Magnesium: Difference between revisions
No edit summary |
m Dating maintenance tags: {{Cn}} |
||
Line 1: | Line 1: | ||
{{About|the chemical element|the use of magnesium as a medication|Magnesium (medical use)}} |
|||
{{Infobox magnesium}} WIKIPEDIA!!!! |
|||
{{Distinguish|text=[[manganese]] ''(Mn)''}} |
|||
'''Magnesium''' ({{pronEng|mægˈniːziəm}}) is a [[chemical element]] with the symbol '''Mg''', [[atomic number]] 12, [[atomic weight]] 24.3050 and common oxidation number +2. Magnesium is the ninth most [[abundance of the chemical elements|abundant element]] in the universe by mass.<ref>{{Citation | last = Ash | first = Russell | title = The Top 10 of Everything 2006: The Ultimate Book of Lists | publisher = Dk Pub | year = 2005 | url = http://plymouthlibrary.org/faqelements.htm | isbn = 0756613213}}.</ref> It constitutes about 2% of the [[Earth]]'s [[Crust (geology)|crust]] by mass,<ref name="Abundance"/> and it is the third most abundant element dissolved in [[seawater]].{{Fact|date=February 2008}} Magnesium ions are essential to all living cells, and is the 11th most abundant element by mass in the human body. The free element (metal) is not found in nature. Once produced from magnesium salts, this [[alkaline earth metal]] is now mainly obtained by electrolysis of [[brine]] and is used as an [[alloy]]ing agent to make [[aluminium]]-magnesium alloys, sometimes called "[[magnalium]]" or "magnelium". |
|||
{{pp-semi-indef}} |
|||
{{pp-move}} |
|||
{{Use dmy dates|date=December 2023}} |
|||
{{Use American English|date=December 2024}} |
|||
{{Infobox magnesium}} |
|||
'''Magnesium''' is a [[chemical element]]; it has [[Symbol (chemistry)|symbol]] '''Mg''' and [[atomic number]] 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other [[alkaline earth metal]]s (group 2 of the [[periodic table]]) it occurs naturally only in combination with other elements and almost always has an [[oxidation state]] of +2. It reacts readily with air to form a thin [[Passivation (chemistry)|passivation]] coating of [[magnesium oxide]] that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by [[electrolysis]] of magnesium [[Salt (chemistry)|salts]] obtained from [[brine]]. It is less dense than [[aluminium]] and is used primarily as a component in strong and lightweight [[magnesium alloy|alloys]] that contain aluminium. |
|||
In the [[cosmos]], magnesium is produced in large, aging [[star]]s by the sequential addition of three [[Helium nucleus|helium nuclei]] to a [[carbon]] nucleus. When such stars explode as [[supernova]]s, much of the magnesium is expelled into the [[interstellar medium]] where it may recycle into new star systems. Magnesium is the eighth most abundant element in the [[Earth's crust]]<ref name="Abundance" /> and the fourth most common element in the Earth (after [[iron]], [[oxygen]] and [[silicon]]), making up 13% of the planet's mass and a large fraction of the planet's [[Mantle (geology)|mantle]]. It is the third most abundant element dissolved in seawater, after [[sodium]] and [[chlorine]].<ref>{{cite news |url=http://www.seafriends.org.nz/oceano/seawater.htm#composition |title=The chemical composition of seawater |author=Anthoni, J. Floor |date=2006 |website=Seafriends}}</ref> |
|||
== Notable characteristics == |
|||
Elemental magnesium is a fairly strong, silvery-white, light-weight metal (two thirds the density of [[aluminium]]). It [[tarnish]]es slightly when exposed to air, although unlike the [[alkaline metal]]s, storage in an oxygen-free environment is unnecessary because magnesium is protected by a thin layer of oxide which is fairly impermeable and hard to remove. Like its lower [[periodic table group]] neighbor [[calcium]], magnesium reacts with water at room temperature, though it reacts much more slowly than calcium. When it is submerged in water, [[hydrogen]] bubbles will almost unnoticeably begin to form on the surface of the metal, though if powdered it will react much more rapidly. The reaction will occur faster with higher temperatures (see precautions). Magnesium also reacts exothermically with most acids, such as [[hydrochloric acid]] (HCl). As with aluminum, zinc and many other metals, the reaction with hydrochloric acid produces the chloride of the metal and releases hydrogen gas. |
|||
This element is the eleventh most abundant element by mass in the [[human body]] and is essential to all cells and some 300 [[enzymes]].<ref name="nih" /> Magnesium ions interact with [[polyphosphate]] compounds such as [[Adenosine triphosphate|ATP]], [[DNA]], and [[RNA]]. Hundreds of enzymes require magnesium ions to function. Magnesium compounds are used medicinally as common [[laxatives]] and [[antacids]] (such as [[milk of magnesia]]), and to stabilize abnormal nerve excitation or blood vessel spasm in such conditions as [[eclampsia]].<ref name="nih" /> |
|||
Magnesium is a highly [[flammability|flammable]] metal, but while it is easy to ignite when powdered or shaved into thin strips, it is difficult to ignite in mass or bulk. Once ignited, it is difficult to extinguish, being able to burn in both [[nitrogen]] (forming magnesium nitride), and [[carbon dioxide]] (forming magnesium [[oxide]] and [[carbon]]). On burning in air, magnesium produces a brilliant white light. Thus magnesium powder ([[flash powder]]) was used as a source of illumination in the early days of [[photography]]. Later, magnesium ribbon was used in electrically ignited flash bulbs. Magnesium powder is used in the manufacture of [[fireworks]] and marine [[flare (pyrotechnic)|flare]]s where a brilliant white light is required. |
|||
{{toclimit}} |
|||
== Characteristics == |
|||
Magnesium compounds are typically white crystals. Most are soluble in water, providing the sour-tasting magnesium ion Mg<sup>2+</sup>. Small amounts of dissolved magnesium ion contributes to the tartness and taste of natural waters. Magnesium ion in large amounts is an ionic laxative, and magnesium sulfate ([[Epsom salts]]) is sometimes used for this purpose. So-called "[[Milk of Magnesia|milk of magnesia]]" is a water suspension of one of the few insoluble magnesium compounds, magnesium hydroxide. The undissolved particles give rise to its appearance and name. Milk of magnesia is a mild base commonly used as an antacid. |
|||
=== Physical properties === |
|||
Elemental magnesium is a gray-white lightweight metal, two-thirds the density of aluminium. Magnesium has the lowest melting ({{convert|923|K|°C}}) and the lowest boiling point ({{convert|1363|K|°C}}) of all the alkaline earth metals.<ref>{{Cite web |title=alkaline-earth metal – Physical and chemical behaviour |url=https://www.britannica.com/science/alkaline-earth-metal/Physical-and-chemical-behaviour |access-date=2022-03-27 |website=Encyclopædia Britannica |language=en}}</ref> |
|||
Pure polycrystalline magnesium is brittle and easily fractures along [[shear band]]s. It becomes much more [[ductility|malleable]] when alloyed with small amounts of other metals, such as 1% aluminium.<ref>{{cite journal |doi=10.1038/s41598-017-10384-0 |pmid=28874798 |pmc=5585333 |title=A rare-earth free magnesium alloy with improved intrinsic ductility |journal=Scientific Reports |volume=7 |issue=1 |pages=10458 |year=2017 |last1=Sandlöbes |first1=S. |last2=Friák |first2=M. |last3=Korte-Kerzel |first3=S. |last4=Pei |first4=Z. |last5=Neugebauer |first5=J. |last6=Raabe |first6=D. |bibcode=2017NatSR...710458S}}</ref> The malleability of polycrystalline magnesium can also be significantly improved by reducing its grain size to about 1 [[micrometre|μm]] or less.<ref>{{cite journal |doi=10.1038/s41467-017-01330-9 |pmid=29042555 |pmc=5715137 |title=Super-formable pure magnesium at room temperature |journal=Nature Communications |volume=8 |issue=1 |pages=972 |year=2017 |last1=Zeng |first1=Zhuoran |last2=Nie |first2=Jian-Feng |last3=Xu |first3=Shi-Wei |last4=Davies |first4=Chris H. J. |last5=Birbilis |first5=Nick |bibcode=2017NatCo...8..972Z}}</ref> |
|||
== Applications == |
|||
===As the metal=== |
|||
Magnesium is the third most commonly used structural metal, following [[steel]] and [[aluminium]]. |
|||
When finely powdered, magnesium reacts with water to produce hydrogen gas: |
|||
Magnesium compounds, primarily [[magnesium oxide]], are used mainly as [[refractory]] material in [[furnace]] linings for producing [[iron]], [[steel]], nonferrous metals, [[glass]] and [[cement]]. Magnesium oxide and other compounds also are used in agricultural, chemical and construction industries. As a metal, this element's principal use is as an alloying additive to aluminium with these aluminium-magnesium alloys being used mainly for [[beverage can]]s. |
|||
: Mg(s) + 2 H<sub>2</sub>O(g) → Mg(OH)<sub>2</sub>(aq) + H<sub>2</sub>(g) + 1203.6 kJ/mol |
|||
However, this reaction is much less dramatic than the reactions of the alkali metals with water, because the magnesium hydroxide builds up on the surface of the magnesium metal and inhibits further reaction.<ref>{{Cite web |date=2013-10-03 |title=Reactions of Group 2 Elements with Water |url=https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/1_s-Block_Elements/Group__2_Elements%3A_The_Alkaline_Earth_Metals/1Group_2%3A_Chemical_Reactions_of_Alkali_Earth_Metals/Reactions_of_Group_2_Elements_with_Water |access-date=2022-03-27 |website=Chemistry LibreTexts |language=en}}</ref> |
|||
=== Chemical properties === |
|||
Magnesium, in its purest form, can be compared with aluminium, and is strong and light, so it is used in several high volume part manufacturing applications, including automotive and truck components. Specialty, high-grade car wheels of magnesium alloy are called "[[Magnesium alloy wheel|mag wheels]]". In 1957 a [[Corvette]] SS, designed for racing, was constructed with magnesium body panels. Porsche's all-out quest to decrease the weight of their racecars led to the use of magnesium frames in the famous 917/053 which won Le Mans in 1971, and still holds the absolute distance record. The 917/30 Can-Am car also featured a magnesium spaceframe, helping it to make the most of its prodigious 1100-1500hp. [[Volkswagen]] has used magnesium in its engine components for many years. For a long time, [[Porsche]] used magnesium alloy for its [[engine block]]s due to the weight advantage. There is renewed interest in magnesium engine blocks, as featured in the 2006 [[BMW]] 325i and 330i models. The BMW engine uses an aluminium alloy insert for the cylinder walls and cooling jackets surrounded by a high temperature magnesium alloy AJ62A. The application of magnesium AE44 alloy in the 2006 Corvette [[Z06]] engine cradle has advanced the technology of designing robust automotive parts in magnesium. Both of these alloys are recent developments in high temperature low [[Creep (deformation)|creep]] magnesium alloys. The general strategy for such alloys is to form [[intermetallic]] precipitates at the [[crystallite|grain boundaries]], for example by adding [[mischmetal]] or [[calcium]].<ref>{{cite paper |title=Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys |format=PDF |date=2001 |author=Alan A. Luo and Bob R. Powell |publisher=Materials & Processes Laboratory, General Motors Research & Development Center |accessdate=2007-08-21 |url=http://doc.tms.org/ezmerchant/prodtms.nsf/productlookupitemid/01-481x-137/%24FILE/01-481X-137F.pdf}}</ref> New alloy development and lower costs, which are becoming competitive to aluminium, will further the number of automotive applications. |
|||
====Oxidation==== |
|||
[[Image:Magnesium-products.jpg|thumb|left|Products made of magnesium: firestarter and shavings, sharpener, magnesium ribbon]] |
|||
The principal property of magnesium metal is its reducing power. One hint is that it [[tarnish]]es slightly when exposed to air, although, unlike the heavier [[alkaline earth metals]], an oxygen-free environment is unnecessary for storage because magnesium is protected by a thin layer of oxide that is fairly impermeable and difficult to remove.<ref name=":0">{{Cite web |last=MMTA |title=Magnesium |url=https://mmta.co.uk/metals/mg/ |access-date=2023-11-08 |website=MMTA |language=en-US}}</ref> |
