Hexadecimal: Difference between revisions
Yoshi24517 (talk | contribs) m Reverted edits by 2600:6C4E:EF0:6E0:86A:C83A:F379:41E2 (talk) (HG) (3.4.12) |
|||
Line 1: | Line 1: | ||
{{Short description|Base-16 numerical system}} |
|||
{{Redirect|Sexadecimal|base 60|Sexagesimal}} |
|||
{{Redirect|Hex digit|binary-coded hexadecimals|Nibble}} |
|||
{{Redirect|Hex format|hexadecimal file formats|Hex file (disambiguation)}} |
|||
{{Use dmy dates|date=March 2020|cs1-dates=y}} |
|||
{{Numeral systems}} |
{{Numeral systems}} |
||
'''Hexadecimal''' (also known as '''base-16''' or simply '''hex''') is a [[Numeral system#Positional systems in detail|positional numeral system]] that represents numbers using a [[radix]] (base) of sixteen. Unlike the [[decimal]] system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen. |
|||
Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of [[binary code|binary-coded]] values. Each hexadecimal digit represents four [[bit]]s (binary digits), also known as a [[nibble]] (or nybble).<ref>{{Cite news |title=The hexadecimal system |url=https://www.ionos.co.uk/digitalguide/server/know-how/hexadecimal-system/ |access-date=2022-08-26 |newspaper=Ionos Digital Guide |language=en |archive-date=2022-08-26 |archive-url=https://web.archive.org/web/20220826084201/https://www.ionos.co.uk/digitalguide/server/know-how/hexadecimal-system/ |url-status=live }}</ref> For example, a 6-bit [[byte]] can have values ranging from {{mono|000000}} to {{mono|111111}} (0 to 63 decimal) in binary form, which can be written as {{mono|00}} to {{mono|3F}} in hexadecimal. |
|||
Its primary use is as a human friendly representation of [[binary code]]d values, so it is often used in digital electronics and computer engineering. Since each hexadecimal digit represents four binary digits ([[bit]]s)—also called a [[nibble]]—it is a compact and easily translated [[shorthand]] to express values in [[base two]]. |
|||
In mathematics, a subscript is typically used to specify the base. For example, the decimal value {{val|711|fmt=commas}} would be expressed in hexadecimal as {{hexadecimal|711}}. In programming, several notations denote hexadecimal numbers, usually involving a prefix. The prefix <code>0x</code> is used in [[C (programming language)|C]], which would denote this value as <code>0x{{hexadecimal|711|no}}</code>. |
|||
__TOC__ |
|||
{{clr}} |
|||
Hexadecimal is used in the transfer encoding '''Base 16''', in which each byte of the [[plaintext|plain text]] is broken into two 4-bit values and represented by two hexadecimal digits. |
|||
==Uses== |
|||
<table border=" cellspacing="0" cellpadding="10" align="right"> |
|||
==Representation== |
|||
<tr> |
|||
<td> |
|||
===Written representation=== |
|||
{| border="0" cellspacing="0" cellpadding="0" style="text-align:center;border:2px" align="center" |
|||
|- style="background:black; height:2px" |
|||
In most current use cases, the letters A–F or a–f represent the values 10–15, while the [[Arabic numerals|numerals]] 0–9 are used to represent their decimal values. |
|||
| style="background:black; width:2px" | || || || || || || || || || || || |
|||
|-style="background:#F6A07C; color:black; height:24px" |
|||
There is no universal convention to use lowercase or uppercase, so each is prevalent or preferred in particular environments by community standards or convention; even mixed case is used. Some [[seven-segment display]]s use mixed-case 'A b C d E F' to distinguish the digits A–F from one another and from 0–9. |
|||
| style="background:black; width:2px" | || style="width:45px"|'''0'''<sub>hex</sub> || = || style="width:45px"|[[0 (number)|0<sub>dec</sub>]] || = || style="width:45px"|0<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0 ||style="background:black; width:2px" | |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
There is some standardization of using spaces (rather than commas or another punctuation mark) to separate hex values in a long list. For instance, in the following [[hex dump]], each 8-bit [[byte]] is a 2-digit hex number, with spaces between them, while the 32-bit offset at the start is an 8-digit hex number. |
|||
| style="background:black; width:2px" | || '''1'''<sub>hex</sub> || = || [[1 (number)|1<sub>dec</sub>]] || = || 1<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
<div class="nowrap"><syntaxhighlight lang="hexdump"> |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
00000000 57 69 6b 69 70 65 64 69 61 2c 20 74 68 65 20 66 |
|||
| style="background:black; width:2px" | || '''2'''<sub>hex</sub> || = || [[2 (number)|2<sub>dec</sub>]] ||= || 2<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
00000010 72 65 65 20 65 6e 63 79 63 6c 6f 70 65 64 69 61 |
|||
|-style="background:#FDC888; color:black; height:24px" |
|||
00000020 20 74 68 61 74 20 61 6e 79 6f 6e 65 20 63 61 6e |
|||
| style="background:black; width:2px" | || '''3'''<sub>hex</sub> || = || [[3 (number)|3<sub>dec</sub>]] || = || 3<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
00000030 20 65 64 69 74 0a |
|||
|- style="background:black; height:2px" |
|||
</syntaxhighlight></div> |
|||
| style="background:black; width:2px" | || || || || || || || || || || || |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''4'''<sub>hex</sub> || = || [[4 (number)|4<sub>dec</sub>]] ||= || 4<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#FDC888; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''5'''<sub>hex</sub> || = || [[5 (number)|5<sub>dec</sub>]] || = || 5<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|-style="background:#FEE978; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''6'''<sub>hex</sub> || = || [[6 (number)|6<sub>dec</sub>]] ||= || 6<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | ||'''7'''<sub>hex</sub> || = || [[7 (number)|7<sub>dec</sub>]] || = || 7<sub>oct</sub> ||style="background:black; width:2px" | || style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|- style="background:black; height:2px" |
|||
| style="background:black; width:2px" | || || || || || || || || || || || |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''8'''<sub>hex</sub> || = || [[8 (number)|8<sub>dec</sub>]] || = || 10<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#FEE978; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''9'''<sub>hex</sub> || = || [[9 (number)|9<sub>dec</sub>]] ||= || 11<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|-style="background:#FDC888; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''A'''<sub>hex</sub>|| = || [[10 (number)|10<sub>dec</sub>]] || = || 12<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''B'''<sub>hex</sub>|| = || [[11 (number)|11<sub>dec</sub>]] || = || 13<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|- style="background:black; height:2px" |
|||
| style="background:black; width:2px" | || || || || || || || || || || || |
|||
|-style="background:#FDC888; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''C'''<sub>hex</sub>|| = || [[12 (number)|12<sub>dec</sub>]] || = || 14<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''D'''<sub>hex</sub>|| = || [[13 (number)|13<sub>dec</sub>]] ||= || 15<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|-style="background:#E3EDE9; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''E'''<sub>hex</sub>|| = || [[14 (number)|14<sub>dec</sub>]] ||= || 16<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:white;width:24px"|0||style="background:black; width:2px" | |
|||
|-style="background:#F6A07C; color:black; height:24px" |
|||
| style="background:black; width:2px" | || '''F'''<sub>hex</sub>|| = || [[15 (number)|15<sub>dec</sub>]] || = || 17<sub>oct</sub> ||style="background:black; width:2px" | || style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1|| style="background:red;width:24px"|1||style="background:black; width:2px" | |
|||
|- style="background:black; height:2px" |
|||
| style="background:black; width:2px" | || || || || || || || || || || || |
|||
|} |
|||
</td> |
|||
</tr> |
|||
</table> |
|||
In digital computing, hexadecimal is primarily used to represent [[byte]]s. Attempts to represent the 256 possible byte values by other means have led to problems. Directly representing each possible byte value with a single character representation runs into ''unprintable'' [[control character]]s in the [[ASCII]] character set. Even if a standard set of printable characters were devised for every byte value, neither users nor input hardware are equipped to handle 256 unique characters. Most hex [[editing]] software displays each byte as a single character, but unprintable characters are usually substituted with period or blank. |
|||
====Distinguishing from decimal==== |
|||
In [[URL]]s, all characters ''can'' be coded using hexadecimal.<ref>See [[Request for Comments|RFC]] 3986 at RFC 3986.</ref> Each 2-digit (1 byte) hexadecimal sequence is preceded by a [[percent]] sign. For example, the URL <code>http://en.wikipedia.org/wiki/Main%20Page</code> substitutes a space (which is not allowed in URLs) with the hex code for a space (<code>%20</code>). |
|||
In contexts where the [[radix|base]] is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously. A numerical subscript (itself written in decimal) can give the base explicitly: 159<sub>10</sub> is decimal 159; 159<sub>16</sub> is hexadecimal 159, which equals 345<sub>10</sub>. Some authors prefer a text subscript, such as 159<sub>decimal</sub> and 159<sub>hex</sub>, or 159<sub>d</sub> and 159<sub>h</sub>. |
|||
[[Donald Knuth]] introduced the use of a particular typeface to represent a particular radix in his book ''The TeXbook''.<ref>{{Cite book |last=Knuth |first=Donald Ervin |url=https://www.worldcat.org/oclc/12973034 |title=The TeXbook |date=1986 |others=Duane Bibby |isbn=0-201-13447-0 |location=Reading, Mass. |oclc=12973034 |access-date=2022-03-15 |archive-date=2022-01-16 |archive-url=https://web.archive.org/web/20220116012119/http://www.worldcat.org/oclc/12973034 |url-status=live }}</ref> Hexadecimal representations are written there in a [[Monospaced font|typewriter typeface]]: {{mono|5A3}}, {{mono|C1F27ED}} |
|||
==Representing hexadecimal== |
|||
In situations where there is no context, a hexadecimal number might be ambiguous and confused with numbers expressed in other bases. There are several conventions for unambiguously expressing values. In mathematics, a subscript is often used on each number explicitly giving the base: 159<sub>10</sub> is decimal 159; 159<sub>16</sub> is hexadecimal 159 which is equal to 345<sub>10</sub>. Some authors prefer a text subscript, such as 159<sub>decimal</sub> and 159<sub>hex</sub>. |
|||
In linear text systems, such as those used in most computer programming environments, a variety of methods have arisen:<!-- |
In linear text systems, such as those used in most computer programming environments, a variety of methods have arisen:<!-- |
||
*** These are ordered from most likely to be encountered by lay people |
* * * These are ordered from most to least likely to be encountered by lay people |
||
* * * --> |
|||
*** to least likely to be encountered by lay people **** --> |
|||
* {{anchor|_nix}}Although best known from the [[C (programming language)|C programming language]] (and the many languages influenced by C), the prefix <code>0x</code> to indicate a hex constant may have had origins in the [[IBM Stretch]] systems. It is derived from the <code>0</code> prefix already in use for [[octal]] constants. Byte values can be expressed in hexadecimal with the prefix <code>\x</code> followed by two hex digits: <code>'\x1B'</code> represents the [[Escape character|Esc]] control character; <code>"\x1B[0m\x1B[25;1H"</code> is a string containing 11 characters with two embedded Esc characters.<ref>The string <code>"\x1B[0m\x1B[25;1H"</code> specifies the character sequence {{mono|Esc [ 0 m Esc [ 2 5; 1 H}}. These are the escape sequences used on an [[ANSI escape code|ANSI terminal]] that reset the character set and color, and then move the cursor to line 25.</ref> To output an integer as hexadecimal with the [[printf]] function family, the format conversion code <code>%X</code> or <code>%x</code> is used. |
|||
* In [[URL]]s, character codes are written as hexadecimal pairs prefixed with <code>%</code>: <code><nowiki>http://www.example.com/name%20with%20spaces</nowiki></code> where <code>%20</code> is the space (blank) character, code 20 hex, or 32 decimal. |
|||
* In [[XML]] and [[XHTML]], characters can be expressed as hexadecimal using the notation <code>&# |
* In [[XML]] and [[XHTML]], characters can be expressed as hexadecimal [[numeric character reference]]s using the notation <code>&#x''code'';</code>, for instance <code>&#x0054;</code> represents the character U+0054 (the uppercase letter "T"). If there is no {{code|x}} the number is decimal (thus <code>&#0084;</code> is the same character).<ref>{{cite web|url=https://www.unicode.org/charts/PDF/U2000.pdf|title=The Unicode Standard, Version 7|website=Unicode|access-date=28 October 2018|archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303175510/http://www.unicode.org/charts/PDF/U2000.pdf|url-status=live}}</ref> |
||
* {{anchor|Intel}}In Intel-derived [[assembly language]]s and Modula-2,<ref>{{cite web |title=Modula-2 – Vocabulary and representation |url=http://modula2.org/reference/vocabulary.php |website=Modula −2 |access-date=1 November 2015 |archive-date=2015-12-13 |archive-url=https://web.archive.org/web/20151213053318/http://www.modula2.org/reference/vocabulary.php |url-status=live }}</ref> hexadecimal is denoted with a suffixed {{mono|H}} or {{mono|h}}: <code>FFh</code> or <code>05A3H</code>. Some implementations require a leading zero when the first hexadecimal digit character is not a decimal digit, so one would write <code>0FFh</code> instead of <code>FFh</code>. Some other implementations (such as NASM) allow C-style numbers (<code>0x42</code>). |
|||
| url = http://www.web-colors-explained.com/hex.php |
|||
* {{anchor|Motorola}}Other assembly languages ([[MOS Technology 6502|6502]], [[Motorola]]), [[Pascal (programming language)|Pascal]], [[Delphi (programming language)|Delphi]], some versions of [[BASIC]] ([[Commodore BASIC|Commodore]]), [[GameMaker Studio|GameMaker Language]], [[Godot (game engine)|Godot]] and [[Forth (programming language)|Forth]] use <code>$</code> as a prefix: <code>$5A3</code>, <code>$C1F27ED</code>. |
|||
| title = Hexadecimal web colors explained |
|||
* Some assembly languages (Microchip) use the notation <code>H'ABCD'</code> (for ABCD<sub>16</sub>). Similarly, [[Fortran 95 language features|Fortran 95]] uses Z'ABCD'. |
|||
}} </ref> |
|||
* [[Ada (programming language)|Ada]] and [[VHDL]] enclose hexadecimal numerals in based "numeric quotes": <code>16#5A3#</code>, <code>16#C1F27ED#</code>. For bit vector constants [[VHDL]] uses the notation <code>x"5A3"</code>, <code>x"C1F27ED"</code>.<ref>{{cite web |url=https://www.fpgatutorial.com/vhdl-types-and-conversions#vhdl-assign-data |title=An Introduction to VHDL Data Types |website=FPGA Tutorial |date=10 May 2020 |access-date=2020-08-21 |archive-date=2020-08-23 |archive-url=https://web.archive.org/web/20200823094252/https://www.fpgatutorial.com/vhdl-types-and-conversions/#vhdl-assign-data |url-status=live }}</ref> |
|||
* The [[C (programming language)|C programming language]] (and its syntactical descendants<ref>Some of C's syntactical descendants are [[C++]], [[C Sharp programming language|C#]], [[Java (programming language)|Java]], [[JavaScript]], and [[Windows PowerShell]]</ref>) use the prefix <code>0x</code>: <code>0x5A3</code> Character and string constants may express character codes in hexadecimal with the prefix <code>\x</code> followed by two hex digits: <code>'\x1B'</code> (specifies the [[Escape character|Esc]] control character), <code>"\x1B[0m\x1B[25;1H"</code> is a string containing 11 characters (not including an implied trailing NUL).<ref> The string <code>"\x1B[0m\x1B[25;1H"</code> specifies the characters: <tt>Esc [ 0 m Esc [ 2 5 ; 1 H</tt>. This expresses the escape sequences used to reset the character set and color then move the cursor to line 25 in an [[ANSI escape code|ANSI terminal]].</ref> To output a value as hexadecimal with the [[printf]] function family, the format conversion code <code>%X</code> or <code>%x</code> is used. |
|||
* In the [[Unicode]] standard, a character value is represented with <code>U+<code> followed by the hex value: <code>U+20AC</code> is the [[Euro sign]] (€). |
|||
* [[MIME]] (e-mail extensions) [[quoted-printable]] characters by code inside a <code>text/plain MIME-part</code> body prefix non-printable ASCII characters with an ''equal to'' sign <code>=</code>, as in <code>Espa=D1a</code> to send "España" (Spain). |
|||
* In Intel-derived [[assembly language]]s, hexadecimal is indicated with a suffixed <tt>H</tt> or <tt>h</tt>: <code>FFh</code> or <code>0A3CH</code>. Some implementations require a leading zero when the first character is not a digit: <code>0FFh</code> |
|||
