Jump to content

Talk:Analytic function: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
BattyBot (talk | contribs)
m top: Fixed/removed unknown WikiProject parameter(s) and general fixes
 
(57 intermediate revisions by 34 users not shown)
Line 1: Line 1:
{{WikiProject banner shell|class=C|vital=yes|1=
Why is analytic function redirected to power series? [[User:Phys|Phys]]
{{WikiProject Mathematics|importance=high}}
}}
{{User:MiszaBot/config
| algo = old(365d)
| archive = Talk:Analytic function/Archive %(counter)d
| counter = 1
| maxarchivesize = 150K
| archiveheader = {{Automatic archive navigator}}
| minthreadstoarchive = 1
| minthreadsleft = 10
}}
{{Archive box|search=yes |bot=Lowercase sigmabot III |age=12 |units=months |auto=yes }}


==Continuing the analysis==
Why is analytic map redirected to analytic function? -- [[User:Taral|Taral]] 18:50, 30 Aug 2004 (UTC)
Oleg, any chance you'd want to add a see-also section with [[analytic continuation]] and [[germ (mathematics)]]? I want to rewrite/expand [[Riemann surfaces]], and the current article there has three sections, on analytic continuation, germs, and examples of analytic continuation, that should be moved elsewhere. (e.g. either to this article, or to the article on analytic continuation). Since you are working this topic, would you care to make this move? [[User:Linas|linas]] 00:21, 12 April 2005 (UTC)


: Do you mean, you want to put links to [[analytic continuation]] and [[germ (mathematics)]] in [[analytic function]]? That should certainly be no problem. About the stuff in [[Riemann surface]]s you want to move, I think it would belong to [[analytic continuation]] and [[germ (mathematics)]] rather than to [[analytic function]].
:Because in mathematics, as the terms are usually used, "map" is a synonym of "function", but the latter term is more frequently used. [[User:Michael Hardy|Michael Hardy]] 20:52, 30 Aug 2004 (UTC)


: I do not work on this topic, actually I have quite little time for the moment. I wrote [[analytic function]] a while ago because it was in a sorry state.
== Real versus complex analytic ==


: If you want to really move things from [[Riemann surface]]s, you might consider first posting your intention on its talk page. Maybe the person who put that stuff in there, had some thing in mind when doing so. [[User:Oleg Alexandrov|Oleg Alexandrov]] 00:39, 12 April 2005 (UTC)
The article seems to say that one of the differences between real and complex analyticity is that there are real differentiable functions that are not real analytic, while all complex differentiable functions are complex analytic. But I'd say that this is a difference between real and complex differentiability, not real and complex analyticity. For the rest, well done with the rewrite. -- [[User:Jitse Niesen|Jitse Niesen]] 12:02, 13 Feb 2005 (UTC)


:: So what happened to all this content? The current article still doesn't mention any of the topics above: e.g. more than one variable, and the common pitfalls involved there (except for the single solitary example <math>f(z)=z^*</math>, but there are also more nice, more subtle examples of this kind.) Also, not a breath of analytic continuation or germs or jets shows up here -- these surely deserve at least a single-sentence mention. Also, an explanation for the "abuse of notation" <math>C^\omega</math> for analytic functions, vs <math>C^\infty</math>. and then fancy sophisticated stuff, like analysis in inf. dim. spaces, and frechet spaces and etc. The current content seems to be like its copied from a freshman college textbook, it fails to actually mention common topics that involve analytic functions...!? [[Special:Contributions/67.198.37.16|67.198.37.16]] ([[User talk:67.198.37.16|talk]]) 17:29, 16 April 2016 (UTC)
: You are right. The message I wanted to carry across was that the two beasts (real and complex analytic) are different. I did think what a good thing to write would be. The best thing is of course the example of a real analytic function which is not complex analytic, like f(x, y)=x. However, that would have necessitated talking about analytic functions in many variables before I felt the reader was ready.


== Definition of analytic functions ==
: Any suggestions on how to improve on this? [[User:Oleg Alexandrov|Oleg Alexandrov]] 15:46, 13 Feb 2005 (UTC)
The definition for analytic functions given in this article conflicts with that of Churchill:


R. V. Churchill, Complex Variables and Applications,
==real vs. complex, redux==
New York: McGraw-Hill, 1960.


His definition (p. 40) is more simply that a function f of the complex variable z is analytic at a point <math>z_0</math> if its derivative f ' (z) exists at <math>z_0</math> and at every point in some neighborhood of <math>z_0</math>.
Hi Linas. Thank you for your recent insertions in that article. I have several remarks though.