|||
Direct reaction of magnesium with air or oxygen at ambient pressure forms only the "normal" oxide MgO. However, this oxide may be combined with hydrogen peroxide to form [[magnesium peroxide]], MgO<sub>2</sub>, and at low temperature the peroxide may be further reacted with ozone to form magnesium superoxide Mg(O<sub>2</sub>)<sub>2</sub>.<ref>{{cite journal |last1=Vol'nov |first1=I. I. |last2=Tokareva |first2=S. A. |last3=Belevskii |first3=V. N. |last4=Latysheva |first4=E. I. |title=The formation of magnesium perperoxide Mg(O2)2 in the reaction of magnesium peroxide with ozone |journal=Bulletin of the Academy of Sciences of the USSR Division of Chemical Science |date=March 1970 |volume=19 |issue=3 |pages=468–471 |doi=10.1007/bf00848959 }}</ref> |
|||
The second application field of magnesium is electronic devices. Due to low weight, good mechanical and electrical properties, magnesium is widely used for manufacturing of mobile phones, laptop computers, cameras, and other electronic components. Magnesium is even used to make some higher end [[yo-yo]]s, such as the [[Duncan Freehand Mg]]. |
|||
Magnesium reacts with nitrogen in the solid state if it is powdered and heated to just below the melting point, forming [[Magnesium nitride]] Mg<sub>3</sub>N<sub>2</sub>.<ref>{{Cite journal|last1=Zong|first1=Fujian|last2=Meng|first2=Chunzhan|last3=Guo|first3=Zhiming|last4=Ji|first4=Feng|last5=Xiao|first5=Hongdi|last6=Zhang|first6=Xijian|last7=Ma|first7=Jin|last8=Ma|first8=Honglei|title=Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2|journal=_Journal of Alloys and Compounds|year=2010 |volume=508|issue=1|pages=172–176|doi=10.1016/j.jallcom.2010.07.224}}</ref> |
|||
Historically, magnesium was one of the main aerospace construction metals and was used for German military aircraft as early as World War I and extensively for German aircraft in World War II. The Germans coined the name 'Elektron' for magnesium alloy which is still used today. Due to perceived hazards with magnesium parts in the event of fire, the application of magnesium in the commercial aerospace industry was generally restricted to engine related components. Currently the use of magnesium alloys in aerospace is increasing, mostly driven by the increasing importance of fuel economy and the need to reduce weight. The development and testing of new magnesium alloys continues, notably Elektron 21 which has successfully undergone extensive aerospace testing for suitability in engine, internal and airframe components. The European Community runs three R&D magnesium projects in the Aerospace priority of Six Framework Program. |
|||
Magnesium reacts with water at room temperature, though it reacts much more slowly than calcium, a similar group 2 metal.<ref name=":0" /> When submerged in water, [[hydrogen]] bubbles form slowly on the surface of the metal; this reaction happens much more rapidly with powdered magnesium.<ref name=":0" /> The reaction also occurs faster with higher temperatures (see {{slink|#Safety precautions}}). Magnesium's reversible reaction with water can be harnessed to store energy and run a [[Magnesium injection cycle|magnesium-based engine]]. Magnesium also reacts exothermically with most acids such as [[hydrochloric acid]] (HCl), producing [[magnesium chloride]] and hydrogen gas, similar to the HCl reaction with aluminium, zinc, and many other metals.<ref>{{Cite web |title=The rate of reaction of magnesium with hydrochloric acid |url=https://edu.rsc.org/experiments/the-rate-of-reaction-of-magnesium-with-hydrochloric-acid/1916.article |access-date=2023-11-08 |website=RSC Education |language=en}}</ref> Although it is difficult to ignite in mass or bulk, magnesium metal will ignite. |
|||
[[Image:Magnesium Sparks.jpg|thumb|Magnesium firestarter (in left hand), used with a [[pocket knife]] and flint to create sparks which ignite the shavings]] |
|||
Magnesium may also be used as an igniter for [[thermite]], a mixture of aluminium and iron oxide powder that ignites only at a very high temperature. |
|||
*Incendiary use: Magnesium is flammable, burning at a temperature of approximately 2500 K (2200 °C, 4000 °F), and the [[autoignition temperature]] of magnesium is approximately 744 K (473 °C, 883 °F) in air. The extremely high temperature at which magnesium burns makes it a handy tool for starting emergency fires during outdoor recreation. Other related uses include flashlight [[photography]], flares, [[pyrotechnics]], fireworks sparklers, and incendiary bombs. |
|||
====Organic chemistry==== |
|||
Magnesium is also used: |
|||
{{Further|Grignard reagent}} |
|||
* To remove [[sulfur]] from iron and steel. |
|||
Organomagnesium compounds are widespread in [[organic chemistry]]. They are commonly found as [[Grignard reagents]], formed by reaction of magnesium with [[haloalkane]]s. Examples of [[Grignard reagents]] are [[phenylmagnesium bromide]] and [[ethylmagnesium bromide]]. The [[Grignard reagents]] function as a common [[nucleophile]], attacking the [[electrophilic]] group such as the carbon atom that is present within the polar bond of a [[carbonyl]] group. |
|||
* To refine [[titanium]] in the [[Kroll process]]. |
|||
* To photoengrave plates in the printing industry. |
|||
* To combine in alloys, where this metal is essential for [[fixed-wing aircraft|airplane]] and [[missile]] construction. |
|||
* In the form of turnings or ribbons, to prepare [[Grignard reagent]]s, which are useful in [[organic synthesis]]. |
|||
* As an alloying agent, improving the mechanical, [[fabrication]] and [[welding]] characteristics of aluminium. |
|||
* As an additive agent for conventional propellants and used in producing [[Ductile iron|nodular graphite in cast iron]]. |
|||
* As a reducing agent for the production of pure [[uranium]] and other metals from their [[salt]]s. |
|||
* As a dessicant, since it easily reacts with water. |
|||
* As a sacrificial (galvanic) anode to protect underground tanks, pipelines, buried structures, and water heaters. |
|||
A prominent organomagnesium reagent beyond Grignard reagents is [[magnesium anthracene]], which is used as a source of highly active magnesium. The related [[butadiene]]-magnesium adduct serves as a source for the butadiene dianion. |
|||
===In magnesium compounds=== |
|||
* The magnesium ion is necessary for all life (see [[magnesium in biology]]), so magnesium salts are an additive for foods, fertilizers (Mg is a component of chlorophyll), and culture media. |
|||
Complexes of dimagnesium(I) have been observed.<ref>{{cite journal |last1=Rösch |first1=B. |last2=Gentner |first2=T. X. |last3=Eyselein |first3=J. |last4=Langer |first4=J. |last5=Elsen |first5=H. |last6=Harder |first6=S. |title=Strongly reducing magnesium(0) complexes |journal=Nature |date=29 April 2021 |volume=592 |issue=7856 |pages=717–721 |doi=10.1038/s41586-021-03401-w |pmid=33911274 |bibcode=2021Natur.592..717R |s2cid=233447380 }}</ref> |
|||
* [[Magnesium hydroxide]] is used in [[milk of magnesia]], its [[magnesium chloride|chloride]], [[magnesium oxide|oxide]], [[magnesium gluconate|gluconate]] and [[magnesium citrate|citrate]] used as oral magnesium supplements, and its [[magnesium sulfate|sulfate]] ([[Epsom salt]]s) for various purposes in medicine, and elsewhere (see the article for more). Oral magnesium supplements have been claimed to be therapeutic for some individuals who suffer from [[Restless leg syndrome|Restless Leg Syndrome (RLS)]]. {{Fact|date=February 2008}} |
|||
* Magnesium borate, magnesium salicylate and magnesium sulfate are used as [[antiseptic]]s. |
|||
==== Detection in solution ==== |
|||
* [[Magnesium bromide]] is used as a mild [[sedative]] (this action is due to the [[bromide]], not the magnesium). |
|||
* Dead-burned magnesite is used for refractory purposes such as brick and liners in furnaces and converters. |
|||
The presence of magnesium ions can be detected by the addition of [[ammonium chloride]], [[ammonium hydroxide]] and [[monosodium phosphate]] to an aqueous or dilute HCl solution of the salt. The formation of a white precipitate indicates the presence of magnesium ions. |
|||
* [[Magnesium carbonate]] (Mg[[carbonate|CO<sub>3</sub>]]) powder is also used by athletes, such as [[gymnastics|gymnasts]] and [[weightlifting|weightlifters]], to improve the grip on objects – the apparatus or lifting bar. |
|||
* [[Magnesium stearate]] is a slightly [[fire|flammable]] white [[Powder (substance)|powder]] with [[lubricant|lubricative]] properties. In [[pharmacology|pharmaceutical]] technology it is used in the manufacturing of [[tablet]]s, to prevent the tablets from sticking to the equipment during the tablet compression process (i.e., when the tablet's substance is pressed into tablet form). |
|||
[[Azo violet]] dye can also be used, turning deep blue in the presence of an alkaline solution of magnesium salt. The color is due to the [[adsorption]] of azo violet by [[magnesium hydroxide|Mg(OH)<sub>2</sub>]]. |
|||
* Magnesium sulfite is used in the manufacture of [[paper]] ([[sulfite process]]). |
|||
* Magnesium phosphate is used to fireproof wood for construction. |
|||
== Forms == |
|||
* Magnesium hexafluorosilicate is used in mothproofing of [[textile]]s. |
|||
=== Alloys === |
|||
{{Main|Magnesium alloy}} |
|||
[[File:Cold rolling of Mg and Mg-1Al-0.1Ca.jpg|thumb|upright=1.4|Magnesium is brittle, and fractures along [[shear band]]s when its thickness is reduced by only 10% by [[cold rolling]] (top). However, after alloying Mg with 1% Al and 0.1% Ca, its thickness could be reduced by 54% using the same process (bottom).]] |
|||
As of 2013, magnesium alloys consumption was less than one million tonnes per year, compared with 50 million tonnes of [[aluminium alloy]]s. Their use has been historically limited by the tendency of Mg alloys to corrode,<ref name="makar13">{{cite journal |doi=10.1179/imr.1993.38.3.138|title=Corrosion of magnesium|year=1993|last1=Makar|first1=G. L.|last2=Kruger|first2=J.|journal=International Materials Reviews|volume=38|issue=3|pages=138–153|bibcode=1993IMRv...38..138M }}</ref> [[Creep (deformation)|creep]] at high temperatures, and combust.<ref name="giz" /> |
|||
====Corrosion==== |
|||
In magnesium alloys, the presence of [[iron]], [[nickel]], [[copper]], or [[cobalt]] strongly activates [[corrosion]]. In more than trace amounts, these metals precipitate as [[intermetallic compound]]s, and the precipitate locales function as active [[cathode|cathodic]] sites that reduce water, causing the loss of magnesium.<ref name="giz" /> Controlling the quantity of these metals improves corrosion resistance. Sufficient [[manganese]] overcomes the corrosive effects of iron. This requires precise control over composition, increasing costs.<ref name="giz" /> Adding a cathodic poison captures atomic hydrogen within the structure of a metal. This prevents the formation of free hydrogen gas, an essential factor of corrosive chemical processes. The addition of about one in three hundred parts [[arsenic]] reduces the corrosion rate of magnesium in a salt solution by a factor of nearly ten.<ref name="giz">{{cite web|url=http://www.gizmag.com/stainless-magnesium-corrosion-monash/28856 |title=Stainless magnesium breakthrough bodes well for manufacturing industries |publisher=Gizmag.com |date=29 August 2013|author=Dodson, Brian |access-date=29 August 2013}}</ref><ref>{{Cite journal | last1 = Birbilis | first1 = N. | last2 = Williams | first2 = G. | last3 = Gusieva | first3 = K. | last4 = Samaniego | first4 = A. | last5 = Gibson | first5 = M. A. | last6 = McMurray | first6 = H. N. | doi = 10.1016/j.elecom.2013.07.021 | title = Poisoning the corrosion of magnesium | journal = Electrochemistry Communications | volume = 34 | pages = 295–298 | year = 2013 }}</ref> |
|||
====High-temperature creep and flammability==== |
|||