* Other assembly languages ([[MOS Technology 6502|6502]], [[AT&T]], [[Motorola]]), [[Pascal (programming language)|Pascal]], and some versions of [[BASIC programming language|BASIC]] ([[Commodore BASIC|Commodore]]) and [[Forth (programming language)|Forth]] use <code>$</code> as a prefix: <code>$5A3</code>. |
|||
* Some assembly languages (Microchip) use the notation <code>H'ABCD'</code> (for ABCD<sub>16</sub>). |
|||
* [[*nix]] (UNIX and related) shells use an escape character form <code>\x0FF</code> in expressions and <code>0xFF</code> for constants. |
|||
* [[Ada (programming language)|Ada]] and [[VHDL]] enclose hexadecimal numerals in based "numeric quotes": <code>16#5A3#</code> |
|||
* [[Verilog]] represents hexadecimal constants in the form <code>8'hFF</code>, where 8 is the number of bits in the value and FF is the hexadecimal constant. |
* [[Verilog]] represents hexadecimal constants in the form <code>8'hFF</code>, where 8 is the number of bits in the value and FF is the hexadecimal constant. |
||
* [[ |
* The [[Icon (programming language)|Icon]] and [[Smalltalk]] languages use the prefix <code>16r</code>: <code>16r5A3</code> |
||
* |
* [[PostScript]] and the [[Bourne shell]] and its derivatives denote hex with prefix <code>16#</code>: <code>16#5A3</code>, <code>16#C1F27ED</code>. |
||
* [[Common Lisp]] uses the prefixes <code>#x</code> and <code>#16r</code>. Setting the variables *read-base*<ref>{{cite web |title=*read-base* variable in Common Lisp |url=http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_bas.htm |website=CLHS |access-date=2015-01-10 |archive-date=2016-02-03 |archive-url=https://web.archive.org/web/20160203221612/http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_bas.htm |url-status=live }}</ref> and *print-base*<ref>{{cite web |title=*print-base* variable in Common Lisp |url=http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_bas.htm#STprint-baseST |website=CLHS |access-date=2015-01-10 |archive-date=2014-12-26 |archive-url=https://web.archive.org/web/20141226172420/http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_bas.htm#STprint-baseST |url-status=live }}</ref> to 16 can also be used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, when the input or output base has been changed to 16. |
|||
* [[Postscript programming language|Postscript]] indicates hex with prefix <code>16#</code>: <code>16#ABCD</code>. Binary data (such as image [[pixel]]s) can be expressed as unprefixed consecutive hexadecimal pairs: <code>AA213FD51B3801043FBC</code>... |
|||
* [[MSX BASIC]],<ref>[http://www.atarimagazines.com/compute/issue56/107_1_MSX_IS_COMING.php MSX is Coming — Part 2: Inside MSX] {{Webarchive|url=https://web.archive.org/web/20101124111223/http://www.atarimagazines.com/compute/issue56/107_1_MSX_IS_COMING.php |date=2010-11-24 }} [[Compute!]], issue 56, January 1985, p. 52</ref> [[QuickBASIC]], [[FreeBASIC]] and [[Visual Basic]] prefix hexadecimal numbers with <code>&H</code>: <code>&H5A3</code> |
|||
* [[Common Lisp]] use the prefixes <code>#x</code> and <code>#16r</code>. |
|||
* [[BBC BASIC]] and [[Locomotive BASIC]] use <code>&</code> for hex.<ref>BBC BASIC programs are not fully portable to [[Microsoft BASIC]] (without modification) since the latter takes <code>&</code> to prefix [[octal]] values. (Microsoft BASIC primarily uses <code>&O</code> to prefix octal, and it uses <code>&H</code> to prefix hexadecimal, but the ampersand alone yields a default interpretation as an octal prefix.</ref> |
|||
* [[QBasic]] and [[Visual Basic]], prefix hexadecimal numerals with <code>&H</code>: <code>&H5A3</code> |
|||
* [[ |
* [[TI-89]] and 92 series uses a <code>0h</code> prefix: <code>0h5A3</code>, <code>0hC1F27ED</code> |
||
* [[ALGOL 68]] uses the prefix <code>16r</code> to denote hexadecimal numbers: <code>16r5a3</code>, <code>16rC1F27ED</code>. Binary, quaternary (base-4), and octal numbers can be specified similarly. |
|||
* [[TI-89]] and 92 series uses <code>0h</code>: <code>0hA3</code> |
|||
* |
* The most common format for hexadecimal on IBM mainframes ([[zSeries]]) and midrange computers ([[IBM i]]) running the traditional OS's ([[z/OS|zOS]], [[VSE (operating system)|zVSE]], [[z/VM|zVM]], [[Transaction Processing Facility|TPF]], [[IBM i]]) is <code>X'5A3'</code> or <code>X'C1F27ED'</code>, and is used in Assembler, [[PL/I]], [[COBOL]], [[Job Control Language|JCL]], scripts, commands and other places. This format was common on other (and now obsolete) IBM systems as well. Occasionally quotation marks were used instead of apostrophes. |
||
* [[Donald Knuth]] introduced the use of particular typeface to represent a particular radix in his book ''The TeXbook''.<ref> Donald E. Knuth. ''The TeXbook'' ([[Computers and Typesetting]], Volume A). Reading, Massachusetts: Addison-Wesley, 1984. ISBN 0-201-13448-9. The [http://www.ctan.org/tex-archive/systems/knuth/tex/texbook.tex source code of the book in TeX] (and a needed set of macros [ftp://tug.ctan.org/pub/tex-archive/systems/knuth/lib/manmac.tex]) is available online on [[CTAN]].</ref> There, hexadecimal representations are written in a typewriter typeface: <tt>5A3</tt> |
|||
====Syntax that is always Hex==== |
|||
There is no universal convention to use lowercase or uppercase for the letter digits, and each is prevalent or preferred by particular environments by community standards or convention. |
|||
Sometimes the numbers are known to be Hex. |
|||
* In [[URI]]s (including [[URL]]s), [[character encoding|character codes]] are written as hexadecimal pairs prefixed with {{code|%}}: {{code|<nowiki>http://www.example.com/name%20with%20spaces</nowiki>}} where {{code|%20}} is the code for the [[Space (punctuation)#Space characters and digital typography|space (blank)]] character, [[ASCII]] code point 20 in hex, 32 in decimal. |
|||
[[Image:Bruce Martin hexadecimal notation proposal.png|thumb|Bruce A. Martin's hexadecimal notation proposal]] |
|||
* In the [[Unicode]] standard, a character value is represented with {{code|U+}} followed by the hex value, e.g. {{code|U+00A1}} is the [[inverted exclamation point]] (¡). |
|||
* [[Web colors|Color references]] in HTML, [[Cascading Style Sheets|CSS]] and [[X window system|X Window]] can be expressed with six hexadecimal digits (two each for the red, green and blue components, in that order) prefixed with {{code|#}}: <span style="color:#FF00FF">magenta</span>, for example, is represented as {{code|#FF00FF}}.<ref>{{cite web |url=http://www.web-colors-explained.com/hex.php |title=Hexadecimal web colors explained |access-date=2006-01-11 |archive-url=https://web.archive.org/web/20060422004336/http://www.web-colors-explained.com/hex.php |archive-date=2006-04-22 |url-status=dead }}</ref> CSS also allows 3-hexdigit abbreviations with one hexdigit per component: {{code|#FA3}} abbreviates {{code|#FFAA33}} (a golden orange: {{color box|#FA3}}). |
|||
* In [[MIME]] (e-mail extensions) [[quoted-printable]] encoding, character codes are written as hexadecimal pairs prefixed with {{code|1==}}: {{code|1=Espa=F1a}} is "España" (F1{{sub|hex}} is the code for ''ñ'' in the ISO/IEC 8859-1 character set).<ref>{{Cite web |url=https://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html|title=ISO-8859-1 (ISO Latin 1) Character Encoding |website=www.ic.unicamp.br|access-date=2019-06-26|archive-date=2019-06-29 |archive-url=https://web.archive.org/web/20190629203430/http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html|url-status=live}}</ref>) |
|||
* PostScript binary data (such as image [[pixel]]s) can be expressed as unprefixed consecutive hexadecimal pairs: {{code|AA213FD51B3801043FBC}} ... |
|||
* Any [[IPv6 address]] can be written as eight groups of four hexadecimal digits (sometimes called [[hextet (computing)|hextet]]s), where each group is separated by a colon ({{code|:}}). This, for example, is a valid IPv6 address: {{code|2001:0db8:85a3:0000:0000:8a2e:0370:7334}} or abbreviated by removing leading zeros as {{code|2001:db8:85a3::8a2e:370:7334}} ([[IPv4 address]]es are usually written in decimal). |
|||
* [[Globally unique identifier]]s are written as thirty-two hexadecimal digits, often in unequal hyphen-separated groupings, for example {{code|3F2504E0-4F89-41D3-9A0C-0305E82C3301}}. |
|||
===Other symbols for 10–15 and mostly different symbol sets=== |
|||
The choice of the letters ''A'' through ''F'' to represent the digits above nine was not universal in the early history of computers. During the 1950s, some installations favored using the digits 0 through 5 with a [[macron]] character ("¯") to indicate the values 10-15. Users of [[Bendix G-15]] computers used the letters ''U'' through ''Z''. [[Bruce A. Martin]] of [[Brookhaven National Laboratory]] considered the choice of A-F "ridiculous" and in 1968 proposed in a letter to the editor of the [[Association for Computing Machinery|ACM]] an entirely new set of symbols based on the bit locations, which did not gain much acceptance<!-- if any -->.<ref>''Letters to the editor: On binary notation'', Bruce A. Martin, Associated Universities Inc., Communications of the ACM, Volume 11, Issue 10 (October 1968) Page: 658 {{DOI|10.1145/364096.364107}}</ref> |
|||
The use of the letters ''A'' through ''F'' to represent the digits above 9 was not universal in the early history of computers. |
|||
[[Image:Hexadecimal multiplication table.svg|right|thumb|A hexadecimal [[multiplication table]]]] |
|||
* During the 1950s, some installations, such as Bendix-14, favored using the digits 0 through 5 with an [[overline]] to denote the values {{nowrap|10–15}} as {{overline|0}}, {{overline|1}}, {{overline|2}}, {{overline|3}}, {{overline|4}} and {{overline|5}}. |
|||
* The [[SWAC (computer)|SWAC]] (1950)<ref name="Savard_2018_CA"/> and [[Bendix G-15]] (1956)<ref name="Bendix"/><ref name="Savard_2018_CA"/> computers used the lowercase letters ''u'', ''v'', ''w'', ''x'', ''y'' and ''z'' for the values 10 to 15. |
|||
* The [[ORDVAC]] and [[ILLIAC I]] (1952) computers (and some derived designs, e.g. [[BRLESC]]) used the uppercase letters ''K'', ''S'', ''N'', ''J'', ''F'' and ''L'' for the values 10 to 15.<ref name="Illiac-I"/><ref name="Savard_2018_CA"/> |
|||
* The Librascope [[LGP-30]] (1956) used the letters ''F'', ''G'', ''J'', ''K'', ''Q'' and ''W'' for the values 10 to 15.<ref name="RP_1957_LGP-30"/><ref name="Savard_2018_CA"/> |
|||
* On the [[PERM (computer)|PERM]] (1956) computer, hexadecimal numbers were written as letters ''O'' for zero, ''A'' to ''N'' and ''P'' for 1 to 15. Many machine instructions had mnemonic hex-codes (''A''=add, ''M''=multiply, ''L''=load, ''F''=fixed-point etc.); programs were written without instruction names.<ref name="PERM"/> |
|||
* The [[Honeywell]] [[Datamatic D-1000]] (1957) used the lowercase letters ''b'', ''c'', ''d'', ''e'', ''f'', and ''g'' whereas the [[Elbit]] 100 (1967) used the uppercase letters ''B'', ''C'', ''D'', ''E'', ''F'' and ''G'' for the values 10 to 15.<ref name="Savard_2018_CA"/> |
|||
* The [[Monrobot XI]] (1960) used the letters ''S'', ''T'', ''U'', ''V'', ''W'' and ''X'' for the values 10 to 15.<ref name="Savard_2018_CA"/> |
|||
* The [[NEC]] [[parametron]] computer NEAC 1103 (1960) used the letters ''D'', ''G'', ''H'', ''J'', ''K'' (and possibly ''V'') for values 10–15.<ref name="NEC_1960_NEAC-1103">{{cite book |title=NEC Parametron Digital Computer Type NEAC-1103 |publisher=[[Nippon Electric Company Ltd.]] |location=Tokyo, Japan |id=Cat. No. 3405-C |date=1960 |url=http://archive.computerhistory.org/resources/text/NEC/NEC.1103.1958102646285.pdf |access-date=2017-05-31 |url-status=live |archive-url=https://web.archive.org/web/20170531112850/http://archive.computerhistory.org/resources/text/NEC/NEC.1103.1958102646285.pdf |archive-date=2017-05-31}}</ref> |
|||
* The [[Pacific Data Systems]] 1020 (1964) used the letters ''L'', ''C'', ''A'', ''S'', ''M'' and ''D'' for the values 10 to 15.<ref name="Savard_2018_CA"/> |
|||
[[File:Table_de_correspondance_entre_le_Bibinaire_et_les_autres_notations.svg|thumb|[[Bibi-binary]]]] |
|||
* New numeric symbols and names were introduced in the [[Bibi-binary]] notation by [[Boby Lapointe]] in 1968. |
|||
[[Image:Bruce Martin hexadecimal notation proposal.png|thumb|Bruce Alan Martin's hexadecimal notation proposal<ref name="Martin_1968"/>]] |
|||
* Bruce Alan Martin of [[Brookhaven National Laboratory]] considered the choice of A–F "ridiculous". In a 1968 letter to the editor of the [[Communications of the ACM|CACM]], he proposed an entirely new set of symbols based on the bit locations.<ref name="Martin_1968">{{cite journal | title=Letters to the editor: On binary notation | first=Bruce Alan | last=Martin | publisher=[[Associated Universities Inc.]] | journal=[[Communications of the ACM]] | volume=11 | issue=10 | date=October 1968 | page=658 | doi=10.1145/364096.364107| s2cid=28248410 | doi-access=free }}</ref> |
|||
[[File:Base-16 digits.svg|thumb|Ronald O. Whitaker's hexadecimal notation proposal.<ref name="Whitaker_1972"/><ref name="Whitaker_1975"/>]] |
|||
==Verbal representations== |
|||
* In 1972, Ronald O. Whitaker of Rowco Engineering Co. proposed a triangular font that allows "direct binary reading" to "permit both input and output from computers without respect to encoding matrices."<ref name="Whitaker_1972">{{cite news |title=More on man/machine |department=Letters |author-first=Ronald O. |author-last=Whitaker |journal=[[Datamation]] |publisher=[[Technical Publishing Company]] |location=Indianapolis, Indiana, US |publication-place=Barrington, Illinois, US |date=January 1972 |volume=18 |number=1 |page=103 |url=http://www.bitsavers.org/magazines/Datamation/197201.pdf |access-date=2022-12-24 |url-status=live |archive-url=https://web.archive.org/web/20221205110246/http://www.bitsavers.org/magazines/Datamation/197201.pdf |archive-date=2022-12-05}} (1 page)</ref><ref name="Whitaker_1975">{{cite web |title=Combined display and range selector for use with digital instruments employing the binary numbering system |author-first=Ronald O. |author-last=Whitaker |id=US Patent 3974444A |location=Indianapolis, Indiana, US |date=1976-08-10 |orig-date=1975-02-24 |url=https://patentimages.storage.googleapis.com/88/54/da/d88ca78fe93623/US3974444.pdf |access-date=2022-12-24 |url-status=live |archive-url=https://web.archive.org/web/20221224135846/https://patentimages.storage.googleapis.com/88/54/da/d88ca78fe93623/US3974444.pdf |archive-date=2022-12-24}} (7 pages)</ref> |
|||
Not only are there no digits to represent the quantities from ten to fifteen—so letters are used as a substitute—but most [[Western European]] languages also lack a nomenclature to name hexadecimal numbers. "Thirteen" and "fourteen" are [[decimal]]-based, and even though English has names for several non-decimal powers: ''[[pair]]'' for the first [[binary numeral system|binary]] power; ''[[Twenty|score]]'' for the first [[vigesimal]] power; ''[[dozen]]'', ''[[Gross (unit)|gross]]'', and ''[[great gross]]'' for the first three [[duodecimal]] powers. However, no English name describes the hexadecimal powers (corresponding to the decimal values 16, 256, 4096, 65536, ...). Some people read hexadecimal numbers digit by digit like a phone number: 4DA is "four-dee-aye". However, the letter 'A' sounds similar to eight, 'C' sounds similar to three, and 'D' can easily be mistaken for the 'ty' suffix: Is it 4D or forty? Other people avoid confusion by using the [[NATO phonetic alphabet]]: 4DA is "four-delta-alpha". Similarly, some use the [[Joint Army/Navy Phonetic Alphabet]] ("four-dog-able"), or a similar ad hoc system. |
|||
* Some [[seven-segment display]] decoder chips (i.e., 74LS47) show unexpected output due to logic designed only to produce 0–9 correctly.<ref>{{Cite web |title=SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 BCD-to-Seven-Segment Decoders/Drivers |publisher=[[Texas Instruments Incorporated]] |date=March 1988 |orig-date=1974 |id=SDLS111 |publication-place=Dallas, Texas, US |url-status=live |url=https://www.ti.com/lit/gpn/sn74ls47 |access-date=2021-09-15 |archive-url=https://web.archive.org/web/20211020192609/https://www.ti.com/lit/ds/symlink/sn74ls47.pdf?ts=1634757966777 |archive-date=2021-10-20}} (29 pages)</ref> |
|||
===Verbal and digital representations=== |
|||
==Signs== |
|||
Since there were no traditional numerals to represent the quantities from ten to fifteen, alphabetic letters were re-employed as a substitute. Most European languages lack non-decimal-based words for some of the numerals eleven to fifteen. Some people read hexadecimal numbers digit by digit, like a phone number, or using the [[ICAO spelling alphabet|NATO phonetic alphabet]], the [[Joint Army/Navy Phonetic Alphabet]], or a similar ''ad-hoc'' system. In the wake of the adoption of hexadecimal among [[IBM System/360]] programmers, Magnuson (1968)<ref name=Magnuson-1968-01/> suggested a pronunciation guide that gave short names to the letters of hexadecimal – for instance, "A" was pronounced "ann", B "bet", C "chris", etc.<ref name=Magnuson-1968-01>{{cite magazine |last1=Magnuson |first1=Robert A. |title=A hexadecimal pronunciation guide |magazine=Datamation |date=January 1968 |volume=14 |issue=1 |page=45}}</ref> Another naming-system was published online by Rogers (2007)<ref name=Rogers-2007>{{cite web |first=S.R. |last=Rogers |year=2007 |title=Hexadecimal number words |website=Intuitor |language=en-US |url=http://www.intuitor.com/hex/words.html |access-date=2019-08-26 |archive-date=2019-09-17 |archive-url=https://web.archive.org/web/20190917015855/http://www.intuitor.com/hex/words.html |url-status=live }}</ref> that tries to make the verbal representation distinguishable in any case, even when the actual number does not contain numbers A–F. Examples are listed in the tables below. Yet another naming system was elaborated by Babb (2015), based on a joke in ''[[Silicon Valley (TV series)|Silicon Valley]]''.<ref name=Babb-2015>{{cite web |first=Tim |last=Babb |year=2015 |url=https://www.bzarg.com/p/how-to-pronounce-hexadecimal/ |title=How to pronounce hexadecimal |website=Bzarg |language=en-US |access-date=2021-01-01 |archive-date=2020-11-11 |archive-url=https://web.archive.org/web/20201111174319/https://www.bzarg.com/p/how-to-pronounce-hexadecimal/ |url-status=live }}</ref> |
