Jump to content

Thiogermanate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
List: +Li remove dup
BunnysBot (talk | contribs)
 
(3 intermediate revisions by 2 users not shown)
Line 109: Line 109:
|
|
|
|
|<ref name=":8" /><ref>{{Cite journal|last1=Eußner|first1=Jens P.|last2=Dehnen|first2=Stefanie|date=September 2012|title=Formation of Thiosemicarbazone-Functionalized Complexes with (GeS 2 ) 2 and (SnS 2 ) 2 Units|url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.201200292|journal=Zeitschrift für anorganische und allgemeine Chemie|language=de|volume=638|issue=11|pages=1827–1832|doi=10.1002/zaac.201200292}}</ref>
|<ref name=":8" /><ref>{{Cite journal|last1=Eußner|first1=Jens P.|last2=Dehnen|first2=Stefanie|date=September 2012|title=Formation of Thiosemicarbazone-Functionalized Complexes with (GeS 2 ) 2 and (SnS 2 ) 2 Units|url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.201200292|journal=Zeitschrift für anorganische und allgemeine Chemie|language=de|volume=638|issue=11|pages=1827–1832|doi=10.1002/zaac.201200292|doi-access=free}}</ref>
|-
|-
|(trenH<small><sub>2</sub></small>)<small><sub>2</sub></small>[Ge<small><sub>2</sub></small>S<small><sub>6</sub></small>]
|(trenH<small><sub>2</sub></small>)<small><sub>2</sub></small>[Ge<small><sub>2</sub></small>S<small><sub>6</sub></small>]
Line 179: Line 179:
|
|
|lithium ion conductor
|lithium ion conductor
|<ref>{{Cite journal|last1=Xu|first1=Miao|last2=Song|first2=Subin|last3=Daikuhara|first3=Shugo|last4=Matsui|first4=Naoki|last5=Hori|first5=Satoshi|last6=Suzuki|first6=Kota|last7=Hirayama|first7=Masaaki|last8=Shiotani|first8=Shinya|last9=Nakanishi|first9=Shinji|last10=Yonemura|first10=Masao|last11=Saito|first11=Takashi|date=2022-01-10|title=Li 10 GeP 2 S 12 -Type Structured Solid Solution Phases in the Li 9+δ P 3+δ′ S 12– k O k System: Controlling Crystallinity by Synthesis to Improve the Air Stability|url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01748|journal=Inorganic Chemistry|language=en|volume=61|issue=1|pages=52–61|doi=10.1021/acs.inorgchem.1c01748|pmid=34914367|s2cid=245270702|issn=0020-1669}}</ref>
|<ref>{{Cite journal|last1=Xu|first1=Miao|last2=Song|first2=Subin|last3=Daikuhara|first3=Shugo|last4=Matsui|first4=Naoki|last5=Hori|first5=Satoshi|last6=Suzuki|first6=Kota|last7=Hirayama|first7=Masaaki|last8=Shiotani|first8=Shinya|last9=Nakanishi|first9=Shinji|last10=Yonemura|first10=Masao|last11=Saito|first11=Takashi|date=2022-01-10|title=Li 10 GeP 2 S 12 -Type Structured Solid Solution Phases in the Li 9+δ P 3+δ′ S 12– k O k System: Controlling Crystallinity by Synthesis to Improve the Air Stability|url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01748|journal=Inorganic Chemistry|language=en|volume=61|issue=1|pages=52–61|doi=10.1021/acs.inorgchem.1c01748|pmid=34914367|s2cid=245270702|issn=0020-1669|doi-access=free}}</ref>
|-
|-
|K<sub>6</sub>Ge<sub>2</sub>S<sub>7</sub>
|K<sub>6</sub>Ge<sub>2</sub>S<sub>7</sub>
Line 600: Line 600:
|colourless
|colourless
|<ref name=":15" />
|<ref name=":15" />
|-
|KYGeS<sub>4</sub>
|
|
|
|
|
|
|
|<ref name=":21">{{Cite journal |last=Liu |first=Yang |last2=Li |first2=Xiangming |last3=Wu |first3=Shuchang |last4=Ma |first4=Mengjie |last5=Jiang |first5=Xiaoming |last6=Wu |first6=Yuandong |last7=Mei |first7=Dajiang |date=2024-06-03 |title=A Rare Earth Chalcogenide Nonlinear Optical Crystal KLaGeS 4 : Achieving Good Balance among Band Gap, Second Harmonic Generation Effect, and Birefringence |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00842 |journal=Inorganic Chemistry |language=en |doi=10.1021/acs.inorgchem.4c00842 |issn=0020-1669}}</ref>
|-
