ||align="right"| 0.358 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="S/ |
|- id="S/2018 J 3" style="background:#f4c2c2" |
||
|{{sort| |
|{{sort|M| }} || [[S/2018 J 3]]♥|| || style="background:black;"| ||align="right"| 17.3 ||align="right"| {{sort|1|≈ 1}} || style="text-align:right;"| {{sort|0.00052|≈ {{val|0.00052}}}} ||align="right"| {{val|23400300}} ||align="right"| {{sort|747.02|{{val|−747.02}}}} ||align="right"| 164.9 ||align="right"| 0.268 || style="text-align:right;"| 2018 || 2023 || Sheppard || [[Carme group|Carme]] |
||
|- id="S/2021 J 5" style="background:#f4c2c2" |
|||
|{{sort|S| }} || [[S/2021 J 5]]♥|| || style="background:black;"| ||align="right"| 16.8 ||align="right"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23414600}} ||align="right"| {{sort|747.74|{{val|−747.74}}}} ||align="right"| 164.9 ||align="right"| 0.272 || style="text-align:right;"| 2021 || 2023 || Sheppard et al. || [[Carme group|Carme]] |
|||
|- id="Pasiphae" style="background:#d3d3d3" |
|- id="Pasiphae" style="background:#d3d3d3" |
||
|{{sort|08|VIII}}|| [[Pasiphae (moon)|Pasiphae]]‡|| {{IPAc-en|p|ə|ˈ|s|ɪ|f|eɪ|iː}} || style="background:black;"| [[File:Pasiphaé.jpg|50px|center]] ||align="right"| 10.1 ||align="right"| 57.8 ||align="right"| {{sort| |
|{{sort|08|VIII}}|| [[Pasiphae (moon)|Pasiphae]]‡|| {{IPAc-en|p|ə|ˈ|s|ɪ|f|eɪ|iː}} || style="background:black;"| [[File:Pasiphaé.jpg|50px|center]] ||align="right"| 10.1 ||align="right"| 57.8 ||align="right"| {{sort|100|≈ 100}} ||align="right"| {{val|23468200}} ||align="right"| {{sort|743.61|{{val|−743.61}}}} ||align="right"| 148.4 ||align="right"| 0.412 || style="text-align:right;"| 1908 || 1908 || [[Philibert Jacques Melotte|Melotte]] || [[Pasiphae group|Pasiphae]] |
||
|- id="Sponde" style="background:#d3d3d3" |
|- id="Sponde" style="background:#d3d3d3" |
||
|{{sort|36|XXXVI}}|| [[Sponde (moon)|Sponde]]‡|| {{IPAc-en|ˈ|s|p|ɒ|n|d|iː}}|| style="background:black;"| [[File:Sponde-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.7 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|36|XXXVI}}|| [[Sponde (moon)|Sponde]]‡|| {{IPAc-en|ˈ|s|p|ɒ|n|d|iː}}|| style="background:black;"| [[File:Sponde-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 16.7 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23543300}} ||align="right"| {{sort|748.29|{{val|−748.29}}}} ||align="right"| 149.3 ||align="right"| 0.322 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Pasiphae group|Pasiphae]] |
||
|- id="S/2003 J 10" style="background:#f4c2c2" |
|- id="S/2003 J 10" style="background:#f4c2c2" |
||
|{{sort|D| }}|| [[S/2003 J 10]]♥|| || style="background:black;"| [[File:2003 J 10 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.9 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0. |
|{{sort|D| }}|| [[S/2003 J 10]]♥|| || style="background:black;"| [[File:2003 J 10 Gladman CFHT annotated.gif|50px|center]] ||align="right"| 16.9 || style="text-align:right;"| {{sort|2|≈ 2}} || style="text-align:right;"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23576300}} ||align="right"| {{sort|755.43|{{val|−755.43}}}} ||align="right"| 164.4 ||align="right"| 0.264 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Carme group|Carme]] |
||
|- id="Megaclite" style="background:#d3d3d3" |
|- id="Megaclite" style="background:#d3d3d3" |
||
|{{sort|19|XIX}}|| [[Megaclite]]‡|| {{IPAc-en|ˌ|m|ɛ|ɡ|ə|ˈ|k|l|aɪ|t|iː}} || style="background:black;"| [[File:Megaclite-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.0 ||align="right"| {{sort|5|≈ 5}} ||align="right"| {{sort|0. |
|{{sort|19|XIX}}|| [[Megaclite]]‡|| {{IPAc-en|ˌ|m|ɛ|ɡ|ə|ˈ|k|l|aɪ|t|iː}} || style="background:black;"| [[File:Megaclite-Jewitt-CFHT-annotated.gif|50px|center]] ||align="right"| 15.0 ||align="right"| {{sort|5|≈ 5}} ||align="right"| {{sort|0.065|≈ {{val|0.065}}}} ||align="right"| {{val|23644600}} ||align="right"| {{sort|752.86|{{val|−752.86}}}} ||align="right"| 149.8 ||align="right"| 0.421 || style="text-align:right;"| 2000 || 2001 || Sheppard et al. || [[Pasiphae group|Pasiphae]] |
||
|- id="Cyllene" style="background:#d3d3d3" |
|- id="Cyllene" style="background:#d3d3d3" |
||
|{{sort|48|XLVIII}}|| [[Cyllene (moon)|Cyllene]]‡|| {{IPAc-en|s|ə|ˈ|l|iː|n|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|48|XLVIII}}|| [[Cyllene (moon)|Cyllene]]‡|| {{IPAc-en|s|ə|ˈ|l|iː|n|iː}} ||style="background:black;"| ||align="right"| 16.3 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23654700}} ||align="right"| {{sort|751.97|{{val|−751.97}}}} ||align="right"| 146.8 ||align="right"| 0.419 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Sinope" style="background:#d3d3d3" |
|- id="Sinope" style="background:#d3d3d3" |
||
|{{sort|09|IX}}|| [[Sinope (moon)|Sinope]]‡|| {{IPAc-en|s|ə|ˈ|n|oʊ|p|iː}} || style="background:black;"| [[File:Sinopé.jpg|50px|center]] ||align="right"| 11.1 || style="text-align:right;"| 35 || style="text-align:right;"| {{sort| |
|{{sort|09|IX}}|| [[Sinope (moon)|Sinope]]‡|| {{IPAc-en|s|ə|ˈ|n|oʊ|p|iː}} || style="background:black;"| [[File:Sinopé.jpg|50px|center]] ||align="right"| 11.1 || style="text-align:right;"| 35 || style="text-align:right;"| {{sort|22|≈ 22}} ||align="right"| {{val|23683900}} ||align="right"| {{sort|758.85|{{val|−758.85}}}} ||align="right"| 157.3 ||align="right"| 0.264 || style="text-align:right;"| 1914 || 1914 || Nicholson || [[Pasiphae group|Pasiphae]] |
||
|- id="Jupiter LIX" style="background:#d3d3d3" |
|- id="Jupiter LIX" style="background:#d3d3d3" |
||
|{{sort|59|[[Jupiter LIX|LIX]]}}|| [[S/2017 J 1]]‡|| || style="background:black;"| [[File:2017 J 1 CFHT precovery annotated.gif|50px|center]] ||align="right"| 16.8 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|59|[[Jupiter LIX|LIX]]}}|| [[S/2017 J 1]]‡|| || style="background:black;"| [[File:2017 J 1 CFHT precovery annotated.gif|50px|center]] ||align="right"| 16.8 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right" | {{val|23744800}} ||align="right"| {{sort|756.41|{{val|−756.41}}}} ||align="right"| 145.8 ||align="right"| 0.328 || style="text-align:right;"| 2017 || 2017 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Aoede" style="background:#d3d3d3" |
|- id="Aoede" style="background:#d3d3d3" |
||
|{{sort|41|XLI}}|| [[Aoede (moon)|Aoede]]‡|| {{IPAc-en|eɪ|ˈ|iː|d|iː}} ||style="background:black;"| ||align="right"| 15.6 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0. |
|{{sort|41|XLI}}|| [[Aoede (moon)|Aoede]]‡|| {{IPAc-en|eɪ|ˈ|iː|d|iː}} ||style="background:black;"| ||align="right"| 15.6 || style="text-align:right;"| {{sort|4|≈ 4}} || style="text-align:right;"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|23778200}} ||align="right"| {{sort|761.42|{{val|−761.42}}}}|| align="right" | 155.7 ||align="right"| 0.436 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Autonoe" style="background:#d3d3d3" |
|- id="Autonoe" style="background:#d3d3d3" |
||
|{{sort|28|XXVIII}}|| [[Autonoe (moon)|Autonoe]]‡|| {{IPAc-en|ɔː|ˈ|t|ɒ|n|oʊ|iː}} || style="background:black;"| [[File:Autonoe-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0. |
|{{sort|28|XXVIII}}|| [[Autonoe (moon)|Autonoe]]‡|| {{IPAc-en|ɔː|ˈ|t|ɒ|n|oʊ|iː}} || style="background:black;"| [[File:Autonoe-discovery-CFHT-annotated.gif|50px|center]] ||align="right"| 15.5 || style="text-align:right;"| {{sort|4|≈ 4}} ||align="right"| {{sort|0.034|≈ {{val|0.034}}}} ||align="right"| {{val|23792500}} ||align="right"| {{sort|761.00|{{val|−761.00}}}} ||align="right"| 150.8 ||align="right"| 0.330 || style="text-align:right;"| 2001 || 2002 || Sheppard et al. || [[Pasiphae group|Pasiphae]] |
||
|- id="Callirrhoe" style="background:#d3d3d3" |
|- id="Callirrhoe" style="background:#d3d3d3" |
||
|{{sort|17|XVII}}|| [[Callirrhoe (moon)|Callirrhoe]]‡|| {{IPAc-en|k|ə|ˈ|l|ɪr|oʊ|iː}} || style="background:black;"| [[File:Callirrhoe - New Horizons.gif|50px|center]] ||align="right"| 14.0 || style="text-align:right;"| 9.6 ||align="right"| {{sort|0. |
|{{sort|17|XVII}}|| [[Callirrhoe (moon)|Callirrhoe]]‡|| {{IPAc-en|k|ə|ˈ|l|ɪr|oʊ|iː}} || style="background:black;"| [[File:Callirrhoe - New Horizons.gif|50px|center]] ||align="right"| 14.0 || style="text-align:right;"| 9.6 ||align="right"| {{sort|0.46|≈ {{val|0.46}}}} ||align="right"| {{val|23795500}} ||align="right"| {{sort|758.87|{{val|−758.87}}}}|| align="right" | 145.1 ||align="right"| 0.297 || style="text-align:right;"| 1999 || 2000 || Scotti et al. || [[Pasiphae group|Pasiphae]] |
||
|- id="S/2003 J 23" style="background:#d3d3d3" |
|- id="S/2003 J 23" style="background:#d3d3d3" |
||
|{{sort|G| }} || [[S/2003 J 23]]‡|| || style="background:black;"| [[File:S2003j23ccircle.gif|50px|center]] ||align="right"| 16.6 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|G| }} || [[S/2003 J 23]]‡|| || style="background:black;"| [[File:S2003j23ccircle.gif|50px|center]] ||align="right"| 16.6 ||align="right"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|23829300}} ||align="right"| {{sort|760.00|{{val|−760.00}}}} ||align="right"| 144.7 ||align="right"| 0.313 || style="text-align:right;"| 2003 || 2004 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|- id="Kore" style="background:#d3d3d3" |
|- id="Kore" style="background:#d3d3d3" |
||
|{{sort|49|XLIX}} || [[Kore (moon)|Kore]]‡|| {{IPAc-en|ˈ|k|ɔər|iː}} || style="background:black;"| [[File:Kore s2003j14movie circled.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0. |
|{{sort|49|XLIX}} || [[Kore (moon)|Kore]]‡|| {{IPAc-en|ˈ|k|ɔər|iː}} || style="background:black;"| [[File:Kore s2003j14movie circled.gif|50px|center]] ||align="right"| 16.6 || style="text-align:right;"| {{sort|2|≈ 2}} ||align="right"| {{sort|0.0042|≈ {{val|0.0042}}}} ||align="right"| {{val|24205200}} ||align="right"| {{sort|776.76|{{val|−776.76}}}} || align="right" | 141.5 ||align="right"| 0.328 || style="text-align:right;"| 2003 || 2003 || Sheppard || [[Pasiphae group|Pasiphae]] |
||
|} |
|} |
||
{{sticky table end}} |
|||
==Exploration== |
==Exploration== |
||
{{main|Exploration of Jupiter|Ganymede (moon)#Exploration|Europa (moon)#Exploration|Callisto (moon)#Exploration|Io (moon)#Observational history}} |
{{main|Exploration of Jupiter|Ganymede (moon)#Exploration|Europa (moon)#Exploration|Callisto (moon)#Exploration|Io (moon)#Observational history}} |
||
[[File:Jupiter and the Galilean moons animation.gif|thumb|upright=1.3|The orbit and motion of the [[Galilean moons]] around Jupiter, as captured by [[JunoCam]] aboard the [[Juno (spacecraft)|''Juno'' spacecraft]] |
[[File:Jupiter and the Galilean moons animation.gif|thumb|upright=1.3|The orbit and motion of the [[Galilean moons]] around Jupiter, as captured by [[JunoCam]] aboard the [[Juno (spacecraft)|''Juno'' spacecraft]]]] |
||
<div style="float:right; margin:2px;"> |
|||
Nine spacecraft have visited Jupiter. The first were ''[[Pioneer 10]]'' in 1973, and ''[[Pioneer 11]]'' a year later, taking low-resolution images of the four Galilean moons and returning data on their atmospheres and radiation belts.<ref>{{Cite journal|last1=Fillius|first1=Walker|last2=McIlwain|first2=Carl|last3=Mogro‐Campero|first3=Antonio|last4=Steinberg|first4=Gerald|date=1976|title=Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter|journal=Geophysical Research Letters|language=en|volume=3|issue=1|pages=33–36|doi=10.1029/GL003i001p00033|bibcode=1976GeoRL...3...33F|issn=1944-8007}}</ref> The ''[[Voyager 1]]'' and ''[[Voyager 2]]'' probes visited Jupiter in 1979, discovering the [[Volcanism on Io|volcanic activity on Io]] and the presence of water [[ice]] on the surface of [[Europa (moon)|Europa]]. ''[[Ulysses (spacecraft)|Ulysses]]'' further studied Jupiter's magnetosphere in 1992 and then again in 2000. |
|||
{| class=wikitable style="text-align:center; font-size:11px" |
|||
|+ Jovian radiation |
|||
! Moon !! [[Röntgen equivalent man|rem]]/day |
|||
|- |
|||
| Io || 3600<ref name="ringwald">{{cite web |date=29 February 2000 |title=SPS 1020 (Introduction to Space Sciences) |publisher=California State University, Fresno |last=Ringwald |first=Frederick A. |url=https://zimmer.csufresno.edu/~fringwal/w08a.jup.txt |url-status=dead |access-date=5 January 2014 |archive-url=https://web.archive.org/web/20080725050708/https://zimmer.csufresno.edu/~fringwal/w08a.jup.txt |archive-date=25 July 2008 }}</ref> |
|||
|- |
|||
| Europa || 540<ref name="ringwald"/> |
|||
|- |
|||
|Ganymede || 8<ref name="ringwald"/> |
|||
|- |
|||
| Callisto || 0.01<ref name="ringwald"/> |
|||
|- |
|||
! Earth (Max) !! 0.07 |
|||
|- |
|||
! Earth (Avg) !! 0.0007 |
|||
|}</div> |
|||