|||
The hexadecimal system can express negative numbers the same way as in decimal: –2A to represent –42 and so on. |
|||
Others have proposed using the verbal Morse Code conventions to express four-bit hexadecimal digits, with "dit" and "dah" representing zero and one, respectively, so that "0000" is voiced as "dit-dit-dit-dit" (....), dah-dit-dit-dah (-..-) voices the digit with a value of nine, and "dah-dah-dah-dah" (----) voices the hexadecimal digit for decimal 15. |
|||
However, some prefer instead to express the exact bit patterns used in the [[CPU|processor]] and consider hexadecimal values best handled as unsigned values. This way, the negative number –42 can be written as FFFF FFD6 in a 32-bit [[Processor register|CPU register]], as C228 0000 in a 32-bit [[Floating point unit|FPU]] register or C045 0000 0000 0000 in a 64-bit FPU register. |
|||
[[File:Hexadecimal-counting.jpg|right|thumb|Hexadecimal finger-counting scheme]] |
|||
==Fractions== |
|||
Systems of counting on [[Digit (anatomy)|digits]] have been devised for both binary and hexadecimal. [[Arthur C. Clarke]] suggested using each finger as an on/off bit, allowing finger counting from zero to 1023<sub>10</sub> on ten fingers.<ref>{{cite book |last1=Clarke |first1=Arthur |last2=Pohl |first2=Frederik |title=The Last Theorem |url=https://archive.org/details/lasttheorem00clar |url-access=registration |date=2008 |publisher=Ballantine |isbn=978-0007289981 |page=[https://archive.org/details/lasttheorem00clar/page/91 91]}}</ref> Another system for counting up to FF<sub>16</sub> (255<sub>10</sub>) is illustrated on the right. |
|||
As with other numeral systems, the hexadecimal system can be used to represent [[rational number]]s, although [[Recurring decimal|recurring digits]] are common since sixteen (10h) has only a single prime factor (two): |
|||
{| class="wikitable" style="display: inline-table; margin-right: 50px;; text-align:right;" |
|||
{| Border=0 cellspacing=0 cellpadding=3 |
|||
|+ Magnuson (1968)<ref name=Magnuson-1968-01/><br />naming method |
|||
|align=right| '''{{Fraction|1|2}}''' ||<center> '''=''' || '''0.8''' |
|||
! Number !! Pronunciation |
|||
|align=right| {{Fraction|1|6}} ||<center> = || 0.2<font style="text-decoration: overline">A</font>AAAAAAA... |
|||
|align=right| {{Fraction|1|A}} ||<center> = || 0.1<font style="text-decoration: overline">9</font>99999999... |
|||
|align=right| {{Fraction|1|E}} ||<center> = || 0.1<font style="text-decoration: overline">249</font>249249... |
|||
|- |
|- |
||
| A || ann |
|||
|align=right| {{Fraction|1|3}} ||<center> = || 0.<font style="text-decoration: overline">5</font>555555555... |
|||
|align=right| {{Fraction|1|7}} ||<center> = || 0.<font style="text-decoration: overline">249</font>2492492... |
|||
|align=right| {{Fraction|1|B}} ||<center> = || 0.<font style="text-decoration: overline">1745D</font>1745D... |
|||
|align=right| {{Fraction|1|F}} ||<center> = || 0.<font style="text-decoration: overline">1</font>111111111... |
|||
|- |
|- |
||
| B || bet |
|||
|align=right| '''{{Fraction|1|4}}''' ||<center> '''=''' || '''0.4''' |
|||
|align=right| '''{{Fraction|1|8}}''' ||<center> '''=''' || '''0.2''' |
|||
|align=right| {{Fraction|1|C}} ||<center> = || 0.1<font style="text-decoration: overline">5</font>55555555... |
|||
|align=right| '''{{Fraction|1|10}}''' ||<center> '''=''' || '''0.1''' |
|||
|- |
|- |
||
| C || chris |
|||
|align=right| {{Fraction|1|5}} ||<center> = || 0.<font style="text-decoration: overline">3</font>333333333... |
|||
|- |
|||
|align=right| {{Fraction|1|9}} ||<center> = || 0.<font style="text-decoration: overline">1C7</font>1C71C71... |
|||
| D || dot |
|||
|align=right| {{Fraction|1|D}} ||<center> = || 0.<font style="text-decoration: overline">13B</font>13B13B1... |
|||
|- |
|||
|align=right| {{Fraction|1|11}} ||<center> = || 0.<font style="text-decoration: overline">0F</font>0F0F0F0F... |
|||
| E || ernest |
|||
|- |
|||
| F || frost |
|||
|- |
|||
| 1A || annteen |
|||
|- |
|||
| A0 || annty |
|||
|- |
|||
| 5B || fifty-bet |
|||
|- |
|||
| A01C || annty christeen |
|||
|- |
|||
| 1AD0 || annteen dotty |
|||
|- |
|||
| 3A7D || thirty-ann seventy-dot |
|||
|} |
|} |
||
{| class="wikitable" style="display: inline-table; margin-right: 50px;; text-align:right;" |
|||
|+ Rogers (2007)<ref name=Rogers-2007/><br /> naming method |
|||
! Number !! Pronunciation |
|||
|- |
|||
| A || ten |
|||
|- |
|||
| B || eleven |
|||
|- |
|||
| C || twelve |
|||
|- |
|||
| D || draze |
|||
|- |
|||
| E || eptwin |
|||
|- |
|||
| F || fim |
|||
|- |
|||
| 10 || tex |
|||
|- |
|||
| 11 || oneteek |
|||
|- |
|||
| 1F || fimteek |
|||
|- |
|||
| 50 || fiftek |
|||
|- |
|||
| C0 || twelftek |
|||
|- |
|||
| 100 || hundrek |
|||
|- |
|||
| 1000 || thousek |
|||
|- |
|||
| 3E || thirtek-eptwin |
|||
|- |
|||
| E1 || eptek-one |
|||
|- |
|||
| C4A || twelve-hundrek-fourtek-ten |
|||
|- |
|||
| 1743 || one-thousek-seven-<br />-hundrek-fourtek-three |
|||
|} |
|||
===Signs=== |
|||
The hexadecimal system can express negative numbers the same way as in decimal: −2A to represent −42<sub>10</sub>, −B01D9 to represent −721369<sub>10</sub> and so on. |
|||
Hexadecimal can also be used to express the exact bit patterns used in the [[central processing unit|processor]], so a sequence of hexadecimal digits may represent a [[signedness|signed]] or even a [[floating-point arithmetic|floating-point]] value. This way, the negative number −42<sub>10</sub> can be written as FFFF FFD6 in a 32-bit [[Processor register|CPU register]] (in [[two's complement]]), as C228 0000 in a 32-bit [[Floating-point unit|FPU]] register or C045 0000 0000 0000 in a 64-bit FPU register (in the [[IEEE floating-point standard]]). |
|||
===Hexadecimal exponential notation=== |
|||
Just as decimal numbers can be represented in [[exponential notation]], so too can hexadecimal numbers. [[P notation]] uses the letter ''P'' (or ''p'', for "power"), whereas ''E'' (or ''e'') serves a similar purpose in decimal [[E notation]]. The number after the ''P'' is ''decimal'' and represents the ''binary'' exponent. Increasing the exponent by 1 multiplies by 2, not 16: {{mono|1=20p0 = 10p1 = 8p2 = 4p3 = 2p4 = 1p5}}. Usually, the number is normalized so that the hexadecimal digits start with {{mono|1.}} (zero is usually {{mono|0}} with no ''P''). |
|||
Example: {{mono|1.3DEp42}} represents {{math|1.3DE<sub>16</sub> × 2<sup>42<sub>10</sub></sup>}}. |
|||
P notation is required by the [[IEEE 754-2008]] binary floating-point standard and can be used for floating-point literals in the [[C99]] edition of the [[C (programming language)|C programming language]].<ref>{{cite web |url=http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237 |title=ISO/IEC 9899:1999 – Programming languages – C |publisher=Iso.org |website=ISO |date=2011-12-08 |access-date=2014-04-08 |archive-date=2016-10-10 |archive-url=https://web.archive.org/web/20161010112929/http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237 |url-status=live }}</ref> |
|||
Using the ''%a'' or ''%A'' conversion specifiers, this notation can be produced by implementations of the ''[[printf]]'' family of functions following the C99 specification<ref name="Rationale_2003_C">{{cite web |title=Rationale for International Standard – Programming Languages – C |version=5.10 |date=April 2003 |pages=52, 153–154, 159 |url=http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf |website=Open Standards |access-date=2010-10-17 |url-status=live |archive-url=https://web.archive.org/web/20160606072228/http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf |archive-date=2016-06-06}}</ref> and |
|||
[[Single UNIX Specification|Single Unix Specification]] (IEEE Std 1003.1) [[POSIX]] standard.<ref name="printf_2013">{{cite web |title=dprintf, fprintf, printf, snprintf, sprintf – print formatted output |work=The Open Group Base Specifications |edition=Issue 7, IEEE Std 1003.1, 2013 |date=2013 |orig-year=2001 |author=The IEEE and The Open Group |url=http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html |access-date=2016-06-21 |url-status=live |archive-url=https://web.archive.org/web/20160621211105/http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html |archive-date=2016-06-21}}</ref> |
|||
==Conversion== |
|||
===Binary conversion=== |
|||
For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own number system: Counting in base 3 is 0, 1, 2, 10 (three). Thus, whether dividing one by two for [[binary]] or dividing one by sixteen for hexadecimal, both of these fractions are written as <code>0.1</code>. Because the radix 16 is a [[perfect square]] (4²), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no [[cyclic number]]s (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms has a [[prime factor]] not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that are not a [[power of two]] result in an infinite string of recurring digits (such as thirds and fifths). This makes hexadecimal (and binary) less convenient than [[decimal]] for representing rational numbers since a larger proportion lie outside its range of finite representation. |
|||
[[File:Hewlett-Packard Model HP-16C Programmable RPN Calculator, HP's First and Only Calculator esp. for Programmers, built 1982-1989 (edited to rectangular, V2).jpg|thumb|The programmable [[Reverse Polish notation|RPN]]-calculator [[HP-16C|HP-16C Computer Scientist]] from 1982 was designed for programmers. One of its key features was the conversion between different numeral systems (note hex number in display).]] |
|||
Most computers manipulate binary data, but it is difficult for humans to work with a large number of digits for even a relatively small binary number. Although most humans are familiar with the base 10 system, it is much easier to map binary to hexadecimal than to decimal because each hexadecimal digit maps to a whole number of bits (4<sub>10</sub>). |
|||
This example converts 1111<sub>2</sub> to base ten. Since each [[Positional notation|position]] in a binary numeral can contain either a 1 or a 0, its value may be easily determined by its position from the right: |
|||
* 0001<sub>2</sub> = 1<sub>10</sub> |
|||
All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, [[duodecimal]] and [[sexagesimal]]: that is, any hexadecimal number with a finite number of digits has a finite number of digits when expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are finitely representable in hexadecimal: That is, decimal 0.1 corresponds to the infinite recurring representation 0.199999999999... in hexadecimal. However, hexadecimal is more efficient than bases 12 and 60 for representing fractions with powers of two in the denominator (e.g., decimal one sixteenth is 0.1 in hexadecimal, 0.09 in duodecimal, 0;3,45 in sexagesimal and 0.0625 in decimal). |
|||
* 0010<sub>2</sub> = 2<sub>10</sub> |
|||
* 0100<sub>2</sub> = 4<sub>10</sub> |
|||
* 1000<sub>2</sub> = 8<sub>10</sub> |
|||
==Binary translation== |
|||
Most computers manipulate binary data, but it is difficult for humans to work with the large number of digits for even a relatively small binary number. Although most humans are familiar with the base 10 system, it is much easier to map binary to hexadecimal than to decimal because each hexadecimal digit maps to a whole number of bits (4<sub>10</sub>). |
|||
This example converts 1111<sub>2</sub> to base ten. Since each [[Positional notation|position]] in a binary numeral can contain either a 1 or 0, its value may be easily determined by its position from the right: |
|||
*0001<sub>2</sub> = 1<sub>10</sub> |
|||
*0010<sub>2</sub> = 2<sub>10</sub> |
|||
*0100<sub>2</sub> = 4<sub>10</sub> |
|||
*1000<sub>2</sub> = 8<sub>10</sub> |
|||
Therefore: |
Therefore: |
||
<table> |
|||
{| |
|||
<tr> |
|||
|- |
|||
<td>1111<sub>2</sub></td> |
|||
< |
| 1111<sub>2</sub>|| = 8<sub>10</sub> + 4<sub>10</sub> + 2<sub>10</sub> + 1<sub>10</sub> |
||
|- |
|||
</tr> |
|||
| || = 15<sub>10</sub> |
|||
<tr> |
|||
|} |
|||
<td> </td> |
|||
<td> = 15<sub>10</sub></td> |
|||
With little practice, mapping 1111<sub>2</sub> to F<sub>16</sub> in one step becomes easy (see table in [[#Written representation|written representation]]). The advantage of using hexadecimal rather than decimal increases rapidly with the size of the number. When the number becomes large, conversion to decimal is very tedious. However, when mapping to hexadecimal, it is trivial to regard the binary string as 4-digit groups and map each to a single hexadecimal digit.<ref name=Mano-Ciletti/> |
|||
</tr> |
|||
</table> |
|||
With surprisingly little practice, mapping 1111<sub>2</sub> to F<sub>16</sub> in one step becomes easy: see table in [[Hexadecimal#Uses|Uses]]. The advantage of using hexadecimal rather than decimal increases rapidly with the size of the number. When the number becomes large, conversion to decimal is very tedious. However, when mapping to hexadecimal, it is trivial to regard the binary string as 4 digit groups and map each to a single hexadecimal digit. |
|||
This example shows the conversion of a binary number to decimal, mapping each digit to the decimal value, and adding the results. |
This example shows the conversion of a binary number to decimal, mapping each digit to the decimal value, and adding the results. |
||
<table> |
|||
<td>01011110101101010010<sub>2</sub></td> |
|||
<td> = 262144<sub>10</sub> + 65536<sub>10</sub> + 32768<sub>10</sub> + 16384<sub>10</sub> + 8192<sub>10</sub> + 2048<sub>10</sub> + 512<sub>10</sub> + 256<sub>10</sub> + 64<sub>10</sub> + 16<sub>10</sub> + 2<sub>10</sub></td> |
|||
</tr> |
|||
<tr> |
|||
<td> </td> |
|||
<td> = 387922<sub>10</sub></td> |
|||
</tr> |
|||
</table> |
|||
Compare this to the conversion to hexadecimal, where each group of four digits can be considered independently, and converted directly: |
|||
<table> |
|||
<tr> |
|||
<td>01011110101101010010<sub>2</sub></td> |
|||
<td> = </td> |
|||
<td>0101<sub> </sub></td> |
|||
<td>1110<sub> </sub></td> |
|||
<td>1011<sub> </sub></td> |
|||
<td>0101<sub> </sub></td> |
|||
<td>0010<sub>2</sub></td> |
|||
</tr> |
|||
<tr> |
|||
<td> </td> |
|||
<td> = </td> |
|||
<td align="center">5</td> |
|||
<td align="center">E</td> |
|||
<td align="center">B</td> |
|||
<td align="center">5</td> |
|||
<td align="center">2<sub>16</sub></td> |
|||
</tr> |
|||
<tr> |
|||
<td> </td> |
|||
<td> = </td> |
|||
<td colspan="5">5EB52<sub>16</sub></td> |
|||
</tr> |
|||
</table> |
|||
The conversion from hexadecimal to binary is equally direct. |
|||
{| |
|||
The [[octal]] system can also be useful as a tool for people who need to deal directly with binary computer data. Octal represents data as three bits per character, rather than four. |
|||
| (1001011100)<sub>2</sub>|| = 512<sub>10</sub> + 64<sub>10</sub> + 16<sub>10</sub> + 8<sub>10</sub> + 4<sub>10</sub> |
|||
|- |
|||
| || = 604<sub>10</sub> |
|||
|} |
|||
Compare this to the conversion to hexadecimal, where each group of four digits can be considered independently and converted directly: |
|||
{| |
|||
|- |
|||
| (1001011100)<sub>2</sub>|| = ||0010<sub> </sub>||0101<sub> </sub>||1100<sub>2</sub> |
|||
|- |
|||
| || = || align="center" |2|| align="center" |5||align="center" |C<sub>16</sub> |
|||
|- |
|||
| || = || colspan="5" |25C<sub>16</sub> |
|||
|} |
|||
The conversion from hexadecimal to binary is equally direct.<ref name=Mano-Ciletti>{{cite book|title=Digital Design – With an Introduction to the Verilog HDL|edition=Fifth|last1=Mano|first1=M. Morris|last2=Ciletti|first2=Michael D.|publisher=[[Pearson Education]]|date=2013|pages=6, 8–10|isbn=978-0-13-277420-8}}</ref> |
|||
===Other simple conversions=== |
|||
Although [[Quaternary numeral system|quaternary]] (base 4) is little used, it can easily be converted to and from hexadecimal or binary. Each hexadecimal digit corresponds to a pair of quaternary digits, and each quaternary digit corresponds to a pair of binary digits. In the above example 2 5 C<sub>16</sub> = 02 11 30<sub>4</sub>. |
|||
The [[octal]] (base 8) system can also be converted with relative ease, although not quite as trivially as with bases 2 and 4. Each octal digit corresponds to three binary digits, rather than four. Therefore, we can convert between octal and hexadecimal via an intermediate conversion to binary followed by regrouping the binary digits in groups of either three or four. |