|-
|[{R<sup>N</sup>Ge(μ-S)<sub>3</sub>}<sub>4</sub>Pd<sub>6</sub>]·MeOH
|[{R<sup>N</sup>Ge(μ-S)<sub>3</sub>}<sub>4</sub>Pd<sub>6</sub>]·MeOH
Line 830: Line 840:
|red
|red
|<ref name=":19">{{Cite journal |last1=Zhou |first1=Jian |last2=Li |first2=Rong |last3=Ling |first3=Xing |last4=Chen |first4=Rong |last5=Hu |first5=Feilong |last6=Zeng |first6=Yanfang |date=2013 |title=The first examples of thiogermanate anion [GeS 3 (SH)] 3− as a bridging ligand to a lanthanide complex |url=http://xlink.rsc.org/?DOI=C2DT32389C |journal=Dalton Trans. |language=en |volume=42 |issue=6 |pages=1961–1964 |doi=10.1039/C2DT32389C |pmid=23165504 |issn=1477-9226}}</ref>
|<ref name=":19">{{Cite journal |last1=Zhou |first1=Jian |last2=Li |first2=Rong |last3=Ling |first3=Xing |last4=Chen |first4=Rong |last5=Hu |first5=Feilong |last6=Zeng |first6=Yanfang |date=2013 |title=The first examples of thiogermanate anion [GeS 3 (SH)] 3− as a bridging ligand to a lanthanide complex |url=http://xlink.rsc.org/?DOI=C2DT32389C |journal=Dalton Trans. |language=en |volume=42 |issue=6 |pages=1961–1964 |doi=10.1039/C2DT32389C |pmid=23165504 |issn=1477-9226}}</ref>
|-
|KLaGeS<sub>4</sub>
|
|monoclinic
|''P''2<sub>1</sub>
|''a''=6.6645 ''b''=6.7079 ''c''=8.7248 ''β''=107.519° Z=2
|371.95
|
|SHG 1.2×AgGaS<sub>2</sub>; band gap 3.34 eV; birefringence 0.098 @ 1064&nbsp;nm
|<ref name=":21" />
|-
|-
|Nd(dien)<small><sub>2</sub></small>(μ–η<small><sup>1</sup></small>,η<small><sup>2</sup></small>-GeS<small><sub>3</sub></small>(SH))
|Nd(dien)<small><sub>2</sub></small>(μ–η<small><sup>1</sup></small>,η<small><sup>2</sup></small>-GeS<small><sub>3</sub></small>(SH))

Latest revision as of 15:17, 11 December 2024

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

Coordination of sulfur around germanium is tetrahedral meaning there are four sulfur atoms symmetrically arranged. This basic structure can form ortho salts with GeS44−, oligomers, or polymeric structures.[1] Similar structures are also formed with heavy group 13 and group 14 elements due to their relatively stronger bonds with sulfur. Light elements from these groups have lower affinity for sulfur, so there are fewer compounds like this for boron, aluminium, carbon, and silicon.[1] Other heavy group 12 and 15 elements also form chalcogenidometallates which may have other kinds of coordination. Selenium forms similar compounds to sulfur in this family.[1]

Where sulfur is deficient, an anion is not formed, and instead cation-like covalent compounds can exist with halogens, such as Ge4S6Br4,[2] or Ge4S6I4.[3]

Production

[edit]

The solvochemical method of production involves dissolving germanium oxide, sulfur and other salts in a heated solvent under pressure. The solvents can include simple alcohols, amines or N,N-dimethyl formamide. The containers can be glass tubes, quartz tubes, or teflon lined stainless steel.[1]

List

[edit]
formula name system space group cell Å volume density comments ref
H4Ge4S10 thiogermanic acid triclinic P1 a = 8.621, b = 9.899, c = 10.009, α = 85.963°, β = 64.714°, γ = 89.501°, Z = 2 [4][5]
H2Ge4S9 thiogermanic acid [4]
Li2GeS3 hexagonal P61 a = 6.79364 c = 17.9072 [6]
[CH3NH3]4Ge2S6 tetrakis(methylammonium) bis(μ-sulfido)-tetrakis(sulfido)-di-germanium triclinic P1 a 7.3336 b 7.3760 c 10.0007, α 108.598° β 111.332° γ 90.297° [7]
[CH3CH2NH3]4Ge2S6•CH3CH2NH2 tetrakis(ethylammonium) bis(μ-sulfido)-tetrakis(sulfido)-di-germanium ethylamine orthorhombic Pnma a 7.8501 b 18.3444 c 17.4386 [7]
[CH3CH2NH3]3[CH3NH3]Ge4S10 tris(diethylammonium) methylammonium hexakis(μ-sulfido)-tris(sulfido)-tetra-germanium Pa3 a 17.9402 c 17.9402 [7]