Magnesium's tendency to [[Creep (deformation)|creep]] (gradually deform) at high temperatures is greatly reduced by alloying with zinc and [[rare-earth elements]].<ref>{{cite journal |last1=Choudhuri |first1=Deep |last2=Srinivasan |first2=Srivilliputhur G. |last3=Gibson |first3=Mark A. |last4=Zheng |first4=Yufeng |last5=Jaeger |first5=David L. |last6=Fraser |first6=Hamish L. |last7=Banerjee |first7=Rajarshi |title=Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening |journal=Nature Communications |date=8 December 2017 |volume=8 |issue=1 |page=2000 |doi=10.1038/s41467-017-02112-z |pmid=29222427 |pmc=5722870 |bibcode=2017NatCo...8.2000C }}</ref> Flammability is significantly reduced by a small amount of [[calcium]] in the alloy.<ref name="giz" /> By using rare-earth elements, it may be possible to manufacture magnesium alloys that are able to not catch fire at higher temperatures compared to magnesium's [[liquidus]] and in some cases potentially pushing it close to magnesium's boiling point.<ref>{{cite journal |last1=Czerwinski |first1=Frank |title=Controlling the ignition and flammability of magnesium for aerospace applications |journal=Corrosion Science |date=September 2014 |volume=86 |pages=1–16 |doi=10.1016/j.corsci.2014.04.047 |bibcode=2014Corro..86....1C }}</ref> |
|||
=== Compounds === |
|||
{{Main|Magnesium compounds}} |
|||
Magnesium forms a variety of compounds important to industry and biology, including [[magnesium carbonate]], [[magnesium chloride]], [[magnesium citrate]], [[magnesium hydroxide]] (milk of magnesia), [[magnesium oxide]], [[magnesium sulfate]], and magnesium sulfate heptahydrate ([[Epsom salts]]).<ref>{{Cite web |date=2021-03-23 |title=8 Types of magnesium and their benefits |url=https://www.medicalnewstoday.com/articles/types-of-magnesium |access-date=2024-05-04 |website=www.medicalnewstoday.com |language=en}}</ref><ref>{{Cite web |date=2013-10-02 |title=Chemistry of Magnesium (Z=12) |url=https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/1_s-Block_Elements/Group__2_Elements%3A_The_Alkaline_Earth_Metals/Z012_Chemistry_of_Magnesium_(Z12) |access-date=2024-05-04 |website=Chemistry LibreTexts |language=en}}</ref> |
|||
As recently as 2020, [[magnesium hydride]] was under investigation as a way to store hydrogen.<ref name=ren14>{{cite journal |last1=Ren |first1=Chai |last2=Fang |first2=Z. Zak |last3=Zhou |first3=Chengshang |last4=Lu |first4=Jun |last5=Ren |first5=Yang |last6=Zhang |first6=Xiaoyi |title=Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives |journal=The Journal of Physical Chemistry C |date=25 September 2014 |volume=118 |issue=38 |pages=21778–21784 |doi=10.1021/jp504766b }}</ref><ref name=baran20>{{cite journal |last1=Baran |first1=Agata |last2=Polański |first2=Marek |title=Magnesium-Based Materials for Hydrogen Storage—A Scope Review |journal=Materials |date=9 September 2020 |volume=13 |issue=18 |pages=3993 |doi=10.3390/ma13183993 |doi-access=free |pmid=32916910 |pmc=7559164 |bibcode=2020Mate...13.3993B }}</ref> |
|||
=== Isotopes === |
|||
{{Main|Isotopes of magnesium}} |
|||
Magnesium has three stable [[isotope]]s: {{chem|24|Mg}}, {{chem|25|Mg}} and {{chem|26|Mg}}. All are present in significant amounts in nature (see table of isotopes above). About 79% of Mg is {{chem|24|Mg}}. The isotope {{chem|28|Mg}} is radioactive and in the 1950s to 1970s was produced by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 hours) and its use was limited by shipping times. |
|||
The nuclide {{chem|26|Mg}} has found application in [[isotope|isotopic]] [[geology]], similar to that of aluminium. {{chem|26|Mg}} is a [[radiogenic]] daughter product of [[aluminium-26|{{chem|26|Al}}]], which has a [[half-life]] of 717,000 years. Excessive quantities of stable {{chem|26|Mg}} have been observed in the [[Ca-Al-rich inclusions]] of some [[carbonaceous chondrite]] [[meteorite]]s. This anomalous abundance is attributed to the decay of its parent {{chem|26|Al}} in the inclusions, and researchers conclude that such meteorites were formed in the [[solar nebula]] before the {{chem|26|Al}} had decayed. These are among the oldest objects in the [[Solar System]] and contain preserved information about its early history. |
|||
It is conventional to plot {{chem|26|Mg}}/{{chem|24|Mg}} against an Al/Mg ratio. In an [[isochron dating]] plot, the Al/Mg ratio plotted is {{chem|27|Al}}/{{chem|24|Mg}}. The slope of the isochron has no age significance, but indicates the initial {{chem|26|Al}}/{{chem|27|Al}} ratio in the sample at the time when the systems were separated from a common reservoir. |
|||
== Production == |
|||
{{See also|Magnesium production by country}} |
|||
[[File:Mg sheets and ingots.jpg|thumb|Magnesium sheets and ingots]] |
|||
=== Occurrence === |
|||
{{Category see also|Magnesium minerals}} |
|||
{{See also|Boninite}} |
|||
Magnesium is the eighth-most-abundant element in the Earth's crust by mass and tied in seventh place with [[iron]] in [[molarity]].<ref name="Abundance">{{cite web|title=Abundance and form of the most abundant elements in Earth's continental crust|access-date=15 February 2008|url=http://www.gly.uga.edu/railsback/Fundamentals/ElementalAbundanceTableP.pdf|last=Railsback|first=L. Bruce|website=Some Fundamentals of Mineralogy and Geochemistry|archive-date=27 September 2011|archive-url=https://web.archive.org/web/20110927064201/http://www.gly.uga.edu/railsback/Fundamentals/ElementalAbundanceTableP.pdf|url-status=dead}}</ref> It is found in large deposits of [[magnesite]], [[Dolomite (mineral)|dolomite]], and other [[mineral]]s, and in mineral waters, where magnesium ion is soluble.<ref>{{Cite web |date=2013-04-30 |title=Magnesium EA65RS-T4 Alloy |url=https://www.azom.com/article.aspx?ArticleID=8683 |access-date=2024-05-04 |website=AZoM |language=en}}</ref> |
|||
Although magnesium is found in more than 60 [[mineral]]s, only [[Dolomite (mineral)|dolomite]], [[magnesite]], [[brucite]], [[carnallite]], [[talc]], and [[olivine]] are of commercial importance.<ref>{{Cite web |title=Magnesium Statistics and Information {{!}} U.S. Geological Survey |url=https://www.usgs.gov/centers/national-minerals-information-center/magnesium-statistics-and-information |access-date=2024-05-04 |website=www.usgs.gov}}</ref> |
|||
The {{chem|Mg|2+}} [[cation]] is the second-most-abundant cation in seawater (about {{frac|1|8}} the mass of sodium ions in a given sample), which makes seawater and sea salt attractive commercial sources for Mg. To extract the magnesium, [[calcium hydroxide]] is added to the [[seawater]] to [[precipitate]] [[magnesium hydroxide]].<ref>{{cite journal |last1=Battaglia |first1=Giuseppe |last2=Domina |first2=Maria Alda |last3=Lo Brutto |first3=Rita |last4=Lopez Rodriguez |first4=Julio |last5=Fernandez de Labastida |first5=Marc |last6=Cortina |first6=Jose Luis |last7=Pettignano |first7=Alberto |last8=Cipollina |first8=Andrea |last9=Tamburini |first9=Alessandro |last10=Micale |first10=Giorgio |title=Evaluation of the Purity of Magnesium Hydroxide Recovered from Saltwork Bitterns |journal=Water |date=21 December 2022 |volume=15 |issue=1 |pages=29 |doi=10.3390/w15010029 |doi-access=free |hdl=2117/384847 |hdl-access=free }}</ref> |
|||
: {{chem|MgCl|2}} + {{chem|Ca(OH)|2}} → {{chem|Mg(OH)|2}} + {{chem|CaCl|2}} |
|||
Magnesium hydroxide ([[brucite]]) is poorly soluble in water and can be collected by filtration. It reacts with [[hydrochloric acid]] to [[magnesium chloride]].<ref>{{Cite web |title=Magnesium processing {{!}} Techniques & Methods {{!}} Britannica |url=https://www.britannica.com/technology/magnesium-processing |access-date=2024-05-04 |website=www.britannica.com |language=en}}</ref> |
|||
: {{chem|Mg(OH)|2}} + 2 HCl → {{chem|MgCl|2}} + 2 {{chem|H|2|O}} |
|||
From magnesium chloride, [[electrolysis]] produces magnesium.<ref>{{Cite web |title=Magnesium metal is produced by the electrolysis of molten magnesi... {{!}} Channels for Pearson+ |url=https://www.pearson.com/channels/general-chemistry/asset/95590f70/magnesium-metal-is-produced-by-the-electrolysis-of-molten-magnesium-chloride-usi |access-date=2024-05-04 |website=www.pearson.com |language=en}}</ref> |
|||
===Production quantities=== |
|||
World production was approximately 1,100 kt in 2017, with the bulk being produced in China (930 kt) and Russia (60 kt).<ref>Bray, E. Lee (February 2019) [https://minerals.usgs.gov/minerals/pubs/commodity/magnesium/mcs-2019-mgmet.pdf Magnesium Metal]. Mineral Commodity Summaries, U.S. Geological Survey</ref> The United States was in the 20th century the major world supplier of this metal, supplying 45% of world production even as recently as 1995. Since the Chinese mastery of the Pidgeon process the US market share is at 7%, with a single US producer left as of 2013: US Magnesium, a [[Renco Group]] company located on the shores of the [[Great Salt Lake#Oil and minerals|Great Salt Lake]].<ref name="vardi">{{Cite web|last=Vardi|first=Nathan|title=Man With Many Enemies |url=https://www.forbes.com/forbes/2002/0722/044.html |date=6 June 2013 |website=Forbes|language=en}}</ref> |
|||
In September 2021, China took steps to reduce production of magnesium as a result of a government initiative to reduce energy availability for manufacturing industries, leading to a significant price increase.<ref>{{cite magazine |url=https://www.cips.org/supply-management/analysis/2022/february/what-to-do-about-the-magnesium-shortage/ |title=What to do about the magnesium shortage |magazine=Supply Management|date=17 February 2022 |archive-url=https://web.archive.org/web/20220217211243/https://www.cips.org/supply-management/analysis/2022/february/what-to-do-about-the-magnesium-shortage/ |archive-date=17 February 2022}}</ref> |
|||
=== Pidgeon and Bolzano processes=== |
|||
[[File:محتویات درون ریتورت.jpg|thumb|right|An Iranian worker tends to the Pidgeon process]] |
|||
The [[Pidgeon process]] and the [[Bolzano process]] are similar. In both, magnesium oxide is the precursor to magnesium metal. The magnesium oxide is produced as a solid solution with calcium oxide by calcining the mineral [[dolomite (mineral)|dolomite]], which is a solid solution of calcium and magnesium carbonates: |
|||
:{{chem2|CaCO3*MgCO3 -> MgO*CaO + 2 CO2}} |
|||
Reduction occurs at high temperatures with silicon. A ferrosilicon alloy is used rather than pure silicon as it is more economical. The iron component has no bearing on the reaction, having the simplified equation:{{citation needed|date=July 2024}} |
|||
:{{chem2|MgO*CaO +Si -> 2 Mg + Ca2SiO4}} |
|||
The calcium oxide combines with silicon as the oxygen scavenger, yielding the very stable calcium silicate. The Mg/Ca ratio of the precursors can be adjusted by the addition of MgO or CaO.<ref>{{cite book |doi=10.1002/14356007.a15_559 |chapter=Magnesium |title=Ullmann's Encyclopedia of Industrial Chemistry |date=2003|publisher=Wiley|location=Weinheim, Germany|display-authors=3 |last1=Amundsen |first1=Ketil |last2=Aune |first2=Terje Kr. |last3=Bakke |first3=Per |last4=Eklund |first4=Hans R. |last5=Haagensen |first5=Johanna Ö. |last6=Nicolas |first6=Carlos |last7=Rosenkilde |first7=Christian |last8=Van Den Bremt |first8=Sia |last9=Wallevik |first9=Oddmund |isbn=978-3-527-30385-4 }}</ref> |
|||
The Pidgeon and the Bolzano process differ in the details of the heating and the configuration of the reactor. Both generate gaseous Mg that is condensed and collected. The Pidgeon process dominates the worldwide production.<ref name=":1" /><ref name=":2">{{Cite web |title=Magnesium Processing {{!}} Techniques & Methods {{!}} Britannica |url=https://www.britannica.com/technology/magnesium-processing |access-date=2023-04-16 |website=www.britannica.com |language=en}}</ref> The Pidgeon method is less technologically complex and because of distillation/vapour deposition conditions, a high purity product is easily achievable.<ref name=":1">{{Cite book |url=https://www.worldcat.org/oclc/1111577710 |title=Magnesium and its alloys : technology and applications |date=2020 |vauthors=Bamberger M, Dobrzański LA, Totten GE|isbn=978-1-351-04547-6 |edition=First |location=Boca Raton, FL|publisher=CRC Press, Inc. |oclc=1111577710}}</ref> China is almost completely reliant on the [[Silicothermic reaction|silicothermic]] [[Pidgeon process]]. |
|||