|||
==Converting from other bases== |
|||
===Division-remainder in source base=== |
===Division-remainder in source base=== |
||
As with all bases there is a simple [[algorithm]] for converting a representation of a number to hexadecimal by doing integer division and remainder operations in the source base. |
As with all bases there is a simple [[algorithm]] for converting a representation of a number to hexadecimal by doing integer division and remainder operations in the source base. In theory, this is possible from any base, but for most humans, only decimal and for most computers, only binary (which can be converted by far more efficient methods) can be easily handled with this method. |
||
Let d be the number to represent in hexadecimal, and the series h<sub>i</sub>h<sub> |
Let d be the number to represent in hexadecimal, and the series h<sub>i</sub>h<sub>i−1</sub>...h<sub>2</sub>h<sub>1</sub> be the hexadecimal digits representing the number. |
||
#i |
# i ← 1 |
||
#h<sub>i</sub> |
# h<sub>i</sub> ← d mod 16 |
||
#d |
# d ← (d − h<sub>i</sub>) / 16 |
||
#If d = 0 (return series h<sub>i</sub>) else increment i and go to step 2 |
# If d = 0 (return series h<sub>i</sub>) else increment i and go to step 2 |
||
"16" may be replaced with any other base that may be desired. |
"16" may be replaced with any other base that may be desired. |
||
The following is a [[JavaScript]] implementation of the above algorithm for converting any number to a hexadecimal in String representation. Its purpose is to illustrate the above algorithm. To work with data seriously however, it is much more advisable to work with [[bitwise operators]]. |
The following is a [[JavaScript]] implementation of the above algorithm for converting any number to a hexadecimal in String representation. Its purpose is to illustrate the above algorithm. To work with data seriously, however, it is much more advisable to work with [[bitwise operators]]. |
||
< |
<syntaxhighlight lang="javascript"> |
||
function toHex(d) { |
function toHex(d) { |
||
var r = d % 16; |
|||
if (d - r == 0) { |
|||
return toChar(r); |
|||
} |
|||
result = toChar(r); |
|||
return toHex((d - r) / 16) + toChar(r); |
|||
else |
|||
result = toHex( (d-r)/16 ) + toChar(r); |
|||
return result; |
|||
} |
} |
||
function toChar(n) { |
function toChar(n) { |
||
const alpha = "0123456789ABCDEF"; |
|||
return alpha.charAt(n); |
|||
} |
} |
||
</syntaxhighlight> |
|||
</source> |
|||
=== |
===Conversion through addition and multiplication=== |
||
It is also possible to make the conversion by assigning each place in the source base the hexadecimal representation of its place value |
[[Image:Hexadecimal multiplication table.svg|right|thumb|A hexadecimal [[multiplication table]]]] |
||
It is also possible to make the conversion by assigning each place in the source base the hexadecimal representation of its place value — before carrying out multiplication and addition to get the final representation. |
|||
For example, to convert the number B3AD to decimal, one can split the hexadecimal number into its digits: B (11<sub>10</sub>), 3 (3<sub>10</sub>), A (10<sub>10</sub>) and D (13<sub>10</sub>), and then get the final result by multiplying each decimal representation by 16<sup>''p''</sup> (''p'' being the corresponding hex digit position, counting from right to left, beginning with 0). In this case, we have that: |
|||
multiplying each decimal representation by 16<sup>p</sup>, where 'p' is the corresponding position from right to left, beginning with 0. In this case we have 13*(16<sup>0</sup>) + 10*(16<sup>1</sup>) + 3*(16<sup>2</sup>) + 11*(16<sup>3</sup>), which is equal 45997 in the decimal system. |
|||
{{math|B3AD {{=}} (11 × 16<sup>3</sup>) + (3 × 16<sup>2</sup>) + (10 × 16<sup>1</sup>) + (13 × 16<sup>0</sup>)}} |
|||
which is 45997 in base 10. |
|||
===Conversion via binary=== |
|||
As most computers work in binary, the normal way for a computer to make such a conversion would be to convert to binary first (by doing multiplication and addition in binary) and then make use of the direct mapping from binary to hexadecimal. |
|||
===Tools for conversion=== |
===Tools for conversion=== |
||
Many computer systems provide a calculator utility capable of performing conversions between the various radices frequently including hexadecimal. |
|||
In [[Microsoft |
In [[Microsoft Windows]], the [[Calculator (Windows)|Calculator]] utility can be set to Programmer mode, which allows conversions between radix 16 (hexadecimal), 10 (decimal), 8 ([[octal]]), and 2 ([[Binary numeral system|binary]]), the bases most commonly used by programmers. In Programmer Mode, the on-screen [[numeric keypad]] includes the hexadecimal digits A through F, which are active when "Hex" is selected. In hex mode, however, the Windows Calculator supports only integers. |
||
== Elementary arithmetic == |
|||
==Cultural== |
|||
Elementary operations such as division can be carried out indirectly through conversion to an alternate [[numeral system]], such as the commonly used decimal system or the binary system where each hex digit corresponds to four binary digits. |
|||
===Etymology=== |
|||
The word "hexadecimal" is strange in that ''hexa'' is derived from the [[Greek language|Greek]] έξ (hex) for "six" and ''decimal'' is derived from the [[Latin]] for "tenth". It may have been derived from the Latin root, but Greek ''deka'' is so similar to the Latin ''decem'' that some would not consider this nomenclature inconsistent. However, the word "[[sexagesimal]]" (base 60) retains the Latin prefix. The earlier Bendix documentation used the term "sexadecimal". [[Donald Knuth]] has pointed out that the etymologically correct term is "senidenary", from the Latin term for "grouped by 16". (The terms "binary", "ternary" and "quaternary" are from the same Latin construction, and the etymologically correct term for "decimal" arithmetic is "denary".)<ref> Knuth, Donald. (1969). ''Donald Knuth, in The Art of Computer Programming, Volume 2''. ISBN 0-201-03802-1. (Chapter 17.) </ref> Schwartzman notes that the pure expectation from the form of usual Latin-type phrasing would be "sexadecimal", but then computer hackers would be tempted to shorten the word to "sex".<ref> Schwartzman, S. (1994). ''The Words of Mathematics: an etymological dictionary of mathematical terms used in English''. ISBN 0-88385-511-9. </ref> Incidentally, the [[Etymology|etymologically]] proper [[Greek language|Greek]] term would be ''hexadecadic'' (although in [[Modern Greek]] ''deca-hexadic (δεκαεξαδικός)'' is more commonly used). |
|||
Alternatively, one can also perform elementary operations directly within the hex system itself — by relying on its addition/multiplication tables and its corresponding standard algorithms such as [[long division]] and the traditional subtraction algorithm. |
|||
===Common patterns and humor=== |
|||
Hexadecimal is sometimes used in programmer jokes because certain words can be formed using only hexadecimal digits. Some of these words are "dead", "beef", "babe", and with appropriate substitutions "c0ffee". Since these are quickly recognizable by programmers, debugging setups sometimes initialize memory to them to help programmers see when something has not been initialized. |
|||
Some people add an H after a number if they want to show that it is written in hexadecimal. In older Intel [[assembly language|assembly]] syntax, this is sometimes the case. |
|||
"[[Hexspeak]]" may be the forerunner of the modern web parlance of "[[Leet|1337speak]]" |
|||
==Real numbers== |
|||
An example is the [[magic number (programming)|magic number]] in FAT [[Mach-O]] files and [[Java Platform|java]] [[class file]] structure, which is "<code>CAFEBABE</code>". Single-architecture Mach-O files have the magic number "<code>FEEDFACE</code>" at their beginning. |
|||
=== Rational numbers === |
|||
A [[Knuth reward check]] is one hexadecimal dollar, or $2.56. |
|||
As with other numeral systems, the hexadecimal system can be used to represent [[rational number]]s, although [[repeating decimal|repeating expansions]] are common since sixteen (10<sub>16</sub>) has only a single prime factor: two. |
|||
For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own number system. Thus, whether dividing one by two for [[binary numeral system|binary]] or dividing one by sixteen for hexadecimal, both of these fractions are written as <code>0.1</code>. Because the radix 16 is a [[square number|perfect square]] (4<sup>2</sup>), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no [[cyclic number]]s (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms has a [[prime factor]] not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that are not a [[power of two]] result in an infinite string of recurring digits (such as thirds and fifths). This makes hexadecimal (and binary) less convenient than [[decimal]] for representing rational numbers since a larger proportion lies outside its range of finite representation. |
|||
The following table shows a joke in hexadecimal: |
|||
All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, [[duodecimal]] and [[sexagesimal]]: that is, any hexadecimal number with a finite number of digits also has a finite number of digits when expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are finitely representable in hexadecimal. For example, decimal 0.1 corresponds to the infinite recurring representation 0.1{{overline|9}} in hexadecimal. However, hexadecimal is more efficient than duodecimal and sexagesimal for representing fractions with powers of two in the denominator. For example, 0.0625<sub>10</sub> (one-sixteenth) is equivalent to 0.1<sub>16</sub>, 0.09<sub>12</sub>, and 0;3,45<sub>60</sub>. |
|||
3x12=36 |
|||
2x12=24 |
|||
1x12=12 |
|||
0x12=18 |
|||
{|class="wikitable" |
|||
The first three are interpreted as multiplication, but in the last, "0x" signals Hexadecimal interpretation of 12, which is 18. |
|||
! rowspan=2 style="vertical-align:bottom;" | n |
|||
! colspan="3" | Decimal<br />Prime factors of: base, b = 10: {{color|#920000|2}}, {{color|#920000|5}};<br />b − 1 = 9: {{color|#000092|3}};<br />b + 1 = 11: {{color|#004900|11}} |
|||
! colspan="3" | Hexadecimal<br />Prime factors of: base, b = 16{{sub|10}} = 10: {{color|#920000|2}}; b − 1 = 15{{sub|10}} = F: {{color|#000092|3, 5}}; b + 1 = 17{{sub|10}} = 11: {{color|#004900|11}} |
|||
|- |
|||
! Reciprocal |
|||
! Prime factors |
|||
! Positional representation<br />(decimal) |
|||
! Positional representation<br />(hexadecimal) |
|||
! Prime factors |
|||
! Reciprocal |
|||
|- |
|||
| 2 |
|||
| align="center" | 1/2 |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| '''0.5''' |
|||
| '''0.8''' |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| align="center" | 1/2 |
|||
|- |
|||
| 3 |
|||
| align="center" | 1/3 |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.'''3333... = '''0.'''{{overline|3}} |
|||
| bgcolor="#e4e4e4" | '''0.'''5555... = '''0.'''{{overline|5}} |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| align="center" | 1/3 |
|||
|- |
|||
| 4 |
|||
| align="center" | 1/4 |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| '''0.25''' |
|||
| '''0.4''' |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| align="center" | 1/4 |
|||
|- |
|||
| 5 |
|||
| align="center" | 1/5 |
|||
| align="center" | {{color|#920000|'''5'''}} |
|||
| '''0.2''' |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|3}} |
|||
| align="center" | {{color|#000092|'''5'''}} |
|||
| align="center" | 1/5 |
|||
|- |
|||
| 6 |
|||
| align="center" | 1/6 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.1'''{{overline|6}} |
|||
| bgcolor="#e4e4e4" | '''0.2'''{{overline|A}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| align="center" | 1/6 |
|||
|- |
|||
| 7 |
|||
| align="center" | 1/7 |
|||
| align="center" | '''7''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|142857}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|249}} |
|||
| align="center" | '''7''' |
|||
| align="center" | 1/7 |
|||
|- |
|||
| 8 |
|||
| align="center" | 1/8 |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| '''0.125''' |
|||
| '''0.2''' |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| align="center" | 1/8 |
|||
|- |
|||
| 9 |
|||
| align="center" | 1/9 |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|1}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|1C7}} |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| align="center" | 1/9 |
|||
|- |
|||
| 10 |
|||
| align="center" | 1/10 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#920000|'''5'''}} |
|||
| '''0.1''' |
|||
| bgcolor="#e4e4e4" | '''0.1'''{{overline|9}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''5'''}} |
|||
| align="center" | 1/A |
|||
|- |
|||
| 11 |
|||
| align="center" | 1/11 |
|||
| align="center" | {{color|#004900|'''11'''}} |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|09}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|1745D}} |
|||
| align="center" | '''B''' |
|||
| align="center" | 1/B |
|||
|- |
|||
| 12 |
|||
| align="center" | 1/12 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.08'''{{overline|3}} |
|||
| bgcolor="#e4e4e4" | '''0.1'''{{overline|5}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| align="center" | 1/C |
|||
|- |
|||
| 13 |
|||
| align="center" | 1/13 |
|||
| align="center" | '''13''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|076923}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|13B}} |
|||
| align="center" | '''D''' |
|||
| align="center" | 1/D |
|||
|- |
|||
| 14 |
|||
| align="center" | 1/14 |
|||
| align="center" | {{color|#920000|'''2'''}}, '''7''' |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|714285}} |
|||
| bgcolor="#e4e4e4" | '''0.1'''{{overline|249}} |
|||
| align="center" | {{color|#920000|'''2'''}}, '''7''' |
|||
| align="center" | 1/E |
|||
|- |
|||
| 15 |
|||
| align="center" | 1/15 |
|||
| align="center" | {{color|#000092|'''3'''}}, {{color|#920000|'''5'''}} |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|6}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|1}} |
|||
| align="center" | {{color|#000092|'''3'''}}, {{color|#000092|'''5'''}} |
|||
| align="center" | 1/F |
|||
|- |
|||
| 16 |
|||
| align="center" | 1/16 |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| '''0.0625''' |
|||
| '''0.1''' |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| align="center" | 1/10 |
|||
|- |
|||
| 17 |
|||
| align="center" | 1/17 |
|||
| align="center" | '''17''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|0588235294117647}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|0F}} |
|||
| align="center" | {{color|#004900|'''11'''}} |
|||
| align="center" | 1/11 |
|||
|- |
|||
| 18 |
|||
| align="center" | 1/18 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|5}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|E38}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| align="center" | 1/12 |
|||
|- |
|||
| 19 |
|||
| align="center" | 1/19 |
|||
| align="center" | '''19''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|052631578947368421}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|0D79435E5}} |
|||
| align="center" | '''13''' |
|||
| align="center" | 1/13 |
|||
|- |
|||
| 20 |
|||
| align="center" | 1/20 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#920000|'''5'''}} |
|||
| '''0.05''' |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|C}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''5'''}} |
|||
| align="center" | 1/14 |
|||
|- |
|||
| 21 |
|||
| align="center" | 1/21 |
|||
| align="center" | {{color|#000092|'''3'''}}, '''7''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|047619}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|0C3}} |
|||
| align="center" | {{color|#000092|'''3'''}}, '''7''' |
|||
| align="center" | 1/15 |
|||
|- |
|||
| 22 |
|||
| align="center" | 1/22 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#004900|'''11'''}} |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|45}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|BA2E8}} |
|||
| align="center" | {{color|#920000|'''2'''}}, '''B''' |
|||
| align="center" | 1/16 |
|||
|- |
|||
| 23 |
|||
| align="center" | 1/23 |
|||
| align="center" | '''23''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|0434782608695652173913}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|0B21642C859}} |
|||
| align="center" | '''17''' |
|||
| align="center" | 1/17 |
|||
|- |
|||
| 24 |
|||
| align="center" | 1/24 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.041'''{{overline|6}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|A}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| align="center" | 1/18 |
|||
|- |
|||
| 25 |
|||
| align="center" | 1/25 |
|||
| align="center" | {{color|#920000|'''5'''}} |
|||
| '''0.04''' |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|0A3D7}} |
|||
| align="center" | {{color|#000092|'''5'''}} |
|||
| align="center" | 1/19 |
|||
|- |
|||