(NH4)2[NH2(CH3)2]2Ge2S6 monoclinic P21/c a = 6.965, b = 15.7195, c = 7.2045, β = 92.765° band gap 3.50 eV [8]
(NH3NH2)2[(RNGe)2(μ-S)2S2] [9]
[(R1Ge)4(μ-S)6] R1 = CMe2CH2COMe [9][10]
(trenH2)2[Ge2S6] tren = tris(2-aminoethyl)amine monoclinic C2/c a=25.264 b=7.313 c=16.584 β=122.616 Z=4 2581 1.632 colourless [11]
(enH)4Ge2S6 en = ethylenediamine triclinic P1 a 7.859 b 9.514 c 9.727, α 64.21° β 66.80° γ 84.92° [12]
Na4Ge2S6 · 14H2O triclinic P1 a = 9.978, b = 7.202, c = 9.601, α = 108.41 β = 92.39, γ = 91.69° Z = 1 [13]
Na6Ge2S7 [14]
Li4MgGe2S7 monoclinic Cc a=16.872 b=6.771 c=10.156 β=95.169° SHG 0.7 ×AGS [15]
Na(AlS2)(GeS2)4 monoclinic P21/n a = 6.803, b = 38.207, c = 6.947, β = 119.17° [16]
Li10GeP2S12 tetragonal lithium ion conductor [17]
K6Ge2S7 [14]
[VO(dien)]2GeS4 orthorhombic Pna21 a =19.831, b = 8.0814, c = 12.0889, Z = 4 1937.4 [18]
{[V(en)2]2O}Ge2S6 en = ethylenediamine monoclinic P21/n a=8.352 b=12.682 c=11.339  β=94.75 Z=2 1196.9 1.931 black [19]
[VO(dap)2]2Ge2S6·dap dap = 1,2-diaminopropane hexagonal R2c ? a=38.284 c=11.170 Z=18 14178 1.619 purple; hexagonal nanotubes [19]
Li4MnGe2S7 monoclinic Cc a=16.833 b=6.709 c=10.121 β=94.76° Z=4 1139.1 2.637 light pink [15][20]
{[Mn(2,2′-bipy)2(H2O)]2Ge4S10}·3H2O bipy = bipyridine triclinic P1 a=10.6511 b=13.0443 c=22.995, α=79.539 β=77.653° γ=79.737° Z=2 3036.6 1.570 [21]
{Mn(tepa)}2(μ-Ge2Se6) tetragonal I41/a [22]
Mn2(en)4Ge2S6 en=ethylenediamine [23]
[Mn(en)3]2Ge2S6 monoclinic C2/c a 15.115 b 10.530 c 22.897, 118.777° [12]
Mn2(dap)4Ge2S6 dap = 1,2-diaminopropane [23]
H2dienMnGeS4 dien = diethylenetriamine [23]
[(dien)2Mn]Ge2S4 dien=diethylenetriamine orthorhombic P212121 a=9.113, b=12.475, c=17.077, Z=4 1941 1D [Ge2S4]2− chains [24]
Mn3Ge2S7(NH3)4 orthorhombic Pbcn a=9.107 b=13.923 c=12.750 Z=4 1616.6 2.476 green [25]
[MnII(tren)]2(μ2-Ge2S6) tren = N,N,N-tris(2-aminoethyl)amine triclinic P1 a 7.631 b 8.039 c 11.957, α 98.952° β 101.263° γ 109.696° [26]
[MnII(tepa)]2(μ2-Ge2S6) tepa= tetraethylenepentaamine orthorhombic I 41/a a =25.770 b =25.770 c =9.812 [26]
[Fe(2,2′-bipy)3]2[Ge4S10]·10H2O monoclinic P21/c a=23.8411 b=13.6462 c=22.9029 β=93.400° Z=4 7438.1 1.643 [21]
{Fe(tepa)}2(μ-Ge2Se6) tetragonal I41/a [22]
K2FeGe3S8 triclinic P1 a = 7.016, b= 7.770, c = 14.342, α = 93.80°, β = 92.65°, γ = 114.04° [27]
K2CoGe3S8 monoclinic P21 a = 7.1089, b = 11.8823, c = 16.759, β = 96.604° [27]
[{Co(tepa)}2(μ-Ge2S6)] tepa= tetraethylenepentaamine tetragonal I41/a [22]
[dienH2][Co(dien)2][Ge2S6] dien = diethylenetriamine triclinic P1 a 11.3224 b 14.6492 c 18.3710, α 71.000° β 78.352° γ 73.441° Z=4 2741.5 1.715 yellow [28]
[dienH2][Co(dien)2][Ge2S6] triclinic P1 a 11.3224 b 14.6492 c 18.3710, α 71.000° β 78.352° γ 73.441° Z=1 679.62 1.730 yellow [28]
[dienH2][Co(dien)2][Ge2S6] orthorhombic Pbca a=15.2110 b=16.7025 c=21.8821 Z=8 5559.4 1.692 yellow [28]
[dienH2][Co(dien)2][Ge2S6] orthorhombic Pca21 a=a=14.7043 b=9.0099 c=21.4540 Z=4 2842.3 1.655 yellow [28]
[Ni(cyclam)]3[Ni(cyclam)(H2O)2][Ge4S10]2·21H2O cyclam = 1,4,8,11-tetraazacyclotetradecane monoclinic Cc a=35.915 b=10.047 c=30.607 β =115.32 Z=4 9983 1.778 [21]
[Ni(en)3]2Ge2S6 en=ethylenediamine orthorhombic Pbca a 15.56 b 11.226 c 18.07 [12]
[Ni(dien)2]3[Ge3Sb8S21]·0.5H2O dien = diethylenetriamine [29]
[Ni(trien)2]2Ge4S10 bis(bis(triethylenetetramine)-nickel) hexakis(μ2-sulfido)-tetrasulfido-tetra-germanium monoclinic C2/c a =21.618 b =10.957 c =22.719, β=111.224° [30]
[{Ni(tepa)}2(μ-Ge2S6)] tetrakis(μ2-sulfido)-disulfido-bis(tetraethylenepentamine)-di-germanium-di-nickel orthorhombic Pbca a =15.151 b =13.083 c =15.255 [30]
[NiII(dien)2]2(Ge2S6) dien = diethylenetriamine monoclinic P 21/n a 10.093 b 14.219 c 11.703, β 91.631° [26]