Nine spacecraft have visited Jupiter. The first were ''[[Pioneer 10]]'' in 1973, and ''[[Pioneer 11]]'' a year later, taking low-resolution images of the four Galilean moons and returning data on their atmospheres and radiation belts.<ref>{{Cite journal|last1=Fillius|first1=Walker|last2=McIlwain|first2=Carl|last3=Mogro-Campero|first3=Antonio|last4=Steinberg|first4=Gerald|date=1976|title=Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter|journal=Geophysical Research Letters|language=en|volume=3|issue=1|pages=33–36|doi=10.1029/GL003i001p00033|bibcode=1976GeoRL...3...33F|issn=1944-8007}}</ref> The ''[[Voyager 1]]'' and ''[[Voyager 2]]'' probes visited Jupiter in 1979, discovering the [[Volcanism on Io|volcanic activity on Io]] and the presence of water [[ice]] on the surface of [[Europa (moon)|Europa]]. ''[[Ulysses (spacecraft)|Ulysses]]'' further studied Jupiter's magnetosphere in 1992 and then again in 2000. |
|||
The ''[[Galileo spacecraft|Galileo]]'' spacecraft was the first to enter orbit around Jupiter, arriving in 1995 and studying it until 2003. During this period, ''Galileo'' gathered a large amount of information about the Jovian system, making close approaches to all of the Galilean moons and finding evidence for thin atmospheres on three of them, as well as the possibility of liquid water beneath the surfaces of Europa, Ganymede, and Callisto. It also discovered a [[Ganymede (moon)#Magnetosphere|magnetic field around Ganymede]]. |
The ''[[Galileo spacecraft|Galileo]]'' spacecraft was the first to enter orbit around Jupiter, arriving in 1995 and studying it until 2003. During this period, ''Galileo'' gathered a large amount of information about the Jovian system, making close approaches to all of the Galilean moons and finding evidence for thin atmospheres on three of them, as well as the possibility of liquid water beneath the surfaces of Europa, Ganymede, and Callisto. It also discovered a [[Ganymede (moon)#Magnetosphere|magnetic field around Ganymede]]. |
||
Line 321: | Line 353: | ||
Then the ''[[Cassini–Huygens|Cassini]]'' probe to Saturn flew by Jupiter in 2000 and collected data on interactions of the Galilean moons with Jupiter's extended atmosphere. The ''[[New Horizons]]'' spacecraft flew by Jupiter in 2007 and made improved measurements of its satellites' orbital parameters. |
Then the ''[[Cassini–Huygens|Cassini]]'' probe to Saturn flew by Jupiter in 2000 and collected data on interactions of the Galilean moons with Jupiter's extended atmosphere. The ''[[New Horizons]]'' spacecraft flew by Jupiter in 2007 and made improved measurements of its satellites' orbital parameters. |
||
In 2016, the ''[[Juno (spacecraft)|Juno]]'' spacecraft imaged the Galilean moons from above their orbital plane as it approached Jupiter orbit insertion, creating a time-lapse movie of their motion.<ref>[https://www.missionjuno.swri.edu/media-gallery/jupiter-orbit-insertion?show=fig_577b4aae48b4964f5a8cd178&m=577b4aae48b4964f5a8cd178 Juno Approach Movie of Jupiter and the Galilean Moons] {{Webarchive|url=https://web.archive.org/web/20160807092015/https://www.missionjuno.swri.edu/media-gallery/jupiter-orbit-insertion?show=fig_577b4aae48b4964f5a8cd178&m=577b4aae48b4964f5a8cd178 |date=7 August 2016 }}, NASA, July 2016</ref> With a mission extension, ''Juno'' has since begun close flybys of the Galileans, flying by Ganymede in 2021 followed by Europa and Io in 2022. It flew by Io again in late 2023 and once more in early 2024. |
|||
[[File:Ganymede JunoGill 2217.jpg|thumb|Ganymede taken by [[Juno (spacecraft)|Juno]] during its 34th perijove.]] |
|||
In 2016, the ''[[Juno (spacecraft)|Juno]]'' spacecraft imaged the Galilean moons from above their orbital plane as it approached Jupiter orbit insertion, creating a time-lapse movie of their motion.<ref>[https://www.missionjuno.swri.edu/media-gallery/jupiter-orbit-insertion?show=fig_577b4aae48b4964f5a8cd178&m=577b4aae48b4964f5a8cd178 Juno Approach Movie of Jupiter and the Galilean Moons], NASA, July 2016</ref> |
|||
==See also== |
==See also== |
||
Line 335: | Line 366: | ||
<ref name="Barnard1892">{{cite journal |
<ref name="Barnard1892">{{cite journal |
||
|first = E. E. |last = Barnard |
|first = E. E. |
||
|last = Barnard |
|||
|title = Discovery and Observation of a Fifth Satellite to Jupiter |
|title = Discovery and Observation of a Fifth Satellite to Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1892AJ.....12...81B |
|url = https://articles.adsabs.harvard.edu/pdf/1892AJ.....12...81B |
||
Line 344: | Line 376: | ||
|pages = 81–85 |
|pages = 81–85 |
||
|doi = 10.1086/101715 |
|doi = 10.1086/101715 |
||
|bibcode = 1892AJ.....12...81B |
|bibcode = 1892AJ.....12...81B |
||
|access-date = 7 January 2023 |
|||
|archive-date = 4 February 2023 |
|||
|archive-url = https://web.archive.org/web/20230204123501/https://articles.adsabs.harvard.edu/pdf/1892AJ.....12...81B |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Campbell1905">{{cite journal |
<ref name="Campbell1905">{{cite journal |
||
|first = L. |last = Campbell |
|first = L. |
||
|last = Campbell |
|||
|title = Discovery of a Sixth Satellite of Jupiter |
|title = Discovery of a Sixth Satellite of Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1905AJ.....24S.154. |
|url = https://articles.adsabs.harvard.edu/pdf/1905AJ.....24S.154. |
||
Line 356: | Line 394: | ||
|pages = 154 |
|pages = 154 |
||
|doi = 10.1086/103654 |
|doi = 10.1086/103654 |
||
|bibcode = 1905AJ.....24S.154. |
|bibcode = 1905AJ.....24S.154. |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192108/https://articles.adsabs.harvard.edu/pdf/1905AJ.....24S.154. |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Perrine1905">{{cite journal |
<ref name="Perrine1905">{{cite journal |
||
|first=C. D. |last = Perrine |
|first = C. D. |
||
|last = Perrine |
|||
|title = The Seventh Satellite of Jupiter |
|title = The Seventh Satellite of Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1905PASP...17...56. |
|url = https://articles.adsabs.harvard.edu/pdf/1905PASP...17...56. |
||
Line 370: | Line 414: | ||
|bibcode = 1905PASP...17...56. |
|bibcode = 1905PASP...17...56. |
||
|jstor = 40691209 |
|jstor = 40691209 |
||
|s2cid = 250794880 |
|s2cid = 250794880 |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192110/https://articles.adsabs.harvard.edu/pdf/1905PASP...17...56. |
|||
|url-status = live |
|||
|doi-access = free |
|||
}}</ref> |
|||
<ref name="Melotte1908">{{cite journal |
<ref name="Melotte1908">{{cite journal |
||
|first = P. J. |last = Melotte |
|first = P. J. |
||
|last = Melotte |
|||
|title = Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich |
|title = Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich |
||
|url = https://articles.adsabs.harvard.edu/pdf/1908MNRAS..68..456. |
|url = https://articles.adsabs.harvard.edu/pdf/1908MNRAS..68..456. |
||
Line 382: | Line 433: | ||
|pages = 456–457 |
|pages = 456–457 |
||
|doi = 10.1093/mnras/68.6.456 |
|doi = 10.1093/mnras/68.6.456 |
||
|bibcode = 1908MNRAS..68..456. |
|bibcode = 1908MNRAS..68..456. |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192107/https://articles.adsabs.harvard.edu/pdf/1908MNRAS..68..456. |
|||
|url-status = live |
|||
|doi-access = free |
|||
}}</ref> |
|||
<ref name="Nicholson1914">{{cite journal |
<ref name="Nicholson1914">{{cite journal |
||
|first = S. B. |last = Nicholson |
|first = S. B. |
||
|last = Nicholson |
|||
|title = Discovery of the Ninth Satellite of Jupiter |
|title = Discovery of the Ninth Satellite of Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1914PASP...26..197N |
|url = https://articles.adsabs.harvard.edu/pdf/1914PASP...26..197N |
||
Line 396: | Line 454: | ||
|bibcode = 1914PASP...26..197N |
|bibcode = 1914PASP...26..197N |
||
|pmid = 16586574 |
|pmid = 16586574 |
||
|pmc = 1090718 |
|pmc = 1090718 |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192107/https://articles.adsabs.harvard.edu/pdf/1914PASP...26..197N |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Nicholson1938">{{cite journal |
<ref name="Nicholson1938">{{cite journal |
||
|first = S. B. |last = Nicholson |
|first = S. B. |
||
|last = Nicholson |
|||
|title = Two New Satellites of Jupiter |
|title = Two New Satellites of Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1938PASP...50..292N |
|url = https://articles.adsabs.harvard.edu/pdf/1938PASP...50..292N |
||
Line 409: | Line 473: | ||
|doi = 10.1086/124963 |
|doi = 10.1086/124963 |
||
|bibcode = 1938PASP...50..292N |
|bibcode = 1938PASP...50..292N |
||
|s2cid = 120216615 |
|s2cid = 120216615 |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192105/https://articles.adsabs.harvard.edu/pdf/1938PASP...50..292N |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Nicolson1951">{{cite journal |
<ref name="Nicolson1951">{{cite journal |
||
|first = S. B. |last = Nicholson |
|first = S. B. |
||
|last = Nicholson |
|||
|title = An unidentified object near Jupiter, probably a new satellite |
|title = An unidentified object near Jupiter, probably a new satellite |
||
|journal = Publications of the Astronomical Society of the Pacific |
|journal = Publications of the Astronomical Society of the Pacific |
||
Line 422: | Line 492: | ||
|doi = 10.1086/126402 |
|doi = 10.1086/126402 |
||
|bibcode = 1951PASP...63..297N |
|bibcode = 1951PASP...63..297N |
||
|s2cid = 121080345 |
|s2cid = 121080345 |
||
|access-date = 7 January 2023 |
|||
|archive-date = 4 February 2023 |
|||
|archive-url = https://web.archive.org/web/20230204123533/https://articles.adsabs.harvard.edu/pdf/1951PASP...63..297N |
|||
|url-status = live |
|||
|doi-access = free |
|||
}}</ref> |
|||
<ref name="Kowal1975">{{cite journal |
<ref name="Kowal1975">{{cite journal |
||
|first1 = C. T. |last1 = Kowal |
|first1 = C. T. |
||
|last1 = Kowal |
|||
|first2 = K. |last2 = Aksnes |
|first2 = K. |
||
|last2 = Aksnes |
|||
|first3 = B. G. |last3 = Marsden |
|first3 = B. G. |
||
|last3 = Marsden |
|||
|first4 = E. |last4 = Roemer |
|first4 = E. |
||
|last4 = Roemer |
|||
|title = Thirteenth satellite of Jupiter |
|title = Thirteenth satellite of Jupiter |
||
|url = https://articles.adsabs.harvard.edu/pdf/1975AJ.....80..460K |
|url = https://articles.adsabs.harvard.edu/pdf/1975AJ.....80..460K |
||
Line 436: | Line 516: | ||
|pages = 460–464 |
|pages = 460–464 |
||
|doi = 10.1086/111766 |
|doi = 10.1086/111766 |
||
|bibcode = 1975AJ.....80..460K |
|bibcode = 1975AJ.....80..460K |
||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107192106/https://articles.adsabs.harvard.edu/pdf/1975AJ.....80..460K |
|||
|url-status = live |
|||
|doi-access = free |
|||
}}</ref> |
|||
<ref name="Marsden1975">{{ |
<ref name="Marsden1975">{{Cite journal |last=Marsden |first=Brian G. |date=3 October 1975 |title=Probable New Satellite of Jupiter |url=http://www.cbat.eps.harvard.edu/iauc/02800/02845.html |url-status=live |format=discovery telegram sent to the IAU |journal=IAU Circular |location=Cambridge, US |publisher=Smithsonian Astrophysical Observatory |volume=2845 |archive-url=https://web.archive.org/web/20020916000548/http://www.cbat.eps.harvard.edu/iauc/02800/02845.html |archive-date=16 September 2002 |access-date=8 January 2011}}</ref> |
||
<ref name="Synnott1980">{{cite journal |
<ref name="Synnott1980">{{cite journal |
||
Line 457: | Line 543: | ||
|publisher = Central Bureau for Astronomical Telegrams |
|publisher = Central Bureau for Astronomical Telegrams |
||
|date = 20 July 2000 |
|date = 20 July 2000 |
||
|accessdate = 6 January 2023 |
|accessdate = 6 January 2023 |
||
|archive-date = 9 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230109012403/http://www.cbat.eps.harvard.edu/pressinfo/S1999J1.html |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Sheppard2003">{{cite journal |
<ref name="Sheppard2003">{{cite journal |
||
|first1 = Scott S. |last1 = Sheppard |
|first1 = Scott S. |
||
|last1 = Sheppard |
|||
|first2 = David C. |last2 = Jewitt |
|first2 = David C. |
||
|last2 = Jewitt |
|||
|title = An abundant population of small irregular satellites around Jupiter |
|title = An abundant population of small irregular satellites around Jupiter |
||
|url = http://www2.ess.ucla.edu/~jewitt/papers/JSATS/SJ2003.pdf |
|url = http://www2.ess.ucla.edu/~jewitt/papers/JSATS/SJ2003.pdf |
||
Line 470: | Line 562: | ||
|pages = 261–263 |
|pages = 261–263 |
||
|doi = 10.1038/nature01584 |
|doi = 10.1038/nature01584 |
||
|pmid = 12748634 |
|||
|bibcode = 2003Natur.423..261S}}</ref> |
|||
|bibcode = 2003Natur.423..261S |
|||
|s2cid = 4424447 |
|||
|access-date = 7 January 2023 |
|||
|archive-date = 7 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230107073933/http://www2.ess.ucla.edu/~jewitt/papers/JSATS/SJ2003.pdf |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="UBC2003">{{cite web |
<ref name="UBC2003">{{cite web |
||
Line 492: | Line 591: | ||
|first4 = Kaare |last4 = Aksnes |
|first4 = Kaare |last4 = Aksnes |
||
|title = Photometric survey of the irregular satellites |
|title = Photometric survey of the irregular satellites |
||
|url = https://arxiv.org/pdf/astro-ph/0301016.pdf |
|||
|journal = Icarus |
|journal = Icarus |
||
|date = November 2003 |
|date = November 2003 |
||
Line 517: | Line 615: | ||
<ref name="Nesvorny2004">{{cite journal |
<ref name="Nesvorny2004">{{cite journal |
||
|first1 = David |last1 = Nesvorný |