| 26 |
|||
| align="center" | 1/26 |
|||
| align="center" | {{color|#920000|'''2'''}}, '''13''' |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|384615}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|9D8}} |
|||
| align="center" | {{color|#920000|'''2'''}}, '''D''' |
|||
| align="center" | 1/1A |
|||
|- |
|||
| 27 |
|||
| align="center" | 1/27 |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|037}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|097B425ED}} |
|||
| align="center" | {{color|#000092|'''3'''}} |
|||
| align="center" | 1/1B |
|||
|- |
|||
| 28 |
|||
| align="center" | 1/28 |
|||
| align="center" | {{color|#920000|'''2'''}}, '''7''' |
|||
| bgcolor=#e4e4e4 | '''0.03'''{{overline|571428}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|924}} |
|||
| align="center" | {{color|#920000|'''2'''}}, '''7''' |
|||
| align="center" | 1/1C |
|||
|- |
|||
| 29 |
|||
| align="center" | 1/29 |
|||
| align="center" | '''29''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|0344827586206896551724137931}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|08D3DCB}} |
|||
| align="center" | '''1D''' |
|||
| align="center" | 1/1D |
|||
|- |
|||
| 30 |
|||
| align="center" | 1/30 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, {{color|#920000|'''5'''}} |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|3}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|8}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}}, {{color|#000092|'''5'''}} |
|||
| align="center" | 1/1E |
|||
|- |
|||
| 31 |
|||
| align="center" | 1/31 |
|||
| align="center" | '''31''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|032258064516129}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|08421}} |
|||
| align="center" | '''1F''' |
|||
| align="center" | 1/1F |
|||
|- |
|||
| 32 |
|||
| align="center" | 1/32 |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| '''0.03125''' |
|||
| '''0.08''' |
|||
| align="center" | {{color|#920000|'''2'''}} |
|||
| align="center" | 1/20 |
|||
|- |
|||
| 33 |
|||
| align="center" | 1/33 |
|||
| align="center" | {{color|#000092|'''3'''}}, {{color|#004900|'''11'''}} |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|03}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|07C1F}} |
|||
| align="center" | {{color|#000092|'''3'''}}, '''B''' |
|||
| align="center" | 1/21 |
|||
|- |
|||
| 34 |
|||
| align="center" | 1/34 |
|||
| align="center" | {{color|#920000|'''2'''}}, '''17''' |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|2941176470588235}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|78}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#004900|'''11'''}} |
|||
| align="center" | 1/22 |
|||
|- |
|||
| 35 |
|||
| align="center" | 1/35 |
|||
| align="center" | {{color|#920000|'''5'''}}, '''7''' |
|||
| bgcolor=#e4e4e4 | '''0.0'''{{overline|285714}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|075}} |
|||
| align="center" | {{color|#000092|'''5'''}}, '''7''' |
|||
| align="center" | 1/23 |
|||
|- |
|||
| 36 |
|||
| align="center" | 1/36 |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| bgcolor=#e4e4e4 | '''0.02'''{{overline|7}} |
|||
| bgcolor="#e4e4e4" | '''0.0'''{{overline|71C}} |
|||
| align="center" | {{color|#920000|'''2'''}}, {{color|#000092|'''3'''}} |
|||
| align="center" | 1/24 |
|||
|- |
|||
| 37 |
|||
| align="center" | 1/37 |
|||
| align="center" | '''37''' |
|||
| bgcolor=#e4e4e4 | '''0.'''{{overline|027}} |
|||
| bgcolor="#e4e4e4" | '''0.'''{{overline|06EB3E453}} |
|||
| align="center" | '''25''' |
|||
| align="center" | 1/25 |
|||
|} |
|||
===Irrational numbers=== |
|||
[[0xDEADBEEF|0xdeadbeef]] is sometimes put into uninitialized memory. |
|||
The table below gives the expansions of some common [[irrational number]]s in decimal and hexadecimal. |
|||
{| class="wikitable" |
|||
! rowspan=2 | Number |
|||
! colspan=2 | Positional representation |
|||
|- |
|||
! Decimal |
|||
! Hexadecimal |
|||
|- |
|||
| [[Square root of 2|{{sqrt|2}}]] (the length of the [[diagonal]] of a unit [[Square (geometry)|square]]) |
|||
| {{val|1.414213562373095048}}... |
|||
| 1.6A09E667F3BCD... |
|||
|- |
|||
| [[Square root of 3|{{sqrt|3}}]] (the length of the diagonal of a unit [[cube]]) |
|||
| {{val|1.732050807568877293}}... |
|||
| 1.BB67AE8584CAA... |
|||
|- |
|||
| [[Square root of 5|{{sqrt|5}}]] (the length of the [[diagonal]] of a 1×2 [[rectangle]]) |
|||
| {{val|2.236067977499789696}}... |
|||
| 2.3C6EF372FE95... |
|||
|- |
|||
| {{mvar|[[Golden ratio|φ]]}} (phi, the [[golden ratio]] = {{math|(1+{{radical|5}})/2}}) |
|||
| {{val|1.618033988749894848}}... |
|||
| 1.9E3779B97F4A... |
|||
|- |
|||
| {{mvar|[[Pi|π]]}} (pi, the ratio of [[circumference]] to [[diameter]] of a circle) |
|||
| {{val|3.141592653589793238462643}}<br />{{val|383279502884197169399375105}}... |
|||
| 3.243F6A8885A308D313198A2E0<br />3707344A4093822299F31D008... |
|||
|- |
|||
| {{mvar|[[E (mathematical constant)|e]]}} (the base of the [[natural logarithm]]) |
|||
| {{val|2.718281828459045235}}... |
|||
| 2.B7E151628AED2A6B... |
|||
|- |
|||
| {{mvar|[[Thue–Morse constant|τ]]}} (the [[Thue–Morse constant]]) |
|||
| {{val|0.412454033640107597}}... |
|||
| 0.6996 9669 9669 6996... |
|||
|- |
|||
| {{mvar|[[Euler-Mascheroni constant|γ]]}} (the limiting difference between the [[harmonic series (mathematics)|harmonic series]] and the natural logarithm) |
|||
| {{val|0.577215664901532860}}... |
|||
| 0.93C467E37DB0C7A4D1B... |
|||
|} |
|||
===Powers=== |
|||
Another joke based on the use of a word containing only letters from the first six in the alphabet (and thus those used in hexadecimal) is... |
|||
Powers of two have very simple expansions in hexadecimal. The first sixteen powers of two are shown below. |
|||
{| class="wikitable" |
|||
! 2<sup>''x''</sup> !! Value !! Value (Decimal) |
|||
|- |
|||
| 2<sup>0</sup> || style="text-align:right;" | 1 || style="text-align:right;" | 1 |
|||
|- |
|||
| 2<sup>1</sup> || style="text-align:right;" | 2 || style="text-align:right;" | 2 |
|||
|- |
|||
| 2<sup>2</sup> || style="text-align:right;" | 4 || style="text-align:right;" | 4 |
|||
|- |
|||
| 2<sup>3</sup> || style="text-align:right;" | 8 || style="text-align:right;" | 8 |
|||
|- |
|||
| 2<sup>4</sup> || style="text-align:right;" | 10<sub>hex</sub> || style="text-align:right;" | 16<sub>dec</sub> |
|||
|- |
|||
| 2<sup>5</sup> || style="text-align:right;" | 20<sub>hex</sub> || style="text-align:right;" | 32<sub>dec</sub> |
|||
|- |
|||
| 2<sup>6</sup> || style="text-align:right;" | 40<sub>hex</sub> || style="text-align:right;" | 64<sub>dec</sub> |
|||
|- |
|||
| 2<sup>7</sup> || style="text-align:right;" | 80<sub>hex</sub> || style="text-align:right;" | 128<sub>dec</sub> |
|||
|- |
|||
| 2<sup>8</sup> || style="text-align:right;" | 100<sub>hex</sub> || style="text-align:right;" | 256<sub>dec</sub> |
|||
|- |
|||
| 2<sup>9</sup> || style="text-align:right;" | 200<sub>hex</sub> || style="text-align:right;" | 512<sub>dec</sub> |
|||
|- |
|||
| 2<sup>A</sup> (2{{sup|10{{sub|dec}}}}) || style="text-align:right;" | 400<sub>hex</sub> || style="text-align:right;" | 1024<sub>dec</sub> |
|||
|- |
|||
| 2<sup>B</sup> (2{{sup|11{{sub|dec}}}}) || style="text-align:right;" | 800<sub>hex</sub> || style="text-align:right;" | 2048<sub>dec</sub> |
|||
|- |
|||
| 2<sup>C</sup> (2{{sup|12{{sub|dec}}}}) || style="text-align:right;" | 1000<sub>hex</sub> || style="text-align:right;" | 4096<sub>dec</sub> |
|||
|- |
|||
| 2<sup>D</sup> (2{{sup|13{{sub|dec}}}}) || style="text-align:right;" | 2000<sub>hex</sub> || style="text-align:right;" | 8192<sub>dec</sub> |
|||
|- |
|||
| 2<sup>E</sup> (2{{sup|14{{sub|dec}}}}) || style="text-align:right;" | 4000<sub>hex</sub> || style="text-align:right;" | 16,384<sub>dec</sub> |
|||
|- |
|||
| 2<sup>F</sup> (2{{sup|15{{sub|dec}}}}) || style="text-align:right;" | 8000<sub>hex</sub> || style="text-align:right;" | 32,768<sub>dec</sub> |
|||
|- |
|||
| 2<sup>10</sup> (2{{sup|16{{sub|dec}}}}) || style="text-align:right;" | 10000<sub>hex</sub> || style="text-align:right;" | 65,536<sub>dec</sub> |
|||
|} |
|||
==Cultural history== |
|||
:If only DEAD people understand hexadecimal, how many people understand hexadecimal? |
|||
The traditional [[Chinese units of measurement]] were base-16. For example, one jīn (斤) in the old system equals sixteen [[tael]]s. The [[suanpan]] (Chinese [[abacus]]) can be used to perform hexadecimal calculations such as additions and subtractions.<ref>{{Cite web|url=http://totton.idirect.com/soroban/Hex_as/|title=算盤 Hexadecimal Addition & Subtraction on a Chinese Abacus|website=totton.idirect.com|access-date=2019-06-26|archive-date=2019-07-06 |archive-url=https://web.archive.org/web/20190706221609/http://totton.idirect.com/soroban/Hex_as/|url-status=live}}</ref> |
|||
In this case, DEAD refers to a hexadecimal number (57005 base 10), not the state of being no longer alive. Obviously, DEAD normally should not be written in all-caps (as in the preceding) as it makes it stand out, thus ruining the riddle. |
|||
As with the [[duodecimal]] system, there have been occasional attempts to promote hexadecimal as the preferred numeral system. These attempts often propose specific pronunciation and symbols for the individual numerals.<ref>{{cite web |
|||
Microsoft Windows XP clears its locked index.dat files with the hex codes: "0BADF00D". |
|||
| url = http://www.hauptmech.com/base42 |
|||
| title = Base 4^2 Hexadecimal Symbol Proposal |
|||
| website = Hauptmech |
|||
| access-date = 2008-09-04 |
|||
| archive-date = 2021-10-20 |
|||
| archive-url = https://web.archive.org/web/20211020192525/http://www.hauptmech.com/base42/wiki/index.php?title=Main_Page |
|||
| url-status = live |
|||
}}</ref> Some proposals unify standard measures so that they are multiples of 16.<ref>{{cite web|url=http://www.intuitor.com/hex/|title=Intuitor Hex Headquarters|website=Intuitor|access-date=28 October 2018|archive-date=2010-09-04 |archive-url=https://web.archive.org/web/20100904144850/http://www.intuitor.com/hex/|url-status=live}}</ref><ref>{{cite web|url=https://www.unicode.org/wg2/docs/n2677.pdf |title=A proposal for addition of the six Hexadecimal digits (A-F) to Unicode |last=Niemietz|first=Ricardo Cancho|date=21 October 2003 |publisher=ISO/IEC JTC1/SC2/WG2 |access-date=2024-06-25}}</ref> |
|||
An early such proposal was put forward by [[John W. Nystrom]] in ''Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System, with Sixteen to the Base'', published in 1862.<ref name="nystrom">{{cite book|url=https://archive.org/details/bub_gb_aNYGAAAAYAAJ|title=Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System, with Sixteen to the Base|last=Nystrom|first=John William|publisher=Lippincott|year=1862|location=Philadelphia}}</ref> |
|||
Nystrom among other things suggested [[hexadecimal time]], which subdivides a day by 16, |
|||
so that there are 16 "hours" (or "10 ''tims''", pronounced ''tontim'') in a day.<ref>Nystrom (1862), p. 33: |
|||
"In expressing time, angle of a circle, or points on the compass, the unit ''tim'' should be noted as integer, and parts thereof as ''tonal fractions'', as 5·86 ''tims'' is five times and ''metonby'' [*"sutim and metonby" John Nystrom accidentally gives part of the number in decimal names; in Nystrom's pronunciation scheme, 5=su, 8=me, 6=by, c.f. [http://www.unifoundry.com/tonal/index.html unifoundry.com] {{Webarchive|url=https://web.archive.org/web/20210519080658/http://www.unifoundry.com/tonal/index.html |date=2021-05-19 }} ]."</ref> |
|||
{{anchor|Etymology}}{{wiktionary|hexadecimal}} |
|||
Two common bit patterns often employed to test hardware are <code>01010101</code> and <code>10101010</code> (their corresponding hex values are 55h and AAh, respectively). The reason for their use is to alternate between ''off'' ('0') to ''on'' ('1') or vice versa when switching between these two patterns. These two values are often used together as ''signatures'' in critical PC system sectors (e.g., the hex word, <code>0xAA55</code> which on [[endianness|little-endian]] systems is 55h followed by AAh, must be at the end of a valid [[master boot record|Master Boot Record]]). |
|||
The word ''hexadecimal'' is first recorded in 1952.<ref>C. E. Fröberg, ''Hexadecimal Conversion Tables'', Lund (1952).</ref> It is [[macaronic]] in the sense that it combines [[Greek language|Greek]] ἕξ (hex) "six" with [[Latin]]ate ''-decimal''. |
|||
The all-Latin alternative ''[[:wikt:sexadecimal|sexadecimal]]'' (compare the word ''[[sexagesimal]]'' for base 60) is older, and sees at least occasional use from the late 19th century.<ref> |
|||
''The Century Dictionary'' of 1895 has ''sexadecimal'' in the more general sense of "relating to sixteen". |
|||
An early explicit use of ''sexadecimal'' in the sense of "using base 16" is found also in 1895, in the ''Journal of the American Geographical Society of New York'', vols. 27–28, p. 197.</ref> |
|||
It is still in use in the 1950s in [[Bendix Corporation|Bendix]] documentation. |
|||
Schwartzman (1994) argues that use of ''sexadecimal'' may have been avoided because of its suggestive abbreviation to ''sex''.<ref>{{cite book|first=Steven|last=Schwartzman|title=The Words of Mathematics: An etymological dictionary of mathematical terms used in English|date=1994|publisher=The Mathematical Association of America|page=105|isbn=0-88385-511-9}} s.v. hexadecimal</ref> |
|||
Many western languages since the 1960s have adopted terms equivalent in formation to ''hexadecimal'' (e.g. French ''hexadécimal'', Italian ''esadecimale'', Romanian ''hexazecimal'', Serbian ''хексадецимални'', etc.) |
|||
but others have introduced terms which substitute native words for "sixteen" (e.g. Greek δεκαεξαδικός, Icelandic ''sextándakerfi'', Russian ''шестнадцатеричной'' etc.) |
|||
Terminology and notation did not become settled until the end of the 1960s. |
|||
===Primary numeral system=== |
|||
In 1969, [[Donald Knuth]] argued that the etymologically correct term would be ''senidenary'', or possibly ''sedenary'', a Latinate term intended to convey "grouped by 16" modelled on ''binary'', ''ternary'', ''quaternary'', etc. |
|||
There have been occasional attempts to promote hexadecimal as the preferred numeral system. These attempts usually |
|||
According to Knuth's argument, the correct terms for ''decimal'' and ''octal'' arithmetic would be ''denary'' and ''octonary'', respectively.<ref>Knuth, Donald. (1969). ''[[The Art of Computer Programming]], Volume 2''. {{isbn|0-201-03802-1}}. (Chapter 17.)</ref> |
|||
propose pronunciation and/or symbology. Sometimes the proposal unifies standard |
|||
Alfred B. Taylor used ''senidenary'' in his mid-1800s work on alternative number bases, although he rejected base 16 because of its "incommodious number of digits".<ref>Alfred B. Taylor, [https://archive.org/details/reportonweights00taylgoog Report on Weights and Measures], Pharmaceutical Association, 8th Annual Session, Boston, 15 September 1859. See pages and 33 and 41.</ref><ref>Alfred B. Taylor, "Octonary numeration and its application to a system of weights and measures", [https://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296 ''Proc Amer. Phil. Soc.'' Vol XXIV] {{Webarchive|url=https://web.archive.org/web/20160624070056/https://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296 |date=2016-06-24 }}, Philadelphia, 1887; pages 296–366. See pages 317 and 322.</ref> |
|||
measures so that they are multiples of 16.<ref> {{cite web |
|||
| url = http://www.intuitor.com/hex/ |
|||
| title = Intuitor Hex Headquarters |
|||
}} </ref><ref> {{cite web |
|||
| url = http://std.dkuug.dk/jtc1/sc2/wg2/docs/n2677 |
|||
| title = A proposal for addition of the six Hexadecimal digits (A-F) to Unicode |
|||
}} </ref><ref name="nystrom"> {{cite book | last=Nystrom | first=John William | title=Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System, with Sixteen to the Base |year=1862 | url=http://books.google.com/books?id=aNYGAAAAYAAJ | location=Philadelphia}}</ref> |
|||
The now-current notation using the letters A to F establishes itself as the de facto standard beginning in 1966, in the wake of the |
|||
An example of unifying standard measures is [[Hexadecimal time]] which subdivides a day by 16 so that there are 16 "hexhours" in a day.<ref name="nystrom" /> |
|||
publication of the [[Fortran IV]] manual for [[IBM System/360]], which (unlike earlier variants of Fortran) recognizes a standard for entering hexadecimal constants.<ref>[http://www.bitsavers.org/pdf/ibm/360/fortran/C28-6515-6_FORTRAN_IV_Language_1966.pdf IBM System/360 FORTRAN IV Language] {{Webarchive|url=https://web.archive.org/web/20210519073220/http://www.bitsavers.org/pdf/ibm/360/fortran/C28-6515-6_FORTRAN_IV_Language_1966.pdf |date=2021-05-19 }} (1966), p. 13.</ref> |
|||
As noted above, alternative notations were used by [[NEC]] (1960) and The Pacific Data Systems 1020 (1964). The standard adopted by IBM seems to have become widely adopted by 1968, when Bruce Alan Martin |
|||
in his letter to the editor of the [[Communications of the ACM|CACM]] complains that |
|||