[NiII(dien)2](H2pipe)(Ge2S6) pipe = piperazine triclinic P1 a 6.980 b 8.530 c 11.527, α 93.03° β 106.29° γ 101.95° [26]
[NiII(tepa)]2(μ2-Ge2S6) tepa = tetraethylenepentamine orthorhombic Pbca a =15.147 b =13.0552 c =15.238 [26]
[(CH3CH2)4N]3CuGe4S10 catena-[hexakis(tetraethylammonium) hexadecakis(μ-sulfido)-tetrakis(sulfido)-octa-germanium-di-copper] monoclinic P 21/n a 15.0956 b 14.2127 c =19.5889, β 91.131° [7]
[H4teta]5[Cu40Ge15S60]·2.5(teta) [31]
Cu(AlS2)(GeS2)4 monoclinic P21/n a 6.796 b 37.628 c 6.8797, β 119.52° [16]
Cu4MnGe2S7 monoclinic Cc a=16.7443 b=6.47893 c=9.8060 β=93.188° [15]
Cu4FeGe2S7 monoclinic C2 a=11.7405 b=5.3589 c=8.3420 β=98.661° [15]
Cu4CoGe2S7 monoclinic C2 a=11.7280 b=5.3399 c=8.3313 β=98.668° [15]
Cu4NiGe2S7 monoclinic C2 a=11.703 b=5.333 c=8.311 β=98.37° [15]
Sr2CoGe2OS6 tetrahedral P421m a=9.4056 c=6.1741 Z=2 546.19 3.574 dark green; oxysulfide [32]
Y3LiGeS7 [33]
[Y2(tepa)2(μ-OH)2(μ-Ge2S6)](tepa)0.5·H2O monoclinic C2/c a=19.638 b=14.415 c=16.910 β=122.47 Z=4 4038.6 1.863 colourless [11]
KYGeS4 [34]
[{RNGe(μ-S)3}4Pd6]·MeOH RN = CMe2CH2CMeNNH2 [9]
Ag10Ge3S11 monoclinic Cc a = 2.6244 b = 0.65020 c = 2.5083 β = 109.910° [35]
[(CH3CH2)4N]3AgGe4S10 catena-[hexakis(tetraethylammonium) hexadecakis(μ-sulfido)-tetrakis(sulfido)-di-silver-octa-germanium] monoclinic P 21/n a 15.1898 b 14.3043 c 19.5059, β 91.056° [7]
Ag(AlS2)(GeS2)4 monoclinic P21/n a 6.799 b 38.4169 c 6.813 β 119.65° [16]
Li4CdGe2S7 monoclinic Cc a=17.4432 b=6.9353 c=10.3271 β=93.9042° [15]
Na4CdGe2S7 monoclinic P21/c a=7.0813 b=11.9007 c=15.5759 β=90.791° [15]
Y3Cd0.5GeS7 [33]
Ag4SnGe2S7 monoclinic Cc a=11.3398 b=6.9706 c=15.4885 β=91.213° yellow; [SnGe2S8]6– chains [15]
Na9Sb(Ge2S6)2 monoclinic C2/m a=7.5857 b=11.574 c=6.817 β=106.587 Z=1 573.7 2.905 yellow [36]
[Ge(en)3][GeSb2S6] orthorhombic Pbca [1]
[(Me)2NH2]6[Ge2Sb2S7][Ge4S10] triclinic P1 microporous, can exchange dimethyl ammonium for alkalis [28][37]
[dabcoH]2[Ge2Sb3S10] dabco = 1,4-diazabicyclo[2.2.2]octane [28]
DMAH[dabcoH]2[Ge2Sb3S10] dabco = 1,4-diazabicyclo[2.2.2]octane monoclinic C2 [1]
[DMAH]2GeSb3S6 P41212 [1]
[AEPH2][GeSb2S6]·CH3OH AEP = N-(2-aminoethyl)piperazine orthorhombic Pbca a=6.7183 b=18.3065 c=31.5007 Z=8 3874.2 2.303 yellow [28][38]
[CH3NH3]20Ge10Sb28S72·7H2O monoclinic C2/c a =29.2964 b=29.3261 c=41.601 β=100.084° [39]
[(CH3CH2CH2)2NH2]3Ge3Sb5S15·0.5(C2H5OH) triclinic P1 a=9.7628 b=15.7590 c=17.0313, α=79.868° β=75.010° γ=81.094° [39]
[Mn(en)3][GeSb2S6] dien = diethylenetriamine orthorhombic Pbca a=13.374 b=17.607 c=18.562 Z=8 4370.8 2.26 yellow [28][40]
[Co(en)3][GeSb2S6] orthorhombic Pbca
[Co(dien)2]2[GeSb4S10] dien = diethylenetriamine orthorhombic Pbca a=14.684 b=17.133 c=33.478 Z=8 8422 2.205 yellow [28][40]
[Ni(en)3][GeSb2S6] orthorhombic Pbca
[Ni(dien)2]3[Ge3Sb8S21]·0.5H2O monoclinic C2/m a =17.604 b =30.660 c =15.348 β =114.69° [28]
La(dien)2(μ–η12-GeS3(SH)) monoclinic C2/c a=27.837 b=16.993 c=8.318 β =103.96 Z=8 3818.7 1.903 red [41]
KLaGeS4 monoclinic P21 a=6.6645 b=6.7079 c=8.7248 β=107.519° Z=2 371.95 SHG 1.2×AgGaS2; band gap 3.34 eV; birefringence 0.098 @ 1064 nm [34]
Nd(dien)2(μ–η12-GeS3(SH)) monoclinic C2/c a=27.694 b=16.845 c=8.287 β =103.791 Z=8 3754.4 1.955 red [41]
[Pr(dien)3]2[Ge2S6]Cl2 dien = diethylenetriamine monoclinic P21/n a=11.637 b=14.143 c=15.120 β=98.149° Z=4 2463 1.765 green [42]
[Sm(dien)3]2[Ge2S6]Cl2 dien = diethylenetriamine monoclinic P21/n 11.532 b=14.423 c=14.573 β=97.105° Z=4 2405 1.834 light yellow [42]
Sm3Zn0.5GeS7 [33]
Eu3Ge3S9 a=8.468 b=11.76 c=8.389 α=90.49° β=104.56° γ=69.53° Z=2 4.22 meas [43]
