Elongated triangular orthobicupola: Difference between revisions
Dedhert.Jr (talk | contribs) →Properties: wl |
rm unsourced name, no sources found |
||
(4 intermediate revisions by one other user not shown) | |||
Line 15: | Line 15: | ||
}} |
}} |
||
In [[geometry]], the '''elongated triangular orthobicupola''' |
In [[geometry]], the '''elongated triangular orthobicupola''' is a polyhedron constructed by attaching two regular [[triangular cupola]] into the base of a regular [[hexagonal prism]]. It is an example of [[Johnson solid]]. |
||
== Construction == |
== Construction == |
||
The elongated triangular orthobicupola can be constructed from a [[hexagonal prism]] by attaching two regular [[triangular cupola]]e onto its base, covering its hexagonal faces.{{r|rajwade}} This construction process known as [[Elongation (geometry)|elongation]], giving the resulting polyhedron has 8 [[equilateral triangle]]s and 12 squares.{{r|berman}} A [[Convex set|convex]] polyhedron in which all faces are [[Regular polygon|regular]] is [[Johnson solid]], and the elongated triangular orthobicupola is one among them, enumerated as |
The elongated triangular orthobicupola can be constructed from a [[hexagonal prism]] by attaching two regular [[triangular cupola]]e onto its base, covering its hexagonal faces.{{r|rajwade}} This construction process known as [[Elongation (geometry)|elongation]], giving the resulting polyhedron has 8 [[equilateral triangle]]s and 12 squares.{{r|berman}} A [[Convex set|convex]] polyhedron in which all faces are [[Regular polygon|regular]] is [[Johnson solid]], and the elongated triangular orthobicupola is one among them, enumerated as 35th Johnson solid <math> J_{35} </math>.{{r|francis}} |
||
== Properties == |
== Properties == |
||
Line 90: | Line 90: | ||
{{Johnson solids navigator}} |
{{Johnson solids navigator}} |
||
{{Polyhedron-stub}} |
|||
[[Category:Johnson solids]] |
[[Category:Johnson solids]] |
Latest revision as of 02:15, 1 April 2024
Elongated triangular orthobicupola | |
---|---|
Type | Johnson J34 – J35 – J36 |
Faces | 8 triangles 12 squares |
Edges | 36 |
Vertices | 18 |
Vertex configuration | |
Symmetry group | |
Properties | convex |
Net | |
In geometry, the elongated triangular orthobicupola is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.
Construction
[edit]The elongated triangular orthobicupola can be constructed from a hexagonal prism by attaching two regular triangular cupolae onto its base, covering its hexagonal faces.[1] This construction process known as elongation, giving the resulting polyhedron has 8 equilateral triangles and 12 squares.[2] A convex polyhedron in which all faces are regular is Johnson solid, and the elongated triangular orthobicupola is one among them, enumerated as 35th Johnson solid .[3]
Properties
[edit]An elongated triangular orthobicupola with a given edge length has a surface area, by adding the area of all regular faces:[2] Its volume can be calculated by cutting it off into two triangular cupolae and a hexagonal prism with regular faces, and then adding their volumes up:[2]
It has the same three-dimensional symmetry groups as the triangular orthobicupola, the dihedral group of order 12. Its dihedral angle can be calculated by adding the angle of the triangular cupola and hexagonal prism. The dihedral angle of a hexagonal prism between two adjacent squares is the internal angle of a regular hexagon , and that between its base and square face is . The dihedral angle of a regular triangular cupola between each triangle and the hexagon is approximately , that between each square and the hexagon is , and that between square and triangle is . The dihedral angle of an elongated triangular orthobicupola between the triangle-to-square and square-to-square, on the edge where the triangular cupola and the prism is attached, is respectively:[4]
Related polyhedra and honeycombs
[edit]The elongated triangular orthobicupola forms space-filling honeycombs with tetrahedra and square pyramids.[5]
References
[edit]- ^ Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
- ^ a b c Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
- ^ Francis, Darryl (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
- ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
- ^ "J35 honeycomb".