=== Dow process === |
|||
{{anchor|Dow process}} |
|||
{{Redirect|Dow process (magnesium)|other Dow processes|Dow process (disambiguation)}} |
|||
Besides the Pigeon process, the second most used process for magnesium production is [[electrolysis]]. This is a two step process. The first step is to prepare feedstock containing magnesium chloride and the second step is to dissociate the compound in [[electrolytic cell]]s as magnesium metal and [[Chlorine|chlorine gas]].<ref name=":2" /> The basic reaction is as follows: |
|||
:{{chem2 | MgCl2 -> Mg(g) + Cl2(g) }} |
|||
The temperatures at which this reaction is operated is between 680 and 750 °C.<ref name=":2" /> |
|||
The magnesium chloride can be obtained using the [[Dow process (magnesium)|Dow process]], a process that mixes sea water and dolomite in a flocculator or by dehydration of magnesium chloride brines. The electrolytic cells are partially submerged in a molten salt electrolyte to which the produced magnesium chloride is added in concentrations between 6–18%.<ref name=":2" /> This process does have its share of disadvantages including production of harmful [[chlorine gas]] and the overall reaction being very energy intensive, creating environmental risks.<ref name=lee21>{{Cite journal |last1=Lee |first1=Tae-Hyuk |last2=Okabe |first2=Toru H. |last3=Lee |first3=Jin-Young |last4=Kim |first4=Young Min |last5=Kang |first5=Jungshin |date=September 2021 |title=Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode |journal=Journal of Magnesium and Alloys |language=en |volume=9 |issue=5 |pages=1644–1655 |doi=10.1016/j.jma.2021.01.004|s2cid=233930398 |doi-access=free }}</ref> The Pidgeon process is more advantageous regarding its simplicity, shorter construction period, low power consumption and overall good magnesium quality compared to the electrolysis method.<ref name=":0" /> |
|||
In the United States, magnesium was once obtained principally with the Dow process in [[Corpus Christi TX]], by [[electrolysis]] of fused magnesium chloride from [[brine]] and [[sea water]]. A saline solution containing {{chem|Mg|2+}} ions is first treated with [[Calcium oxide|lime]] (calcium oxide) and the precipitated [[magnesium hydroxide]] is collected: |
|||
:{{chem|Mg|2+}}(aq) + {{chem|CaO}}(s) + {{chem|H|2|O}}(l) → {{chem|Ca|2+}}(aq) + {{chem|Mg(OH)|2}}(s) |
|||
The hydroxide is then converted to [[magnesium chloride]] by treatment with [[hydrochloric acid]] and heating of the product to eliminate water: |
|||
:{{chem2|Mg(OH)2 + 2 HCl → MgCl2 + 2 H2O}} |
|||
The salt is then electrolyzed in the molten state. At the [[cathode]], the {{chem|Mg|2+}} ion is reduced by two [[electron]]s to magnesium metal: |
|||
:{{chem|Mg|2+}} + 2{{Subatomic particle|electron}} → Mg |
|||
At the [[anode]], each pair of {{chem|Cl|-}} ions is oxidized to [[chlorine]] gas, releasing two electrons to complete the circuit: |
|||
:2{{chem|Cl|-}} → {{chem|Cl|2}}(g) + 2{{Subatomic particle|electron}} |
|||
===Carbothermic process=== |
|||
The [[Carbothermic reaction|carbothermic]] route to magnesium has been recognized as a low energy, yet high productivity path to magnesium extraction. The chemistry is as follows: |
|||
[[File:Rotary kiln Johannsen patent US1618204.png|thumb|The rotary kiln is used for calcination]] |
|||
{{chem2|C + MgO -> CO + Mg}} |
|||
A disadvantage of this method is that slow cooling the vapour can cause the reaction to quickly revert. To prevent this from happening, the magnesium can be dissolved directly in a suitable metal solvent before reversion starts happening. Rapid [[quenching]] of the vapour can also be performed to prevent reversion.<ref>{{Cite journal |last1=Brooks |first1=Geoffrey |last2=Trang |first2=Simon |last3=Witt |first3=Peter |last4=Khan |first4=M. N. H. |last5=Nagle |first5=Michael |date=May 2006 |title=The carbothermic route to magnesium |url=http://dx.doi.org/10.1007/s11837-006-0024-x |journal=JOM |volume=58 |issue=5 |pages=51–55 |doi=10.1007/s11837-006-0024-x |bibcode=2006JOM....58e..51B |s2cid=67763716 |issn=1047-4838}}</ref> |
|||
=== YSZ process === |
|||
{{anchor|YSZ process}} |
|||
A newer process, solid oxide membrane technology, involves the electrolytic reduction of MgO. At the cathode, {{chem|Mg|2+}} ion is reduced by two [[electron]]s to magnesium metal. The electrolyte is [[yttria-stabilized zirconia]] (YSZ). The anode is a liquid metal. At the YSZ/liquid metal anode {{chem|O|2-}} is oxidized. A layer of graphite borders the liquid metal anode, and at this interface carbon and oxygen react to form carbon monoxide. When silver is used as the liquid metal anode, there is no reductant carbon or hydrogen needed, and only oxygen gas is evolved at the anode.<ref name="pal07">{{cite journal|last1=Pal|first1=Uday B. |last2=Powell|first2=Adam C.|title=The Use of Solid-Oxide-Membrane Technology for Electrometallurgy|date=2007|bibcode=2007JOM....59e..44P|volume=59|pages=44–49|journal=JOM|doi=10.1007/s11837-007-0064-x|issue=5|s2cid=97971162 }}</ref> It was reported in 2011 that this method provides a 40% reduction in cost per pound over the electrolytic reduction method.<ref>{{cite web| url=http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2011/lightweight_materials/lm035_derezinski_2011_o.pdf| archive-url=https://web.archive.org/web/20131113035743/http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2011/lightweight_materials/lm035_derezinski_2011_o.pdf| url-status=dead| archive-date=13 November 2013|publisher=MOxST| title=Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles |first=Steve| last=Derezinski |date=12 May 2011| access-date=27 May 2013}}</ref> |
|||
=== Rieke process === |
|||
Rieke et al. developed a "general approach for preparing highly reactive metal powders by reducing metal salts in ethereal or hydrocarbon solvents using alkali metals as reducing agents" now known as the [[Rieke process]].<ref name="rieke16">{{cite book |doi=10.1002/9781118929124.ch4 |chapter=Magnesium |title=Chemical Synthesis Using Highly Reactive Metals |date=2017 |pages=161–208 |isbn=978-1-118-92911-7 }}</ref> Rieke finalized the identification of [[Rieke metals]] in 1989,<ref name="rieke95">{{cite book |doi=10.1002/9783527615179.ch01 |chapter=Rieke Metals: Highly Reactive Metal Powders Prepared by Alkali Metal Reduction of Metal Salts |title=Active Metals |date=1995 |last1=Rieke |first1=Reuben D. |last2=Sell |first2=Matthew S. |last3=Klein |first3=Walter R. |last4=Chen |first4=Tian-An |last5=Brown |first5=Jeffrey D. |last6=Hanson |first6=Mark V. |pages=1–59 |isbn=978-3-527-29207-3 }}</ref> one of which was Rieke-magnesium, first produced in 1974.<ref name="rieke74">{{cite journal |doi=10.1002/chin.197421315 |title=ChemInform Abstract: ACTIVATED METALS PART 4, PREPARATION AND REACTIONS OF HIGHLY REACTIVE MAGNESIUM METAL |date=1974 |last1=Rieke |first1=Reuben D. |last2=Bales |first2=Stephen E. |journal=Chemischer Informationsdienst |volume=5 |issue=21 }}</ref> |
|||
== History == |
== History == |
||
The name originates from the [[Ancient Greek|Greek]] word for a district in [[Thessaly]] called [[Magnesia]]. It is related to [[magnetite]] and [[manganese]], which also originated from this area, and required differentiation as separate substances. See [[manganese]] for this history. |
The name magnesium originates from the [[Ancient Greek|Greek]] word for locations related to the tribe of the [[Magnetes]], either a district in [[Thessaly]] called [[Ancient Magnesia|Magnesia]]<ref>{{cite web |url=http://www.webelements.com/magnesium/history.html |title=Magnesium: historical information |publisher=webelements.com |access-date=9 October 2014}}</ref> or [[Magnesia ad Sipylum]], now in Turkey.<ref name="LanguageHAt">{{cite web |last1=languagehat |title=Magnet |url=http://languagehat.com/magnet/ |website=languagehat.com |access-date=18 June 2020 |language=en |date=28 May 2005}}</ref> It is related to [[magnetite]] and [[manganese]], which also originated from this area, and required differentiation as separate substances. See [[manganese]] for this history. |
||
In 1618, a farmer at Epsom in England attempted to give his cows water from a local well. The cows refused to drink because of the water's bitter taste, but the farmer noticed that the water seemed to heal scratches and rashes. The substance obtained by evaporating the water became known as [[Magnesium sulfate|Epsom salts]] and its fame spread.<ref>{{cite journal|last1=Ainsworth|first1=Steve|title=Epsom's deep bath|journal=Nurse Prescribing|date=1 June 2013|volume=11|issue=6|page=269|doi=10.12968/npre.2013.11.6.269}}</ref> It was eventually recognized as hydrated magnesium sulfate, {{chem|MgSO|4}}·7{{hsp}}{{chem|H|2|O}}.<ref>{{Cite web |last=PubChem |title=Magnesium Sulfate Heptahydrate |url=https://pubchem.ncbi.nlm.nih.gov/compound/24843 |access-date=2024-04-28 |website=pubchem.ncbi.nlm.nih.gov |language=en}}</ref> |
|||
The metal itself was first |
The metal itself was first isolated by [[Humphry Davy|Sir Humphry Davy]] in England in 1808. He used electrolysis on a mixture of [[magnesia alba|magnesia]] and [[Mercury(II) oxide|mercuric oxide]].<ref name="Davy1808">{{cite journal| last = Davy | first = H. | date= 1808 | title = Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia | journal = Philosophical Transactions of the Royal Society of London | volume = 98 | pages = 333–370|bibcode = 1808RSPT...98..333D | jstor=107302 | doi=10.1098/rstl.1808.0023| s2cid = 96364168 }}</ref> [[Antoine Bussy]] prepared it in coherent form in 1831. Davy's first suggestion for a name was 'magnium',<ref name="Davy1808" /> but the name magnesium is now used in most European languages.<ref>{{Cite web |title=Magnesium (Mg) - Periodic Table |url=https://www.periodictable.one/element/12 |access-date=2024-05-04 |website=www.periodictable.one |language=en}}</ref> |
||
== |
==Uses== |
||
Although magnesium is found in over 60 [[mineral]]s, only [[dolomite]], [[magnesite]], [[brucite]], [[carnallite]], [[talc]], and [[olivine]] are of commercial importance. |
|||
===Magnesium metal=== |
|||
In the [[United States]] this metal is principally obtained by [[electrolysis]] of fused [[magnesium chloride]] from [[brine]]s, wells, and [[sea water]]: |
|||
:[[cathode]]: Mg<sup>2+</sup> + 2 [[electron|e]]<sup>-</sup> → Mg |
|||
:[[anode]]: 2 [[chlorine|Cl]]<sup>-</sup> → Cl<sub>2 ([[gas]])</sub> + 2 e<sup>-</sup> |
|||
: |
|||
[[Image:Magnesium crystals.jpg|thumb|Vapor-deposited magnesium crystals from the [[Pidgeon process]]]] |
|||
The United States has traditionally been the major world supplier of this metal, supplying 45% of world production even as recently as 1995. Today, the US market share is at 7%, with a single domestic producer left, [[US Magnesium]], a company born from now-defunct [[Magcorp]].<ref>{{cite web| url=http://www.forbes.com/forbes/2002/0722/044_print.html| publisher=Forbes.com| title=Man With Many Enemies| first=Nathan| last= Vardi |date=[[February 22]] [[2007]] | accessdate=2006-06-26}}</ref> As of 2005 [[China]] has taken over as the dominant supplier, pegged at 60% world market share, which increased from 4% in 1995. Unlike the above described [[electrolyte|electrolytic]] process, China is almost completely reliant on a different method of obtaining the metal from its ores, the [[Silicothermic reaction|silicothermic]] [[Pidgeon process]] (the reduction of the oxide at high temperatures with silicon). |
|||
[[File:Bundesarchiv Bild 102-12062, Wasserreiter mit Magnesiumfackeln.jpg|thumb|An unusual application of magnesium as an [[Illumination (lighting)|illumination]] source while [[wakeskating]] in 1931]] |
|||
===Magnesium from sea water=== |
|||
The Mg<sup>2+</sup> cation is the second most abundant cation in seawater (occurring at about 12% of the mass of sodium there), which makes seawater and sea-salt an attractive commercial source of Mg. To extract the magnesium, [[calcium carbonate]] is added to sea water to form [[magnesium carbonate]] precipitate. |
|||