[Eu(dien)3]2[Ge2S6]Cl2 dien = diethylenetriamine monoclinic P21/n a=11.567 b=14.633 c=14.465 β=96.434 Z=4 2432.9 1.818 yellow [11]
Gd3Cd0.5GeS7 [33]
[Gd(dien)3]2[Ge2S6]Cl2 dien = diethylenetriamine monoclinic P21/n 11.548 b=14.677 c=14.427 β=96.332° Z=4 2430.4 1.834 colourless [42]
[Dy(dien)3]2[Ge2S6]Cl2 dien = diethylenetriamine monoclinic P21/n a=11.503 b=14.645 c=14.340 β=96.178° Z=4 2401.8 1.870 light yellow [42]
[Ho(trien)(en)GeS3(SH)] trien = triethylenetetramine [42]
Er2(tepa)2(μ-OH)2(μ-Ge2S6)]n·nH2O tepa = tetraethylenepentamine [44]
[Er2(dien)4(μ-OH)2][Ge2S6] dien = diethylenetriamine monoclinic P21/n 11.710 b=11.318 c=13.548 β=97.635° Z=4 1779.6 2.088 red [42]
Tm2(tepa)2(μ-OH)2(μ-Ge2S6)]n·nH2O tepa = tetraethylenepentamine [44]
Li4HgGe2S7 monoclinic Cc a=16.876 b=6.7764 c=10.161 β=93.360° [15]
Ag4HgGe2S7 monoclinic Cc a=17.4546 b=6.8093 c=10.5342 β=93.3980° [15]
[(Me)2NH2][BiGeS4] monoclinic P21 a=6.7290 b c=10.6748 β=105.789 Z=2 479.72 3.156 red [45]

References

[edit]
  1. ^ a b c d e f g Wang, Kai-Yao; Feng, Mei-Ling; Huang, Xiao-Ying; Li, Jing (September 2016). "Organically directed heterometallic chalcogenidometalates containing group 12(II)/13(III)/14(IV) metal ions and antimony(III)". Coordination Chemistry Reviews. 322: 41–68. doi:10.1016/j.ccr.2016.04.021.
  2. ^ Pohl, Siegfried (March 1976). "Ge4S6Br4—The First Sulfide Halide of Germanium". Angewandte Chemie International Edition in English. 15 (3): 162. doi:10.1002/anie.197601621.
  3. ^ Pohl, Siegfried; Seyer, Ulrich; Krebs, Bernt (1 November 1981). "Sulfidhalogenide des Germaniums: Darstellung und Strukturen von Ge 4 S 6 Br 4 und Ge 4 S 6 I 4 / Thiohalides of Germanium: Preparation and Structures of Ge 4 SeBr 4 and Ge 4 S 6 I 4". Zeitschrift für Naturforschung B. 36 (11): 1432–1443. doi:10.1515/znb-1981-1116. S2CID 93779728.
  4. ^ a b Poling, Steven A.; Nelson, Carly R.; Sutherland, Jacob T.; Martin, Steve W. (2003-06-01). "Synthesis and Characterization of the Thiogermanic Acids H 4 Ge 4 S 10 and H 2 Ge 4 S 9". The Journal of Physical Chemistry B. 107 (23): 5413–5418. doi:10.1021/jp027313w. ISSN 1520-6106.
  5. ^ Poling, Steven A.; Nelson, Carly R.; Sutherland, Jacob T.; Martin, Steve W. (2003-11-01). "Crystal Structure of Thiogermanic Acid H 4 Ge 4 S 10". Inorganic Chemistry. 42 (23): 7372–7374. doi:10.1021/ic034659s. ISSN 0020-1669. PMID 14606829.
  6. ^ Roh, Jihun; Do, Namgyu; Manjón-Sanz, Alicia; Hong, Seung-Tae (2023-10-02). "Li 2 GeS 3 : Lithium Ionic Conductor with an Unprecedented Structural Type". Inorganic Chemistry. 62 (39): 15856–15863. doi:10.1021/acs.inorgchem.3c01431. ISSN 0020-1669.
  7. ^ a b c d e Wang, Kai-Yao; Zhang, Shu; Liu, Hua-Wei; Cheng, Lin; Wang, Cheng (2019-10-07). "Stepwise Conversion from GeO 2 to [MGe 4 S 10 ] n 3 n – (M = Cu, Ag) Polymer via Isolatable [Ge 2 S 6 ] 4– and [Ge 4 S 10 ] 4– Anions by Virtue of Templating Technique". Inorganic Chemistry. 58 (19): 12832–12842. doi:10.1021/acs.inorgchem.9b01779. ISSN 0020-1669. PMID 31490672. S2CID 201869666.
  8. ^ Zhang, Jian-Han; Su, Zhi-Zhong; Luo, Ju-Xiang; Zhao, Yi; Wang, Hong-Gang; Ying, Shao-Ming (May 2020). "Synthesis, structure, and characterization of a mixed amines thiogermanate [NH4]2[NH2(CH3)2]2Ge2S6". Polyhedron. 182: 114486. doi:10.1016/j.poly.2020.114486. S2CID 216378118.
  9. ^ a b c Halvagar, Mohammad Reza; Hassanzadeh Fard, Zohreh; Xiong, Lin; Dehnen, Stefanie (2009-08-03). "Facile Access to the Hydrazone Functionalized PdGeS Cluster [{R N Ge(μ-S) 3 } 4 Pd 6 ] from the Thiogermanate Anion [{R N Ge} 2 (μ-S) 2 S 2 ] 2−". Inorganic Chemistry. 48 (15): 7373–7377. doi:10.1021/ic900853e. ISSN 0020-1669. PMID 19586024.