I am not convinced by the counterexample, because that function, exp(-1/x), is simply "infinitely smooth" at x=0, producing a Taylor series that evaluates to zero everywhere when expanded about x=0. I think this function should be considered analytic at x=0 since derivatives of all orders exist and are zero at that point.
(a) The text you inserted in the "definitions" section belongs to [[holomorphic function]], not here. In this article, we talk about analytic functions in general (real, and complex), and going into so much fine detail about complex conjugates brings us offtopic. That is of course very appropriate in the article about [[holomorphic function]]s. There, if you note, there is even a paragraph about anti-holomorphic, which has to do with function of the conjugate.


[[User:63.195.51.145|63.195.51.145]] 00:07, 16 January 2007 (UTC)
(b) It is not correct that
:''In particular, one does not get a real analytic function by taking the real part of a complex analytic function.''
Actually, one does get a real analytic function (in x and y) by taking the real part of a holomorphic function. Example: x=real(z) is analytic in x and y.


: There is no conflict. The definition in the book you mention is valid only for complex analytic functions, while the one given here is valid for both real and complex analytic functions. It is true that a complex differentiable function is the same as an analytic function. That is mentioned in this article. [[User:Oleg Alexandrov|Oleg Alexandrov]] ([[User talk:Oleg Alexandrov|talk]]) 04:22, 16 January 2007 (UTC)
(c) In some places, you forget to say "real analytic", "complex analytic", saying only "analytic". that is confusing, because the very purpose of this article is to say which is what.


I am unsure if I studied this yet in multivariable Calculus or part of Analysis earlier, but it is interesting. I am just curious whether this is the only possible definition of 'analytic function' if you use an abstract logical definition--maybe the mapping of elements of other relevant sets or categories can be analyzed.--[[User:Dchmelik|Dchmelik]] ([[User talk:Dchmelik|talk]]) 12:59, 27 February 2009 (UTC)
I think all of these issues stem again from the fact that you chose to contribute not to the correct article. Would you consider writing the parts which have only to do with complex analyticity in the [[holomorphic function]] article? Thanks. [[User:Oleg Alexandrov|Oleg Alexandrov]] 18:51, 9 Apr 2005 (UTC)


== Logarithm ==
:Hi Oleg, I'll fix the error you bring up. Also, I'd prefer to leave the other changes here, rather than putting them in [[holomorphic]]. I suppose I should explain why: For the first part, I wanted to capture that the series expansion is in one variable ''z'' and not two variables ''z'' and ''z''-star. I tried to use a minimum of words to say this while still being clear; my apologies if I failed. Making a similar statement in the article on holomorphic would get lost (in part because holomorphic is a different concept which "accidentally" means the same thing as analytic for complex functions). So I picked this article, and not that, after careful consideration. :)
Sorry for the bad editting here on this discussion page. I'm not really sure how to create a new category on it since I just created a user name. But I was reading this article on Analytic Functions and I noticed that in the Examples section, the logarithm function was given as an example of an analytic function. So let's consider <math>f(x)=Log(x)</math> on the set of real numbers R. Now pick <math>x_0</math>=0. Then we can't find a power series representation of Log(x). Can we? So is the logarithm function not analytic then?


Thanks. [[User:Siyavash2|Siyavash2]] 01:04, 24 December 2008
:Also, the bit about harmonic ... again, this seemed to be the better article to bring this up, as this article really does try to distinguish real and complex harmonic functions; a lack of distinction often leads to confusion, e.g. in Riemann surfaces in particular. Here, its trivial to see that a complex analytic function is harmonic, because the series expansion clearly doesn't depend on z-star. This idea gets lost, gets opaque ad unclear, if one sticks to holomorphic functions. So putting it in the section on disambiguating real and complex analytic functions seemed the right way to go. [[User:Linas|linas]] 19:07, 9 Apr 2005 (UTC)