|first1 = David |
||
|last1 = Nesvorný |
|||
|first2 = Cristian |last2 = Beaugé |
|first2 = Cristian |
||
|last2 = Beaugé |
|||
|first3 = Luke |last3 = Dones |
|first3 = Luke |
||
|last3 = Dones |
|||
|title = Collisional Origin of Families of Irregular Satellites |
|title = Collisional Origin of Families of Irregular Satellites |
||
|url = http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf |
|url = http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf |
||
Line 530: | Line 631: | ||
|doi = 10.1086/382099 |
|doi = 10.1086/382099 |
||
|bibcode = 2004AJ....127.1768N |
|bibcode = 2004AJ....127.1768N |
||
|s2cid = 27293848 |
|s2cid = 27293848 |
||
|access-date = 27 August 2008 |
|||
|archive-date = 9 October 2022 |
|||
|archive-url = https://ghostarchive.org/archive/20221009/http://www.boulder.swri.edu/~davidn/papers/irrbig.pdf |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Jewitt2007">{{cite journal |
<ref name="Jewitt2007">{{cite journal |
||
|first1 = David |last1 = Jewitt |
|first1 = David |
||
|last1 = Jewitt |
|||
|first2 = Nader |last2 = Haghighipour |
|first2 = Nader |
||
|last2 = Haghighipour |
|||
|title = Irregular Satellites of the Planets: Products of Capture in the Early Solar System |
|title = Irregular Satellites of the Planets: Products of Capture in the Early Solar System |
||
|url = http://www2.ess.ucla.edu/~jewitt/papers/2007/JH07.pdf |
|url = http://www2.ess.ucla.edu/~jewitt/papers/2007/JH07.pdf |
||
Line 545: | Line 653: | ||
|arxiv = astro-ph/0703059 |
|arxiv = astro-ph/0703059 |
||
|bibcode = 2007ARA&A..45..261J |
|bibcode = 2007ARA&A..45..261J |
||
|s2cid = 13282788 |
|s2cid = 13282788 |
||
|access-date = 8 January 2023 |
|||
|archive-date = 25 February 2014 |
|||
|archive-url = https://web.archive.org/web/20140225204338/http://www2.ess.ucla.edu/~jewitt/papers/2007/JH07.pdf |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Nicholson2008">{{cite book |
<ref name="Nicholson2008">{{cite book |
||
|editor-first1 = M. A. |editor-last1 = Barucci |
|editor-first1 = M. A. |
||
|editor-last1 = Barucci |
|||
|editor-first2 = H. |editor-last2 = Boehnhardt |
|editor-first2 = H. |
||
|editor-last2 = Boehnhardt |
|||
|editor-first3 = D. P. |editor-last3 = Cruikshank |
|editor-first3 = D. P. |
||
|editor-last3 = Cruikshank |
|||
|editor-first4 = A. |editor-last4 = Morbidelli |
|editor-first4 = A. |
||
|editor-last4 = Morbidelli |
|||
|first1 = P. D. |last1=Nicholson |
|first1 = P. D. |
||
|last1 = Nicholson |
|||
|first2 = M. |last2 = Cuk |
|first2 = M. |
||
|last2 = Cuk |
|||
|first3 = S. S. |last3 = Sheppard |
|first3 = S. S. |
||
|last3 = Sheppard |
|||
|first4 = D. |last4 = Nesvorny |
|first4 = D. |
||
|last4 = Nesvorny |
|||
|first5 = T. V. |last5 = Johnson |
|first5 = T. V. |
||
|last5 = Johnson |
|||
|title = The Solar System Beyond Neptune |
|title = The Solar System Beyond Neptune |
||
|chapter = Irregular Satellites of the Giant Planets |
|chapter = Irregular Satellites of the Giant Planets |
||
Line 564: | Line 686: | ||
|bibcode = 2008ssbn.book..411N |
|bibcode = 2008ssbn.book..411N |
||
|s2cid = 32512508 |
|s2cid = 32512508 |
||
|isbn = 9780816527557 |
|isbn = 9780816527557 |
||
|access-date = 7 January 2023 |
|||
|archive-date = 9 March 2023 |
|||
|archive-url = https://web.archive.org/web/20230309050306/https://www.lpi.usra.edu/books/ssbn2008/7030.pdf |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="UBC2012">{{cite web |
<ref name="UBC2012">{{cite web |
||
Line 580: | Line 707: | ||
|archive-date = 22 July 2012}}</ref> |
|archive-date = 22 July 2012}}</ref> |
||
<ref name="CBET2734">{{cite |
<ref name="CBET2734">{{cite journal |
||
|title = CBET 2734: New Satellites of Jupiter: S/2010 J 1 and S/2010 J 2 |
|||
|url = http://www.cbat.eps.harvard.edu/iau/cbet/002700/CBET002734.txt |
|||
|first = Daniel W. E. |
|||
|last = Green |
|||
|journal = Central Bureau Electronic Telegrams |
|||
|publisher = Central Bureau for Astronomical Telegrams |
|||
|issue = 2734 |
|||
|page = 1 |
|||
|date = 1 June 2011 |
|||
|volume = 2734 |
|||
|accessdate = 7 January 2023 |
|||
|accessdate = 7 January 2023 |
|||
|bibcode = 2011CBET.2734....1G}}</ref> |
|||
|bibcode = 2011CBET.2734....1G |
|||
|archive-date = 16 October 2020 |
|||
|archive-url = https://web.archive.org/web/20201016052940/http://www.cbat.eps.harvard.edu/iau/cbet/002700/CBET002734.txt |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Carnegie2012">{{cite web |
<ref name="Carnegie2012">{{cite web |
||
Line 602: | Line 735: | ||
|url-status = dead |
|url-status = dead |
||
|archive-url = https://web.archive.org/web/20130617183237/http://www.dtm.ciw.edu/news-mainmenu-2/68-science-headlines/774-2-new-satellites-of-jupiter-discovered |
|archive-url = https://web.archive.org/web/20130617183237/http://www.dtm.ciw.edu/news-mainmenu-2/68-science-headlines/774-2-new-satellites-of-jupiter-discovered |
||
|archive-date = 17 June |
|archive-date = 17 June 2013}}</ref> |
||
<ref name="Alexandersen2012">{{cite journal |
<ref name="Alexandersen2012">{{cite journal |
||
Line 618: | Line 751: | ||
|id = 21 |
|id = 21 |
||
|pages = 4 |
|pages = 4 |
||
|doi-access = |
|doi-access = |
||
|doi = 10.1088/0004-6256/144/1/21 |
|doi = 10.1088/0004-6256/144/1/21 |
||
|bibcode = 2012AJ....144...21A |
|bibcode = 2012AJ....144...21A |
||
Line 630: | Line 763: | ||
|first5 = P. D. |last5 = Nicholson |
|first5 = P. D. |last5 = Nicholson |
||
|first6 = C. |last6 = Veillet |
|first6 = C. |last6 = Veillet |
||
|title = Irregular Satellites of the Outer Planets: Orbital Uncertainties and Astrometric Recoveries in |
|title = Irregular Satellites of the Outer Planets: Orbital Uncertainties and Astrometric Recoveries in 2009–2011 |
||
|journal = The Astronomical Journal |
|journal = The Astronomical Journal |
||
|date = November 2012 |
|date = November 2012 |
||
Line 650: | Line 783: | ||
|issue = 2 |
|issue = 2 |
||
|pages = 218–234 |
|pages = 218–234 |
||
|doi-access = |
|doi-access = |
||
|doi = 10.1177/0021828615585493 |
|doi = 10.1177/0021828615585493 |
||
|bibcode = 2015JHA....46..218P |
|bibcode = 2015JHA....46..218P |
||
Line 671: | Line 804: | ||
|s2cid = 8193676}}</ref> |
|s2cid = 8193676}}</ref> |
||
<ref name=" |
<ref name="Brozovic2017">{{cite journal |
||
|first1 = Marina |last1 = Brozović |
|first1 = Marina |last1 = Brozović |
||
|first2 = Robert A.|last2 = Jacobson |
|first2 = Robert A.|last2 = Jacobson |
||
Line 689: | Line 822: | ||
|title = Two New Satellites for Jupiter |
|title = Two New Satellites for Jupiter |
||
|url = https://skyandtelescope.org/astronomy-news/two-new-satellites-for-jupiter/ |
|url = https://skyandtelescope.org/astronomy-news/two-new-satellites-for-jupiter/ |
||
|first = J. Kelly |last = Beatty |
|first = J. Kelly |
||
|last = Beatty |
|||
|work = Sky & Telescope |
|work = Sky & Telescope |
||
|date = 6 June 2017 |
|date = 6 June 2017 |
||
|accessdate = 7 January 2023 |
|accessdate = 7 January 2023 |
||
|archive-date = 8 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230108014743/https://skyandtelescope.org/astronomy-news/two-new-satellites-for-jupiter/ |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Beatty2018">{{cite news |
<ref name="Beatty2018">{{cite news |
||
|title = Jupiter's Moons: 10 More Found, 79 Known |
|title = Jupiter's Moons: 10 More Found, 79 Known |
||
|url = https://skyandtelescope.org/astronomy-news/jupiters-moons-12-more-found-79-now-known/ |
|url = https://skyandtelescope.org/astronomy-news/jupiters-moons-12-more-found-79-now-known/ |
||
|first = J. Kelly |last = Beatty |
|first = J. Kelly |
||
|last = Beatty |
|||
|work = Sky & Telescope |
|work = Sky & Telescope |
||
|date = 17 July 2017 |
|date = 17 July 2017 |
||
|accessdate = 7 January 2023 |
|accessdate = 7 January 2023 |
||
|archive-date = 8 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230108014743/https://skyandtelescope.org/astronomy-news/jupiters-moons-12-more-found-79-now-known/ |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Holler2018">{{cite journal |
<ref name="Holler2018">{{cite journal |
||
Line 711: | Line 854: | ||
|first6 = Gordon L. |last6 = Bjoraker |
|first6 = Gordon L. |last6 = Bjoraker |
||
|title = Solar system science with the Wide-Field Infrared Survey Telescope |
|title = Solar system science with the Wide-Field Infrared Survey Telescope |
||
|url = https://arxiv.org/ftp/arxiv/papers/1709/1709.02763.pdf |
|||
|journal = Journal of Astronomical Telescopes, Instruments, and Systems |
|journal = Journal of Astronomical Telescopes, Instruments, and Systems |
||
|date = July 2018 |
|date = July 2018 |
||
|volume = 4 |
|volume = 4 |
||
|issue = 3 |
|issue = 3 |
||
|id = 034003 |
|page = 034003 |id = 034003 |
||
|doi = 10.1117/1.JATIS.4.3.034003 |
|doi = 10.1117/1.JATIS.4.3.034003 |
||
|arxiv = 1709.02763 |
|arxiv = 1709.02763 |
||
Line 735: | Line 877: | ||
|volume = 2 |
|volume = 2 |
||
|issue = 3 |
|issue = 3 |
||
|id = 155 |
|page = 155 |id = 155 |
||
|doi-access = free |
|doi-access = free |
||
|doi = 10.3847/2515-5172/aadd15 |
|doi = 10.3847/2515-5172/aadd15 |
||
Line 754: | Line 896: | ||
|url-status = live |
|url-status = live |
||
|archive-url = https://web.archive.org/web/20210311221317/https://www.noao.edu/noao/noaonews/oct18/118news.pdf |
|archive-url = https://web.archive.org/web/20210311221317/https://www.noao.edu/noao/noaonews/oct18/118news.pdf |
||
|archive-date = |
|archive-date = 11 March 2021}}</ref> |
||
<ref name="Schilling2020">{{cite news |
<ref name="Schilling2020">{{cite news |
||
|title = Study Suggests Jupiter Could Have 600 Moons |
|title = Study Suggests Jupiter Could Have 600 Moons |
||
|url = https://skyandtelescope.org/astronomy-news/jupiter-could-have-600-moons/ |
|url = https://skyandtelescope.org/astronomy-news/jupiter-could-have-600-moons/ |
||
|first1 = Govert |last1 = Schilling |
|first1 = Govert |
||
|last1 = Schilling |
|||
|work = Sky & Telescope |
|work = Sky & Telescope |
||
|date = 8 September 2020 |
|date = 8 September 2020 |
||
|accessdate = 9 September 2020 |
|accessdate = 9 September 2020 |
||
|archive-date = 11 September 2020 |
|||
|archive-url = https://web.archive.org/web/20200911221731/https://skyandtelescope.org/astronomy-news/jupiter-could-have-600-moons/ |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Ashton2020">{{cite journal |
<ref name="Ashton2020">{{cite journal |
||
Line 780: | Line 927: | ||
|s2cid = 221534456}}</ref> |
|s2cid = 221534456}}</ref> |
||
<ref name="jplsats">{{cite web |
<ref name="jplsats-elem">{{cite web |
||
|title = Planetary Satellite Mean Elements |
|title = Planetary Satellite Mean Elements |
||
|url = https://ssd.jpl.nasa.gov/sats/elem/sep.html |
|url = https://ssd.jpl.nasa.gov/sats/elem/sep.html |
||
|work = JPL Solar System Dynamics |
|work = JPL Solar System Dynamics |
||
|publisher = NASA |
|publisher = NASA |
||
|accessdate = 28 March 2022 |
|||
|accessdate = 28 March 2022}} Note: Orbital elements of regular satellites are with respect to the [[Laplace plane]], while orbital elements of irregular satellites are with respect to the [[ecliptic]]. Orbital periods of irregular satellites may not be consistent with their semi-major axes due to perturbations.</ref> |
|||
|archive-date = 6 October 2021 |
|||
|archive-url = https://web.archive.org/web/20211006095717/https://ssd.jpl.nasa.gov/sats/elem/sep.html |
|||
|url-status = live |
|||
}} Note: Orbital elements of regular satellites are with respect to the [[Laplace plane]], while orbital elements of irregular satellites are with respect to the [[ecliptic]].</ref> |
|||
<ref name="jplsats-disc">{{cite web |
<ref name="jplsats-disc">{{cite web |
||
Line 793: | Line 944: | ||
|publisher = NASA |
|publisher = NASA |
||
|date = 15 November 2021 |
|date = 15 November 2021 |
||
|accessdate = 7 January 2022 |
|accessdate = 7 January 2022 |
||
|archive-date = 27 September 2021 |
|||
|archive-url = https://web.archive.org/web/20210927162554/https://ssd.jpl.nasa.gov/sats/discovery.html |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="MPEC-2021-V333">{{cite web |
<ref name="MPEC-2021-V333">{{cite web |
||
|title = MPEC 2021-V333 : S/2003 J 24 |
|||
|url = https://minorplanetcenter.net/mpec/K21/K21VX3.html |
|||
|work = Minor Planet Electronic Circulars |
|||
|publisher = Minor Planet Center |
|||
|date = 15 November 2021 |
|||
|accessdate = 8 January 2023 |
|||
|archive-date = 16 November 2021 |
|||
|archive-url = https://web.archive.org/web/20211116032237/https://www.minorplanetcenter.net/mpec/K21/K21VX3.html |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="MPEC-2023- |
<ref name="MPEC-2023-D46">{{cite web |
||
|title = MPEC 2023-D46 : S/2022 J 3 |
|||
|url = https://minorplanetcenter.net/mpec/K23/K23D46.html |
|||
|work = Minor Planet Electronic Circulars |
|||
|publisher = Minor Planet Center |
|||
|date = 22 February 2023 |
|||
|accessdate = 22 February 2023 |
|||
|archive-date = 5 March 2023 |
|||