{{blockquote|With the ridiculous choice of letters A, B, C, D, E, F as hexadecimal number symbols adding to already troublesome problems of distinguishing octal (or hex) numbers from decimal numbers (or variable names), the time is overripe for reconsideration of our number symbols. This should have been done before poor choices gelled into a de facto standard!}} |
|||
Martin's argument was that use of numerals 0 to 9 in nondecimal numbers "imply to us a base-ten place-value scheme": |
|||
"Why not use entirely new symbols (and names) for the seven or fifteen nonzero digits needed in octal or hex. Even use of the letters A through P would be an improvement, but entirely new symbols could reflect the binary nature of the system".<ref name="Martin_1968"/> |
|||
He also argued that "re-using alphabetic letters for numerical digits represents a gigantic backward step from the invention of distinct, non-alphabetic glyphs for numerals sixteen centuries ago" (as [[Brahmi numerals]], and later in a [[Hindu–Arabic numeral system]]), |
|||
and that the recent [[ASCII]] standards (ASA X3.4-1963 and USAS X3.4-1968) |
|||
"should have preserved six code table positions following the ten decimal digits |
|||
-- rather than needlessly filling these with punctuation characters" |
|||
(":;<=>?") that might have been placed elsewhere among the 128 available positions. |
|||
<!--The [[Etymology|etymologically]] proper [[Greek language|Greek]] term would be ''hexadecadic'' / ''ἑξαδεκαδικός'' / ''hexadekadikós'' {{cn}} (although in [[Modern Greek]], ''decahexadic'' / ''δεκαεξαδικός'' / ''dekaexadikos'' is more commonly used). --> |
|||
<!--please, do not add anything on "drome numbers", nobody outside MathWorld refers to them and it may be a deliberate fake entry--> |
|||
==Base16 (transfer encoding)== |
|||
'''Base16''' (as a proper name without a space) can also refer to a [[binary to text encoding]] belonging to the same family as [[Base32]], [[Base58]], and [[Base64]]. |
|||
In this case, data is broken into 4-bit sequences, and each value (between 0 and 15 inclusively) is encoded using one of 16 symbols from the [[ASCII]] character set. Although any 16 symbols from the ASCII character set can be used, in practice, the ASCII digits "0"–"9" and the letters "A"–"F" (or the lowercase "a"–"f") are always chosen in order to align with standard written notation for hexadecimal numbers. |
|||
There are several advantages of Base16 encoding: |
|||
* Most programming languages already have facilities to parse ASCII-encoded hexadecimal |
|||
* Being exactly half a byte, 4-bits is easier to process than the 5 or 6 bits of Base32 and Base64 respectively |
|||
* The symbols 0–9 and A–F are universal in hexadecimal notation, so it is easily understood at a glance without needing to rely on a symbol lookup table. |
|||
* Many CPU architectures have dedicated instructions that allow access to a half-byte (otherwise known as a "[[nibble]]"), making it more efficient in hardware than Base32 and Base64 |
|||
The main disadvantages of Base16 encoding are: |
|||
* Space efficiency is only 50%, since each 4-bit value from the original data will be encoded as an 8-bit byte. In contrast, Base32 and Base64 encodings have a space efficiency of 63% and 75% respectively. |
|||
* Possible added complexity of having to accept both uppercase and lowercase letters |
|||
Support for Base16 encoding is ubiquitous in modern computing. It is the basis for the [[World Wide Web Consortium|W3C]] standard for [[Percent-encoding|URL percent encoding]], where a character is replaced with a percent sign "%" and its Base16-encoded form. Most modern programming languages directly include support for formatting and parsing Base16-encoded numbers. |
|||
==See also== |
==See also== |
||
* [[Base32]], [[Base64]] (content encoding schemes) |
|||
<div style="-moz-column-count:2; column-count:2;"> |
|||
*[[ |
* [[Hexadecimal time]] |
||
* [[IBM hexadecimal floating-point]] |
|||
*[[Base 64]] |
|||
*[[ |
* [[Hex editor]] |
||
*[[Hex |
* [[Hex dump]] |
||
* [[Bailey–Borwein–Plouffe formula]] (BBP) |
|||
*[[Hexadecimal time]] |
|||
*[[Hexspeak]] |
* [[Hexspeak]] |
||
* [[P notation]] |
|||
*[[Nibble]] — one hexadecimal digit can exactly represent one "nibble" |
|||
<!-- Please do NOT add any hex encoders or decoders. There are plenty of examples already. See [[WP:EL]] (http://en.wikipedia.org/wiki/Wikipedia:EL) for an explanation of why external links are routinely vigorously eliminated from articles.--> |
|||
*[[Numeral system]] — a list of other base systems |
|||
*[[Binary numeral system]] |
|||
*[[HTML]] |
|||
*[[Bubble Babble]] |
|||
</div> |
|||
==References== |
==References== |
||
{{reflist| |
{{reflist|refs= |
||
<ref name="Savard_2018_CA">{{cite web |title=Computer Arithmetic |at=The Early Days of Hexadecimal |author-first=John J. G. |author-last=Savard |date=2018 |orig-year=2005 |work=quadibloc |url=http://www.quadibloc.com/comp/cp02.htm |access-date=2018-07-16 |url-status=live |archive-url=https://web.archive.org/web/20180716102439/http://www.quadibloc.com/comp/cp02.htm |archive-date=2018-07-16}}</ref> |
|||
<ref name="Bendix">{{cite book |title=G15D Programmer's Reference Manual |chapter=2.1.3 Sexadecimal notation |publisher=[[Bendix Computer]], Division of [[Bendix Aviation Corporation]] |location=Los Angeles, CA, US |page=4 |url=http://bitsavers.trailing-edge.com/pdf/bendix/g-15/G15D_Programmers_Ref_Man.pdf |access-date=2017-06-01 |url-status=live |archive-url=https://web.archive.org/web/20170601222212/http://bitsavers.trailing-edge.com/pdf/bendix/g-15/G15D_Programmers_Ref_Man.pdf |archive-date=2017-06-01 |quote=This base is used because a group of four bits can represent any one of sixteen different numbers (zero to fifteen). By assigning a symbol to each of these combinations, we arrive at a notation called sexadecimal (usually "hex" in conversation because nobody wants to abbreviate "sex"). The symbols in the sexadecimal language are the ten decimal digits and on the G-15 typewriter, the letters "u", "v", "w", "x", "y", and "z". These are arbitrary markings; other computers may use different alphabet characters for these last six digits.}}</ref> |
|||
<ref name="Illiac-I">{{cite web |title=ILLIAC Programming – A Guide to the Preparation of Problems For Solution by the University of Illinois Digital Computer |author-first1=S. |author-last1=Gill |author-first2=R. E. |author-last2=Neagher |author-first3=D. E. |author-last3=Muller |author-first4=J. P. |author-last4=Nash |author-first5=J. E. |author-last5=Robertson |author-first6=T. |author-last6=Shapin |author-first7=D. J. |author-last7=Whesler |editor-first=J. P. |editor-last=Nash |edition=Fourth printing. Revised and corrected |date=1956-09-01 |publisher=Digital Computer Laboratory, Graduate College, [[University of Illinois]] |location=Urbana, Illinois, US |pages=3–2 |url=http://www.textfiles.com/bitsavers/pdf/illiac/ILLIAC/ILLIAC_programming_Sep56.pdf |website=bitsavers.org |access-date=2014-12-18 |url-status=live |archive-url=https://web.archive.org/web/20170531153804/http://www.textfiles.com/bitsavers/pdf/illiac/ILLIAC/ILLIAC_programming_Sep56.pdf |archive-date=2017-05-31}}</ref> |
|||
<ref name="RP_1957_LGP-30">{{cite book |title=Royal Precision Electronic Computer LGP – 30 Programming Manual |publisher=[[Royal McBee Corporation]] |location=Port Chester, New York |date=April 1957 |url=http://ed-thelen.org/comp-hist/lgp-30-man.html#R4.13 |access-date=2017-05-31 |url-status=live |archive-url=https://web.archive.org/web/20170531153004/http://ed-thelen.org/comp-hist/lgp-30-man.html |archive-date=2017-05-31}} (NB. This somewhat odd sequence was from the next six sequential numeric keyboard codes in the [[LGP-30]]'s 6-bit character code.)</ref> |
|||
<ref name="PERM">{{cite web |title=Die PERM und ALGOL |url=http://www.manthey.cc/sites/seminars/src/History.pdf |author-first1=Steffen |author-last1=Manthey |author-first2=Klaus |author-last2=Leibrandt |date=2002-07-02 |access-date=2018-05-19 |language=de |archive-date=2018-10-03 |archive-url=https://web.archive.org/web/20181003172841/http://www.manthey.cc/sites/seminars/src/History.pdf |url-status=live }}</ref> |
|||
}} |
|||
<!-- |
|||
==External links== |
==External links== |
||
If you're here, you're probably thinking about adding an external link to an online calculator or some such. Some points to keep in mind (from the policy at [[WP:EL]], http://en.wikipedia.org/enwiki/w/index.php?title=Wikipedia:External_links): |
|||
===Hex conversion utilities or pages=== |
|||
*[http://netzreport.googlepages.com/online_converter_for_dec_hex.html Online Converter] for Decimal/Hexadecimal Numerals ([[JavaScript]], [[GPL]]) |
|||
* The "External links" section should be kept to a minimum. A lack of external links ... is not a reason to add them. |
|||
*[http://textop.us/Text-Convert/Hexadecimal Online ASCII/Hexadecimal converter (PHP)] |
|||
* Links to be avoided: |
|||
*[http://www.defproc.co.uk/toys/hex.php Hex/ASCII 'translation' service] |
|||
** Any site that does not provide a unique resource beyond what the article might contain... |
|||
*[http://leetkey.mozdev.org Leet Key], a Firefox extension that supports ASCII/Hex conversions and typing |
|||
** Links mainly intended to promote a website |
|||
*[http://hexday.com Hexday], a web based social network built around hex color choices |
|||
** Sites that are only indirectly related to the article's subject |
|||
Since the article is about hexadecimal representation and mentions standard tools for conversion only as a minor example, there is little any external link to an online calculator or converter could possibly add to the reader's knowledge. |
|||
[[Category:Computer arithmetic]] |
|||
+ + |
|||
[[Category:Positional numeral systems| 16]] <!--Please note that the blank after | is intentional--> |
|||
But a online calculator and or converter does "provide a unique resource beyond what the article contains" |
|||
What's the harm in linking to a good page rather than making the user search for one and finding a the poor one? |
|||
~~~~ |
|||
--> |
|||
[[Category:Binary arithmetic]] |
|||
[[ar:نظام عد سداسي عشر]] |
|||
[[Category:Hexadecimal numeral system]] |
|||
[[be:Шаснаццаткавая сістэма злічэння]] |
|||
[[Category:Power-of-two numeral systems]] |
|||
[[bs:Heksadecimalni sistem]] |
|||
[[Category:Positional numeral systems]] |
|||
[[br:Diazez c'hwezekred]] |
|||
[[bg:Шестнадесетична бройна система]] |
|||
[[ca:Sistema hexadecimal]] |
|||
[[cs:Hexadecimální soustava]] |
|||
[[da:Hexadecimale talsystem]] |
|||
[[de:Hexadezimalsystem]] |
|||
[[el:Δεκαεξαδικό σύστημα αρίθμησης]] |
|||
[[es:Sistema hexadecimal]] |
|||
[[eo:Deksesuma sistemo]] |
|||
[[eu:Zenbaki-sistema hamaseitar]] |
|||
[[fa:هگزادسیمال]] |
|||
[[fr:Système hexadécimal]] |
|||
[[gl:Código hexadecimal]] |
|||
[[ko:십육진법]] |
|||
[[hr:Heksadekadski brojevni sustav]] |
|||
[[id:Heksadesimal]] |
|||
[[is:Sextánundakerfi]] |
|||
[[it:Sistema numerico esadecimale]] |
|||
[[he:בסיס הקסדצימלי]] |
|||
[[ht:Sistèm ekzadesimal]] |
|||
[[lv:Heksadecimālā skaitīšanas sistēma]] |
|||
[[hu:Tizenhatos számrendszer]] |
|||
[[ms:Nombor perenambelasan]] |
|||
[[nl:Hexadecimaal]] |
|||
[[ja:十六進法]] |
|||
[[no:Sekstentallsystemet]] |
|||
[[nn:Sekstentalssystemet]] |
|||
[[pl:Szesnastkowy system liczbowy]] |
|||
[[pt:Sistema hexadecimal]] |
|||
[[ro:Sistem hexazecimal]] |
|||
[[ru:Шестнадцатеричная система счисления]] |
|||
[[simple:Hexadecimal numeral system]] |
|||
[[sk:Šestnástková sústava]] |
|||
[[sl:Šestnajstiški številski sistem]] |
|||
[[sr:Хексадецимални систем]] |
|||
[[sh:Heksadecimalni sistem]] |
|||
[[fi:Heksadesimaalijärjestelmä]] |
|||
[[sv:Hexadecimala talsystemet]] |
|||
[[th:เลขฐานสิบหก]] |
|||
[[vi:Hệ thập lục phân]] |
|||
[[tr:Heksadesimal]] |
|||
[[uk:Шістнадцяткова система числення]] |
|||
[[yi:העקס]] |
|||
[[zh:十六进制]] |
Latest revision as of 00:30, 9 December 2024
Part of a series on |
Numeral systems |
---|
List of numeral systems |
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble).[1] For example, a 6-bit byte can have values ranging from 000000 to 111111 (0 to 63 decimal) in binary form, which can be written as 00 to 3F in hexadecimal.
In mathematics, a subscript is typically used to specify the base. For example, the decimal value 711 would be expressed in hexadecimal as 2C716. In programming, several notations denote hexadecimal numbers, usually involving a prefix. The prefix 0x
is used in C, which would denote this value as 0x2C7
.
Hexadecimal is used in the transfer encoding Base 16, in which each byte of the plain text is broken into two 4-bit values and represented by two hexadecimal digits.
Representation
[edit]Written representation
[edit]In most current use cases, the letters A–F or a–f represent the values 10–15, while the numerals 0–9 are used to represent their decimal values.
There is no universal convention to use lowercase or uppercase, so each is prevalent or preferred in particular environments by community standards or convention; even mixed case is used. Some seven-segment displays use mixed-case 'A b C d E F' to distinguish the digits A–F from one another and from 0–9.
There is some standardization of using spaces (rather than commas or another punctuation mark) to separate hex values in a long list. For instance, in the following hex dump, each 8-bit byte is a 2-digit hex number, with spaces between them, while the 32-bit offset at the start is an 8-digit hex number.
00000000 57 69 6b 69 70 65 64 69 61 2c 20 74 68 65 20 66
00000010 72 65 65 20 65 6e 63 79 63 6c 6f 70 65 64 69 61
00000020 20 74 68 61 74 20 61 6e 79 6f 6e 65 20 63 61 6e
00000030 20 65 64 69 74 0a
Distinguishing from decimal
[edit]In contexts where the base is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously. A numerical subscript (itself written in decimal) can give the base explicitly: 15910 is decimal 159; 15916 is hexadecimal 159, which equals 34510. Some authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h.
Donald Knuth introduced the use of a particular typeface to represent a particular radix in his book The TeXbook.[2] Hexadecimal representations are written there in a typewriter typeface: 5A3, C1F27ED
In linear text systems, such as those used in most computer programming environments, a variety of methods have arisen:
- Although best known from the C programming language (and the many languages influenced by C), the prefix
0x
to indicate a hex constant may have had origins in the IBM Stretch systems. It is derived from the0
prefix already in use for octal constants. Byte values can be expressed in hexadecimal with the prefix\x
followed by two hex digits:'\x1B'
represents the Esc control character;"\x1B[0m\x1B[25;1H"
is a string containing 11 characters with two embedded Esc characters.[3] To output an integer as hexadecimal with the printf function family, the format conversion code%X
or%x
is used. - In XML and XHTML, characters can be expressed as hexadecimal numeric character references using the notation
ode;
, for instanceT
represents the character U+0054 (the uppercase letter "T"). If there is nox
the number is decimal (thusT
is the same character).[4] - In Intel-derived assembly languages and Modula-2,[5] hexadecimal is denoted with a suffixed H or h:
FFh
or05A3H
. Some implementations require a leading zero when the first hexadecimal digit character is not a decimal digit, so one would write0FFh
instead ofFFh
. Some other implementations (such as NASM) allow C-style numbers (0x42
). - Other assembly languages (6502, Motorola), Pascal, Delphi, some versions of BASIC (Commodore), GameMaker Language, Godot and Forth use
$
as a prefix:$5A3
,$C1F27ED
. - Some assembly languages (Microchip) use the notation
H'ABCD'
(for ABCD16). Similarly, Fortran 95 uses Z'ABCD'. - Ada and VHDL enclose hexadecimal numerals in based "numeric quotes":
16#5A3#
,16#C1F27ED#
. For bit vector constants VHDL uses the notationx"5A3"
,x"C1F27ED"
.[6] - Verilog represents hexadecimal constants in the form
8'hFF
, where 8 is the number of bits in the value and FF is the hexadecimal constant. - The Icon and Smalltalk languages use the prefix
16r
:16r5A3
- PostScript and the Bourne shell and its derivatives denote hex with prefix
16#
:16#5A3
,16#C1F27ED
. - Common Lisp uses the prefixes
#x
and#16r
. Setting the variables *read-base*[7] and *print-base*[8] to 16 can also be used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, when the input or output base has been changed to 16. - MSX BASIC,[9] QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with
&H
:&H5A3
- BBC BASIC and Locomotive BASIC use
&
for hex.[10] - TI-89 and 92 series uses a
0h
prefix:0h5A3
,0hC1F27ED
- ALGOL 68 uses the prefix
16r
to denote hexadecimal numbers:16r5a3
,16rC1F27ED
. Binary, quaternary (base-4), and octal numbers can be specified similarly. - The most common format for hexadecimal on IBM mainframes (zSeries) and midrange computers (IBM i) running the traditional OS's (zOS, zVSE, zVM, TPF, IBM i) is
X'5A3'
orX'C1F27ED'
, and is used in Assembler, PL/I, COBOL, JCL, scripts, commands and other places. This format was common on other (and now obsolete) IBM systems as well. Occasionally quotation marks were used instead of apostrophes.