: No problem on the editing. There should be a "new section" tag at the top of the page. Otherwise placing the section title between a pair of equal signs (two on each side) will also do it. I think the problem is with the domain you have in mind. The article says that the logarithm is "analytic on any open set of [its] domain." But zero is not in the domain of the logarithm. Does this answer your question? [[User:Thenub314|Thenub314]] ([[User talk:Thenub314|talk]]) 21:48, 24 December 2008 (UTC)
:The point being, I guess, that there is a tremendous service to the readership in clearly distinguishing real and complex analytic functions, and taking some pains in pointing out the common pitfalls and fallacies. Not only have I seen others fall into this trap, I know I have as well ... its all too easy to make trivial assumptions: "Oh yeah, I know this, analytic, this is a simple concept ... real part .. yeah that's trivial ..." and oops, one is thus lead to fallacies which can be hard to get out of. [[User:Linas|linas]] 19:25, 9 Apr 2005 (UTC)


:: Yes, thank you. I'm quite surprised there are so many good mathematicians here. [[User:Siyavash2|Siyavash2]] ([[User talk:Siyavash2|talk]]) 01:23, 25 December 2008 (UTC)
:: The part about the conjugate in the series expansion, I need to think more about. The part about harmonic and stuff, maybe you could consider putting it into a separate section.


== Banach Space ==
:: And a brief plea. You see, I am a bit picky, because I rewrote "analytic function" from scratch (it was in a really sorry state before). So, I would like to ask you to read very carefully both [[analytic function]] and [[holomorphic function]] and give it a very careful thought about what should be in both of them.
I don't see the relevance of the following:


"The set <math>\scriptstyle A_\infty(\Omega)</math> of all bounded functions with the supremum norm is a Banach space."
::My vision for [[analytic function]] was an article which would explain the concept of analyticity, say for a newbie. That's why your recent additions put me off, they go on tangents onto very delicate details about conjugates and harmonicity, which I feel do not belong in this article.


Does this somehow relate to analyticity? [[User:Dratman|Dratman]] ([[User talk:Dratman|talk]]) 19:11, 9 November 2009 (UTC)
:: So, again. Could you think very, very, carefully about what a good article on [[analytic function]]s should include, try to make yourself a big picture of this and of [[holomorphic function]]. Then let me know what you think. I am sure we can arrive at a satisfactory solution for both of us. [[User:Oleg Alexandrov|Oleg Alexandrov]] 19:21, 9 Apr 2005 (UTC)


::: And you missed the fact that this article does not talk about analytic functions in more than one variable. So, what you inserted about "real part of complex analytic function is analytic in x and y" and "complex analytic function is harmonic, but real analytic function is not", is not applicable.
:Ops, you're right, my fault. There was written "...of all bounded ''analytic'' functions"; then I added a remark on the space <math>A(\Omega)</math> (of all analytic functions, which is somehow more relevant btw), and lost the word analytic in the operation. Fixed now. --[[User:PMajer|pma]] ([[User talk:PMajer|talk]]) 23:50, 9 November 2009 (UTC)


== Dead link ==
::: This can be fixed by first talking about real analytic functions in more than one variable, but let us not do that, as then you need to mention complex analytic functions in more than one variable, and power series in more than one variable, and things get complicated. Again, I gave it a careful thought what to include in this article and what to skip, and how to arrange it. And I feel that the article does not have that coherence anymore. [[User:Oleg Alexandrov|Oleg Alexandrov]] 20:28, 9 Apr 2005 (UTC)
When ever I click the second reference, I remain on the Wikipedia page. [[User:Blackbombchu|Blackbombchu]] ([[User talk:Blackbombchu|talk]]) 16:31, 22 March 2014 (UTC)


== Alternative Characterizations ==
:::: OK,I just got tangled up in other matters. I guess the bit about harmonic functions can be moved to the article on holomorphic functions. Give me a day, or try the move yourself; I just looked at my watchlist as you suggested, and have now gotten distracted elsewhere. I sympathize; as I look at the elementary articles more often, I am starting to notice how poor condition many of them are in.
"For every compact set K ⊂ D there exists a constant C such that for every x ∈ K and every non-negative integer k the following bound holds"
::<math> \left | \frac{d^k f}{dx^k}(x) \right | \leq C^{k+1} k!</math>


Isn't e^{-1/x} an obvious counterexample? It satisfies the bound but is not analytic. [[User:Pwrong|Pwrong]] ([[User talk:Pwrong|talk]]) 11:49, 31 October 2014 (UTC)
:::: Anyway, do give readers some intelligence: just the act of talking about complex functions implies real functions in two variables. Again, I think the great service here is to remind the reader that there are pitfalls by mentally glossing over the differences between real and complex analytic functions. I am far more concerned about high-lighting these pitfalls. By contrast, delving deeply into multiple variables is far less of a concern (to me,at this time). [[User:Linas|linas]] 20:54, 9 Apr 2005 (UTC)