|archive-url = https://web.archive.org/web/20230305235408/https://www.minorplanetcenter.net/mpec/K23/K23D46.html |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name=" |
<ref name="Hecht2023">{{cite news |
||
|title |
|title = Astronomers Find a Dozen More Moons for Jupiter |
||
|url = https://skyandtelescope.org/astronomy-news/astronomers-find-a-dozen-more-moons-for-jupiter/ |
|||
|url = https://www.minorplanetcenter.net/mpec/K23/K23B51.html |
|||
|first = Jeff |
|||
|work = Minor Planet Electronic Circulars |
|||
|last = Hecht |
|||
|publisher = Minor Planet Center |
|||
| |
|work = Sky & Telescope |
||
| |
|date = 31 January 2023 |
||
|accessdate = 1 February 2023 |
|||
|archive-date = 31 January 2023 |
|||
|archive-url = https://web.archive.org/web/20230131223232/https://skyandtelescope.org/astronomy-news/astronomers-find-a-dozen-more-moons-for-jupiter/ |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="Greenfieldboyce2023">{{cite news |
|||
|title = Here's why Jupiter's tally of moons keeps going up and up |
|||
|url = https://www.npr.org/2023/02/09/1155425572/heres-why-jupiters-tally-of-moons-keeps-going-up-and-up |
|||
|first = Nell |
|||
|last = Greenfieldboyce |
|||
|work = Sky & Telescope |
|||
|date = 9 February 2023 |
|||
|accessdate = 6 March 2023 |
|||
|archive-date = 5 March 2023 |
|||
|archive-url = https://web.archive.org/web/20230305203115/https://www.npr.org/2023/02/09/1155425572/heres-why-jupiters-tally-of-moons-keeps-going-up-and-up |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="SheppardMoons">{{cite web |
<ref name="SheppardMoons">{{cite web |
||
|title = Moons of Jupiter |
|||
|url = https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons |
|||
|first = Scott S. |
|||
|last = Sheppard |
|||
|work = Earth & Planets Laboratory |
|||
|publisher = Carnegie Institution for Science |
|||
|accessdate = 7 January 2023 |
|||
|archive-date = 24 April 2019 |
|||
|archive-url = https://web.archive.org/web/20190424041910/https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons |
|||
|url-status = live |
|||
}}</ref> |
|||
<ref name="MPC-NatSats">{{cite web |
<ref name="MPC-NatSats">{{cite web |
||
|title = Natural Satellites Ephemeris Service |
|title = Natural Satellites Ephemeris Service |
||
|url |
|url = https://minorplanetcenter.net/iau/NatSats/NaturalSatellites.html |
||
|publisher = Minor Planet Center |
|publisher = Minor Planet Center |
||
|accessdate = 20 January 2023 |
|||
|accessdate = 20 January 2023}} Selection of Objects → "All Jovian outer irregular satellites" → Check "I require Orbital Elements" → Get Information</ref> |
|||
|archive-date = 4 October 2022 |
|||
|archive-url = https://web.archive.org/web/20221004101520/https://minorplanetcenter.net//iau/NatSats/NaturalSatellites.html |
|||
|url-status = live |
|||
}} Selection of Objects → "All Jovian outer irregular satellites" → Check "I require Orbital Elements" → Get Information</ref> |
|||
}} |
}} |
||
Line 839: | Line 1,029: | ||
* [[Scott S. Sheppard]]: [https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons Moons of Jupiter] |
* [[Scott S. Sheppard]]: [https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons Moons of Jupiter] |
||
* Scott S. Sheppard: [http://home.dtm.ciw.edu/users/sheppard/satellites/ The Jupiter Satellite and Moon Page] |
* Scott S. Sheppard: [http://home.dtm.ciw.edu/users/sheppard/satellites/ The Jupiter Satellite and Moon Page] |
||
* [https://web.archive.org/web/20151021010324/http://solarsystem.nasa.gov/planets/jupiter/moons Jupiter Moons] by [ |
* [https://web.archive.org/web/20151021010324/http://solarsystem.nasa.gov/planets/jupiter/moons Jupiter Moons] by [https://science.nasa.gov/solar-system/ NASA's Solar System Exploration] |
||
* [http://www.psrd.hawaii.edu/Archive/Archive-Jupiter.html Archive of Jupiter System Articles] in [http://www.psrd.hawaii.edu/index.html Planetary Science Research Discoveries] |
* [http://www.psrd.hawaii.edu/Archive/Archive-Jupiter.html Archive of Jupiter System Articles] in [http://www.psrd.hawaii.edu/index.html Planetary Science Research Discoveries] |
||
* Tilmann Denk: [https://tilmanndenk.de/outerjovianmoons/ Outer Moons of Jupiter] |
* Tilmann Denk: [https://tilmanndenk.de/outerjovianmoons/ Outer Moons of Jupiter] |
||
Line 847: | Line 1,037: | ||
{{Solar System}} |
{{Solar System}} |
||
{{Portal bar|Stars|Spaceflight|Outer space|Science}} |
{{Portal bar|Stars|Spaceflight|Outer space|Science}} |
||
{{featured list}} |
|||
{{DEFAULTSORT:Moons Of Jupiter}} |
{{DEFAULTSORT:Moons Of Jupiter}} |
||
[[Category:Moons of Jupiter| ]] |
[[Category:Moons of Jupiter| ]] |
||
[[Category:Lists of moons]] |
[[Category:Lists of moons]] |
||
[[Category:Solar System]] |
Latest revision as of 20:22, 5 December 2024
There are 95 moons of Jupiter with confirmed orbits as of 5 February 2024[update].[1][note 1] This number does not include a number of meter-sized moonlets thought to be shed from the inner moons, nor hundreds of possible kilometer-sized outer irregular moons that were only briefly captured by telescopes.[4] All together, Jupiter's moons form a satellite system called the Jovian system. The most massive of the moons are the four Galilean moons: Io, Europa, Ganymede, and Callisto, which were independently discovered in 1610 by Galileo Galilei and Simon Marius and were the first objects found to orbit a body that was neither Earth nor the Sun. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers (or other sexual partners) or daughters of the Roman god Jupiter or his Greek equivalent Zeus. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 91 known moons and the rings together comprising just 0.003% of the total orbiting mass.
Of Jupiter's moons, eight are regular satellites with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter's equatorial plane. The Galilean satellites are nearly spherical in shape due to their planetary mass, and are just massive enough that they would be considered major planets if they were in direct orbit around the Sun. The other four regular satellites, known as the inner moons, are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings. The remainder of Jupiter's moons are outer irregular satellites whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. The largest of these moons were likely asteroids that were captured from solar orbits by Jupiter before impacts with other small bodies shattered them into many kilometer-sized fragments, forming collisional families of moons sharing similar orbits. Jupiter is expected to have about 100 irregular moons larger than 1 km (0.6 mi) in diameter, plus around 500 more smaller retrograde moons down to diameters of 0.8 km (0.5 mi).[5] Of the 87 known irregular moons of Jupiter, 38 of them have not yet been officially given names.
Characteristics
[edit]The physical and orbital characteristics of the moons vary widely. The four Galileans are all over 3,100 kilometres (1,900 mi) in diameter;[6] the largest Galilean, Ganymede, is the ninth largest object in the Solar System, after the Sun and seven of the planets, Ganymede being larger than Mercury.[7] All other Jovian moons are less than 250 kilometres (160 mi) in diameter, with most barely exceeding 5 kilometres (3.1 mi).[note 2] Their orbital shapes range from nearly perfectly circular to highly eccentric and inclined, and many revolve in the direction opposite to Jupiter's rotation (retrograde motion).
Origin and evolution
[edit]Jupiter's regular satellites are believed to have formed from a circumplanetary disk, a ring of accreting gas and solid debris analogous to a protoplanetary disk.[8][9] They may be the remnants of a score of Galilean-mass satellites that formed early in Jupiter's history.[8][10]
Simulations suggest that, while the disk had a relatively high mass at any given moment, over time a substantial fraction (several tens of a percent) of the mass of Jupiter captured from the solar nebula was passed through it. However, only 2% of the proto-disk mass of Jupiter is required to explain the existing satellites.[8] Thus, several generations of Galilean-mass satellites may have been in Jupiter's early history. Each generation of moons might have spiraled into Jupiter, because of drag from the disk, with new moons then forming from the new debris captured from the solar nebula.[8] By the time the present (possibly fifth) generation formed, the disk had thinned so that it no longer greatly interfered with the moons' orbits.[10] The current Galilean moons were still affected, falling into and being partially protected by an orbital resonance with each other, which still exists for Io, Europa, and Ganymede: they are in a 1:2:4 resonance. Ganymede's larger mass means that it would have migrated inward at a faster rate than Europa or Io.[8] Tidal dissipation in the Jovian system is still ongoing and Callisto will likely be captured into the resonance in about 1.5 billion years, creating a 1:2:4:8 chain.[11]
The outer, irregular moons are thought to have originated from captured asteroids, whereas the protolunar disk was still massive enough to absorb much of their momentum and thus capture them into orbit. Many are believed to have been broken up by mechanical stresses during capture, or afterward by collisions with other small bodies, producing the moons we see today.[12]
History and discovery
[edit]Visual observations
[edit]Chinese historian Xi Zezong claimed that the earliest record of a Jovian moon (Ganymede or Callisto) was a note by Chinese astronomer Gan De of an observation around 364 BC regarding a "reddish star".[13] However, the first certain observations of Jupiter's satellites were those of Galileo Galilei in 1609.[14] By January 1610, he had sighted the four massive Galilean moons with his 20× magnification telescope, and he published his results in March 1610.[15]
Simon Marius had independently discovered the moons one day after Galileo, although he did not publish his book on the subject until 1614. Even so, the names Marius assigned are used today: Ganymede, Callisto, Io, and Europa.[16] No additional satellites were discovered until E. E. Barnard observed Amalthea in 1892.[17]
Photographic and spacecraft observations
[edit]With the aid of telescopic photography with photographic plates, further discoveries followed quickly over the course of the 20th century. Himalia was discovered in 1904,[18] Elara in 1905,[19] Pasiphae in 1908,[20] Sinope in 1914,[21] Lysithea and Carme in 1938,[22] Ananke in 1951,[23] and Leda in 1974.[24]
By the time that the Voyager space probes reached Jupiter, around 1979, thirteen moons had been discovered, not including Themisto, which had been observed in 1975,[25] but was lost until 2000 due to insufficient initial observation data. The Voyager spacecraft discovered an additional three inner moons in 1979: Metis, Adrastea, and Thebe.[26]
Digital telescopic observations
[edit]No additional moons were discovered until two decades later, with the fortuitous discovery of Callirrhoe by the Spacewatch survey in October 1999.[27] During the 1990s, photographic plates phased out as digital charge-coupled device (CCD) cameras began emerging in telescopes on Earth, allowing for wide-field surveys of the sky at unprecedented sensitivities and ushering in a wave of new moon discoveries.[28] Scott Sheppard, then a graduate student of David Jewitt, demonstrated this extended capability of CCD cameras in a survey conducted with the Mauna Kea Observatory's 2.2-meter (88 in) UH88 telescope in November 2000, discovering eleven new irregular moons of Jupiter including the previously lost Themisto with the aid of automated computer algorithms.[29]
From 2001 onward, Sheppard and Jewitt alongside other collaborators continued surveying for Jovian irregular moons with the 3.6-meter (12 ft) Canada-France-Hawaii Telescope (CFHT), discovering an additional eleven in December 2001, one in October 2002, and nineteen in February 2003.[29][1] At the same time, another independent team led by Brett J. Gladman also used the CFHT in 2003 to search for Jovian irregular moons, discovering four and co-discovering two with Sheppard.[1][30][31] From the start to end of these CCD-based surveys in 2000–2004, Jupiter's known moon count had grown from 17 to 63.[27][30] All of these moons discovered after 2000 are faint and tiny, with apparent magnitudes between 22–23 and diameters less than 10 km (6.2 mi).[29] As a result, many could not be reliably tracked and ended up becoming lost.[32]
