Jump to content

Carotenoid oxygenase: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
 
(49 intermediate revisions by 33 users not shown)
Line 1: Line 1:
__NOTOC__ <!-- The contents box has been removed because there aren't really any sections -->
{{Orphan|date=July 2006}}
{{Pfam_box
{{notverified}}
| Symbol = RPE65
| Name = Retinal pigment epithelial membrane protein
| image = PDB 2biw
[[File:Crystal structure of Synechocystis ACO.png|thumb]]
| width =
| caption = The Structure of a Retinal-Forming Carotenoid Oxygenase.<ref name="pmid15821095">{{cite journal | vauthors = Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE | title = The structure of a retinal-forming carotenoid oxygenase | journal = Science | volume = 308 | issue = 5719 | pages = 267–9 | date = April 2005 | pmid = 15821095 | doi = 10.1126/science.1108965 | s2cid = 6318853 | bibcode = 2005Sci...308..267K }}</ref>
| Pfam= PF03055
| InterPro= IPR004294
| SMART=
| Prosite =
| SCOP = 2biw
| TCDB =
| OPM family= 103
| OPM protein= 2biw
| PDB=
}}
'''Carotenoid oxygenases''' are a [[Protein family|family]] of [[enzyme]]s involved in the [[Bond cleavage|cleavage]] of [[carotenoid]]s to produce, for example, [[retinol]], commonly known as [[vitamin A]]. This family includes an enzyme known as [[RPE65]] which is abundantly expressed in the [[retinal pigment epithelium]] where it catalyzed the formation of 11-cis-retinol from all-trans-retinyl esters.


[[File:RPE65 Active Site.png|left|thumb|346x346px|The RPE65 iron(II) cofactor, showing its coordination with 4 histidine residues and 3 glutamic acid residues.<ref name="Kiser_2015">{{cite journal | vauthors = Kiser PD, Zhang J, Badiee M, Li Q, Shi W, Sui X, Golczak M, Tochtrop GP, Palczewski K | display-authors = 6 | title = Catalytic mechanism of a retinoid isomerase essential for vertebrate vision | journal = Nature Chemical Biology | volume = 11 | issue = 6 | pages = 409–15 | date = June 2015 | pmid = 25894083 | pmc = 4433804 | doi = 10.1038/nchembio.1799 }}</ref>]]
'''Carotenoid oxygenase''' is involved in the [[cleavage]] of [[carotenoid]]s to produce [[retinol]], commonly known as [[vitamin A]].
Carotenoids such as [[beta-carotene]], [[lycopene]], [[lutein]] and [[beta-cryptoxanthin]] are produced in plants and certain bacteria, algae and fungi, where they function as accessory photosynthetic pigments and as scavengers of oxygen radicals for [[photoprotection]]. They are also essential dietary nutrients in animals. Carotenoid oxygenases cleave a variety of carotenoids into a range of biologically important products, including [[apocarotenoid]]s in plants that function as [[hormone]]s, pigments, flavours, floral scents and defence compounds, and retinoids in animals that function as [[vitamin]]s, [[chromophore]]s for [[opsin]]s and signalling molecules.<ref name="PUB00016926">{{cite journal | vauthors = Wyss A | title = Carotene oxygenases: a new family of double bond cleavage enzymes | journal = The Journal of Nutrition | volume = 134 | issue = 1 | pages = 246S–250S | date = January 2004 | pmid = 14704328 | doi = 10.1093/jn/134.1.246S | doi-access = free }}</ref> Examples of carotenoid oxygenases include:


* [[Beta-carotene 15,15'-monooxygenase]] (BCO1; {{EC number|1.14.99.36}}) from animals, which cleaves beta-carotene symmetrically at the central double bond to yield two molecules of retinal.<ref name="PUB00016926" />
* [[BCO2 (gene)|Beta-carotene-9',10'-dioxygenase]] (BCO2) from animals, which cleaves beta-carotene asymmetrically to apo-10'-beta-carotenal and beta-ionone, the latter being converted to retinoic acid. Lycopene is also oxidatively cleaved.<ref name="PUB00016926"/>
* 9-cis-epoxycarotenoid dioxygenase from plants, which cleaves 9-cis [[xanthophyll]]s to [[xanthoxin]], a precursor of the hormone [[abscisic acid]].<ref name="PUB00016927">{{cite journal | vauthors = Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR | title = Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family | journal = The Plant Journal | volume = 35 | issue = 1 | pages = 44–56 | date = July 2003 | pmid = 12834401 | doi = 10.1046/j.1365-313X.2003.01786.x | doi-access = free }}</ref> Yellow skin, which is a common phenotype in domestic chicken, is influenced by the accumulation of carotenoids in skin due to absence of beta-carotene dioxygenase 2 (BCDO2) enzyme. Inhibition of expression of BCO2 gene is caused by a regulatory mutation.<ref>{{cite journal | vauthors = Eriksson J, Larson G, Gunnarsson U, Bed'hom B, Tixier-Boichard M, Strömstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L | display-authors = 6 | title = Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken | journal = PLOS Genetics | volume = 4 | issue = 2 | pages = e1000010 | date = February 2008 | pmid = 18454198 | pmc = 2265484 | doi = 10.1371/journal.pgen.1000010 | editor-first = Michel | editor-last = Georges | doi-access = free }}</ref>
* Apocarotenoid-15,15'-oxygenase from bacteria and cyanobacteria, which converts beta-apocarotenals rather than beta-carotene into retinal. This protein has a seven-bladed beta-propeller structure.<ref name="PUB00016929">{{cite journal | vauthors = Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE | title = The structure of a retinal-forming carotenoid oxygenase | journal = Science | volume = 308 | issue = 5719 | pages = 267–9 | date = April 2005 | pmid = 15821095 | doi = 10.1126/science.1108965 | s2cid = 6318853 | bibcode = 2005Sci...308..267K }}</ref>
* [[RPE65|Retinal pigment epithelium 65 kDa protein]] (RPE65) from vertebrates which is important for the production of 11-cis retinal during visual opsin regeneration.


Members of the family use an iron(II) active center, usually held by four histidines.
{{enzyme-stub}}

{{Uncategorized|date=June 2007}}
==Human proteins containing this domain==
[[BCO2]]; [[BCO1]]; [[RPE65]];

== References ==
{{reflist}}

== Further reading ==
{{refbegin}}
* {{cite journal | vauthors = Nicoletti A, Wong DJ, Kawase K, Gibson LH, Yang-Feng TL, Richards JE, Thompson DA | title = Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium | journal = Human Molecular Genetics | volume = 4 | issue = 4 | pages = 641–9 | date = April 1995 | pmid = 7633413 | doi = 10.1093/hmg/4.4.641 }}
{{refend}}

{{InterPro content|IPR004294}}

{{DEFAULTSORT:Carotenoid Oxygenase}}
[[Category:Bioindicators]]
[[Category:Carotenoids]]
[[Category:Enzymes]]
[[Category:Protein domains]]
[[Category:Protein families]]
[[Category:Peripheral membrane proteins]]

Latest revision as of 20:31, 23 May 2024

Retinal pigment epithelial membrane protein
[[File:PDB 2biw
|frameless]]
The Structure of a Retinal-Forming Carotenoid Oxygenase.[1]
Identifiers
SymbolRPE65
PfamPF03055
InterProIPR004294
SCOP22biw / SCOPe / SUPFAM
OPM superfamily103
OPM protein2biw
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Carotenoid oxygenases are a family of enzymes involved in the cleavage of carotenoids to produce, for example, retinol, commonly known as vitamin A. This family includes an enzyme known as RPE65 which is abundantly expressed in the retinal pigment epithelium where it catalyzed the formation of 11-cis-retinol from all-trans-retinyl esters.