----
::::: You missed my point though. In this article analytic functions of two variables are ''not'' even defined. Then, it does not make sense to talk about things which were not defined, no matter how smart the reader is. And no, nobody glosses over the difference between real and complex analytic functions, there was a whole section devoted to the differences, even before you added new stuff. [[User:Oleg Alexandrov|Oleg Alexandrov]] 22:03, 9 Apr 2005 (UTC)


You are right, I have updated the article. Because not all <math>f</math> in <math>C^\infty</math> are analytic. <!-- Template:Unsigned IP --><small class="autosigned">—&nbsp;Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[Special:Contributions/81.20.68.181|81.20.68.181]] ([[User talk:81.20.68.181#top|talk]]) 12:44, 15 February 2017 (UTC)</small>
OK, ... I'll see what I can move around.


== Content Improvement ==
==Continuing the analysis==
The article states:
Oleg, any chance you'd want to add a see-also section with [[analytic continuation]] and [[germ (mathematics)]]? I want to rewrite/expand [[Riemann surfaces]], and the current article there has three sections, on analytic continuation, germs, and examples of analytic continuation, that should be moved elsewhere. (e.g. either to this article, or to the article on analytic continuation). Since you are working this topic, would you care to make this move? [[User:Linas|linas]] 00:21, 12 Apr 2005 (UTC)
″ There exist both '''real analytic functions''' and '''complex analytic functions''', categories that are similar in some ways, but different in others. ″
: Do you mean, you want to put links to [[analytic continuation]] and [[germ (mathematics)]] in [[analytic function]]? That should certainly be no problem. About the stuff in [[Riemann surface]]s you want to move, I think it would belong to [[analytic continuation]] and [[germ (mathematics)]] rather than to [[analytic function]].


This sentence seems to have no substance. By definition, shouldn't two subsets of analytic functions be similar in some ways and different in others? Unless someone has a strong reason not to, I will delete this section and replace it with something more substantive, such as the difference between the two. [[User:Mgibby5|Mgibby5]] ([[User talk:Mgibby5|talk]]) 23:29, 6 February 2015 (UTC)
: I do not work on this topic, actually I have quite little time for the moment. I wrote [[analytic function]] a while ago because it was in a sorry state.

:Actually this sentence may sound a bit vague. On the other hand, in the introduction we just want to summarize shortly the contents that are developed in the article. Maybe adding some reference to some sections in the article will do. --[[User:PMajer|pm]][[User talk:PMajer|<span style="color:blue;">a</span>]] 13:09, 9 February 2015 (UTC)

:: I welcome input onto what this sentence should be changed to, and references to other sections would be a good start. I think it would be legitimate and interesting to state that real analytic functions are not a subset of complex analytic functions. Thoughts? [[User:Mgibby5|Mgibby5]] ([[User talk:Mgibby5|talk]]) 03:00, 12 February 2015 (UTC)

== External links modified ==
Hello fellow Wikipedians,

I have just modified {{plural:1|one external link|1 external links}} on [[Analytic function]]. Please take a moment to review [https://en.wikipedia.org/enwiki/w/index.php?diff=prev&oldid=743969085 my edit]. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit [[User:Cyberpower678/FaQs#InternetArchiveBot|this simple FaQ]] for additional information. I made the following changes:
*Added archive https://web.archive.org/web/20061209010640/http://math.fullerton.edu:80/mathews/c2003/AnalyticFunctionMod.html to http://math.fullerton.edu/mathews/c2003/AnalyticFunctionMod.html

When you have finished reviewing my changes, please set the ''checked'' parameter below to '''true''' or '''failed''' to let others know (documentation at {{tlx|Sourcecheck}}).

{{sourcecheck|checked=false}}

Cheers.—[[User:InternetArchiveBot|'''<span style="color:darkgrey;font-family:monospace">InternetArchiveBot</span>''']] <span style="color:green;font-family:Rockwell">([[User talk:InternetArchiveBot|Report bug]])</span> 08:54, 12 October 2016 (UTC)

== Section: "Alternative characterizations" ==
In the section it is stated the following:

"If ƒ is an infinitely differentiable function defined on an open set D ⊂ R, then the following conditions are equivalent.