Magnesium is the third-most-commonly-used structural metal, following [[iron]] and aluminium.<ref>{{Cite book|url=https://books.google.com/books?id=9DskDwAAQBAJ&pg=PT256|title=Materials for the 21st Century|last=Segal|first=David|date=2017|publisher=Oxford University Press|isbn=978-0192526090}}</ref> The main applications of magnesium are, in order: aluminium alloys, [[die-casting]] (alloyed with [[zinc]]),<ref name="BakerM. M. Avedesian1999">{{cite book|last1=Baker|first1=Hugh D. R.|last2=Avedesian|first2=Michael|title=Magnesium and magnesium alloys|date=1999|publisher=Materials Information Society|location=Materials Park, OH|isbn=978-0871706577|page=4}}</ref> removing [[sulfur]] in the production of iron and steel, and the production of [[titanium]] in the [[Kroll process]].<ref>{{cite encyclopedia|display-authors=6|author=Ketil Amundsen|author2=Terje Kr. Aune|author3=Per Bakke|author4=Hans R. Eklund|author5=Johanna Ö. Haagensen|author6=Carlos Nicolas|author7=Christian Rosenkilde|author8=Sia Van den Bremt|author9=Oddmund Wallevik |contribution=Magnesium |date=2002|publisher=Wiley-VCH |doi=10.1002/14356007.a15_559|title=Ullmann's Encyclopedia of Industrial Chemistry|isbn=978-3527306732 }}</ref> |
|||
MgCl<sub>2</sub> + CaCO<sub>3</sub> → MgCO<sub>3</sub> + CaCl<sub>2</sub> |
|||
Magnesium is used in lightweight materials and alloys. For example, when infused with silicon carbide [[nanoparticle]]s, it has extremely high specific strength.<ref name="ucla">{{cite web|url=http://newsroom.ucla.edu/releases/ucla-researchers-create-exceptionally-strong-and-lightweight-new-metal |title=UCLA researchers create super-strong magnesium metal |publisher=ucla.edu |first=Matthew |last=Chin |date=23 December 2015 }}</ref> |
|||
[[Magnesium carbonate]] is insoluble in water so it can be filtered out, and reacted with [[hydrochloric acid]] to obtain concentrated [[magnesium chloride]]. |
|||
Historically, magnesium was one of the main aerospace construction metals and was used for German military aircraft as early as World War I and extensively for German aircraft in World War II. The Germans coined the name "[[Elektron (alloy)|Elektron]]" for magnesium alloy, a term which is still used today. In the commercial aerospace industry, magnesium was generally restricted to engine-related components, due to fire and corrosion hazards. Magnesium alloy use in aerospace is increasing in the 21st century, driven by the importance of fuel economy.<ref name="aghion00">{{cite journal |doi= 10.4028/www.scientific.net/MSF.350-351.19 |title= Magnesium Alloys Development towards the 21st Century |date= 2000 |last1= Aghion |first1= E. |last2= Bronfin |first2= B. |journal= Materials Science Forum |volume= 350–351 |pages= 19–30|s2cid= 138429749 }}</ref> Magnesium alloys can act as replacements for aluminium and steel alloys in structural applications.<ref name=shu10>{{cite journal |last1=Shu |first1=Dong Wei |last2=Ahmad |first2=Iram Raza |title=Magnesium Alloys: An Alternative for Aluminium in Structural Applications |journal=Advanced Materials Research |date=December 2010 |volume=168-170 |pages=1631–1635 |doi=10.4028/www.scientific.net/amr.168-170.1631 }}</ref><ref name=ma17>{{cite web | title=Magnesium alloy as a lighter alternative to aluminum alloy | website=Phys.org | date=2017-11-29 | url=https://phys.org/news/2017-11-magnesium-alloy-lighter-alternative-aluminum.html }}</ref> |
|||
MgCO<sub>3</sub> + 2HCl → MgCl<sub>2</sub> + CO<sub>2</sub> + H<sub>2</sub>O |
|||
====Aircraft==== |
|||
From [[magnesium chloride]], electrolysis produces magnesium. |
|||
* [[Wright Aeronautical]] used a magnesium [[crankcase]] in the WWII-era [[Wright R-3350 Duplex Cyclone]] aviation engine. This presented a serious problem for the earliest models of the [[Boeing B-29 Superfortress]] heavy bomber when an in-flight engine fire ignited the engine crankcase. The resulting combustion was as hot as 5,600 °F (3,100 °C) and could sever the wing spar from the [[fuselage]].<ref>{{cite journal|title=Condensed-phase modifications in magnesium particle combustion in air|author1=Dreizin, Edward L. |author2=Berman, Charles H. |author3=Vicenzi, Edward P. |journal=Scripta Materialia|volume=122|issue=1–2 |doi=10.1016/S0010-2180(00)00101-2|year=2000|pages=30–42|bibcode=2000CoFl..122...30D |citeseerx=10.1.1.488.2456 }}</ref><ref>{{cite book | url = https://books.google.com/books?id=EBmynsBj2BUC&pg=PA40| pages=40–41 | title = Mission to Tokyo: The American Airmen Who Took the War to the Heart of Japan | isbn = 978-1610586634 | last1 = Dorr | first1 = Robert F. | date = 2012| publisher=Zenith Press }}</ref><ref>{{cite book |url=https://books.google.com/books?id=JEwpAQAAIAAJ | title=AAHS Journal |volume=44–45 | date=1999 |publisher=American Aviation Historical Society }}</ref> |
|||
====Automotive==== |
|||
{{seealso|Category:Magnesium minerals}} |
|||
[[File:Bugatti Aérolithe AV.jpg|thumb|The [[Bugatti Type 57#1935 Bugatti Type 57 Aérolithe Chassis No. 57331 Prototype|Bugatti Type 57 Aérolithe]] featured a lightweight body made of [[Elektron (alloy)|Elektron]], a trademarked magnesium alloy.]] |
|||
* [[Mercedes-Benz]] used the alloy [[Elektron (alloy)|Elektron]] in the bodywork of an early model [[Mercedes-Benz 300 SLR]]; these cars competed in the [[1955 World Sportscar Championship]] including a win at the [[1955 Mille Miglia|Mille Miglia]], and at [[24 Hours of Le Mans|Le Mans]] where one was involved in the [[1955 Le Mans disaster]] when spectators were showered with burning fragments of elektron.<ref>{{cite news |last1=Spurgeon |first1=Brad |title=On Auto Racing's Deadliest Day |url=https://www.nytimes.com/2015/06/12/sports/autoracing/on-auto-racings-deadliest-day.html |work=The New York Times |date=11 June 2015 }}</ref> |
|||
* [[Porsche]] used magnesium alloy frames in the [[Porsche 917|917/053]] that won Le Mans in 1971, and continues to use magnesium alloys for its engine blocks due to the weight advantage.<ref>{{Cite web |last=Perkins |first=Chris |date=2021-07-01 |title=The 1971 Porsche 917 KH Had a Chassis Made of Ultra-Flammable Magnesium |url=https://www.roadandtrack.com/car-culture/a36902927/1971-porsche-917-kh-magnesium/ |access-date=2023-05-07 |website=Road & Track |language=en-US}}</ref> |
|||
* [[Volkswagen Group]] has used magnesium in its engine components for many years.<ref>{{Cite web|date=2020-08-18|title=1950: The metal is magnesium, the car is the Beetle|url=https://www.hydro.com/en-US/about-hydro/company-history/1946---1977/1950-the-metal-is-magnesium-the-car-is-the-beetle/|access-date=2021-04-05|website=hydro.com|language=en-us}}</ref> |
|||
* [[Mitsubishi Motors]] uses magnesium for its [[paddle shifters]].<ref>{{Cite web |date=2006-04-12 |title=2007 Mitsubishi Outlander brings sport sedan dynamics to compact sport-utility vehicle segment; performance credentials include 220 Hp V-6, 6-speed Sportronic(R) transmission and aluminum roof |url=http://media.mitsubishicars.com/en-US/releases/2007-mitsubishi-outlander-brings-sport-sedan-dynamics-to-compact-sport-utility-vehicle-segment-performance-credentials-include-220-hp-v-6-6-speed-sportronicr-transmission-and-aluminum-roof |access-date=2023-05-07 |website=Mitsubishi Newsroom |language=en}}</ref> |
|||
* [[BMW]] used magnesium alloy blocks in their [[BMW N52|N52]] engine, including an aluminium alloy insert for the cylinder walls and cooling jackets surrounded by a high-temperature magnesium alloy [[AJ alloys|AJ62A]]. The engine was used worldwide between 2005 and 2011 in various 1, 3, 5, 6, and 7 series models; as well as the Z4, X1, X3, and X5.<ref>{{cite journal |first1=Sachin |last1=Kumar |first2=Chuansong |last2=Wu |title=Review:Mg and Its Alloy——Scope, Future Perspectives and Recent Advancements in Welding and Processing |journal=Journal of Harbin Institute of Technology |date=2017 |volume=24 |issue=6 |pages=1–37 |doi=10.11916/j.issn.1005-9113.17065 }}</ref> |
|||
* [[Chevrolet]] used the magnesium alloy AE44 in the 2006 Corvette [[Corvette C6|Z06]].<ref>{{Cite book |last1=Aragones |first1=Jonathon |last2=Goundan |first2=Kasi |last3=Kolp |first3=Scott |last4=Osborne |first4=Richard |last5=Ouimet |first5=Larry |last6=Pinch |first6=William |title=SAE Technical Paper Series |date=2005-04-11 |chapter=Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember |volume=1 |chapter-url=https://www.sae.org/publications/technical-papers/content/2005-01-0340/ |language=English |location=Warrendale, PA|doi=10.4271/2005-01-0340 }}</ref> |
|||
Both AJ62A and AE44 are recent developments in high-temperature low-[[Creep (deformation)|creep]] magnesium alloys. The general strategy for such alloys is to form [[intermetallic]] precipitates at the [[crystallite|grain boundaries]], for example by adding [[mischmetal]] or [[calcium]].<ref>{{cite report|title=Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys |date=2001 |author=Luo, Alan A. |author2=Powell, Bob R. |name-list-style=amp |publisher=Materials & Processes Laboratory, General Motors Research & Development Center |access-date=21 August 2007 |url=http://doc.tms.org/ezmerchant/prodtms.nsf/productlookupitemid/01-481x-137/%24FILE/01-481X-137F.pdf |archive-url=https://web.archive.org/web/20070928023445/http://doc.tms.org/ezmerchant/prodtms.nsf/productlookupitemid/01-481x-137/%24FILE/01-481X-137F.pdf |archive-date=28 September 2007 |url-status=dead }}</ref> |
|||
====Electronics==== |
|||
== Biological role == |
|||
Because of low density and good mechanical and electrical properties, magnesium is used for manufacturing of mobile phones, laptop and [[tablet computers]], cameras, and other electronic components.<ref>{{Cite journal |date=2020 |title=Evaluation of Mechanical Properties of Magnesium [AZ91] Reinforced With Carbon Nanotubes And Sic/Al2O3 |url=https://www.ilkogretim-online.org/fulltext/218-1642679175.pdf |journal=Elementary Education Online |volume=19 |issue=4 |page=6907 |access-date=7 May 2023 |archive-date=7 May 2023 |archive-url=https://web.archive.org/web/20230507094851/https://www.ilkogretim-online.org/fulltext/218-1642679175.pdf |url-status=dead }}</ref> It was used as a premium feature because of its light weight in some 2020 laptops.<ref name="bma">{{cite news |last1=Dignan |first1=Larry |title=Blue magnesium alloy laptops: Premium price, plastic feel, but lightweight |url=https://www.zdnet.com/article/blue-magnesium-alloy-laptops-premium-price-plastic-feel-but-lightweight/ |publisher=ZDNet |date=2 January 2020}}</ref> |
|||
{{main|Magnesium in biology}} |
|||
[[File:Magnesium-products.jpg|thumb|left|Products made of magnesium: firestarter and shavings, sharpener, magnesium ribbon]] |
|||
Magnesium ions are essential to the basic [[nucleic acid]] chemistry of life, and thus are essential to all cells of all known living organisms. [[Plants]] have an additional use for magnesium in that [[chlorophyll]]s are magnesium-centered [[porphyrin]]s. Many [[enzyme]]s require the presence of magnesium ions for their catalytic action, especially enzymes utilizing [[Adenosine triphosphate|ATP]], or those which use other nucleotides to synthesize [[DNA]] and [[RNA]]. [[Magnesium deficiency]] in plants causes late-season yellowing between leaf veins, especially in older leaves, and can be corrected by applying epsom salts (which is rapidly [[leaching|leached]]), or else crushed [[dolomite|dolomitic]] [[limestone]] to the soil. |
|||
[[Image:FoodSourcesOfMagnesium.jpg|thumb|right|Food sources of magnesium]] |
|||
====Source of light==== |
|||