The RPE65 iron(II) cofactor, showing its coordination with 4 histidine residues and 3 glutamic acid residues.[2]

Carotenoids such as beta-carotene, lycopene, lutein and beta-cryptoxanthin are produced in plants and certain bacteria, algae and fungi, where they function as accessory photosynthetic pigments and as scavengers of oxygen radicals for photoprotection. They are also essential dietary nutrients in animals. Carotenoid oxygenases cleave a variety of carotenoids into a range of biologically important products, including apocarotenoids in plants that function as hormones, pigments, flavours, floral scents and defence compounds, and retinoids in animals that function as vitamins, chromophores for opsins and signalling molecules.[3] Examples of carotenoid oxygenases include:

  • Beta-carotene 15,15'-monooxygenase (BCO1; EC 1.14.99.36) from animals, which cleaves beta-carotene symmetrically at the central double bond to yield two molecules of retinal.[3]
  • Beta-carotene-9',10'-dioxygenase (BCO2) from animals, which cleaves beta-carotene asymmetrically to apo-10'-beta-carotenal and beta-ionone, the latter being converted to retinoic acid. Lycopene is also oxidatively cleaved.[3]
  • 9-cis-epoxycarotenoid dioxygenase from plants, which cleaves 9-cis xanthophylls to xanthoxin, a precursor of the hormone abscisic acid.[4] Yellow skin, which is a common phenotype in domestic chicken, is influenced by the accumulation of carotenoids in skin due to absence of beta-carotene dioxygenase 2 (BCDO2) enzyme. Inhibition of expression of BCO2 gene is caused by a regulatory mutation.[5]
  • Apocarotenoid-15,15'-oxygenase from bacteria and cyanobacteria, which converts beta-apocarotenals rather than beta-carotene into retinal. This protein has a seven-bladed beta-propeller structure.[6]
  • Retinal pigment epithelium 65 kDa protein (RPE65) from vertebrates which is important for the production of 11-cis retinal during visual opsin regeneration.

Members of the family use an iron(II) active center, usually held by four histidines.

Human proteins containing this domain

[edit]

BCO2; BCO1; RPE65;

References

[edit]
  1. ^ Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (April 2005). "The structure of a retinal-forming carotenoid oxygenase". Science. 308 (5719): 267–9. Bibcode:2005Sci...308..267K. doi:10.1126/science.1108965. PMID 15821095. S2CID 6318853.
  2. ^ Kiser PD, Zhang J, Badiee M, Li Q, Shi W, Sui X, et al. (June 2015). "Catalytic mechanism of a retinoid isomerase essential for vertebrate vision". Nature Chemical Biology. 11 (6): 409–15. doi:10.1038/nchembio.1799. PMC 4433804. PMID 25894083.
  3. ^ a b c Wyss A (January 2004). "Carotene oxygenases: a new family of double bond cleavage enzymes". The Journal of Nutrition. 134 (1): 246S–250S. doi:10.1093/jn/134.1.246S. PMID 14704328.
  4. ^ Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (July 2003). "Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family". The Plant Journal. 35 (1): 44–56. doi:10.1046/j.1365-313X.2003.01786.x. PMID 12834401.
  5. ^ Eriksson J, Larson G, Gunnarsson U, Bed'hom B, Tixier-Boichard M, Strömstedt L, et al. (February 2008). Georges M (ed.). "Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken". PLOS Genetics. 4 (2): e1000010. doi:10.1371/journal.pgen.1000010. PMC 2265484. PMID 18454198.
  6. ^ Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (April 2005). "The structure of a retinal-forming carotenoid oxygenase". Science. 308 (5719): 267–9. Bibcode:2005Sci...308..267K. doi:10.1126/science.1108965. PMID 15821095. S2CID 6318853.

Further reading

[edit]
  • Nicoletti A, Wong DJ, Kawase K, Gibson LH, Yang-Feng TL, Richards JE, Thompson DA (April 1995). "Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium". Human Molecular Genetics. 4 (4): 641–9. doi:10.1093/hmg/4.4.641. PMID 7633413.
This article incorporates text from the public domain Pfam and InterPro: IPR004294