Beginning in 2009, a team of astronomers, namely Mike Alexandersen, Marina Brozović, Brett Gladman, Robert Jacobson, and Christian Veillet, began a campaign to recover Jupiter's lost irregular moons using the CFHT and Palomar Observatory's 5.1-meter (17 ft) Hale Telescope.[33][32] They discovered two previously unknown Jovian irregular moons during recovery efforts in September 2010, prompting further follow-up observations to confirm these by 2011.[33][34] One of these moons, S/2010 J 2 (now Jupiter LII), has an apparent magnitude of 24 and a diameter of only 1–2 km (0.62–1.2 mi), making it one of the faintest and smallest confirmed moons of Jupiter even as of 2023[update].[35][4] Meanwhile, in September 2011, Scott Sheppard, now a faculty member of the Carnegie Institution for Science,[4] discovered two more irregular moons using the institution's 6.5-meter (21 ft) Magellan Telescopes at Las Campanas Observatory, raising Jupiter's known moon count to 67.[36] Although Sheppard's two moons were followed up and confirmed by 2012, both became lost due to insufficient observational coverage.[32][37]
In 2016, while surveying for distant trans-Neptunian objects with the Magellan Telescopes, Sheppard serendipitously observed a region of the sky located near Jupiter, enticing him to search for Jovian irregular moons as a detour. In collaboration with Chadwick Trujillo and David Tholen, Sheppard continued surveying around Jupiter from 2016 to 2018 using the Cerro Tololo Observatory's 4.0-meter (13 ft) Víctor M. Blanco Telescope and Mauna Kea Observatory's 8.2-meter (27 ft) Subaru Telescope.[38][39] In the process, Sheppard's team recovered several lost moons of Jupiter from 2003 to 2011 and reported two new Jovian irregular moons in June 2017.[40] Then in July 2018, Sheppard's team announced ten more irregular moons confirmed from 2016 to 2018 observations, bringing Jupiter's known moon count to 79. Among these was Valetudo, which has an unusually distant prograde orbit that crosses paths with the retrograde irregular moons.[38][39] Several more unidentified Jovian irregular satellites were detected in Sheppard's 2016–2018 search, but were too faint for follow-up confirmation.[39][41]: 10
From November 2021 to January 2023, Sheppard discovered twelve more irregular moons of Jupiter and confirmed them in archival survey imagery from 2003 to 2018, bringing the total count to 92.[42][2][3] Among these was S/2018 J 4, a highly inclined prograde moon that is now known to be in same orbital grouping as the moon Carpo, which was previously thought to be solitary.[3] On 22 February 2023, Sheppard announced three more moons discovered in a 2022 survey, now bringing Jupiter's total known moon count to 95.[2] In a February 2023 interview with NPR, Sheppard noted that he and his team are currently tracking even more moons of Jupiter, which should place Jupiter's moon count over 100 once confirmed over the next two years.[43]
Many more irregular moons of Jupiter will inevitably be discovered in the future, especially after the beginning of deep sky surveys by the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope in the mid-2020s.[44][45] The Rubin Observatory's 8.4-meter (28 ft) aperture telescope and 3.5 square-degree field of view will probe Jupiter's irregular moons down to diameters of 1 km (0.6 mi)[12]: 265 at apparent magnitudes of 24.5, with the potential of increasing the known population by up to tenfold.[44]: 292 Likewise, the Roman Space Telescope's 2.4-meter (7.9 ft) aperture and 0.28 square-degree field of view will probe Jupiter's irregular moons down to diameters of 0.3 km (0.2 mi) at magnitude 27.7, with the potential of discovering approximately 1,000 Jovian moons above this size.[45]: 24 Discovering these many irregular satellites will help reveal their population's size distribution and collisional histories, which will place further constraints to how the Solar System formed.[45]: 24–25
Discovery of outer planet moons
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org. |
Naming
[edit]The Galilean moons of Jupiter (Io, Europa, Ganymede, and Callisto) were named by Simon Marius soon after their discovery in 1610.[46] However, these names fell out of favor until the 20th century. The astronomical literature instead simply referred to "Jupiter I", "Jupiter II", etc., or "the first satellite of Jupiter", "Jupiter's second satellite", and so on.[46] The names Io, Europa, Ganymede, and Callisto became popular in the mid-20th century,[47] whereas the rest of the moons remained unnamed and were usually numbered in Roman numerals V (5) to XII (12).[48][49] Jupiter V was discovered in 1892 and given the name Amalthea by a popular though unofficial convention, a name first used by French astronomer Camille Flammarion.[50][51]
The other moons were simply labeled by their Roman numeral (e.g. Jupiter IX) in the majority of astronomical literature until the 1970s.[52] Several different suggestions were made for names of Jupiter's outer satellites, but none were universally accepted until 1975 when the International Astronomical Union's (IAU) Task Group for Outer Solar System Nomenclature granted names to satellites V–XIII,[53] and provided for a formal naming process for future satellites still to be discovered.[53] The practice was to name newly discovered moons of Jupiter after lovers and favorites of the god Jupiter (Zeus) and, since 2004, also after their descendants.[50] All of Jupiter's satellites from XXXIV (Euporie) onward are named after descendants of Jupiter or Zeus,[50] except LIII (Dia), named after a lover of Jupiter. Names ending with "a" or "o" are used for prograde irregular satellites (the latter for highly inclined satellites), and names ending with "e" are used for retrograde irregulars.[28] With the discovery of smaller, kilometre-sized moons around Jupiter, the IAU has established an additional convention to limit the naming of small moons with absolute magnitudes greater than 18 or diameters smaller than 1 km (0.6 mi).[54] Some of the most recently confirmed moons have not received names.[4]
Some asteroids share the same names as moons of Jupiter: 9 Metis, 38 Leda, 52 Europa, 85 Io, 113 Amalthea, 239 Adrastea. Two more asteroids previously shared the names of Jovian moons until spelling differences were made permanent by the IAU: Ganymede and asteroid 1036 Ganymed; and Callisto and asteroid 204 Kallisto.
Groups
[edit]Regular satellites
[edit]These have prograde and nearly circular orbits of low inclination and are split into two groups:
- Inner satellites or Amalthea group: Metis, Adrastea, Amalthea, and Thebe. These orbit very close to Jupiter; the innermost two orbit in less than a Jovian day. The latter two are respectively the fifth and seventh largest moons in the Jovian system. Observations suggest that at least the largest member, Amalthea, did not form on its present orbit, but farther from the planet, or that it is a captured Solar System body.[55] These moons, along with a number of seen and as-yet-unseen inner moonlets (see Amalthea moonlets), replenish and maintain Jupiter's faint ring system. Metis and Adrastea help to maintain Jupiter's main ring, whereas Amalthea and Thebe each maintain their own faint outer rings.[56][57]
- Main group or Galilean moons: Io, Europa, Ganymede and Callisto. They are some of the largest objects in the Solar System outside the Sun and the eight planets in terms of mass, larger than any known dwarf planet. Ganymede exceeds (and Callisto nearly equals) even the planet Mercury in diameter, though they are less massive. They are respectively the fourth-, sixth-, first-, and third-largest natural satellites in the Solar System, containing approximately 99.997% of the total mass in orbit around Jupiter, while Jupiter is almost 5,000 times more massive than the Galilean moons.[note 3] The inner moons are in a 1:2:4 orbital resonance. Models suggest that they formed by slow accretion in the low-density Jovian subnebula—a disc of the gas and dust that existed around Jupiter after its formation—which lasted up to 10 million years in the case of Callisto.[58] Europa, Ganymede, and Callisto are suspected of having subsurface water oceans,[59][60] and Io may have a subsurface magma ocean.[61]
Irregular satellites
[edit]The irregular satellites are substantially smaller objects with more distant and eccentric orbits. They form families with shared similarities in orbit (semi-major axis, inclination, eccentricity) and composition; it is believed that these are at least partially collisional families that were created when larger (but still small) parent bodies were shattered by impacts from asteroids captured by Jupiter's gravitational field. These families bear the names of their largest members. The identification of satellite families is tentative, but the following are typically listed:[4][62][56]
- Prograde satellites:
- Themisto is the innermost irregular moon and is not part of a known family.[4][62]
- The Himalia group is confined within semi-major axes between 11–12 million km (6.8–7.5 million mi), inclinations between 27 and 29°, and eccentricities between 0.12 and 0.21.[63] It has been suggested that the group could be a remnant of the break-up of an asteroid from the asteroid belt.[62] The largest two members, Himalia and Elara, are respectively the sixth- and eighth-largest Jovian moons.
- The Carpo group includes two known moons on very high orbital inclinations of 50° and semi-major axes between 16–17 million km (9.9–10.6 million mi).[4] Due to their exceptionally high inclinations, the moons of the Carpo group are subject to gravitational perturbations that induce the Lidov–Kozai resonance in their orbits, which cause their eccentricities and inclinations to periodically oscillate in correspondence with each other.[37] The Lidov–Kozai resonance can significantly alter the orbits of these moons: for example, the eccentricity and inclination of the group's namesake Carpo can fluctuate between 0.19–0.69 and 44–59°, respectively.[37]
- Valetudo is the outermost prograde moon and is not part of a known family. Its prograde orbit crosses paths with several moons that have retrograde orbits and may in the future collide with them.[39]
- Retrograde satellites:
- The Carme group is tightly confined within semi-major axes between 22–24 million km (14–15 million mi), inclinations between 164 and 166°, and eccentricities between 0.25 and 0.28.[63] It is very homogeneous in color (light red) and is believed to have originated as collisional fragments from a D-type asteroid progenitor, possibly a Jupiter trojan.[29]
- The Ananke group has a relatively wider spread than the previous groups, with semi-major axes between 19–22 million km (12–14 million mi), inclinations between 144 and 156°, and eccentricities between 0.09 and 0.25.[63] Most of the members appear gray, and are believed to have formed from the breakup of a captured asteroid.[29]
- The Pasiphae group is quite dispersed, with semi-major axes spread over 22–25 million km (14–16 million mi), inclinations between 141° and 157°, and higher eccentricities between 0.23 and 0.44.[63] The colors also vary significantly, from red to grey, which might be the result of multiple collisions. Sinope, sometimes included in the Pasiphae group,[29] is red and, given the difference in inclination, it could have been captured independently;[62] Pasiphae and Sinope are also trapped in secular resonances with Jupiter.[64]
Based on their survey discoveries in 2000–2003, Sheppard and Jewitt predicted that Jupiter should have approximately 100 irregular satellites larger than 1 km (0.6 mi) in diameter, or brighter than magnitude 24.[29]: 262 Survey observations by Alexandersen et al. in 2010–2011 agreed with this prediction, estimating that approximately 40 Jovian irregular satellites of this size remained undiscovered in 2012.[33]: 4
In September 2020, researchers from the University of British Columbia identified 45 candidate irregular moons from an analysis of archival images taken in 2010 by the CFHT.[65] These candidates were mainly small and faint, down to magnitude of 25.7 or above 0.8 km (0.5 mi) in diameter. From the number of candidate moons detected within a sky area of one square degree, the team extrapolated that the population of retrograde Jovian moons brighter than magnitude 25.7 is around 600+600
−300 within a factor of 2.[5]: 6 Although the team considers their characterized candidates to be likely moons of Jupiter, they all remain unconfirmed due to insufficient observation data for determining reliable orbits.[65] The true population of Jovian irregular moons is likely complete down to magnitude 23.2 at diameters over 3 km (1.9 mi) as of 2020[update].[5]: 6 [33]: 4
List
[edit]The moons of Jupiter are listed below by orbital period. Moons massive enough for their surfaces to have collapsed into a spheroid are highlighted in bold. These are the four Galilean moons, which are comparable in size to the Moon. The other moons are much smaller. The Galilean moon with the smallest amount of mass is greater than 7,000 times more massive than the most massive of the other moons. The irregular captured moons are shaded light gray and orange when prograde and yellow, red, and dark gray when retrograde.