Magnesium is a vital component of a healthy human diet. [[magnesium deficiency (medicine)|Human magnesium deficiency]] is relatively common, with only 32% of the United States meeting the RDA-DRI,<ref>{{cite web | url = http://www.ars.usda.gov/is/AR/archive/may04/energy0504.htm?pf=1 | title = Lack Energy? Maybe It's Your Magnesium Level | publisher = United States Department of Agriculture | accessdate = 2008-09-18}} Last paragraph</ref> and has been implicated in a number of human diseases. In certain limited situations, magnesium oxide has been reported to be effective in maintenance treatment of the manic phase of bipolar disease. <ref> AJ Giannini, RK Bowman, SM Melemis, J Ventresco. Magnesium oxide enhances verapamil-maintenance therapy in chronic manic patients. Psychiatry Research. 93:83-87,2000. </ref> There are a number of magnesium supplements available. Magnesium oxide, one of the most common, has been reported as the least bioavailable.<ref name=Firoz2001>{{cite journal |author=Firoz M, Graber M |title=Bioavailability of US commercial magnesium preparations |journal=Magnes Res |volume=14 |issue=4 |pages=257–62 |year=2001 |month=December |pmid=11794633 |doi= |url=}}</ref><ref name=Lindberg1990>{{cite journal |author=Lindberg JS, Zobitz MM, Poindexter JR, Pak CY |title=Magnesium bioavailability from magnesium citrate and magnesium oxide |journal=J Am Coll Nutr |volume=9 |issue=1 |pages=48–55 |year=1990 |month=February |pmid=2407766 |doi= |url=}}</ref> Magnesium citrate is more bioavailable than oxide or amino-acid chelate forms.<ref name=Walker2003>{{cite journal |author=Walker AF, Marakis G, Christie S, Byng M |title=Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study |journal=Magnes Res |volume=16 |issue=3 |pages=183–91 |year=2003 |month=September |pmid=14596323 |doi= |url=http://www.john-libbey-eurotext.fr/medline.md?issn=0953-1424&vol=16&iss=3&page=183}}</ref> |
|||
When burning in air, magnesium produces a brilliant white light that includes strong ultraviolet wavelengths. Magnesium powder ([[flash powder]]) was used for subject illumination in the early days of [[photography]].<ref>{{cite book |last1=Hannavy |first1=John |title=Encyclopedia of Nineteenth-Century Photography |date=2013 |publisher=Routledge |isbn=978-1-135-87327-1 |page=84 }}</ref><ref>{{Cite book|url=https://books.google.com/books?id=H3E3AQAAMAAJ|title=Scientific American: Supplement|year=1899|publisher=Munn and Company|volume=48|page=20035}}</ref> Later, magnesium filament was used in electrically ignited single-use photography [[Flash (photography)#Flashbulbs|flashbulbs]]. Magnesium powder is used in [[fireworks]] and marine [[flare]]s where a brilliant white light is required. It was also used for various theatrical effects,<ref>{{Cite book|url=https://archive.org/details/bub_gb_gQkEAAAAMBAJ|title=Billboard|year=1974|publisher=Nielsen Business Media, Inc.|page=[https://archive.org/details/bub_gb_gQkEAAAAMBAJ/page/n19 20]}}</ref> such as lightning,<ref>{{cite book |last1=Altman |first1=Rick |title=Silent Film Sound |date=2004 |publisher=Columbia University Press |isbn=978-0-231-11663-3 |page=41 }}</ref> pistol flashes,<ref>{{cite book |last1=Lindsay |first1=David |title=Madness in the Making: The Triumphant Rise and Untimely Fall of America's Show Inventors |date=2005 |publisher=iUniverse |isbn=978-0-595-34766-7 |page=210 }}</ref> and supernatural appearances.<ref>{{cite book |last1=McCormick |first1=John |last2=Pratasik |first2=Bennie |title=Popular Puppet Theatre in Europe, 1800-1914 |date=2005 |publisher=Cambridge University Press |isbn=978-0-521-61615-7 |page=106 }}</ref> |
|||
{{anchor|Flammability}}Magnesium is flammable, burning at a temperature of approximately {{convert|3100|°C|K °F|abbr=on}},<ref name="Dreizin, Edward L.; Berman, Charles H. and Vicenzi, Edward P. 2000 30" /> and the [[autoignition temperature]] of magnesium ribbon is approximately {{convert|473|°C|K °F|abbr=on}}.<ref>{{cite web |
|||
Excess magnesium in the blood is freely filtered at the kidneys, and for this reason it is difficult to overdose on magnesium from dietary sources alone.<ref>[http://www.umm.edu/altmed/articles/magnesium-000313.htm Magnesium]</ref> With supplements overdose is possible, however, particularly in people with poor renal function, but severe [[hypermagnesemia]] can also occur without renal dysfunction.<ref>{{cite journal |author=Kontani M, Hara A, Ohta S, Ikeda T |title=Hypermagnesemia induced by massive cathartic ingestion in an elderly woman without pre-existing renal dysfunction |journal=Intern. Med. |volume=44 |issue=5 |pages=448–52 |year=2005 |pmid=15942092| doi = 10.2169/internalmedicine.44.448 <!--Retrieved from CrossRef by DOI bot-->}}</ref> Alcoholism can produce a magnesium deficiency which is easily reversed by oral or parenteral administration, depending on the degree of deficiency. <ref> AJ Giannini. Drugs of Abuse--Second Edition. Los Angeles, Physicians Management Information Co., 1997. </ref> |
|||
| title = Magnesium (Powder) |
|||
| work = International Programme on Chemical Safety (IPCS) |
|||
| publisher = IPCS INCHEM |
|||
| date = April 2000 |
|||
| url = http://www.inchem.org/documents/icsc/icsc/eics0289.htm |
|||
| access-date = 21 December 2011 |
|||
}}</ref> Magnesium's high combustion temperature makes it a useful tool for starting emergency fires. Other uses include flash [[photography]], flares, [[pyrotechnics]], fireworks sparklers, and trick birthday candles. Magnesium is also often used to ignite thermite or other materials that require a high ignition temperature. Magnesium continues to be used as an [[Incendiary device|incendiary]] element in warfare.<ref>{{cite web| title=9N510 (ML-5) Submunition|url=https://cat-uxo.com/explosive-hazards/submunitions/9n510-ml-5-submunition|access-date=22 November 2022|publisher= Collective Awareness to UXO}}</ref>[[File:Magnesium Sparks.jpg|thumb|Magnesium firestarter (in left hand), used with a [[pocket knife]] and [[flint]] to create sparks that ignite the shavings]] |
|||
Flame temperatures of magnesium and magnesium alloys can reach {{convert|3100|C|F|abbr=on}},<ref name="Dreizin, Edward L.; Berman, Charles H. and Vicenzi, Edward P. 2000 30">{{cite journal|title=Condensed-phase modifications in magnesium particle combustion in air|author=Dreizin, Edward L.|author2=Berman, Charles H.|author3=Vicenzi, Edward P.|name-list-style=amp|journal=Scripta Materialia|volume=122|issue=1–2|doi=10.1016/S0010-2180(00)00101-2|date=2000|pages=30–42|bibcode=2000CoFl..122...30D |citeseerx=10.1.1.488.2456}}</ref> although flame height above the burning metal is usually less than {{convert|300|mm|in|abbr=on}}.<ref name="DOE">{{cite book |
|||
== Isotopes == |
|||
|title = DOE Handbook – Primer on Spontaneous Heating and Pyrophoricity |
|||
Magnesium has three stable [[isotope]]s: <sup>24</sup>Mg, <sup>25</sup>Mg, <sup>26</sup>Mg. All are present in significant amounts (see table of isotopes above). About 79% of Mg is <sup>24</sup>Mg. The isotope <sup>28</sup>Mg is radioactive and in the 1950s to 1970s was made commercially by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 hours) and so its use was limited by shipping times. |
|||
|publisher = [[United States Department of Energy]] |
|||
|id = DOE-HDBK-1081-94 |
|||
|date = December 1994 |
|||
|page = 20 |
|||
|url = http://www.hss.doe.gov/nuclearsafety/techstds/docs/handbook/hbk1081c.html#ZZ22 |
|||
|access-date = 21 December 2011 |
|||
|archive-url = https://web.archive.org/web/20120415172328/http://www.hss.doe.gov/nuclearsafety/techstds/docs/handbook/hbk1081c.html#ZZ22 |
|||
|archive-date = 15 April 2012 |
|||
|url-status = dead |
|||
}}</ref> Once ignited, such fires are difficult to extinguish because they resist several substances commonly used to put out fires; combustion continues in [[nitrogen]] (forming [[magnesium nitride]]),{{cn|date=January 2025}} in [[carbon dioxide]] (forming [[magnesium oxide]] and [[carbon]]),<ref name=CO2/> and in water (forming magnesium oxide and hydrogen, which also combusts due to heat in the presence of additional oxygen). This property was used in incendiary weapons during the [[firebombing]] of cities in [[World War II]], where the only practical [[civil defense]] was to smother a burning flare under dry sand to exclude atmosphere from the combustion. |
|||
====Chemical reagent==== |
|||
<sup>26</sup>Mg has found application in [[isotope|isotopic]] [[geology]], similar to that of [[aluminium]]. <sup>26</sup>Mg is a [[radiogenic]] daughter product of <sup>26</sup>Al, which has a [[half-life]] of 717,000 years. Large enrichments of stable <sup>26</sup>Mg have been observed in the [[Ca-Al-rich inclusions]] of some [[carbonaceous chondrite]] [[meteorite]]s. The anomalous abundance of <sup>26</sup>Mg is attributed to the decay of its parent <sup>26</sup>Al in the inclusions. Therefore, the meteorite must have formed in the [[solar nebula]] before the <sup>26</sup>Al had decayed. Hence, these fragments are among the oldest objects in the [[solar system]] and have preserved information about its early history. |
|||
In the form of turnings or ribbons, to prepare [[Grignard reagent]]s, which are useful in [[organic synthesis]].<ref>{{Cite web |last=Ashenhurst |first=James |date=2011-10-14 |title=Grignard Reagents For Addition To Aldehydes and Ketones |url=https://www.masterorganicchemistry.com/2011/10/14/reagent-friday-grignard-reagents/ |access-date=2024-05-04 |website=Master Organic Chemistry |language=en-US}}</ref> |
|||
====Other==== |
|||
It is conventional to plot <sup>26</sup>Mg/<sup>24</sup>Mg against an Al/Mg ratio. In an [[isochron dating]] plot, the Al/Mg ratio plotted is<sup>27</sup>Al/<sup>24</sup>Mg. The slope of the isochron has no age significance, but indicates the initial <sup>26</sup>Al/<sup>27</sup>Al ratio in the sample at the time when the systems were separated from a common reservoir. |
|||
* As an additive agent in conventional propellants and the production of [[Ductile iron|nodular graphite in cast iron]].<ref>{{Cite web |title=Periodic Table of Elements: Los Alamos National Laboratory |url=https://periodic.lanl.gov/12.shtml |access-date=2024-05-04 |website=periodic.lanl.gov}}</ref> |
|||
* As a reducing agent to separate [[uranium]] and other metals from their [[Salt (chemistry)|salts]].<ref>{{cite journal |last1=Ainscough |first1=J.B. |last2=Rigby |first2=F |title=Magnesium reduction of uranium oxide |journal=Journal of Inorganic and Nuclear Chemistry |date=July 1974 |volume=36 |issue=7 |pages=1531–1534 |doi=10.1016/0022-1902(74)80618-4 }}</ref> |
|||
* As a [[Sacrificial anode|sacrificial (galvanic) anode]] to protect boats, underground tanks, pipelines, buried structures, and water heaters.<ref>{{Cite web |date=2013-10-02 |title=Sacrificial Anode |url=https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Electrochemistry/Exemplars/Corrosion/Sacrificial_Anode |access-date=2024-05-04 |website=Chemistry LibreTexts |language=en}}</ref> |
|||
* Alloyed with zinc to produce the zinc sheet used in [[photoengraving]] plates in the printing industry, [[Dry cell|dry-cell battery]] walls, and [[Flashing (weatherproofing)|roofing]].<ref name="BakerM. M. Avedesian1999" /> |
|||
* Alloyed with aluminium with aluminium-magnesium alloys being used mainly for [[beverage can]]s,<ref>{{Cite web |last=Multiview |date=2019-12-17 |title=Strong and Ductile: Magnesium Adds Benefits to Aluminum Alloys |url=https://www.belmontmetals.com/strong-and-ductile-magnesium-added-to-aluminum-alloys-provides-amazing-benefits/ |access-date=2024-05-04 |website=Belmont Metals |language=en-US}}</ref> sports equipment such as golf clubs,<ref>{{Cite web|url=https://www.hirekogolf.com/clubheads-material-differences|title=Golf Clubheads: Material Differences}}</ref> fishing reels,<ref>{{Cite web |last=Purnell |first=Ross |title=How Aluminum Changed Fly Fishing Forever |url=https://www.flyfisherman.com/editorial/how-aluminum-changed-fly-fishing/152036 |access-date=2024-05-04 |website=Fly Fisherman |language=en}}</ref> and archery bows and arrows.<ref>{{Cite web |title=Compound Bow – Facts and History of Modern Bows |url=http://www.historyofarchery.com/archery-history/compound-bow/ |access-date=2024-05-04 |website=www.historyofarchery.com}}</ref> |
|||
* Many car and aircraft manufacturers have made engine and body parts from magnesium.<ref>{{Cite web |title=Automotive Applications - International Magnesium Association |url=https://www.intlmag.org/page/app_automotive_ima |access-date=2024-05-04 |website=www.intlmag.org}}</ref> |
|||