1) ƒ is real analytic."

But infinitely differentiable function is not in general analytic, which is fact emphasized throughout the article. or did I miss the point ?

[[User:GeOinWiKi|GeOinWiKi]] ([[User talk:GeOinWiKi|talk]]) 17:30, 28 December 2016 (UTC)
----

You are right, I have updated the article. Because not all <math>f</math> in <math>C^\infty</math> are analytic. <!-- Template:Unsigned IP --><small class="autosigned">—&nbsp;Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[Special:Contributions/81.20.68.181|81.20.68.181]] ([[User talk:81.20.68.181#top|talk]]) 13:44, 15 February 2017 (UTC)</small> <!--Autosigned by SineBot-->

== about Analytic functions of several variables ==


I would like to change the section name to Analytic functions of several complex variables. However, this page should also explain real analytic functions, so what we need to do may be an extension of the section. see also [[Function of several real variables]]--[[User:SilverMatsu|SilverMatsu]] ([[User talk:SilverMatsu|talk]]) 16:04, 1 February 2022 (UTC)
: If you want to really move things from [[Riemann surface]]s, you might consider first posting your intention on its talk page. Maybe the person who put that stuff in there, had some thing in mind when doing so. [[User:Oleg Alexandrov|Oleg Alexandrov]] 00:39, 12 Apr 2005 (UTC)

Latest revision as of 00:28, 14 January 2024

Continuing the analysis

[edit]

Oleg, any chance you'd want to add a see-also section with analytic continuation and germ (mathematics)? I want to rewrite/expand Riemann surfaces, and the current article there has three sections, on analytic continuation, germs, and examples of analytic continuation, that should be moved elsewhere. (e.g. either to this article, or to the article on analytic continuation). Since you are working this topic, would you care to make this move? linas 00:21, 12 April 2005 (UTC)[reply]

Do you mean, you want to put links to analytic continuation and germ (mathematics) in analytic function? That should certainly be no problem. About the stuff in Riemann surfaces you want to move, I think it would belong to analytic continuation and germ (mathematics) rather than to analytic function.
I do not work on this topic, actually I have quite little time for the moment. I wrote analytic function a while ago because it was in a sorry state.
If you want to really move things from Riemann surfaces, you might consider first posting your intention on its talk page. Maybe the person who put that stuff in there, had some thing in mind when doing so. Oleg Alexandrov 00:39, 12 April 2005 (UTC)[reply]
So what happened to all this content? The current article still doesn't mention any of the topics above: e.g. more than one variable, and the common pitfalls involved there (except for the single solitary example , but there are also more nice, more subtle examples of this kind.) Also, not a breath of analytic continuation or germs or jets shows up here -- these surely deserve at least a single-sentence mention. Also, an explanation for the "abuse of notation" for analytic functions, vs . and then fancy sophisticated stuff, like analysis in inf. dim. spaces, and frechet spaces and etc. The current content seems to be like its copied from a freshman college textbook, it fails to actually mention common topics that involve analytic functions...!? 67.198.37.16 (talk) 17:29, 16 April 2016 (UTC)[reply]

Definition of analytic functions

[edit]

The definition for analytic functions given in this article conflicts with that of Churchill:

   R. V. Churchill, Complex Variables and Applications,
   New York: McGraw-Hill, 1960.

His definition (p. 40) is more simply that a function f of the complex variable z is analytic at a point if its derivative f ' (z) exists at and at every point in some neighborhood of .

I am not convinced by the counterexample, because that function, exp(-1/x), is simply "infinitely smooth" at x=0, producing a Taylor series that evaluates to zero everywhere when expanded about x=0. I think this function should be considered analytic at x=0 since derivatives of all orders exist and are zero at that point.