The orbits and mean distances of the irregular moons are highly variable over short timescales due to frequent planetary and solar perturbations,[37] so proper orbital elements which are averaged over a period of time are preferably used. The proper orbital elements of the irregular moons listed here are averaged over a 400-year numerical integration by the Jet Propulsion Laboratory: for the above reasons, they may strongly differ from osculating orbital elements provided by other sources.[63] Otherwise, recently discovered irregular moons without published proper elements are temporarily listed here with inaccurate osculating orbital elements that are italicized to distinguish them from other irregular moons with proper orbital elements. Some of the irregular moons' proper orbital periods in this list may not scale accordingly with their proper semi-major axes due to the aforementioned perturbations. The irregular moons' proper orbital elements are all based on the reference epoch of 1 January 2000.[63]
Some irregular moons have only been observed briefly for a year or two, but their orbits are known accurately enough that they will not be lost to positional uncertainties.[37][4]
Inner moons (4) | ♠ Galilean moons (4) | † Themisto (1) |
♣ Himalia group (9) | § Carpo group (2) | ± Valetudo (1) |
♦ Ananke group (26) | ♥ Carme group (30) | ‡ Pasiphae group (18) |
Label [note 4] |
Name | Pronunciation | Image | Abs. magn. [66] |
Diameter (km) [4][note 5] |
Mass (×1015 kg) [67][note 6] |
Semi-major axis (km) [63] |
Orbital period (d) [63][note 7] |
Inclination (°) [63] |
Eccentricity [4] |
Discovery year [1] |
Year announced | Discoverer [50][1] |
Group [note 8] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XVI | Metis | /ˈmiːtəs/ | 10.5 | 43 (60 × 40 × 34) |
≈ 36 | 128000 | +0.2948 (+7h 04m 29s) |
0.060 | 0.0002 | 1979 | 1980 | Synnott (Voyager 1) |
Inner | |
XV | Adrastea | /ædrəˈstiːə/ | 12.0 | 16.4 (20 × 16 × 14) |
≈ 2.0 | 129000 | +0.2983 (+7h 09m 30s) |
0.030 | 0.0015 | 1979 | 1979 | Jewitt (Voyager 2) |
Inner | |
V | Amalthea | /æməlˈθiːə/[68] | 7.1 | 167 (250 × 146 × 128) |
2080 | 181400 | +0.4999 (+11h 59m 53s) |
0.374 | 0.0032 | 1892 | 1892 | Barnard | Inner | |
XIV | Thebe | /ˈθiːbiː/ | 9.0 | 98.6 (116 × 98 × 84) |
≈ 430 | 221900 | +0.6761 (+16h 13m 35s) |
1.076 | 0.0175 | 1979 | 1980 | Synnott (Voyager 1) |
Inner | |
I | Io♠ | /ˈaɪoʊ/ | -1.7 | 3643.2 (3660 × 3637 × 3631) |
89319000 | 421800 | +1.7627 (+1d 18h 18m 20s) |
0.050[69] | 0.0041 | 1610 | 1610 | Galileo | Galilean | |
II | Europa♠ | /jʊəˈroʊpə/[70] | -1.4 | 3121.6 | 47998000 | 671100 | +3.5255 (+3d 12h 36m 40s) |
0.470[69] | 0.0090 | 1610 | 1610 | Galileo | Galilean | |
III | Ganymede♠ | /ˈɡænɪmiːd/[71][72] | -2.1 | 5268.2 | 148190000 | 1070400 | +7.1556 | 0.200[69] | 0.0013 | 1610 | 1610 | Galileo | Galilean | |
IV | Callisto♠ | /kəˈlɪstoʊ/ | -1.2 | 4820.6 | 107590000 | 1882700 | +16.690 | 0.192[69] | 0.0074 | 1610 | 1610 | Galileo | Galilean | |
XVIII | Themisto† | /θəˈmɪstoʊ/ | 13.3 | ≈ 9 | ≈ 0.38 | 7398500 | +130.03 | 43.8 | 0.340 | 1975/2000 | 1975 | Kowal & Roemer/ Sheppard et al. |
Themisto | |
XIII | Leda♣ | /ˈliːdə/ | 12.7 | 21.5 | ≈ 5.2 | 11146400 | +240.93 | 28.6 | 0.162 | 1974 | 1974 | Kowal | Himalia | |
LXXI | Ersa♣ | /ˈɜːrsə/ | 16.0 | ≈ 3 | ≈ 0.014 | 11401000 | +249.23 | 29.1 | 0.116 | 2018 | 2018 | Sheppard | Himalia | |
S/2018 J 2♣ | 16.5 | ≈ 3 | ≈ 0.014 | 11419700 | +249.92 | 28.3 | 0.152 | 2018 | 2022 | Sheppard | Himalia | |||
VI | Himalia♣ | /hɪˈmeɪliə/ | 8.0 | 139.6 (150 × 120) |
4200 | 11440600 | +250.56 | 28.1 | 0.160 | 1904 | 1905 | Perrine | Himalia | |
LXV | Pandia♣ | /pænˈdaɪə/ | 16.2 | ≈ 3 | ≈ 0.014 | 11481000 | +251.91 | 29.0 | 0.179 | 2017 | 2018 | Sheppard | Himalia | |
X | Lysithea♣ | /laɪˈsɪθiə/ | 11.2 | 42.2 | ≈ 39 | 11700800 | +259.20 | 27.2 | 0.117 | 1938 | 1938 | Nicholson | Himalia | |
VII | Elara♣ | /ˈɛlərə/ | 9.7 | 79.9 | ≈ 270 | 11712300 | +259.64 | 27.9 | 0.211 | 1905 | 1905 | Perrine | Himalia | |
S/2011 J 3♣ | 16.3 | ≈ 3 | ≈ 0.014 | 11716800 | +259.84 | 27.6 | 0.192 | 2011 | 2022 | Sheppard | Himalia | |||
LIII | Dia♣ | /ˈdaɪə/ | 16.1 | ≈ 4 | ≈ 0.034 | 12260300 | +278.21 | 29.0 | 0.232 | 2000 | 2001 | Sheppard et al. | Himalia | |
S/2018 J 4§ | 16.7 | ≈ 2 | ≈ 0.0042 | 16328500 | +427.63 | 50.2 | 0.177 | 2018 | 2023 | Sheppard | Carpo | |||
XLVI | Carpo§ | /ˈkɑːrpoʊ/ | 16.2 | ≈ 3 | ≈ 0.014 | 17042300 | +456.29 | 53.2 | 0.416 | 2003 | 2003 | Sheppard | Carpo | |
LXII | Valetudo± | /væləˈtjuːdoʊ/ | 17.0 | ≈ 1 | ≈ 0.00052 | 18694200 | +527.61 | 34.5 | 0.217 | 2016 | 2018 | Sheppard | Valetudo | |
XXXIV | Euporie♦ | /ˈjuːpəriː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 19265800 | −550.69 | 145.7 | 0.148 | 2001 | 2002 | Sheppard et al. | Ananke | |
LV | S/2003 J 18♦ | 16.4 | ≈ 2 | ≈ 0.0042 | 20336300 | −598.12 | 145.3 | 0.090 | 2003 | 2003 | Gladman | Ananke | ||
LX | Eupheme♦ | /juːˈfiːmiː/ | 16.6 | ≈ 2 | ≈ 0.0042 | 20768600 | −617.73 | 148.0 | 0.241 | 2003 | 2003 | Sheppard | Ananke | |
S/2021 J 3♦ | 17.2 | ≈ 2 | ≈ 0.0042 | 20776700 | −618.33 | 147.9 | 0.239 | 2021 | 2023 | Sheppard | Ananke | |||
LII | S/2010 J 2♦ | 17.4 | ≈ 1 | ≈ 0.00052 | 20793000 | −618.84 | 148.1 | 0.248 | 2010 | 2011 | Veillet | Ananke | ||
LIV | S/2016 J 1♦ | 17.0 | ≈ 1 | ≈ 0.00052 | 20802600 | −618.49 | 144.7 | 0.232 | 2016 | 2017 | Sheppard | Ananke | ||
XL | Mneme♦ | /ˈniːmiː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 20821000 | −620.07 | 148.0 | 0.247 | 2003 | 2003 | Sheppard & Gladman | Ananke | |
XXXIII | Euanthe♦ | /juːˈænθiː/ | 16.4 | ≈ 3 | ≈ 0.014 | 20827000 | −620.44 | 148.0 | 0.239 | 2001 | 2002 | Sheppard et al. | Ananke | |
S/2003 J 16♦ | 16.3 | ≈ 2 | ≈ 0.0042 | 20882600 | −622.88 | 148.0 | 0.243 | 2003 | 2003 | Gladman | Ananke | |||
XXII | Harpalyke♦ | /hɑːrˈpæləkiː/ | 15.9 | ≈ 4 | ≈ 0.034 | 20892100 | −623.32 | 147.7 | 0.232 | 2000 | 2001 | Sheppard et al. | Ananke | |
XXXV | Orthosie♦ | /ɔːrˈθoʊziː/ | 16.6 | ≈ 2 | ≈ 0.0042 | 20901000 | −622.59 | 144.3 | 0.299 | 2001 | 2002 | Sheppard et al. | Ananke | |
XLV | Helike♦ | /ˈhɛləkiː/ | 16.0 | ≈ 4 | ≈ 0.034 | 20915700 | −626.33 | 154.4 | 0.153 | 2003 | 2003 | Sheppard | Ananke | |
S/2021 J 2♦ | 17.3 | ≈ 1 | ≈ 0.00052 | 20926600 | −625.14 | 148.1 | 0.242 | 2021 | 2023 | Sheppard | Ananke | |||
XXVII | Praxidike♦ | /prækˈsɪdəkiː/ | 14.9 | 7 | ≈ 0.18 | 20935400 | −625.39 | 148.3 | 0.246 | 2000 | 2001 | Sheppard et al. | Ananke | |
LXIV | S/2017 J 3♦ | 16.5 | ≈ 2 | ≈ 0.0042 | 20941000 | −625.60 | 147.9 | 0.231 | 2017 | 2018 | Sheppard | Ananke | ||
S/2021 J 1♦ | 17.3 | ≈ 1 | ≈ 0.00052 | 20954700 | −627.14 | 150.5 | 0.228 | 2021 | 2023 | Sheppard | Ananke | |||
S/2003 J 12♦ | 17.0 | ≈ 1 | ≈ 0.00052 | 20963100 | −627.24 | 150.0 | 0.235 | 2003 | 2003 | Sheppard | Ananke | |||
LXVIII | S/2017 J 7♦ | 16.6 | ≈ 2 | ≈ 0.0042 | 20964800 | −626.56 | 147.3 | 0.233 | 2017 | 2018 | Sheppard | Ananke | ||
XLII | Thelxinoe♦ | /θɛlkˈsɪnoʊiː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 20976000 | −628.03 | 150.6 | 0.228 | 2003 | 2004 | Sheppard & Gladman et al. | Ananke | |
XXIX | Thyone♦ | /θaɪˈoʊniː/ | 15.8 | ≈ 4 | ≈ 0.034 | 20978000 | −627.18 | 147.5 | 0.233 | 2001 | 2002 | Sheppard et al. | Ananke | |
S/2003 J 2♦ | 16.7 | ≈ 2 | ≈ 0.0042 | 20997700 | −628.79 | 150.2 | 0.225 | 2003 | 2003 | Sheppard | Ananke | |||
XII | Ananke♦ | /əˈnæŋkiː/ | 11.7 | 29.1 | ≈ 13 | 21034500 | −629.79 | 147.6 | 0.237 | 1951 | 1951 | Nicholson | Ananke | |
S/2022 J 3♦ | 17.4 | ≈ 1 | ≈ 0.00052 | 21047700 | −630.67 | 148.2 | 0.249 | 2022 | 2023 | Sheppard | Ananke | |||
XXIV | Iocaste♦ | /aɪəˈkæstiː/ | 15.5 | ≈ 5 | ≈ 0.065 | 21066700 | −631.59 | 148.8 | 0.227 | 2000 | 2001 | Sheppard et al. | Ananke | |
XXX | Hermippe♦ | /hərˈmɪpiː/ | 15.5 | ≈ 4 | ≈ 0.034 | 21108500 | −633.90 | 150.2 | 0.219 | 2001 | 2002 | Sheppard et al. | Ananke | |
LXX | S/2017 J 9♦ | 16.2 | ≈ 3 | ≈ 0.014 | 21768700 | −666.11 | 155.5 | 0.200 | 2017 | 2018 | Sheppard | Ananke | ||
LVIII | Philophrosyne‡ | /fɪləˈfrɒzəniː/ | 16.7 | ≈ 2 | ≈ 0.0042 | 22604600 | −702.54 | 146.3 | 0.229 | 2003 | 2003 | Sheppard | Pasiphae | |
S/2016 J 3♥ | 16.7 | ≈ 2 | ≈ 0.0042 | 22719300 | −713.64 | 164.6 | 0.251 | 2016 | 2023 | Sheppard | Carme | |||
S/2022 J 1♥ | 17.0 | ≈ 1 | ≈ 0.00052 | 22725200 | −738.33 | 164.5 | 0.257 | 2022 | 2023 | Sheppard | Carme | |||
XXXVIII | Pasithee♥ | /ˈpæsəθiː/ | 16.8 | ≈ 2 | ≈ 0.0042 | 22846700 | −719.47 | 164.6 | 0.270 | 2001 | 2002 | Sheppard et al. | Carme | |
LXIX | S/2017 J 8♥ | 17.1 | ≈ 1 | ≈ 0.00052 | 22849500 | −719.76 | 164.8 | 0.255 | 2017 | 2018 | Sheppard | Carme | ||
S/2021 J 6♥ | 17.3 | ≈ 1 | ≈ 0.00052 | 22870300 | −720.97 | 164.9 | 0.271 | 2021 | 2023 | Sheppard et al. | Carme | |||
S/2003 J 24♥ | 16.6 | ≈ 2 | ≈ 0.0042 | 22887400 | −721.60 | 164.5 | 0.259 | 2003 | 2021 | Sheppard et al. | Carme | |||
XXXII | Eurydome‡ | /jʊəˈrɪdəmiː/ | 16.2 | ≈ 3 | ≈ 0.014 | 22899000 | −717.31 | 149.1 | 0.294 | 2001 | 2002 | Sheppard et al. | Pasiphae | |
LVI | S/2011 J 2‡ | 16.8 | ≈ 1 | ≈ 0.00052 | 22909200 | −718.32 | 151.9 | 0.355 | 2011 | 2012 | Sheppard | Pasiphae | ||
S/2003 J 4‡ | 16.7 | ≈ 2 | ≈ 0.0042 | 22926500 | −718.10 | 148.2 | 0.328 | 2003 | 2003 | Sheppard | Pasiphae | |||
XXI | Chaldene♥ | /kælˈdiːniː/ | 16.0 | ≈ 4 | ≈ 0.034 | 22930500 | −723.71 | 164.7 | 0.265 | 2000 | 2001 | Sheppard et al. | Carme | |
LXIII | S/2017 J 2♥ | 16.4 | ≈ 2 | ≈ 0.0042 | 22953200 | −724.71 | 164.5 | 0.272 | 2017 | 2018 | Sheppard | Carme | ||
XXVI | Isonoe♥ | /aɪˈsɒnoʊiː/ | 16.0 | ≈ 4 | ≈ 0.034 | 22981300 | −726.27 | 164.8 | 0.249 | 2000 | 2001 | Sheppard et al. | Carme | |
S/2022 J 2♥ | 17.6 | ≈ 1 | ≈ 0.00052 | 23013800 | −781.56 | 164.7 | 0.265 | 2022 | 2023 | Sheppard | Carme | |||
S/2021 J 4♥ | 17.4 | ≈ 1 | ≈ 0.00052 | 23019700 | −728.28 | 164.6 | 0.265 | 2021 | 2023 | Sheppard | Carme | |||
XLIV | Kallichore♥ | /kəˈlɪkəriː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 23021800 | −728.26 | 164.8 | 0.252 | 2003 | 2003 | Sheppard | Carme | |
XXV | Erinome♥ | /ɛˈrɪnəmiː/ | 16.0 | ≈ 3 | ≈ 0.014 | 23032900 | −728.48 | 164.4 | 0.276 | 2000 | 2001 | Sheppard et al. | Carme | |
XXXVII | Kale♥ | /ˈkeɪliː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 23052600 | −729.64 | 164.6 | 0.262 | 2001 | 2002 | Sheppard et al. | Carme | |
LVII | Eirene♥ | /aɪˈriːniː/ | 15.8 | ≈ 4 | ≈ 0.034 | 23055800 | −729.84 | 164.6 | 0.258 | 2003 | 2003 | Sheppard | Carme | |
XXXI | Aitne♥ | /ˈeɪtniː/ | 16.0 | ≈ 3 | ≈ 0.014 | 23064400 | −730.10 | 164.6 | 0.277 | 2001 | 2002 | Sheppard et al. | Carme | |
XLVII | Eukelade♥ | /juːˈkɛlədiː/ | 16.0 | ≈ 4 | ≈ 0.034 | 23067400 | −730.30 | 164.6 | 0.277 | 2003 | 2003 | Sheppard | Carme | |
XLIII | Arche♥ | /ˈɑːrkiː/ | 16.2 | ≈ 3 | ≈ 0.014 | 23097800 | −731.88 | 164.6 | 0.261 | 2002 | 2002 | Sheppard | Carme | |
XX | Taygete♥ | /teɪˈɪdʒətiː/ | 15.6 | ≈ 5 | ≈ 0.065 | 23108000 | −732.45 | 164.7 | 0.253 | 2000 | 2001 | Sheppard et al. | Carme | |
S/2016 J 4‡ | 17.3 | ≈ 1 | ≈ 0.00052 | 23113800 | −727.01 | 147.1 | 0.294 | 2016 | 2023 | Sheppard | Pasiphae | |||
LXXII | S/2011 J 1♥ | 16.7 | ≈ 2 | ≈ 0.0042 | 23124500 | −733.21 | 164.6 | 0.271 | 2011 | 2012 | Sheppard | Carme | ||
XI | Carme♥ | /ˈkɑːrmiː/ | 10.6 | 46.7 | ≈ 53 | 23144400 | −734.19 | 164.6 | 0.256 | 1938 | 1938 | Nicholson | Carme | |