Syntax that is always Hex
[edit]Sometimes the numbers are known to be Hex.
- In URIs (including URLs), character codes are written as hexadecimal pairs prefixed with
%
:http://www.example.com/name%20with%20spaces
where%20
is the code for the space (blank) character, ASCII code point 20 in hex, 32 in decimal. - In the Unicode standard, a character value is represented with
U+
followed by the hex value, e.g.U+00A1
is the inverted exclamation point (¡). - Color references in HTML, CSS and X Window can be expressed with six hexadecimal digits (two each for the red, green and blue components, in that order) prefixed with
#
: magenta, for example, is represented as#FF00FF
.[11] CSS also allows 3-hexdigit abbreviations with one hexdigit per component:#FA3
abbreviates#FFAA33
(a golden orange: ). - In MIME (e-mail extensions) quoted-printable encoding, character codes are written as hexadecimal pairs prefixed with
=
:Espa=F1a
is "España" (F1hex is the code for ñ in the ISO/IEC 8859-1 character set).[12]) - PostScript binary data (such as image pixels) can be expressed as unprefixed consecutive hexadecimal pairs:
AA213FD51B3801043FBC
... - Any IPv6 address can be written as eight groups of four hexadecimal digits (sometimes called hextets), where each group is separated by a colon (
:
). This, for example, is a valid IPv6 address:2001:0db8:85a3:0000:0000:8a2e:0370:7334
or abbreviated by removing leading zeros as2001:db8:85a3::8a2e:370:7334
(IPv4 addresses are usually written in decimal). - Globally unique identifiers are written as thirty-two hexadecimal digits, often in unequal hyphen-separated groupings, for example
3F2504E0-4F89-41D3-9A0C-0305E82C3301
.
Other symbols for 10–15 and mostly different symbol sets
[edit]The use of the letters A through F to represent the digits above 9 was not universal in the early history of computers.
- During the 1950s, some installations, such as Bendix-14, favored using the digits 0 through 5 with an overline to denote the values 10–15 as 0, 1, 2, 3, 4 and 5.
- The SWAC (1950)[13] and Bendix G-15 (1956)[14][13] computers used the lowercase letters u, v, w, x, y and z for the values 10 to 15.
- The ORDVAC and ILLIAC I (1952) computers (and some derived designs, e.g. BRLESC) used the uppercase letters K, S, N, J, F and L for the values 10 to 15.[15][13]
- The Librascope LGP-30 (1956) used the letters F, G, J, K, Q and W for the values 10 to 15.[16][13]
- On the PERM (1956) computer, hexadecimal numbers were written as letters O for zero, A to N and P for 1 to 15. Many machine instructions had mnemonic hex-codes (A=add, M=multiply, L=load, F=fixed-point etc.); programs were written without instruction names.[17]
- The Honeywell Datamatic D-1000 (1957) used the lowercase letters b, c, d, e, f, and g whereas the Elbit 100 (1967) used the uppercase letters B, C, D, E, F and G for the values 10 to 15.[13]
- The Monrobot XI (1960) used the letters S, T, U, V, W and X for the values 10 to 15.[13]
- The NEC parametron computer NEAC 1103 (1960) used the letters D, G, H, J, K (and possibly V) for values 10–15.[18]
- The Pacific Data Systems 1020 (1964) used the letters L, C, A, S, M and D for the values 10 to 15.[13]
- New numeric symbols and names were introduced in the Bibi-binary notation by Boby Lapointe in 1968.
- Bruce Alan Martin of Brookhaven National Laboratory considered the choice of A–F "ridiculous". In a 1968 letter to the editor of the CACM, he proposed an entirely new set of symbols based on the bit locations.[19]
- In 1972, Ronald O. Whitaker of Rowco Engineering Co. proposed a triangular font that allows "direct binary reading" to "permit both input and output from computers without respect to encoding matrices."[20][21]
- Some seven-segment display decoder chips (i.e., 74LS47) show unexpected output due to logic designed only to produce 0–9 correctly.[22]
Verbal and digital representations
[edit]Since there were no traditional numerals to represent the quantities from ten to fifteen, alphabetic letters were re-employed as a substitute. Most European languages lack non-decimal-based words for some of the numerals eleven to fifteen. Some people read hexadecimal numbers digit by digit, like a phone number, or using the NATO phonetic alphabet, the Joint Army/Navy Phonetic Alphabet, or a similar ad-hoc system. In the wake of the adoption of hexadecimal among IBM System/360 programmers, Magnuson (1968)[23] suggested a pronunciation guide that gave short names to the letters of hexadecimal – for instance, "A" was pronounced "ann", B "bet", C "chris", etc.[23] Another naming-system was published online by Rogers (2007)[24] that tries to make the verbal representation distinguishable in any case, even when the actual number does not contain numbers A–F. Examples are listed in the tables below. Yet another naming system was elaborated by Babb (2015), based on a joke in Silicon Valley.[25]
Others have proposed using the verbal Morse Code conventions to express four-bit hexadecimal digits, with "dit" and "dah" representing zero and one, respectively, so that "0000" is voiced as "dit-dit-dit-dit" (....), dah-dit-dit-dah (-..-) voices the digit with a value of nine, and "dah-dah-dah-dah" (----) voices the hexadecimal digit for decimal 15.
Systems of counting on digits have been devised for both binary and hexadecimal. Arthur C. Clarke suggested using each finger as an on/off bit, allowing finger counting from zero to 102310 on ten fingers.[26] Another system for counting up to FF16 (25510) is illustrated on the right.
Number | Pronunciation |
---|---|
A | ann |
B | bet |
C | chris |
D | dot |
E | ernest |
F | frost |
1A | annteen |
A0 | annty |
5B | fifty-bet |
A01C | annty christeen |
1AD0 | annteen dotty |
3A7D | thirty-ann seventy-dot |
Number | Pronunciation |
---|---|
A | ten |
B | eleven |
C | twelve |
D | draze |
E | eptwin |
F | fim |
10 | tex |
11 | oneteek |
1F | fimteek |
50 | fiftek |
C0 | twelftek |
100 | hundrek |
1000 | thousek |
3E | thirtek-eptwin |
E1 | eptek-one |
C4A | twelve-hundrek-fourtek-ten |
1743 | one-thousek-seven- -hundrek-fourtek-three |
Signs
[edit]The hexadecimal system can express negative numbers the same way as in decimal: −2A to represent −4210, −B01D9 to represent −72136910 and so on.
Hexadecimal can also be used to express the exact bit patterns used in the processor, so a sequence of hexadecimal digits may represent a signed or even a floating-point value. This way, the negative number −4210 can be written as FFFF FFD6 in a 32-bit CPU register (in two's complement), as C228 0000 in a 32-bit FPU register or C045 0000 0000 0000 in a 64-bit FPU register (in the IEEE floating-point standard).
Hexadecimal exponential notation
[edit]Just as decimal numbers can be represented in exponential notation, so too can hexadecimal numbers. P notation uses the letter P (or p, for "power"), whereas E (or e) serves a similar purpose in decimal E notation. The number after the P is decimal and represents the binary exponent. Increasing the exponent by 1 multiplies by 2, not 16: 20p0 = 10p1 = 8p2 = 4p3 = 2p4 = 1p5. Usually, the number is normalized so that the hexadecimal digits start with 1. (zero is usually 0 with no P).
Example: 1.3DEp42 represents 1.3DE16 × 24210.
P notation is required by the IEEE 754-2008 binary floating-point standard and can be used for floating-point literals in the C99 edition of the C programming language.[27] Using the %a or %A conversion specifiers, this notation can be produced by implementations of the printf family of functions following the C99 specification[28] and Single Unix Specification (IEEE Std 1003.1) POSIX standard.[29]
Conversion
[edit]Binary conversion
[edit]Most computers manipulate binary data, but it is difficult for humans to work with a large number of digits for even a relatively small binary number. Although most humans are familiar with the base 10 system, it is much easier to map binary to hexadecimal than to decimal because each hexadecimal digit maps to a whole number of bits (410). This example converts 11112 to base ten. Since each position in a binary numeral can contain either a 1 or a 0, its value may be easily determined by its position from the right:
- 00012 = 110
- 00102 = 210
- 01002 = 410
- 10002 = 810
Therefore:
11112 | = 810 + 410 + 210 + 110 |
= 1510 |
With little practice, mapping 11112 to F16 in one step becomes easy (see table in written representation). The advantage of using hexadecimal rather than decimal increases rapidly with the size of the number. When the number becomes large, conversion to decimal is very tedious. However, when mapping to hexadecimal, it is trivial to regard the binary string as 4-digit groups and map each to a single hexadecimal digit.[30]
This example shows the conversion of a binary number to decimal, mapping each digit to the decimal value, and adding the results.
(1001011100)2 | = 51210 + 6410 + 1610 + 810 + 410 |
= 60410 |
Compare this to the conversion to hexadecimal, where each group of four digits can be considered independently and converted directly:
(1001011100)2 | = | 0010 | 0101 | 11002 | ||
= | 2 | 5 | C16 | |||
= | 25C16 |
The conversion from hexadecimal to binary is equally direct.[30]
Other simple conversions
[edit]Although quaternary (base 4) is little used, it can easily be converted to and from hexadecimal or binary. Each hexadecimal digit corresponds to a pair of quaternary digits, and each quaternary digit corresponds to a pair of binary digits. In the above example 2 5 C16 = 02 11 304.
The octal (base 8) system can also be converted with relative ease, although not quite as trivially as with bases 2 and 4. Each octal digit corresponds to three binary digits, rather than four. Therefore, we can convert between octal and hexadecimal via an intermediate conversion to binary followed by regrouping the binary digits in groups of either three or four.
Division-remainder in source base
[edit]As with all bases there is a simple algorithm for converting a representation of a number to hexadecimal by doing integer division and remainder operations in the source base. In theory, this is possible from any base, but for most humans, only decimal and for most computers, only binary (which can be converted by far more efficient methods) can be easily handled with this method.
Let d be the number to represent in hexadecimal, and the series hihi−1...h2h1 be the hexadecimal digits representing the number.
- i ← 1
- hi ← d mod 16
- d ← (d − hi) / 16
- If d = 0 (return series hi) else increment i and go to step 2
"16" may be replaced with any other base that may be desired.
The following is a JavaScript implementation of the above algorithm for converting any number to a hexadecimal in String representation. Its purpose is to illustrate the above algorithm. To work with data seriously, however, it is much more advisable to work with bitwise operators.
function toHex(d) {
var r = d % 16;
if (d - r == 0) {
return toChar(r);
}
return toHex((d - r) / 16) + toChar(r);
}
function toChar(n) {
const alpha = "0123456789ABCDEF";
return alpha.charAt(n);
}
Conversion through addition and multiplication
[edit]It is also possible to make the conversion by assigning each place in the source base the hexadecimal representation of its place value — before carrying out multiplication and addition to get the final representation. For example, to convert the number B3AD to decimal, one can split the hexadecimal number into its digits: B (1110), 3 (310), A (1010) and D (1310), and then get the final result by multiplying each decimal representation by 16p (p being the corresponding hex digit position, counting from right to left, beginning with 0). In this case, we have that:
B3AD = (11 × 163) + (3 × 162) + (10 × 161) + (13 × 160)
which is 45997 in base 10.
Tools for conversion
[edit]Many computer systems provide a calculator utility capable of performing conversions between the various radices frequently including hexadecimal.
In Microsoft Windows, the Calculator utility can be set to Programmer mode, which allows conversions between radix 16 (hexadecimal), 10 (decimal), 8 (octal), and 2 (binary), the bases most commonly used by programmers. In Programmer Mode, the on-screen numeric keypad includes the hexadecimal digits A through F, which are active when "Hex" is selected. In hex mode, however, the Windows Calculator supports only integers.
Elementary arithmetic
[edit]Elementary operations such as division can be carried out indirectly through conversion to an alternate numeral system, such as the commonly used decimal system or the binary system where each hex digit corresponds to four binary digits.
Alternatively, one can also perform elementary operations directly within the hex system itself — by relying on its addition/multiplication tables and its corresponding standard algorithms such as long division and the traditional subtraction algorithm.
Real numbers
[edit]Rational numbers
[edit]As with other numeral systems, the hexadecimal system can be used to represent rational numbers, although repeating expansions are common since sixteen (1016) has only a single prime factor: two.
For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own number system. Thus, whether dividing one by two for binary or dividing one by sixteen for hexadecimal, both of these fractions are written as 0.1
. Because the radix 16 is a perfect square (42), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no cyclic numbers (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms has a prime factor not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that are not a power of two result in an infinite string of recurring digits (such as thirds and fifths). This makes hexadecimal (and binary) less convenient than decimal for representing rational numbers since a larger proportion lies outside its range of finite representation.
All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, duodecimal and sexagesimal: that is, any hexadecimal number with a finite number of digits also has a finite number of digits when expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are finitely representable in hexadecimal. For example, decimal 0.1 corresponds to the infinite recurring representation 0.19 in hexadecimal. However, hexadecimal is more efficient than duodecimal and sexagesimal for representing fractions with powers of two in the denominator. For example, 0.062510 (one-sixteenth) is equivalent to 0.116, 0.0912, and 0;3,4560.
n | Decimal Prime factors of: base, b = 10: 2, 5; b − 1 = 9: 3; b + 1 = 11: 11 |
Hexadecimal Prime factors of: base, b = 1610 = 10: 2; b − 1 = 1510 = F: 3, 5; b + 1 = 1710 = 11: 11 | ||||
---|---|---|---|---|---|---|
Reciprocal | Prime factors | Positional representation (decimal) |
Positional representation (hexadecimal) |
Prime factors | Reciprocal | |
2 | 1/2 | 2 | 0.5 | 0.8 | 2 | 1/2 |
3 | 1/3 | 3 | 0.3333... = 0.3 | 0.5555... = 0.5 | 3 | 1/3 |
4 | 1/4 | 2 | 0.25 | 0.4 | 2 | 1/4 |
5 | 1/5 | 5 | 0.2 | 0.3 | 5 | 1/5 |
6 | 1/6 | 2, 3 | 0.16 | 0.2A | 2, 3 | 1/6 |
7 | 1/7 | 7 | 0.142857 | 0.249 | 7 | 1/7 |
8 | 1/8 | 2 | 0.125 | 0.2 | 2 | 1/8 |
9 | 1/9 | 3 | 0.1 | 0.1C7 | 3 | 1/9 |
10 | 1/10 | 2, 5 | 0.1 | 0.19 | 2, 5 | 1/A |
11 | 1/11 | 11 | 0.09 | 0.1745D | B | 1/B |
12 | 1/12 | 2, 3 | 0.083 | 0.15 | 2, 3 | 1/C |
13 | 1/13 | 13 | 0.076923 | 0.13B | D | 1/D |
14 | 1/14 | 2, 7 | 0.0714285 | 0.1249 | 2, 7 | 1/E |
15 | 1/15 | 3, 5 | 0.06 | 0.1 | 3, 5 | 1/F |
16 | 1/16 | 2 | 0.0625 | 0.1 | 2 | 1/10 |
17 | 1/17 | 17 | 0.0588235294117647 | 0.0F | 11 | 1/11 |
18 | 1/18 | 2, 3 | 0.05 | 0.0E38 | 2, 3 | 1/12 |
19 | 1/19 | 19 | 0.052631578947368421 | 0.0D79435E5 | 13 | 1/13 |
20 | 1/20 | 2, 5 | 0.05 | 0.0C | 2, 5 | 1/14 |
21 | 1/21 | 3, 7 | 0.047619 | 0.0C3 | 3, 7 | 1/15 |
22 | 1/22 | 2, 11 | 0.045 | 0.0BA2E8 | 2, B | 1/16 |
23 | 1/23 | 23 | 0.0434782608695652173913 | 0.0B21642C859 | 17 | 1/17 |
24 | 1/24 | 2, 3 | 0.0416 | 0.0A | 2, 3 | 1/18 |
25 | 1/25 | 5 | 0.04 | 0.0A3D7 | 5 | 1/19 |
26 | 1/26 | 2, 13 | 0.0384615 | 0.09D8 | 2, D | 1/1A |
27 | 1/27 | 3 | 0.037 | 0.097B425ED | 3 | 1/1B |
28 | 1/28 | 2, 7 | 0.03571428 | 0.0924 | 2, 7 | 1/1C |
29 | 1/29 | 29 | 0.0344827586206896551724137931 | 0.08D3DCB | 1D | 1/1D |
30 | 1/30 | 2, 3, 5 | 0.03 | 0.08 | 2, 3, 5 | 1/1E |
31 | 1/31 | 31 | 0.032258064516129 | 0.08421 | 1F | 1/1F |
32 | 1/32 | 2 | 0.03125 | 0.08 | 2 | 1/20 |
33 | 1/33 | 3, 11 | 0.03 | 0.07C1F | 3, B | 1/21 |
34 | 1/34 | 2, 17 | 0.02941176470588235 | 0.078 | 2, 11 | 1/22 |
35 | 1/35 | 5, 7 | 0.0285714 | 0.075 | 5, 7 | 1/23 |
36 | 1/36 | 2, 3 | 0.027 | 0.071C | 2, 3 | 1/24 |
37 | 1/37 | 37 | 0.027 | 0.06EB3E453 | 25 | 1/25 |
Irrational numbers
[edit]The table below gives the expansions of some common irrational numbers in decimal and hexadecimal.