  10. ^ Eußner, Jens P.; Dehnen, Stefanie (September 2012). "Formation of Thiosemicarbazone-Functionalized Complexes with (GeS 2 ) 2 and (SnS 2 ) 2 Units". Zeitschrift für anorganische und allgemeine Chemie (in German). 638 (11): 1827–1832. doi:10.1002/zaac.201200292.
  11. ^ a b c Liu, Xing; Hu, Feilong; Zhou, Jian; An, Litao; Liang, Dawen; Lin, Jianwu (2012). "Solvothermal synthesis, crystal structures and properties of three new thiogermanates: the only example of the thiogermanate anion [Ge2S6]4− as a bridging ligand to a lanthanide complex ion". CrystEngComm. 14 (10): 3464. doi:10.1039/c2ce25082a. ISSN 1466-8033.
  12. ^ a b c Jia, Ding-Xian; Dai, Jie; Zhu, Qin-Yu; Cao, Li-Hui; Lin, Hai-Hong (March 2005). "Solvothermal synthesis of three new dimeric thiogermanates (enH)4Ge2S6, [Mn(en)3]2Ge2S6 and [Ni(en)3]2Ge2S6 from germanium dioxide and sulfur powder". Journal of Solid State Chemistry. 178 (3): 874–881. Bibcode:2005JSSCh.178..874J. doi:10.1016/j.jssc.2004.07.045.
  13. ^ Krebs, B.; Pohl, S.; Schiwy, W. (November 1972). "Darstellung und Struktur von Na4Ge2S6 . 14H2O und Na4Sn2S6 . 14H2O". Zeitschrift für anorganische und allgemeine Chemie (in German). 393 (3): 241–252. doi:10.1002/zaac.19723930307. ISSN 0044-2313.
  14. ^ a b Willard, Hobart H.; Zuehlke, C. W. (October 1943). "The Preparation and Properties of Potassium Thiogermanate and Thiogermanic Acid 1". Journal of the American Chemical Society. 65 (10): 1887–1889. doi:10.1021/ja01250a026. ISSN 0002-7863.
  15. ^ a b c d e f g h i j k Wang, Peng; Abudoureheman, Maierhaba; Zhang, Kewang; Zheng, Juanjuan; Chen, Zhaohui; Wu, Qi (2022-10-03). "Ag 4 SnGe 2 S 7 : A Noncentrosymmetric Chalcogenide in I 4 –II–IV 2 –VI 7 System with Non-Diamond-Like Structure Featuring 1D ∞ [SnGe 2 S 8 ] 6– Infinite Chain". Inorganic Chemistry. 61 (39): 15303–15309. doi:10.1021/acs.inorgchem.2c01828. ISSN 0020-1669. PMID 36126330. S2CID 252405280.
  16. ^ a b c Alahmari, Fatimah; Davaasuren, Bambar; Emwas, Abdul-Hamid; Rothenberger, Alexander (2018-04-02). "Thioaluminogermanate M (AlS 2 )(GeS 2 ) 4 ( M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27 Al and 23 Na NMR Spectroscopy". Inorganic Chemistry. 57 (7): 3713–3719. doi:10.1021/acs.inorgchem.7b02980. hdl:10754/627415. ISSN 0020-1669. PMID 29537828.
  17. ^ Xu, Miao; Song, Subin; Daikuhara, Shugo; Matsui, Naoki; Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Shiotani, Shinya; Nakanishi, Shinji; Yonemura, Masao; Saito, Takashi (2022-01-10). "Li 10 GeP 2 S 12 -Type Structured Solid Solution Phases in the Li 9+δ P 3+δ′ S 12– k O k System: Controlling Crystallinity by Synthesis to Improve the Air Stability". Inorganic Chemistry. 61 (1): 52–61. doi:10.1021/acs.inorgchem.1c01748. ISSN 0020-1669. PMID 34914367. S2CID 245270702.
  18. ^ Wang, Jing; Näther, Christian; Djamil, John; Bensch, Wolfgang (August 2012). "[VO(dien)]2GeS4: Solvothermal Synthesis and Crystal Structure with an Ortho-Thiogermanate as Tetradentate Ligand". Zeitschrift für anorganische und allgemeine Chemie. 638 (10): 1452–1456. doi:10.1002/zaac.201200174.
  19. ^ a b Qian, Li-Wen; Zhao, Xiao-Wei; Su, Hu-Chao; Bian, Guo-Qing; Zhu, Qin-Yu; Dai, Jie (2016). "Supramolecular hexagonal nano tubes assembled by vanadium diamine complexes with thiogermanates". RSC Advances. 6 (20): 16268–16273. Bibcode:2016RSCAd...616268Q. doi:10.1039/C5RA27088J. ISSN 2046-2069.
  20. ^ Kaib, Thomas; Haddadpour, Sima; Andersen, Hanne Flåten; Mayrhofer, Leonhard; Järvi, Tommi T.; Moseler, Michael; Möller, Kai-Christian; Dehnen, Stefanie (2013-12-10). "Quaternary Diamond-Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium-Ion Batteries". Advanced Functional Materials. 23 (46): 5693–5699. doi:10.1002/adfm.201301025. S2CID 93236286.