L | Herse♥ | /ˈhɜːrsiː/ | 16.5 | ≈ 2 | ≈ 0.0042 | 23150500 | −734.52 | 164.4 | 0.262 | 2003 | 2003 | Gladman et al. | Carme | |
LXI | S/2003 J 19♥ | 16.6 | ≈ 2 | ≈ 0.0042 | 23156400 | −734.78 | 164.7 | 0.265 | 2003 | 2003 | Gladman | Carme | ||
LI | S/2010 J 1♥ | 16.5 | ≈ 2 | ≈ 0.0042 | 23189800 | −736.51 | 164.5 | 0.252 | 2010 | 2011 | Jacobson et al. | Carme | ||
S/2003 J 9♥ | 16.9 | ≈ 1 | ≈ 0.00052 | 23199400 | −736.86 | 164.8 | 0.263 | 2003 | 2003 | Sheppard | Carme | |||
LXVI | S/2017 J 5♥ | 16.5 | ≈ 2 | ≈ 0.0042 | 23206200 | −737.28 | 164.8 | 0.257 | 2017 | 2018 | Sheppard | Carme | ||
LXVII | S/2017 J 6‡ | 16.6 | ≈ 2 | ≈ 0.0042 | 23245300 | −733.99 | 149.7 | 0.336 | 2017 | 2018 | Sheppard | Pasiphae | ||
XXIII | Kalyke♥ | /ˈkæləkiː/ | 15.4 | 6.9 | ≈ 0.17 | 23302600 | −742.02 | 164.8 | 0.260 | 2000 | 2001 | Sheppard et al. | Carme | |
XXXIX | Hegemone‡ | /həˈdʒɛməniː/ | 15.9 | ≈ 3 | ≈ 0.014 | 23348700 | −739.81 | 152.6 | 0.358 | 2003 | 2003 | Sheppard | Pasiphae | |
S/2018 J 3♥ | 17.3 | ≈ 1 | ≈ 0.00052 | 23400300 | −747.02 | 164.9 | 0.268 | 2018 | 2023 | Sheppard | Carme | |||
S/2021 J 5♥ | 16.8 | ≈ 2 | ≈ 0.0042 | 23414600 | −747.74 | 164.9 | 0.272 | 2021 | 2023 | Sheppard et al. | Carme | |||
VIII | Pasiphae‡ | /pəˈsɪfeɪiː/ | 10.1 | 57.8 | ≈ 100 | 23468200 | −743.61 | 148.4 | 0.412 | 1908 | 1908 | Melotte | Pasiphae | |
XXXVI | Sponde‡ | /ˈspɒndiː/ | 16.7 | ≈ 2 | ≈ 0.0042 | 23543300 | −748.29 | 149.3 | 0.322 | 2001 | 2002 | Sheppard et al. | Pasiphae | |
S/2003 J 10♥ | 16.9 | ≈ 2 | ≈ 0.0042 | 23576300 | −755.43 | 164.4 | 0.264 | 2003 | 2003 | Sheppard | Carme | |||
XIX | Megaclite‡ | /ˌmɛɡəˈklaɪtiː/ | 15.0 | ≈ 5 | ≈ 0.065 | 23644600 | −752.86 | 149.8 | 0.421 | 2000 | 2001 | Sheppard et al. | Pasiphae | |
XLVIII | Cyllene‡ | /səˈliːniː/ | 16.3 | ≈ 2 | ≈ 0.0042 | 23654700 | −751.97 | 146.8 | 0.419 | 2003 | 2003 | Sheppard | Pasiphae | |
IX | Sinope‡ | /səˈnoʊpiː/ | 11.1 | 35 | ≈ 22 | 23683900 | −758.85 | 157.3 | 0.264 | 1914 | 1914 | Nicholson | Pasiphae | |
LIX | S/2017 J 1‡ | 16.8 | ≈ 2 | ≈ 0.0042 | 23744800 | −756.41 | 145.8 | 0.328 | 2017 | 2017 | Sheppard | Pasiphae | ||
XLI | Aoede‡ | /eɪˈiːdiː/ | 15.6 | ≈ 4 | ≈ 0.034 | 23778200 | −761.42 | 155.7 | 0.436 | 2003 | 2003 | Sheppard | Pasiphae | |
XXVIII | Autonoe‡ | /ɔːˈtɒnoʊiː/ | 15.5 | ≈ 4 | ≈ 0.034 | 23792500 | −761.00 | 150.8 | 0.330 | 2001 | 2002 | Sheppard et al. | Pasiphae | |
XVII | Callirrhoe‡ | /kəˈlɪroʊiː/ | 14.0 | 9.6 | ≈ 0.46 | 23795500 | −758.87 | 145.1 | 0.297 | 1999 | 2000 | Scotti et al. | Pasiphae | |
S/2003 J 23‡ | 16.6 | ≈ 2 | ≈ 0.0042 | 23829300 | −760.00 | 144.7 | 0.313 | 2003 | 2004 | Sheppard | Pasiphae | |||
XLIX | Kore‡ | /ˈkɔːriː/ | 16.6 | ≈ 2 | ≈ 0.0042 | 24205200 | −776.76 | 141.5 | 0.328 | 2003 | 2003 | Sheppard | Pasiphae |
Exploration
[edit]Moon | rem/day |
---|---|
Io | 3600[73] |
Europa | 540[73] |
Ganymede | 8[73] |
Callisto | 0.01[73] |
Earth (Max) | 0.07 |
Earth (Avg) | 0.0007 |
Nine spacecraft have visited Jupiter. The first were Pioneer 10 in 1973, and Pioneer 11 a year later, taking low-resolution images of the four Galilean moons and returning data on their atmospheres and radiation belts.[74] The Voyager 1 and Voyager 2 probes visited Jupiter in 1979, discovering the volcanic activity on Io and the presence of water ice on the surface of Europa. Ulysses further studied Jupiter's magnetosphere in 1992 and then again in 2000.
The Galileo spacecraft was the first to enter orbit around Jupiter, arriving in 1995 and studying it until 2003. During this period, Galileo gathered a large amount of information about the Jovian system, making close approaches to all of the Galilean moons and finding evidence for thin atmospheres on three of them, as well as the possibility of liquid water beneath the surfaces of Europa, Ganymede, and Callisto. It also discovered a magnetic field around Ganymede.
Then the Cassini probe to Saturn flew by Jupiter in 2000 and collected data on interactions of the Galilean moons with Jupiter's extended atmosphere. The New Horizons spacecraft flew by Jupiter in 2007 and made improved measurements of its satellites' orbital parameters.
In 2016, the Juno spacecraft imaged the Galilean moons from above their orbital plane as it approached Jupiter orbit insertion, creating a time-lapse movie of their motion.[75] With a mission extension, Juno has since begun close flybys of the Galileans, flying by Ganymede in 2021 followed by Europa and Io in 2022. It flew by Io again in late 2023 and once more in early 2024.
See also
[edit]Notes
[edit]- ^ The most-recently announced moons of Jupiter are S/2022 J 1, S/2022 J 2, and S/2022 J 3, published in MPECs 2023-D44 to 2023-D46.[2] These add three more to the previous count of 92 from January 2023, bringing the total up to 95.[3]
- ^ For comparison, the area of a sphere with diameter 250 km is about the area of Senegal and comparable to the area of Belarus, Syria and Uruguay. The area of a sphere with a diameter of 5 km is about the area of Guernsey and somewhat more than the area of San Marino. (But note that these smaller moons are not spherical.)
- ^ Jupiter Mass of 1.8986 × 1027 kg / Mass of Galilean moons 3.93 × 1023 kg = 4,828
- ^ Label refers to the Roman numeral attributed to each moon in order of their naming.
- ^ Diameters with multiple entries such as "60 × 40 × 34" reflect that the body is not a perfect spheroid and that each of its dimensions has been measured well enough.
- ^ The only satellites with measured masses are Amalthea, Himalia, and the four Galilean moons. The masses of the inner satellites are estimated by assuming a density similar to Amalthea's (0.86 g/cm3), while the rest of the irregular satellites are estimated by assuming a spherical volume and a density of 1 g/cm3.
- ^ Periods with negative values are retrograde.
- ^ "?" refers to group assignments that are not considered sure yet.
References
[edit]- ^ a b c d e "Planetary Satellite Discovery Circumstances". JPL Solar System Dynamics. NASA. 15 November 2021. Archived from the original on 27 September 2021. Retrieved 7 January 2022.
- ^ a b c "MPEC 2023-D46 : S/2022 J 3". Minor Planet Electronic Circulars. Minor Planet Center. 22 February 2023. Archived from the original on 5 March 2023. Retrieved 22 February 2023.
- ^ a b c Hecht, Jeff (31 January 2023). "Astronomers Find a Dozen More Moons for Jupiter". Sky & Telescope. Archived from the original on 31 January 2023. Retrieved 1 February 2023.
- ^ a b c d e f g h i j Sheppard, Scott S. "Moons of Jupiter". Earth & Planets Laboratory. Carnegie Institution for Science. Archived from the original on 24 April 2019. Retrieved 7 January 2023.
- ^ a b c Ashton, Edward; Beaudoin, Matthew; Gladman, Brett (September 2020). "The Population of Kilometer-scale Retrograde Jovian Irregular Moons". The Planetary Science Journal. 1 (2): 52. arXiv:2009.03382. Bibcode:2020PSJ.....1...52A. doi:10.3847/PSJ/abad95. S2CID 221534456.
- ^ "Solar System Small Worlds Fact Sheet". nssdc.gsfc.nasa.gov. Retrieved 2 May 2024.
- ^ "Ganymede: Facts - NASA Science". science.nasa.gov. Retrieved 2 May 2024.
- ^ a b c d e Canup, Robert M.; Ward, William R. (2009). "Origin of Europa and the Galilean Satellites". Europa. University of Arizona Press (in press). arXiv:0812.4995. Bibcode:2009euro.book...59C.
- ^ Alibert, Y.; Mousis, O.; Benz, W. (2005). "Modeling the Jovian subnebula I. Thermodynamic conditions and migration of proto-satellites". Astronomy & Astrophysics. 439 (3): 1205–13. arXiv:astro-ph/0505367. Bibcode:2005A&A...439.1205A. doi:10.1051/0004-6361:20052841. S2CID 2260100.
- ^ a b Chown, Marcus (7 March 2009). "Cannibalistic Jupiter ate its early moons". New Scientist. Archived from the original on 23 March 2009. Retrieved 18 March 2009.
- ^ Lari, Giacomo; Saillenfest, Melaine; Fenucci, Marco (2020). "Long-term evolution of the Galilean satellites: the capture of Callisto into resonance". Astronomy & Astrophysics. 639: A40. arXiv:2001.01106. Bibcode:2020A&A...639A..40L. doi:10.1051/0004-6361/202037445. S2CID 209862163. Archived from the original on 11 June 2022. Retrieved 1 August 2022.
- ^ a b Jewitt, David; Haghighipour, Nader (September 2007). "Irregular Satellites of the Planets: Products of Capture in the Early Solar System" (PDF). Annual Review of Astronomy & Astrophysics. 45 (1): 261–295. arXiv:astro-ph/0703059. Bibcode:2007ARA&A..45..261J. doi:10.1146/annurev.astro.44.051905.092459. S2CID 13282788. Archived (PDF) from the original on 25 February 2014. Retrieved 8 January 2023.
- ^ Xi, Zezong Z. (February 1981). "The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo". Acta Astrophysica Sinica. 1 (2): 87. Bibcode:1981AcApS...1...85X. Archived from the original on 4 November 2020. Retrieved 18 July 2018.
- ^ Galilei, Galileo (1989). Translated and prefaced by Albert Van Helden (ed.). Sidereus Nuncius. Chicago & London: University of Chicago Press. pp. 14–16. ISBN 0-226-27903-0.
- ^ Van Helden, Albert (March 1974). "The Telescope in the Seventeenth Century". Isis. 65 (1). The University of Chicago Press on behalf of The History of Science Society: 38–58. doi:10.1086/351216. ISSN 0021-1753. S2CID 224838258.
- ^ Pasachoff, Jay M. (May 2015). "Simon Marius's Mundus Iovialis: 400th Anniversary in Galileo's Shadow". Journal for the History of Astronomy. 46 (2): 218–234. Bibcode:2015JHA....46..218P. doi:10.1177/0021828615585493. S2CID 120470649.
- ^ Barnard, E. E. (October 1892). "Discovery and Observation of a Fifth Satellite to Jupiter". Astronomical Journal. 12 (275): 81–85. Bibcode:1892AJ.....12...81B. doi:10.1086/101715. Archived from the original on 4 February 2023. Retrieved 7 January 2023.
- ^ Campbell, L. (9 January 1905). "Discovery of a Sixth Satellite of Jupiter". Astronomical Journal. 24 (570): 154. Bibcode:1905AJ.....24S.154.. doi:10.1086/103654. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Perrine, C. D. (30 March 1905). "The Seventh Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 17 (101): 62–63. Bibcode:1905PASP...17...56.. doi:10.1086/121624. JSTOR 40691209. S2CID 250794880. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Melotte, P. J. (March 1908). "Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich". Monthly Notices of the Royal Astronomical Society. 68 (6): 456–457. Bibcode:1908MNRAS..68..456.. doi:10.1093/mnras/68.6.456. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Nicholson, S. B. (October 1914). "Discovery of the Ninth Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 26 (1): 197–198. Bibcode:1914PASP...26..197N. doi:10.1086/122336. PMC 1090718. PMID 16586574. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Nicholson, S. B. (October 1938). "Two New Satellites of Jupiter". Publications of the Astronomical Society of the Pacific. 50 (297): 292–293. Bibcode:1938PASP...50..292N. doi:10.1086/124963. S2CID 120216615. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Nicholson, S. B. (December 1951). "An unidentified object near Jupiter, probably a new satellite". Publications of the Astronomical Society of the Pacific. 63 (375): 297–299. Bibcode:1951PASP...63..297N. doi:10.1086/126402. S2CID 121080345. Archived from the original on 4 February 2023. Retrieved 7 January 2023.