63.195.51.145 00:07, 16 January 2007 (UTC)[reply]

There is no conflict. The definition in the book you mention is valid only for complex analytic functions, while the one given here is valid for both real and complex analytic functions. It is true that a complex differentiable function is the same as an analytic function. That is mentioned in this article. Oleg Alexandrov (talk) 04:22, 16 January 2007 (UTC)[reply]

I am unsure if I studied this yet in multivariable Calculus or part of Analysis earlier, but it is interesting. I am just curious whether this is the only possible definition of 'analytic function' if you use an abstract logical definition--maybe the mapping of elements of other relevant sets or categories can be analyzed.--Dchmelik (talk) 12:59, 27 February 2009 (UTC)[reply]

Logarithm

[edit]

Sorry for the bad editting here on this discussion page. I'm not really sure how to create a new category on it since I just created a user name. But I was reading this article on Analytic Functions and I noticed that in the Examples section, the logarithm function was given as an example of an analytic function. So let's consider on the set of real numbers R. Now pick =0. Then we can't find a power series representation of Log(x). Can we? So is the logarithm function not analytic then?

Thanks. Siyavash2 01:04, 24 December 2008

No problem on the editing. There should be a "new section" tag at the top of the page. Otherwise placing the section title between a pair of equal signs (two on each side) will also do it. I think the problem is with the domain you have in mind. The article says that the logarithm is "analytic on any open set of [its] domain." But zero is not in the domain of the logarithm. Does this answer your question? Thenub314 (talk) 21:48, 24 December 2008 (UTC)[reply]
Yes, thank you. I'm quite surprised there are so many good mathematicians here. Siyavash2 (talk) 01:23, 25 December 2008 (UTC)[reply]

Banach Space

[edit]

I don't see the relevance of the following:

"The set of all bounded functions with the supremum norm is a Banach space."

Does this somehow relate to analyticity? Dratman (talk) 19:11, 9 November 2009 (UTC)[reply]

Ops, you're right, my fault. There was written "...of all bounded analytic functions"; then I added a remark on the space (of all analytic functions, which is somehow more relevant btw), and lost the word analytic in the operation. Fixed now. --pma (talk) 23:50, 9 November 2009 (UTC)[reply]
[edit]

When ever I click the second reference, I remain on the Wikipedia page. Blackbombchu (talk) 16:31, 22 March 2014 (UTC)[reply]

Alternative Characterizations

[edit]

"For every compact set K ⊂ D there exists a constant C such that for every x ∈ K and every non-negative integer k the following bound holds"

Isn't e^{-1/x} an obvious counterexample? It satisfies the bound but is not analytic. Pwrong (talk) 11:49, 31 October 2014 (UTC)[reply]


You are right, I have updated the article. Because not all in are analytic. — Preceding unsigned comment added by 81.20.68.181 (talk) 12:44, 15 February 2017 (UTC)[reply]

Content Improvement

[edit]

The article states:

″ There exist both real analytic functions and complex analytic functions, categories that are similar in some ways, but different in others. ″ 

This sentence seems to have no substance. By definition, shouldn't two subsets of analytic functions be similar in some ways and different in others? Unless someone has a strong reason not to, I will delete this section and replace it with something more substantive, such as the difference between the two. Mgibby5 (talk) 23:29, 6 February 2015 (UTC)[reply]

Actually this sentence may sound a bit vague. On the other hand, in the introduction we just want to summarize shortly the contents that are developed in the article. Maybe adding some reference to some sections in the article will do. --pma 13:09, 9 February 2015 (UTC)[reply]
I welcome input onto what this sentence should be changed to, and references to other sections would be a good start. I think it would be legitimate and interesting to state that real analytic functions are not a subset of complex analytic functions. Thoughts? Mgibby5 (talk) 03:00, 12 February 2015 (UTC)[reply]
[edit]

Hello fellow Wikipedians,

I have just modified one external link on Analytic function. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}).

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 5 June 2024).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 08:54, 12 October 2016 (UTC)[reply]

Section: "Alternative characterizations"

[edit]

In the section it is stated the following:

"If ƒ is an infinitely differentiable function defined on an open set D ⊂ R, then the following conditions are equivalent.

1) ƒ is real analytic."

But infinitely differentiable function is not in general analytic, which is fact emphasized throughout the article. or did I miss the point ?

GeOinWiKi (talk) 17:30, 28 December 2016 (UTC)[reply]

You are right, I have updated the article. Because not all in are analytic. — Preceding unsigned comment added by 81.20.68.181 (talk) 13:44, 15 February 2017 (UTC)[reply]

about Analytic functions of several variables

[edit]

I would like to change the section name to Analytic functions of several complex variables. However, this page should also explain real analytic functions, so what we need to do may be an extension of the section. see also Function of several real variables--SilverMatsu (talk) 16:04, 1 February 2022 (UTC)[reply]