Number | Positional representation | |
---|---|---|
Decimal | Hexadecimal | |
√2 (the length of the diagonal of a unit square) | 1.414213562373095048... | 1.6A09E667F3BCD... |
√3 (the length of the diagonal of a unit cube) | 1.732050807568877293... | 1.BB67AE8584CAA... |
√5 (the length of the diagonal of a 1×2 rectangle) | 2.236067977499789696... | 2.3C6EF372FE95... |
φ (phi, the golden ratio = (1+√5)/2) | 1.618033988749894848... | 1.9E3779B97F4A... |
π (pi, the ratio of circumference to diameter of a circle) | 3.141592653589793238462643 383279502884197169399375105... |
3.243F6A8885A308D313198A2E0 3707344A4093822299F31D008... |
e (the base of the natural logarithm) | 2.718281828459045235... | 2.B7E151628AED2A6B... |
τ (the Thue–Morse constant) | 0.412454033640107597... | 0.6996 9669 9669 6996... |
γ (the limiting difference between the harmonic series and the natural logarithm) | 0.577215664901532860... | 0.93C467E37DB0C7A4D1B... |
Powers
[edit]Powers of two have very simple expansions in hexadecimal. The first sixteen powers of two are shown below.
2x | Value | Value (Decimal) |
---|---|---|
20 | 1 | 1 |
21 | 2 | 2 |
22 | 4 | 4 |
23 | 8 | 8 |
24 | 10hex | 16dec |
25 | 20hex | 32dec |
26 | 40hex | 64dec |
27 | 80hex | 128dec |
28 | 100hex | 256dec |
29 | 200hex | 512dec |
2A (210dec) | 400hex | 1024dec |
2B (211dec) | 800hex | 2048dec |
2C (212dec) | 1000hex | 4096dec |
2D (213dec) | 2000hex | 8192dec |
2E (214dec) | 4000hex | 16,384dec |
2F (215dec) | 8000hex | 32,768dec |
210 (216dec) | 10000hex | 65,536dec |
Cultural history
[edit]The traditional Chinese units of measurement were base-16. For example, one jīn (斤) in the old system equals sixteen taels. The suanpan (Chinese abacus) can be used to perform hexadecimal calculations such as additions and subtractions.[31]
As with the duodecimal system, there have been occasional attempts to promote hexadecimal as the preferred numeral system. These attempts often propose specific pronunciation and symbols for the individual numerals.[32] Some proposals unify standard measures so that they are multiples of 16.[33][34] An early such proposal was put forward by John W. Nystrom in Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System, with Sixteen to the Base, published in 1862.[35] Nystrom among other things suggested hexadecimal time, which subdivides a day by 16, so that there are 16 "hours" (or "10 tims", pronounced tontim) in a day.[36]
The word hexadecimal is first recorded in 1952.[37] It is macaronic in the sense that it combines Greek ἕξ (hex) "six" with Latinate -decimal. The all-Latin alternative sexadecimal (compare the word sexagesimal for base 60) is older, and sees at least occasional use from the late 19th century.[38] It is still in use in the 1950s in Bendix documentation. Schwartzman (1994) argues that use of sexadecimal may have been avoided because of its suggestive abbreviation to sex.[39] Many western languages since the 1960s have adopted terms equivalent in formation to hexadecimal (e.g. French hexadécimal, Italian esadecimale, Romanian hexazecimal, Serbian хексадецимални, etc.) but others have introduced terms which substitute native words for "sixteen" (e.g. Greek δεκαεξαδικός, Icelandic sextándakerfi, Russian шестнадцатеричной etc.)
Terminology and notation did not become settled until the end of the 1960s. In 1969, Donald Knuth argued that the etymologically correct term would be senidenary, or possibly sedenary, a Latinate term intended to convey "grouped by 16" modelled on binary, ternary, quaternary, etc. According to Knuth's argument, the correct terms for decimal and octal arithmetic would be denary and octonary, respectively.[40] Alfred B. Taylor used senidenary in his mid-1800s work on alternative number bases, although he rejected base 16 because of its "incommodious number of digits".[41][42]
The now-current notation using the letters A to F establishes itself as the de facto standard beginning in 1966, in the wake of the publication of the Fortran IV manual for IBM System/360, which (unlike earlier variants of Fortran) recognizes a standard for entering hexadecimal constants.[43] As noted above, alternative notations were used by NEC (1960) and The Pacific Data Systems 1020 (1964). The standard adopted by IBM seems to have become widely adopted by 1968, when Bruce Alan Martin in his letter to the editor of the CACM complains that
With the ridiculous choice of letters A, B, C, D, E, F as hexadecimal number symbols adding to already troublesome problems of distinguishing octal (or hex) numbers from decimal numbers (or variable names), the time is overripe for reconsideration of our number symbols. This should have been done before poor choices gelled into a de facto standard!
Martin's argument was that use of numerals 0 to 9 in nondecimal numbers "imply to us a base-ten place-value scheme": "Why not use entirely new symbols (and names) for the seven or fifteen nonzero digits needed in octal or hex. Even use of the letters A through P would be an improvement, but entirely new symbols could reflect the binary nature of the system".[19] He also argued that "re-using alphabetic letters for numerical digits represents a gigantic backward step from the invention of distinct, non-alphabetic glyphs for numerals sixteen centuries ago" (as Brahmi numerals, and later in a Hindu–Arabic numeral system), and that the recent ASCII standards (ASA X3.4-1963 and USAS X3.4-1968) "should have preserved six code table positions following the ten decimal digits -- rather than needlessly filling these with punctuation characters" (":;<=>?") that might have been placed elsewhere among the 128 available positions.
Base16 (transfer encoding)
[edit]Base16 (as a proper name without a space) can also refer to a binary to text encoding belonging to the same family as Base32, Base58, and Base64.
In this case, data is broken into 4-bit sequences, and each value (between 0 and 15 inclusively) is encoded using one of 16 symbols from the ASCII character set. Although any 16 symbols from the ASCII character set can be used, in practice, the ASCII digits "0"–"9" and the letters "A"–"F" (or the lowercase "a"–"f") are always chosen in order to align with standard written notation for hexadecimal numbers.
There are several advantages of Base16 encoding:
- Most programming languages already have facilities to parse ASCII-encoded hexadecimal
- Being exactly half a byte, 4-bits is easier to process than the 5 or 6 bits of Base32 and Base64 respectively
- The symbols 0–9 and A–F are universal in hexadecimal notation, so it is easily understood at a glance without needing to rely on a symbol lookup table.
- Many CPU architectures have dedicated instructions that allow access to a half-byte (otherwise known as a "nibble"), making it more efficient in hardware than Base32 and Base64
The main disadvantages of Base16 encoding are:
- Space efficiency is only 50%, since each 4-bit value from the original data will be encoded as an 8-bit byte. In contrast, Base32 and Base64 encodings have a space efficiency of 63% and 75% respectively.
- Possible added complexity of having to accept both uppercase and lowercase letters
Support for Base16 encoding is ubiquitous in modern computing. It is the basis for the W3C standard for URL percent encoding, where a character is replaced with a percent sign "%" and its Base16-encoded form. Most modern programming languages directly include support for formatting and parsing Base16-encoded numbers.
See also
[edit]- Base32, Base64 (content encoding schemes)
- Hexadecimal time
- IBM hexadecimal floating-point
- Hex editor
- Hex dump
- Bailey–Borwein–Plouffe formula (BBP)
- Hexspeak
- P notation
References
[edit]- ^ "The hexadecimal system". Ionos Digital Guide. Archived from the original on 2022-08-26. Retrieved 2022-08-26.
- ^ Knuth, Donald Ervin (1986). The TeXbook. Duane Bibby. Reading, Mass. ISBN 0-201-13447-0. OCLC 12973034. Archived from the original on 2022-01-16. Retrieved 2022-03-15.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ The string
"\x1B[0m\x1B[25;1H"
specifies the character sequence Esc [ 0 m Esc [ 2 5; 1 H. These are the escape sequences used on an ANSI terminal that reset the character set and color, and then move the cursor to line 25. - ^ "The Unicode Standard, Version 7" (PDF). Unicode. Archived (PDF) from the original on 2016-03-03. Retrieved 2018-10-28.
- ^ "Modula-2 – Vocabulary and representation". Modula −2. Archived from the original on 2015-12-13. Retrieved 2015-11-01.
- ^ "An Introduction to VHDL Data Types". FPGA Tutorial. 2020-05-10. Archived from the original on 2020-08-23. Retrieved 2020-08-21.
- ^ "*read-base* variable in Common Lisp". CLHS. Archived from the original on 2016-02-03. Retrieved 2015-01-10.
- ^ "*print-base* variable in Common Lisp". CLHS. Archived from the original on 2014-12-26. Retrieved 2015-01-10.
- ^ MSX is Coming — Part 2: Inside MSX Archived 2010-11-24 at the Wayback Machine Compute!, issue 56, January 1985, p. 52
- ^ BBC BASIC programs are not fully portable to Microsoft BASIC (without modification) since the latter takes
&
to prefix octal values. (Microsoft BASIC primarily uses&O
to prefix octal, and it uses&H
to prefix hexadecimal, but the ampersand alone yields a default interpretation as an octal prefix. - ^ "Hexadecimal web colors explained". Archived from the original on 2006-04-22. Retrieved 2006-01-11.
- ^ "ISO-8859-1 (ISO Latin 1) Character Encoding". www.ic.unicamp.br. Archived from the original on 2019-06-29. Retrieved 2019-06-26.
- ^ a b c d e f g Savard, John J. G. (2018) [2005]. "Computer Arithmetic". quadibloc. The Early Days of Hexadecimal. Archived from the original on 2018-07-16. Retrieved 2018-07-16.
- ^ "2.1.3 Sexadecimal notation". G15D Programmer's Reference Manual (PDF). Los Angeles, CA, US: Bendix Computer, Division of Bendix Aviation Corporation. p. 4. Archived (PDF) from the original on 2017-06-01. Retrieved 2017-06-01.
This base is used because a group of four bits can represent any one of sixteen different numbers (zero to fifteen). By assigning a symbol to each of these combinations, we arrive at a notation called sexadecimal (usually "hex" in conversation because nobody wants to abbreviate "sex"). The symbols in the sexadecimal language are the ten decimal digits and on the G-15 typewriter, the letters "u", "v", "w", "x", "y", and "z". These are arbitrary markings; other computers may use different alphabet characters for these last six digits.
- ^ Gill, S.; Neagher, R. E.; Muller, D. E.; Nash, J. P.; Robertson, J. E.; Shapin, T.; Whesler, D. J. (1956-09-01). Nash, J. P. (ed.). "ILLIAC Programming – A Guide to the Preparation of Problems For Solution by the University of Illinois Digital Computer" (PDF). bitsavers.org (Fourth printing. Revised and corrected ed.). Urbana, Illinois, US: Digital Computer Laboratory, Graduate College, University of Illinois. pp. 3–2. Archived (PDF) from the original on 2017-05-31. Retrieved 2014-12-18.
- ^ Royal Precision Electronic Computer LGP – 30 Programming Manual. Port Chester, New York: Royal McBee Corporation. April 1957. Archived from the original on 2017-05-31. Retrieved 2017-05-31. (NB. This somewhat odd sequence was from the next six sequential numeric keyboard codes in the LGP-30's 6-bit character code.)
- ^ Manthey, Steffen; Leibrandt, Klaus (2002-07-02). "Die PERM und ALGOL" (PDF) (in German). Archived (PDF) from the original on 2018-10-03. Retrieved 2018-05-19.
- ^ NEC Parametron Digital Computer Type NEAC-1103 (PDF). Tokyo, Japan: Nippon Electric Company Ltd. 1960. Cat. No. 3405-C. Archived (PDF) from the original on 2017-05-31. Retrieved 2017-05-31.
- ^ a b c Martin, Bruce Alan (October 1968). "Letters to the editor: On binary notation". Communications of the ACM. 11 (10). Associated Universities Inc.: 658. doi:10.1145/364096.364107. S2CID 28248410.
- ^ a b Whitaker, Ronald O. (January 1972). Written at Indianapolis, Indiana, US. "More on man/machine" (PDF). Letters. Datamation. Vol. 18, no. 1. Barrington, Illinois, US: Technical Publishing Company. p. 103. Archived (PDF) from the original on 2022-12-05. Retrieved 2022-12-24. (1 page)
- ^ a b Whitaker, Ronald O. (1976-08-10) [1975-02-24]. "Combined display and range selector for use with digital instruments employing the binary numbering system" (PDF). Indianapolis, Indiana, US. US Patent 3974444A. Archived (PDF) from the original on 2022-12-24. Retrieved 2022-12-24. (7 pages)
- ^ "SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 BCD-to-Seven-Segment Decoders/Drivers". Dallas, Texas, US: Texas Instruments Incorporated. March 1988 [1974]. SDLS111. Archived (PDF) from the original on 2021-10-20. Retrieved 2021-09-15. (29 pages)
- ^ a b c Magnuson, Robert A. (January 1968). "A hexadecimal pronunciation guide". Datamation. Vol. 14, no. 1. p. 45.
- ^ a b Rogers, S.R. (2007). "Hexadecimal number words". Intuitor. Archived from the original on 2019-09-17. Retrieved 2019-08-26.
- ^ Babb, Tim (2015). "How to pronounce hexadecimal". Bzarg. Archived from the original on 2020-11-11. Retrieved 2021-01-01.
- ^ Clarke, Arthur; Pohl, Frederik (2008). The Last Theorem. Ballantine. p. 91. ISBN 978-0007289981.
- ^ "ISO/IEC 9899:1999 – Programming languages – C". ISO. Iso.org. 2011-12-08. Archived from the original on 2016-10-10. Retrieved 2014-04-08.
- ^ "Rationale for International Standard – Programming Languages – C" (PDF). Open Standards. 5.10. April 2003. pp. 52, 153–154, 159. Archived (PDF) from the original on 2016-06-06. Retrieved 2010-10-17.
- ^ The IEEE and The Open Group (2013) [2001]. "dprintf, fprintf, printf, snprintf, sprintf – print formatted output". The Open Group Base Specifications (Issue 7, IEEE Std 1003.1, 2013 ed.). Archived from the original on 2016-06-21. Retrieved 2016-06-21.
- ^ a b Mano, M. Morris; Ciletti, Michael D. (2013). Digital Design – With an Introduction to the Verilog HDL (Fifth ed.). Pearson Education. pp. 6, 8–10. ISBN 978-0-13-277420-8.
- ^ "算盤 Hexadecimal Addition & Subtraction on a Chinese Abacus". totton.idirect.com. Archived from the original on 2019-07-06. Retrieved 2019-06-26.
- ^ "Base 4^2 Hexadecimal Symbol Proposal". Hauptmech. Archived from the original on 2021-10-20. Retrieved 2008-09-04.
- ^ "Intuitor Hex Headquarters". Intuitor. Archived from the original on 2010-09-04. Retrieved 2018-10-28.
- ^ Niemietz, Ricardo Cancho (2003-10-21). "A proposal for addition of the six Hexadecimal digits (A-F) to Unicode" (PDF). ISO/IEC JTC1/SC2/WG2. Retrieved 2024-06-25.
- ^ Nystrom, John William (1862). Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System, with Sixteen to the Base. Philadelphia: Lippincott.
- ^ Nystrom (1862), p. 33: "In expressing time, angle of a circle, or points on the compass, the unit tim should be noted as integer, and parts thereof as tonal fractions, as 5·86 tims is five times and metonby [*"sutim and metonby" John Nystrom accidentally gives part of the number in decimal names; in Nystrom's pronunciation scheme, 5=su, 8=me, 6=by, c.f. unifoundry.com Archived 2021-05-19 at the Wayback Machine ]."
- ^ C. E. Fröberg, Hexadecimal Conversion Tables, Lund (1952).
- ^ The Century Dictionary of 1895 has sexadecimal in the more general sense of "relating to sixteen". An early explicit use of sexadecimal in the sense of "using base 16" is found also in 1895, in the Journal of the American Geographical Society of New York, vols. 27–28, p. 197.
- ^ Schwartzman, Steven (1994). The Words of Mathematics: An etymological dictionary of mathematical terms used in English. The Mathematical Association of America. p. 105. ISBN 0-88385-511-9. s.v. hexadecimal
- ^ Knuth, Donald. (1969). The Art of Computer Programming, Volume 2. ISBN 0-201-03802-1. (Chapter 17.)
- ^ Alfred B. Taylor, Report on Weights and Measures, Pharmaceutical Association, 8th Annual Session, Boston, 15 September 1859. See pages and 33 and 41.
- ^ Alfred B. Taylor, "Octonary numeration and its application to a system of weights and measures", Proc Amer. Phil. Soc. Vol XXIV Archived 2016-06-24 at the Wayback Machine, Philadelphia, 1887; pages 296–366. See pages 317 and 322.
- ^ IBM System/360 FORTRAN IV Language Archived 2021-05-19 at the Wayback Machine (1966), p. 13.