- ^ Kowal, C. T.; Aksnes, K.; Marsden, B. G.; Roemer, E. (June 1975). "Thirteenth satellite of Jupiter". Astronomical Journal. 80: 460–464. Bibcode:1975AJ.....80..460K. doi:10.1086/111766. Archived from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ Marsden, Brian G. (3 October 1975). "Probable New Satellite of Jupiter" (discovery telegram sent to the IAU). IAU Circular. 2845. Cambridge, US: Smithsonian Astrophysical Observatory. Archived from the original on 16 September 2002. Retrieved 8 January 2011.
- ^ Synnott, S. P. (November 1980). "1979J2: The Discovery of a Previously Unknown Jovian Satellite". Science. 210 (4471): 786–788. Bibcode:1980Sci...210..786S. doi:10.1126/science.210.4471.786. PMID 17739548.
- ^ a b "Press Information Sheet: New Outer Satellite of Jupiter Discovered". Central Bureau for Astronomical Telegrams. 20 July 2000. Archived from the original on 9 January 2023. Retrieved 6 January 2023.
- ^ a b Nicholson, P. D.; Cuk, M.; Sheppard, S. S.; Nesvorny, D.; Johnson, T. V. (2008). "Irregular Satellites of the Giant Planets" (PDF). In Barucci, M. A.; Boehnhardt, H.; Cruikshank, D. P.; Morbidelli, A. (eds.). The Solar System Beyond Neptune. pp. 411–424. Bibcode:2008ssbn.book..411N. ISBN 9780816527557. S2CID 32512508. Archived (PDF) from the original on 9 March 2023. Retrieved 7 January 2023.
- ^ a b c d e f g Sheppard, Scott S.; Jewitt, David C. (May 2003). "An abundant population of small irregular satellites around Jupiter" (PDF). Nature. 423 (6937): 261–263. Bibcode:2003Natur.423..261S. doi:10.1038/nature01584. PMID 12748634. S2CID 4424447. Archived (PDF) from the original on 7 January 2023. Retrieved 7 January 2023.
- ^ a b Sheppard, Scott S.; Jewitt, David C. (4 February 2004). "New Satellites of Jupiter Discovered in 2003". Institute for Astronomy. University of Hawaii. Archived from the original on 1 April 2004. Retrieved 7 January 2023.
- ^ Gladman, Brett; Allen, Lynne; Kavelaars, JJ; Cook, Michelle (29 May 2003). "Irregular Satellites of Jupiter". University of British Columbia. Archived from the original on 4 April 2004. Retrieved 7 January 2023.
- ^ a b c Jacobson, R.; Brozović, M.; Gladman, B.; Alexandersen, M.; Nicholson, P. D.; Veillet, C. (November 2012). "Irregular Satellites of the Outer Planets: Orbital Uncertainties and Astrometric Recoveries in 2009–2011". The Astronomical Journal. 144 (5): 8. Bibcode:2012AJ....144..132J. doi:10.1088/0004-6256/144/5/132. S2CID 123117568. 132.
- ^ a b c d Alexandersen, M.; Gladman, B.; Veillet, C.; Jacobson, R.; Brozović, M.; Rousselot, P. (July 2012). "Discovery of Two Additional Jovian Irregulars". The Astronomical Journal. 144 (1): 4. Bibcode:2012AJ....144...21A. doi:10.1088/0004-6256/144/1/21. S2CID 123292373. 21.
- ^ Green, Daniel W. E. (1 June 2011). "CBET 2734: New Satellites of Jupiter: S/2010 J 1 and S/2010 J 2". Central Bureau Electronic Telegrams. 2734 (2734). Central Bureau for Astronomical Telegrams: 1. Bibcode:2011CBET.2734....1G. Archived from the original on 16 October 2020. Retrieved 7 January 2023.
- ^ Alexandersen, Mike; Gladman, Brett; Lin, Brian; Balma, Chris (4 June 2012). "UBC researchers help unveil Jupiter's smallest known moon". University of British Columbia. Archived from the original on 22 July 2012. Retrieved 7 January 2023.
- ^ Sheppard, Scott (23 February 2012). "2 New Satellites of Jupiter Discovered". Department of Terrestrial Magnetism. Carnegie Institution for Science. Archived from the original on 17 June 2013. Retrieved 7 January 2023.
- ^ a b c d e Brozović, Marina; Jacobson, Robert A. (March 2017). "The Orbits of Jupiter's Irregular Satellites". The Astronomical Journal. 153 (4): 10. Bibcode:2017AJ....153..147B. doi:10.3847/1538-3881/aa5e4d. S2CID 125571053. 147.
- ^ a b Beatty, J. Kelly (17 July 2017). "Jupiter's Moons: 10 More Found, 79 Known". Sky & Telescope. Archived from the original on 8 January 2023. Retrieved 7 January 2023.
- ^ a b c d Sheppard, Scott S.; Williams, Gareth V.; Tholen, David J.; Trujillo, Chadwick A.; Brozović, Marina; Thirouin, Audrey; et al. (August 2018). "New Jupiter Satellites and Moon-Moon Collisions". Research Notes of the American Astronomical Society. 2 (3): 155. arXiv:1809.00700. Bibcode:2018RNAAS...2..155S. doi:10.3847/2515-5172/aadd15. S2CID 55052745. 155.
- ^ Beatty, J. Kelly (6 June 2017). "Two New Satellites for Jupiter". Sky & Telescope. Archived from the original on 8 January 2023. Retrieved 7 January 2023.
- ^ Sheppard, Scott S. (October 2018). "Discovering 12 New Moons Around Jupiter" (PDF). NOAO Newsletter (118). NOIRLAb: 9–10. Archived (PDF) from the original on 11 March 2021. Retrieved 7 January 2023.
- ^ "MPEC 2021-V333 : S/2003 J 24". Minor Planet Electronic Circulars. Minor Planet Center. 15 November 2021. Archived from the original on 16 November 2021. Retrieved 8 January 2023.
- ^ Greenfieldboyce, Nell (9 February 2023). "Here's why Jupiter's tally of moons keeps going up and up". Sky & Telescope. Archived from the original on 5 March 2023. Retrieved 6 March 2023.
- ^ a b Jones, R. Lynne; Jurić, Mario; Ivezić, Željko (January 2016). "Asteroid Discovery and Characterization with the Large Synoptic Survey Telescope". Proceedings of the International Astronomical Union. 10 (S318): 282–292. arXiv:1511.03199. Bibcode:2016IAUS..318..282J. doi:10.1017/S1743921315008510. S2CID 8193676.
- ^ a b c Holler, Bryan J.; Milam, Stefanie N.; Bauer, James M.; Alcock, Charles; Bannister, Michele T.; Bjoraker, Gordon L.; et al. (July 2018). "Solar system science with the Wide-Field Infrared Survey Telescope". Journal of Astronomical Telescopes, Instruments, and Systems. 4 (3): 034003. arXiv:1709.02763. Bibcode:2018JATIS...4c4003H. doi:10.1117/1.JATIS.4.3.034003. S2CID 119084280. 034003.
- ^ a b Marazzini, C. (2005). "The names of the satellites of Jupiter: from Galileo to Simon Marius". Lettere Italiane (in Italian). 57 (3): 391–407.
- ^ Marazzini, Claudio (2005). "I nomi dei satelliti di Giove: da Galileo a Simon Marius (The names of the satellites of Jupiter: from Galileo to Simon Marius)". Lettere Italiane. 57 (3): 391–407.
- ^ Nicholson, Seth Barnes (April 1939). "The Satellites of Jupiter". Publications of the Astronomical Society of the Pacific. 51 (300): 85–94. Bibcode:1939PASP...51...85N. doi:10.1086/125010. S2CID 122937855.
- ^ Owen, Tobias (September 1976). "Jovian Satellite Nomenclature". Icarus. 29 (1): 159–163. Bibcode:1976Icar...29..159O. doi:10.1016/0019-1035(76)90113-5.
- ^ a b c d "Planet and Satellite Names and Discoverers". Gazetteer of Planetary Nomenclature. IAU Working Group for Planetary System Nomenclature. Archived from the original on 21 August 2014. Retrieved 22 January 2023.
- ^ Sagan, Carl (April 1976). "On Solar System Nomenclature". Icarus. 27 (4): 575–576. Bibcode:1976Icar...27..575S. doi:10.1016/0019-1035(76)90175-5.
- ^ Payne-Gaposchkin, Cecilia; Haramundanis, Katherine (1970). Introduction to Astronomy. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0-13-478107-4.
- ^ a b Marsden, Brian G. (3 October 1975). "Satellites of Jupiter". IAU Circular. 2846. Archived from the original on 22 February 2014. Retrieved 8 January 2011.
- ^ "IAU Rules and Conventions". Working Group for Planetary System Nomenclature. U.S. Geological Survey. Archived from the original on 13 April 2020. Retrieved 10 September 2020.
- ^ Anderson, John D.; Johnson, Torrence V.; Schubert, Gerald; Asmar, Sami; Jacobson, Robert A.; Johnston, Douglas; Lau, Eunice L.; Lewis, George; Moore, William B.; Taylor, Anthony; Thomas, Peter C.; Weinwurm, Gudrun; et al. (27 May 2005). "Amalthea's Density Is Less Than That of Water". Science. 308 (5726): 1291–1293. Bibcode:2005Sci...308.1291A. doi:10.1126/science.1110422. ISSN 0036-8075. PMID 15919987. S2CID 924257.
- ^ a b Bagenal, Fran; Dowling, Timothy Edward; McKinnon, William B. (2004). "Jupiter's outer satellites and Trojans" (PDF). In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter: the planet, satellites and magnetosphere. Cambridge planetary science. Vol. 1. Cambridge (GB): Cambridge University Press. pp. 263–280. ISBN 978-0-521-81808-7. Archived from the original (PDF) on 26 March 2009.
- ^ Burns, Joseph A.; Showalter, Mark R.; Hamilton, Douglas P.; et al. (14 May 1999). "The Formation of Jupiter's Faint Rings". Science. 284 (5417): 1146–1150. Bibcode:1999Sci...284.1146B. doi:10.1126/science.284.5417.1146. ISSN 0036-8075. PMID 10325220. S2CID 21272762.
- ^ Canup, Robin M.; Ward, William R. (December 2002). "Formation of the Galilean Satellites: Conditions of Accretion" (PDF). The Astronomical Journal. 124 (6): 3404–3423. Bibcode:2002AJ....124.3404C. doi:10.1086/344684. S2CID 47631608. Archived (PDF) from the original on 15 June 2019. Retrieved 31 August 2008.
- ^ Clavin, Whitney (1 May 2014). "Ganymede May Harbor 'Club Sandwich' of Oceans and Ice". NASA. Jet Propulsion Laboratory. Archived from the original on 31 January 2020. Retrieved 1 May 2014.
- ^ Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotina, Christophe (12 April 2014). "Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice". Planetary and Space Science. 96: 62–70. Bibcode:2014P&SS...96...62V. doi:10.1016/j.pss.2014.03.011.
- ^ Khurana, K. K.; Jia, X.; Kivelson, M. G.; Nimmo, F.; Schubert, G.; Russell, C. T. (12 May 2011). "Evidence of a Global Magma Ocean in Io's Interior". Science. 332 (6034): 1186–1189. Bibcode:2011Sci...332.1186K. doi:10.1126/science.1201425. PMID 21566160. S2CID 19389957.
- ^ a b c d Grav, Tommy; Holman, Matthew J.; Gladman, Brett J.; Aksnes, Kaare (November 2003). "Photometric survey of the irregular satellites". Icarus. 166 (1): 33–45. arXiv:astro-ph/0301016. Bibcode:2003Icar..166...33G. doi:10.1016/j.icarus.2003.07.005. S2CID 7793999.
- ^ a b c d e f g h i "Planetary Satellite Mean Elements". JPL Solar System Dynamics. NASA. Archived from the original on 6 October 2021. Retrieved 28 March 2022. Note: Orbital elements of regular satellites are with respect to the Laplace plane, while orbital elements of irregular satellites are with respect to the ecliptic.
- ^ Nesvorný, David; Beaugé, Cristian; Dones, Luke (March 2004). "Collisional Origin of Families of Irregular Satellites" (PDF). The Astronomical Journal. 127 (3): 1768–1783. Bibcode:2004AJ....127.1768N. doi:10.1086/382099. S2CID 27293848. Archived (PDF) from the original on 9 October 2022. Retrieved 27 August 2008.
- ^ a b Schilling, Govert (8 September 2020). "Study Suggests Jupiter Could Have 600 Moons". Sky & Telescope. Archived from the original on 11 September 2020. Retrieved 9 September 2020.
- ^ "Natural Satellites Ephemeris Service". Minor Planet Center. Archived from the original on 4 October 2022. Retrieved 20 January 2023. Selection of Objects → "All Jovian outer irregular satellites" → Check "I require Orbital Elements" → Get Information
- ^ "Planetary Satellite Physical Parameters". Jet Propulsion Laboratory. Archived from the original on 28 March 2022. Retrieved 28 March 2022.
- ^ "Amalthea". Merriam-Webster.com Dictionary. Merriam-Webster.
- ^ a b c d Siedelmann, P.K.; Abalakin, V.K.; Bursa, M; Davies, M.E.; et al. (2000). The Planets and Satellites 2000 (Report). IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Archived from the original on 12 May 2020. Retrieved 31 August 2008.
- ^ "Europa - definition of Europa in English from the Oxford dictionary". OxfordDictionaries.com. Archived from the original on 21 July 2012. Retrieved 20 January 2016.
- ^ "Ganymede - definition of Ganymede in English from the Oxford dictionary". OxfordDictionaries.com. Archived from the original on 14 March 2013. Retrieved 20 January 2016.
- ^ "Ganymede". Merriam-Webster.com Dictionary. Merriam-Webster.
- ^ a b c d Ringwald, Frederick A. (29 February 2000). "SPS 1020 (Introduction to Space Sciences)". California State University, Fresno. Archived from the original on 25 July 2008. Retrieved 5 January 2014.
- ^ Fillius, Walker; McIlwain, Carl; Mogro-Campero, Antonio; Steinberg, Gerald (1976). "Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter". Geophysical Research Letters. 3 (1): 33–36. Bibcode:1976GeoRL...3...33F. doi:10.1029/GL003i001p00033. ISSN 1944-8007.
- ^ Juno Approach Movie of Jupiter and the Galilean Moons Archived 7 August 2016 at the Wayback Machine, NASA, July 2016