* [[Magnesium battery|Magnesium batteries]] have been commercialized as [[primary battery|primary batteries]], and are an active topic of research for [[Rechargeable battery|rechargeable batteries]].<ref>{{cite journal |last1=Leong |first1=Kee Wa |last2=Pan |first2=Wending |last3=Wang |first3=Yifei |title=Reversibility of a High-Voltage, Cl – Regulated, Aqueous Mg Metal Battery Enabled by a Water-in-Salt Electrolyte |journal=ACS Energy Lett. |date=21 July 2022 |volume=7 |issue=8 |pages=2657–2666 |doi=10.1021/acsenergylett.2c01255 |s2cid=250965568 |url=https://pubs.acs.org/doi/10.1021/acsenergylett.2c01255 |access-date=25 June 2023}}</ref> |
|||
== |
===Compounds=== |
||
Magnesium compounds, primarily [[magnesium oxide]] (MgO), are used as a [[refractory]] material in [[Metallurgical furnace|furnace]] linings for producing [[iron]], [[steel]], [[nonferrous metal]]s, [[glass]], and [[cement]]. Magnesium oxide and other magnesium compounds are also used in the agricultural, chemical, and construction industries. Magnesium oxide from [[calcination]] is used as an electrical insulator in [[Mineral-insulated copper-clad cable|fire-resistant cables]].<ref>{{cite book|last=Linsley|first=Trevor|title=Basic Electrical Installation Work|isbn=978-0080966281|page=362|date=2011|chapter=Properties of conductors and insulators|publisher=Taylor & Francis }}</ref> |
|||
[[Image:Schlesser.jpg|thumb|right|The magnesium-bodied [[Honda F1|Honda]] RA302 of [[Jo Schlesser]] crashes and burns during the [[1968 French Grand Prix]]. Schlesser was killed]] |
|||
Magnesium reacts with [[haloalkane]]s to give [[Grignard reagent]]s, which are used for a wide variety of [[organic reaction]]s forming [[carbon–carbon bond]]s.<ref>{{cite book |last=Wade Jr. |first=L. G. |year=2012 |edition=8th |title=Organic Chemistry |publisher=Pearson |page=441 |isbn=978-0321768414}}</ref> |
|||
Magnesium metal and alloys are highly flammable in their pure form when molten, as a powder, or in ribbon form. Burning or molten magnesium metal reacts violently with water. Magnesium powder is an explosive hazard. One should wear safety glasses while working with magnesium, and if burning it, these should include a heavy U.V. filter, similar to welding eye protection. The bright white light (including [[ultraviolet]]) produced by burning magnesium can permanently damage the retinas of the eyes, similar to welding arc burns.<ref>{{cite web |url=http://www.edu.gov.mb.ca/k12/docs/support/scisafe/chapter8.html |title=Science Safety: Chapter 8 |publisher=Government of Manitoba |accessdate=2007-08-21}}</ref> |
|||
Magnesium salts are included in various [[food]]s,<ref>{{Cite web |title=Magnesium-Rich Food Information |url=https://my.clevelandclinic.org/health/articles/15650-magnesium-rich-food |access-date=2024-05-04 |website=Cleveland Clinic |language=en}}</ref> [[fertilizer]]s<ref>{{Cite web |title=Magnesium for crop production |url=https://extension.umn.edu/micro-and-secondary-macronutrients/magnesium-crop-production |access-date=2024-05-04 |website=extension.umn.edu |language=en}}</ref> (magnesium is a component of [[chlorophyll]]<ref>{{cite journal |last1=Ishfaq |first1=Muhammad |last2=Wang |first2=Yongqi |last3=Yan |first3=Minwen |last4=Wang |first4=Zheng |last5=Wu |first5=Liangquan |last6=Li |first6=Chunjian |last7=Li |first7=Xuexian |title=Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China |journal=Frontiers in Plant Science |date=25 April 2022 |volume=13 |doi=10.3389/fpls.2022.802274 |doi-access=free |pmid=35548291 |pmc=9085447 }}</ref>), and [[culture medium|microbe culture media]].<ref>{{cite journal |last1=Christensen |first1=David G. |last2=Orr |first2=James S. |last3=Rao |first3=Christopher V. |last4=Wolfe |first4=Alan J. |title=Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media |journal=Applied and Environmental Microbiology |date=15 March 2017 |volume=83 |issue=6 |doi=10.1128/AEM.03034-16 |pmid=28062462 |pmc=5335519 |bibcode=2017ApEnM..83E3034C }}</ref> |
|||
Water should not be used to extinguish magnesium fires, because it can produce hydrogen which will feed the fire, according to the reaction:<ref>{{cite web| url=http://www.webelements.com/webelements/elements/text/Mg/chem.html| title=Chemistry : Periodic Table : magnesium : chemical reaction data| accessdate=2006-06-26| publisher=webelements.com}}</ref> |
|||
:Mg <sub>(s)</sub> + 2 H<sub>2</sub>O <sub>(g)</sub> → Mg(OH)<sub>2</sub> <sub>(s)</sub> + H<sub>2</sub> <sub>(g)</sub> |
|||
:or in words: |
|||
:Magnesium <sub>(solid)</sub> + steam → Magnesium hydroxide <sub>(solid)</sub> + Hydrogen <sub>(gas)</sub> |
|||
[[Magnesium sulfite]] is used in the manufacture of [[paper]] ([[sulfite process]]).<ref>{{Cite web |title=Magnesium sulfite - Hazardous Agents {{!}} Haz-Map |url=https://haz-map.com/Agents/20720 |access-date=2024-05-04 |website=haz-map.com}}</ref> |
|||
Carbon dioxide [[fire extinguisher]]s should not be used, because magnesium can burn in carbon dioxide (forming [[magnesium oxide]], MgO, and [[carbon]]).<ref>{{cite web| url=http://www.ilpi.com/genchem/demo/co2mg/| title=Demo Lab: Reaction Of Magnesium Metal With Carbon Dioxide| accessdate=2006-06-26}}</ref> A [[Class D Fire Extinguisher|Class D]] dry chemical fire extinguisher should be used, or the fire can be covered with [[sand]] or magnesium foundry flux. An easy way to extinguish small metal fires is to place a polyethylene bag filled with dry sand atop the fire. The heat of the fire will melt the bag, releasing the sand onto the fire. |
|||
[[Magnesium phosphate]] is used to fireproof wood used in construction.<ref>{{cite journal |last1=Yan |first1=Long |last2=Xu |first2=Zhisheng |last3=Liu |first3=Dingli |title=Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates |journal=Progress in Organic Coatings |date=April 2019 |volume=129 |pages=327–337 |doi=10.1016/j.porgcoat.2019.01.013 }}</ref> |
|||
Magnesium hexafluorosilicate is used for moth-proofing [[textile]]s.<ref>{{Cite web |title=NCATS Inxight Drugs — MAGNESIUM HEXAFLUOROSILICATE |url=https://drugs.ncats.io/substance/H37V80D2JS |access-date=2024-05-04 |website=drugs.ncats.io |language=en}}</ref> |
|||
== Biological roles == |
|||
{{Main|Magnesium in biology|Magnesium (medical use)}} |
|||
===Mechanism of action=== |
|||
The important interaction between [[phosphate]] and magnesium ions makes magnesium essential to the basic [[nucleic acid]] chemistry of all cells of all known living organisms. More than 300 [[enzyme]]s require magnesium ions for their catalytic action, including all enzymes using or synthesizing [[Adenosine triphosphate|ATP]] and those that use other [[nucleotides]] to synthesize [[DNA]] and [[RNA]]. The ATP molecule is normally found in a [[Chelation|chelate]] with a magnesium ion.<ref> |
|||
{{cite book |
|||
| first1=Andrea, M.P. |
|||
| last1=Romani |
|||
| chapter=Magnesium in Health and Disease |
|||
|editor=Astrid Sigel |
|||
|editor2=Helmut Sigel |
|||
|editor3=Roland K. O. Sigel |
|||
|title=Interrelations between Essential Metal Ions and Human Diseases |
|||
|series=Metal Ions in Life Sciences |
|||
|volume=13 |
|||
|date=2013 |
|||
|publisher=Springer |
|||
|pages=49–79 |
|||
|doi=10.1007/978-94-007-7500-8_3 |
|||
| pmid=24470089 |
|||
| isbn=978-94-007-7499-5 |
|||
}} |
|||
</ref> |
|||
=== Nutrition === |
|||
====Diet==== |
|||
[[File:FoodSourcesOfMagnesium.jpg|thumb|alt=refer to caption; follow link for complete description|Examples of food sources of magnesium (clockwise from top left): [[bran]] [[muffin]]s, [[pumpkin seed]]s, [[barley]], [[buckwheat flour]], low-fat vanilla [[yogurt]], [[trail mix]], [[halibut]] steaks, [[garbanzo bean]]s, [[lima bean]]s, [[soybean]]s, and [[spinach]]]] Spices, nuts, [[cereals]], [[cocoa solids|cocoa]] and vegetables are good sources of magnesium.<ref name="nih">{{cite web|url = http://ods.od.nih.gov/factsheets/magnesium/|title = Dietary Supplement Fact Sheet: Magnesium| publisher = Office of Dietary Supplements, US National Institutes of Health|date=11 February 2016|access-date=13 October 2016}}</ref> Green leafy vegetables such as [[spinach]] are also rich in magnesium.<ref name="mlp">{{cite web | url=https://medlineplus.gov/ency/article/002423.htm | title=Magnesium in diet | publisher=MedlinePlus, U.S. National Library of Medicine, National Institutes of Health | date=2 February 2016 | access-date=13 October 2016}}</ref> |
|||
====Dietary recommendations ==== |
|||
In the [[United Kingdom|UK]], the [[Dietary Reference Intake|recommended daily values]] for magnesium are 300 mg for men and 270 mg for women.<ref>{{cite web |url=http://www.nhs.uk/Conditions/vitamins-minerals/Pages/Other-vitamins-minerals.aspx |title=Vitamins and minerals – Others – NHS Choices |publisher=Nhs.uk |date=26 November 2012 |access-date=19 September 2013 |archive-date=7 April 2011 |archive-url=https://web.archive.org/web/20110407015806/http://www.nhs.uk/Conditions/vitamins-minerals/Pages/Other-vitamins-minerals.aspx |url-status=dead }}</ref> In the U.S. the [[Recommended Dietary Allowances]] (RDAs) are 400 mg for men ages 19–30 and 420 mg for older; for women 310 mg for ages 19–30 and 320 mg for older.<ref>{{cite book |chapter-url=https://www.ncbi.nlm.nih.gov/books/NBK109816/ |chapter=6, Magnesium |pages=190–249 |title=Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride |publisher=National Academy Press |year=1997}}</ref> |
|||
====Supplementation==== |
|||
Numerous [[Magnesium (pharmaceutical preparation)|pharmaceutical preparations of magnesium]] and [[dietary supplement]]s are available. In two human trials magnesium oxide, one of the most common forms in magnesium dietary supplements because of its high magnesium content per weight, was less bioavailable than [[magnesium citrate]], chloride, lactate or aspartate.<ref name="Firoz2001">{{cite journal |author=Firoz M|author2=Graber M |title=Bioavailability of US commercial magnesium preparations |journal=Magnes Res |volume=14 |issue=4 |pages=257–262 |date=2001 |pmid=11794633}}</ref><ref name="Lindberg1990">{{cite journal |author=Lindberg JS|author2=Zobitz MM|author3=Poindexter JR|author4=Pak CY |title=Magnesium bioavailability from magnesium citrate and magnesium oxide |journal=J Am Coll Nutr |volume=9 |issue=1 |pages=48–55 |date=1990|pmid=2407766 |doi=10.1080/07315724.1990.10720349}}</ref> |
|||
===Metabolism=== |
|||
An adult body has 22–26 grams of magnesium,<ref name="nih" /><ref>{{cite journal | pmid = 10727669 | volume=294 | title=Magnesium. An update on physiological, clinical and analytical aspects | date=April 2000 | pages=1–26 |issue=1–2 |vauthors=Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A |journal=Clin Chim Acta| doi=10.1016/S0009-8981(99)00258-2 }}</ref> with 60% in the [[skeleton]], 39% intracellular (20% in skeletal muscle), and 1% extracellular.<ref name="nih" /> Serum levels are typically 0.7–1.0 mmol/L or 1.8–2.4 [[Equivalent (chemistry)|mEq]]/L. Serum magnesium levels may be normal even when intracellular magnesium is deficient. The mechanisms for maintaining the magnesium level in the serum are varying [[Gastrointestinal tract|gastrointestinal]] absorption and [[renal]] excretion. Intracellular magnesium is correlated with intracellular [[potassium]]. Increased magnesium lowers [[calcium]]<ref name="ummedu">{{cite web|url=http://umm.edu/health/medical/altmed/supplement/magnesium|archive-url=https://web.archive.org/web/20170216071418/http://umm.edu/health/medical/altmed/supplement/magnesium|url-status=dead|archive-date=16 February 2017|title=Magnesium |publisher= University of Maryland Medical Center |website=Umm.edu |date=7 May 2013 |access-date=19 September 2013}}</ref> and can either prevent hypercalcemia or cause hypocalcemia depending on the initial level.<ref name="ummedu" /> Both low and high protein intake conditions inhibit magnesium absorption, as does the amount of [[phosphate]], [[phytate]], and [[fat]] in the gut. Unabsorbed dietary magnesium is excreted in feces; absorbed magnesium is excreted in urine and sweat.<ref name="Wester1987">{{cite journal |author=Wester PO |title=Magnesium |journal=Am. J. Clin. Nutr. |volume=45 |issue=5 Suppl |pages=1305–1312 |date=1987 |pmid=3578120|doi=10.1093/ajcn/45.5.1305 }}</ref> |
|||
=== Detection in serum and plasma === |
|||