  21. ^ a b c Danker, Felix; Näther, Christian; Pielnhofer, Florian; Bensch, Wolfgang (2017-10-10). "Room‐Temperature Synthesis of Three Compounds Featuring the [Ge 4 S 10 ] 4– Anion from a Water‐Soluble Thiogermanate Precursor". European Journal of Inorganic Chemistry. 2017 (37): 4317–4323. doi:10.1002/ejic.201700795. ISSN 1434-1948.
  22. ^ a b c Chen, Jiang-Fang; Jin, Qin-Yan; Pan, Ying-Li; Zhang, Yong; Jia, Ding-Xian (January 2010). "Solvothermal Syntheses and Characterization of New Transition Metal Chalcogenidogermanates [{Co(tepa)} 2 (μ-Ge 2 S 6 )] and [{M(tepa)} 2 (μ-Ge 2 Se 6 )] (M = Mn, Fe) (tepa = Tetraethylenepentamine)". Zeitschrift für anorganische und allgemeine Chemie. 636 (1): 230–235. doi:10.1002/zaac.200900141.
  23. ^ a b c Luo, Hai-Ying; Zhou, Jian; Cao, Shumei (2019). "A series of new hybrid chalcogenogermanates: the rare examples of chalcogenogermanates combined with trivalent vanadium complexes". Dalton Transactions. 48 (29): 10907–10914. doi:10.1039/C9DT02077B. ISSN 1477-9226. PMID 31282904. S2CID 195828996.
  24. ^ Yue, Cheng-Yang; Yuan, Zhuang-Dong; Zhang, Lu-Ge; Wang, Ya-Bai; Liu, Guo-Dong; Gong, Liao-Kuo; Lei, Xiao-Wu (October 2013). "Synthesis, crystal structure and properties of [(dien)2Mn]Ge2S4 with mixed-valent Ge centers". Journal of Solid State Chemistry. 206: 129–133. Bibcode:2013JSSCh.206..129Y. doi:10.1016/j.jssc.2013.07.036.
  25. ^ Zhang, Guodong; Li, Peizhou; Ding, Junfeng; Liu, Yi; Xiong, Wei-Wei; Nie, Lina; Wu, Tom; Zhao, Yanli; Tok, Alfred Iing Yoong; Zhang, Qichun (2014-10-06). "Surfactant-Thermal Syntheses, Structures, and Magnetic Properties of Mn–Ge–Sulfides/Selenides". Inorganic Chemistry. 53 (19): 10248–10256. doi:10.1021/ic501282d. ISSN 0020-1669. PMID 25208101.
  26. ^ a b c d e Liu, Guang-Ning; Guo, Guo-Cong; Wang, Ming-Sheng; Cai, Li-Zhen; Huang, Jin-Shun (November 2010). "Five dimeric thiogermanates with transition metal complexes of multidentate chelating amines: Syntheses, structures, magnetism and photoluminescence". Journal of Molecular Structure. 983 (1–3): 104–111. Bibcode:2010JMoSt.983..104L. doi:10.1016/j.molstruc.2010.08.039.
  27. ^ a b Ji, Bingheng; Pandey, Krishna; Harmer, Colin P.; Wang, Fei; Wu, Kui; Hu, Jin; Wang, Jian (29 June 2021). "Centrosymmetric or Noncentrosymmetric? Transition Metals Talking in K 2 TGe 3 S 8 (T = Co, Fe)". Inorganic Chemistry. 60 (14): 10603–10613. doi:10.1021/acs.inorgchem.1c01149. OSTI 1810574. PMID 34185995. S2CID 235685892.
  28. ^ a b c d e f g h i j Lichte, Jessica; Näther, Christian; Bensch, Wolfgang (2014-05-02). "Polymorphism and tautomerism in [dienH 2 ][Co(dien) 2 ][Ge 2 S 6 ] leading to different hydrogen bonded networks". CrystEngComm. 16 (25): 5551–5559. doi:10.1039/C4CE00312H. ISSN 1466-8033. S2CID 94547016.
  29. ^ Zhou, Jian; Liu, Xing; Liang, Guoming; Liang, Weijiang; Hu, Feilong; Zhu, Ligang (January 2013). "[Ni(dien)2]3[Ge3Sb8S21]·0.5H2O: A new 2-D layered thiogermanate–thioantimonate with metal complexes as template ions". Inorganic Chemistry Communications. 27: 92–96. doi:10.1016/j.inoche.2012.10.015.
  30. ^ a b Liang, Jing-Jing; Zhao, Jing; Tang, Wei-Wei; Zhang, Yong; Jia, Ding-Xian (June 2011). "Ethylene polyamine influence on the transition metal thiogermanates: Solvothermal syntheses and characterizations of [Ni(trien)2]2Ge4S10 and [{Ni(tepa)}2(μ-Ge2S6)]". Inorganic Chemistry Communications. 14 (6): 1023–1026. doi:10.1016/j.inoche.2011.03.062.
  31. ^ Tang, Shimei; Zhou, Jian; Liu, Xing; Xiao, Hong-Ping (June 2018). "A new 3-D cuprous thiogermanate with rare 3-D [Cu-S-Cu]n network". Materials Today Communications. 15: 88–93. doi:10.1016/j.mtcomm.2018.02.035. S2CID 103265774.
  32. ^ Zhang, Nan; Xu, Qian-Ting; Shi, Zhi-Hui; Yang, Mei; Guo, Sheng-Ping (2022-10-31). "Characterizations and Nonlinear-Optical Properties of Pentanary Transition-Metal Oxysulfide Sr 2 CoGe 2 OS 6". Inorganic Chemistry. 61 (43): 17002–17006. doi:10.1021/acs.inorgchem.2c03283. ISSN 0020-1669. PMID 36265201. S2CID 253044751.
  33. ^ a b c d Gao, Lihua; Wu, Xiaowen; Xu, Jingjing; Tian, Xinyu; Zhang, Bingbing; Wu, Kui (December 2021). "Rational combination of multiple structural groups on regulating nonlinear optical property in hexagonal Ln3MGeS7 polar crystals". Journal of Alloys and Compounds. 900: 163535. doi:10.1016/j.jallcom.2021.163535. S2CID 245626019.
  34. ^ a b Liu, Yang; Li, Xiangming; Wu, Shuchang; Ma, Mengjie; Jiang, Xiaoming; Wu, Yuandong; Mei, Dajiang (2024-06-03). "A Rare Earth Chalcogenide Nonlinear Optical Crystal KLaGeS 4 : Achieving Good Balance among Band Gap, Second Harmonic Generation Effect, and Birefringence". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00842. ISSN 0020-1669.
  35. ^ Fedorchuk, A.O.; Lakshminarayana, G.; Tokaychuk, Y.O.; Parasyuk, O.V. (November 2013). "The crystal structure of novel silver sulphogermanate Ag10Ge3S11". Journal of Alloys and Compounds. 576: 134–139. doi:10.1016/j.jallcom.2013.04.110.
  36. ^ Wu, Xiaowen; Hu, Yi; Pan, Hui; Su, Zhi (2016). "Na 9 Sb(Ge 2 Q 6 ) 2 (Q = S, Se): two new antimony( iii ) quaternary chalcogenides with ethane-like [Ge 2 Q 6 ] 6− ligands". RSC Advances. 6 (101): 99475–99481. doi:10.1039/C6RA22000B. ISSN 2046-2069.
  37. ^ Feng, Mei-Ling; Kong, De-Nian; Xie, Zai-Lai; Huang, Xiao-Ying (2008-10-27). "Three-Dimensional Chiral Microporous Germanium Antimony Sulfide with Ion-Exchange Properties". Angewandte Chemie International Edition. 47 (45): 8623–8626. doi:10.1002/anie.200803406. PMID 18846520.
  38. ^ Feng, Mei-Ling; Hu, Chun-Li; Wang, Kai-Yao; Du, Cheng-Feng; Huang, Xiao-Ying (2013). "[AEPH2][GeSb2S6]·CH3OH: a thiogermanate–thioantimonate featuring an infinite ribbon-like structure with an unusual {GeSb3S11} unit and exhibiting the ability of photocatalytic degradation of organic dye". CrystEngComm. 15 (25): 5007. doi:10.1039/c3ce40143j. ISSN 1466-8033.
  39. ^ a b Zhang, Bo; Feng, Mei-Ling; Cui, Hong-Hua; Du, Cheng-Feng; Qi, Xing-Hui; Shen, Nan-Nan; Huang, Xiao-Ying (2015-09-08). "Syntheses, Crystal Structures, Ion-Exchange, and Photocatalytic Properties of Two Amine-Directed Ge–Sb–S Compounds". Inorganic Chemistry. 54 (17): 8474–8481. doi:10.1021/acs.inorgchem.5b01181. ISSN 0020-1669. PMID 26291119.
  40. ^ a b Zhou, Jian; An, Litao; Liu, Xing; Huang, Lijun; Huang, Xijiao (2011). "Solvothermal synthesis and characterization of two 2-D layered germanium thioantimonates with transition-metal complexes". Dalton Transactions. 40 (43): 11419–11424. doi:10.1039/c1dt11280e. ISSN 1477-9226. PMID 21931916.
  41. ^ a b Zhou, Jian; Li, Rong; Ling, Xing; Chen, Rong; Hu, Feilong; Zeng, Yanfang (2013). "The first examples of thiogermanate anion [GeS 3 (SH)] 3− as a bridging ligand to a lanthanide complex". Dalton Trans. 42 (6): 1961–1964. doi:10.1039/C2DT32389C. ISSN 1477-9226. PMID 23165504.
  42. ^ a b c d e f Zhao, Rong-Qing; Zhou, Jian; Liu, Xing; Zhang, Li; Tang, Qiuling; Tan, Xiao-Feng (2014-08-19). "Solvothermal syntheses of lanthanide thiogermanates displaying three new structural moieties". RSC Advances. 4 (73): 38682. Bibcode:2014RSCAd...438682Z. doi:10.1039/C4RA07812H. ISSN 2046-2069.
  43. ^ Bugli, G.; Carré, D.; Barnier, S. (1978-11-01). "Structure cristalline du thiogermanate d'europium Eu 3 Ge 3 S 9". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 34 (11): 3186–3189. doi:10.1107/S0567740878010456. ISSN 0567-7408.
  44. ^ a b Tang, Shimei; Cao, Shumei; Zhou, Jian (July 2018). "A Series of Lanthanide Chalcogenidogermanates Displaying Two Types of 1-D Polymeric Chains". Journal of Cluster Science. 29 (4): 777–783. doi:10.1007/s10876-018-1402-6. ISSN 1040-7278. S2CID 103263516.
  45. ^ Feng, Mei-Ling; Qi, Xing-Hui; Zhang, Bo; Huang, Xiao-Ying (2014). "[(Me)2NH2][BiGeS4]: the first organically directed bismuth thiogermanate with Rb+ ion exchange property". Dalton Transactions. 43 (22): 8184–8187. doi:10.1039/c4dt00173g. ISSN 1477-9226. PMID 24781350.