Magnesium status may be assessed by measuring serum and erythrocyte magnesium concentrations coupled with [[Urinary system|urinary]] and [[Feces|fecal]] magnesium content, but intravenous magnesium loading tests are more accurate and practical.<ref>{{cite journal |author=Arnaud MJ |title=Update on the assessment of magnesium status |journal=Br. J. Nutr. |volume=99 |pages=S24–S36 |date=2008|issue=Suppl 3 |pmid=18598586 |doi=10.1017/S000711450800682X |doi-access=free }}</ref> A retention of 20% or more of the injected amount indicates deficiency.<ref>{{cite journal |display-authors=6|author=Rob PM|author2=Dick K|author3=Bley N|author4=Seyfert T|author5=Brinckmann C|author6=Höllriegel V|author7=Friedrich HJ|author8=Dibbelt L|author9=Seelig MS|title=Can one really measure magnesium deficiency using the short-term magnesium loading test? |journal=J. Intern. Med. |volume=246 |issue=4 |pages=373–378 |date=1999 |pmid=10583708 |doi= 10.1046/j.1365-2796.1999.00580.x |s2cid=6734801|doi-access=free}}</ref> As of 2004, no [[biomarker]] has been established for magnesium.<ref>{{cite journal |author=Franz KB |title=A functional biological marker is needed for diagnosing magnesium deficiency |journal=J Am Coll Nutr |volume=23 |issue=6 |pages=738S–741S |date=2004|pmid=15637224 |doi=10.1080/07315724.2004.10719418|s2cid=37427458 }}</ref> |
|||
Magnesium concentrations in plasma or serum may be monitored for efficacy and safety in those receiving the drug [[Therapy|therapeutically]], to confirm the diagnosis in potential [[poison]]ing victims, or to assist in the [[Forensic science|forensic]] investigation in a case of fatal overdose. The newborn children of mothers who received [[Parenteral nutrition|parenteral]] magnesium sulfate during labor may exhibit toxicity with normal serum magnesium levels.<ref>{{cite book |author=Baselt, R. |title=Disposition of Toxic Drugs and Chemicals in Man |publisher=Biomedical Publications |edition=8th |year=2008 |isbn=978-0962652370 |pages=875–877 }}</ref> |
|||
===Deficiency=== |
|||
Low plasma magnesium ([[hypomagnesemia]]) is common: it is found in 2.5–15% of the general population.<ref name="Ayuk">{{cite journal |author1=Ayuk J. |author2=Gittoes N.J. | date = Mar 2014 | title = Contemporary view of the clinical relevance of magnesium homeostasis | journal = Annals of Clinical Biochemistry | volume = 51 | issue = 2| pages = 179–188 | doi = 10.1177/0004563213517628 |pmid=24402002 |s2cid=21441840 | doi-access = free }}</ref> From 2005 to 2006, 48 percent of the [[United States]] population consumed less magnesium than recommended in the [[Dietary Reference Intake]].<ref>{{cite journal |last1=Rosanoff |first1=Andrea |last2=Weaver |first2=Connie M |last3=Rude |first3=Robert K |title=Suboptimal magnesium status in the United States: are the health consequences underestimated? |journal=Nutrition Reviews |date=March 2012 |volume=70 |issue=3 |pages=153–164 |doi=10.1111/j.1753-4887.2011.00465.x |pmid=22364157 |url=http://www.nutritionalmagnesium.org/images/stories/pdf/Suboptimalmagnesium.pdf}}</ref> Other causes are increased renal or gastrointestinal loss, an increased intracellular shift, and proton-pump inhibitor antacid therapy. Most are asymptomatic, but symptoms referable to [[Neuromuscular medicine|neuromuscular]], [[Circulatory system|cardiovascular]], and metabolic dysfunction may occur.<ref name="Ayuk" /> [[Alcoholism]] is often associated with magnesium deficiency. Chronically low serum magnesium levels are associated with [[metabolic syndrome]], [[diabetes mellitus type 2]], [[fasciculation]], and hypertension.<ref name="Geiger2012">{{cite journal |author= Geiger H|author2= Wanner C |title= Magnesium in disease |journal= Clin Kidney J |volume=5 |issue= Suppl 1 |pages= i25–i38 |date=2012|doi= 10.1093/ndtplus/sfr165|pmid= 26069818 |pmc= 4455821 }}</ref> |
|||
===Therapy=== |
|||
* Intravenous magnesium is recommended by the ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death for patients with ventricular [[Heart arrhythmia|arrhythmia]] associated with [[torsades de pointes]] who present with [[long QT syndrome]]; and for the treatment of patients with digoxin induced arrhythmias.<ref name="Zipes2006">{{cite journal |author= Zipes DP|author2= Camm AJ|author3= Borggrefe M|display-authors= etal |title= ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society |journal= Circulation |volume=114 |pages= e385–e484|date=2012 |doi= 10.1161/CIRCULATIONAHA.106.178233 |issue= 10 |pmid=16935995|doi-access= free }}</ref> |
|||
* Intravenous magnesium sulfate is used for the management of [[pre-eclampsia]] and [[eclampsia]].<ref name="James2010">{{cite journal |author= James MF |title= Magnesium in obstetrics |journal= Best Pract Res Clin Obstet Gynaecol |volume=24 |pages=327–337|date=2010 |doi=10.1016/j.bpobgyn.2009.11.004 |pmid= 20005782 |issue= 3}}</ref><ref name="Euser2009">{{Cite journal | last1 = Euser | first1 = A. G. | last2 = Cipolla | first2 = M. J. | doi = 10.1161/STROKEAHA.108.527788 | title = Magnesium Sulfate for the Treatment of Eclampsia: A Brief Review | journal = Stroke | volume = 40 | issue = 4 | pages = 1169–1175 | year = 2009 | pmid = 19211496| pmc =2663594 }}</ref> |
|||
* Hypomagnesemia, including that caused by alcoholism, is reversible by oral or parenteral magnesium administration depending on the degree of deficiency.<ref>{{cite book|author=Giannini, A. J.|title=Drugs of Abuse|edition=Second|location=Los Angeles|publisher=Physicians Management Information Co.|date=1997|isbn=978-0874894998}}</ref> |
|||
* There is limited evidence that magnesium supplementation may play a role in the prevention and treatment of [[migraine]].<ref name="migraine">{{cite journal |vauthors=Teigen L, Boes CJ |title=An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine |journal=Cephalalgia |volume= 35|issue= 10|pages= 912–922|year=2014 |pmid=25533715 |doi=10.1177/0333102414564891 |s2cid=25398410 |type=Review |quote=There is a strong body of evidence demonstrating a relationship between magnesium status and migraine. Magnesium likely plays a role in migraine development at a biochemical level, but the role of oral magnesium supplementation in migraine prophylaxis and treatment remains to be fully elucidated. The strength of evidence supporting oral magnesium supplementation is limited at this time. }}</ref> |
|||
Sorted by type of magnesium salt, other therapeutic applications include: |
|||
* [[Magnesium sulfate]], as the [[hydrate|heptahydrate]] called Epsom salts, is used as [[bath salts]], a [[laxative]], and a highly soluble [[fertilizer]].<ref>{{cite book | url = https://books.google.com/books?id=GP1caeWDUWkC&pg=PA224 | page=224 | title = The Fertilizer Encyclopedia | isbn = 978-0470431764 | last1 = Gowariker | first1 = Vasant | last2 = Krishnamurthy |first2=V. P. |first3=Sudha |last3=Gowariker |first4=Manik |last4=Dhanorkar |first5=Kalyani |last5=Paranjape | date = 8 April 2009| publisher=John Wiley & Sons }}</ref> |
|||
* [[Magnesium hydroxide]], suspended in water, is used in [[milk of magnesia]] [[antacid]]s and [[laxative]]s. |
|||
* [[Magnesium chloride]], [[magnesium oxide|oxide]], [[magnesium gluconate|gluconate]], [[magnesium malate|malate]], [[magnesium orotate|orotate]], [[Magnesium glycinate|glycinate]], [[magnesium ascorbate|ascorbate]] and [[magnesium citrate|citrate]] are all used as oral magnesium supplements. |
|||
* [[Borate|Magnesium borate]], [[magnesium salicylate]], and [[magnesium sulfate]] are used as [[antiseptic]]s. |
|||
* [[Magnesium bromide]] is used as a mild [[sedative]] (this action is due to the [[bromide]], not the magnesium). |
|||
* [[Magnesium stearate]] is a slightly [[fire|flammable]] white [[Powder (substance)|powder]] with [[lubricant|lubricating]] properties. In [[pharmacology|pharmaceutical]] technology, it is used in pharmacological manufacture to prevent [[Tablet (pharmacy)|tablets]] from sticking to the equipment while compressing the ingredients into tablet form. |
|||
* Magnesium carbonate powder is used by athletes such as [[gymnastics|gymnasts]], [[Olympic weightlifting|weightlifters]], and [[climbing|climbers]] to eliminate palm sweat, prevent sticking, and improve the grip on gymnastic apparatus, lifting bars, and climbing rocks. |
|||
===Overdose=== |
|||
Overdose from dietary sources alone is unlikely because excess magnesium in the blood is promptly filtered by the [[kidney]]s,<ref name="Ayuk" /> and overdose is more likely in the presence of impaired renal function. Overdose is not unlikely in case of excessive intake of supplements. Indeed, [[Megavitamin therapy|megadose therapy]] has caused death in a young child,<ref>{{cite journal |last1=McGuire |first1=John K. |last2=Kulkarni |first2=Mona Shah |last3=Baden |first3=Harris P. |title=Fatal Hypermagnesemia in a Child Treated with Megavitamin/Megamineral Therapy |journal=Pediatrics |date=1 February 2000 |volume=105 |issue=2 |pages=e18 |doi=10.1542/peds.105.2.e18 |pmid=10654978 }}</ref> and severe [[hypermagnesemia]] in a woman<ref name="Kontani M, Hara A, Ohta S, Ikeda T 2005 448–452">{{cite journal |author=Kontani M|author2=Hara A|author3=Ohta S|author4= Ikeda T |title=Hypermagnesemia induced by massive cathartic ingestion in an elderly woman without pre-existing renal dysfunction |journal=Intern. Med. |volume=44 |issue=5 |pages=448–452 |date=2005 |pmid=15942092| doi = 10.2169/internalmedicine.44.448|doi-access=free |hdl=2297/16751 |hdl-access=free }}</ref> and a young girl<ref>{{cite journal|last1=Kutsal|first1=Ebru|last2=Aydemir|first2=Cumhur|last3=Eldes|first3=Nilufer|last4=Demirel|first4=Fatma|last5=Polat|first5=Recep|last6=Taspınar|first6=Ozan|last7=Kulah|first7=Eyup|title=Severe Hypermagnesemia as a Result of Excessive Cathartic Ingestion in a Child Without Renal Failure|journal=Pediatrics|date=February 2000|volume=205|issue=2|pages=570–572|doi=10.1097/PEC.0b013e31812eef1c|pmid=17726419}}</ref> who had healthy kidneys. The most common symptoms of overdose are [[nausea]], [[vomiting]], and [[diarrhea]]; other symptoms include [[hypotension]], confusion, slowed heart and [[Respiratory system|respiratory]] rates, deficiencies of other minerals, [[coma]], [[Cardiac arrhythmia/bradycardia|cardiac arrhythmia]], and death from [[cardiac arrest]].<ref name="ummedu" /> |
|||
===Function in plants=== |
|||
[[Plants]] require magnesium to synthesize [[chlorophyll]], essential for [[photosynthesis]].<ref>{{Cite web |title=Magnesium |url=https://www.tfi.org/sites/default/files/tfi-magnesium.pdf |access-date=14 July 2023 |publisher=The Fertilizer Institute |archive-date=18 March 2023 |archive-url=https://web.archive.org/web/20230318010641/https://www.tfi.org/sites/default/files/tfi-magnesium.pdf |url-status=dead }}</ref> Magnesium in the center of the [[porphyrin ring]] in chlorophyll functions in a manner similar to the iron in the center of the porphyrin ring in [[heme]]. [[Magnesium deficiency (plants)|Magnesium deficiency]] in plants causes late-season yellowing between leaf veins,<ref>{{Cite web |date=2023-06-12 |title=What Is the Connection between Chlorophyll and Magnesium? |url=http://www.allthingsnature.org/what-is-the-connection-between-chlorophyll-and-magnesium.htm |access-date=2023-07-14 |website=All Things Nature |language=en-US}}</ref> especially in older leaves, and can be corrected by either applying [[epsom salts]] (which is rapidly [[Leaching (chemical science)|leached]]), or crushed [[Dolomite (mineral)|dolomitic]] [[limestone]], to the soil. |
|||
==Safety precautions== |
|||
{{Chembox |
|||
| container_only = yes |
|||
| Name = |
|||
| ImageFile = |
|||
| OtherNames = |
|||
| IUPACName = |
|||
| SystematicName = |
|||
| Section1 = |
|||
| Section2 = |
|||
| Section3 = |
|||
| Section4 = |
|||
| Section5 = |
|||
| Section6 = |
|||
| Section7 = {{Chembox Hazards |
|||
| ExternalSDS = |
|||
| GHSPictograms = {{GHS02}} |
|||
| GHSSignalWord = Danger |
|||
| HPhrases = {{H-phrases|228|251|261|}} |
|||
| PPhrases = {{P-phrases|210|231|235|410|422}}<ref>{{cite web | title=Magnesium rod, diam. 6mm, 99.9+ trace metals 7439-95-4 | website=MilliporeSigma | url=https://www.sigmaaldrich.com/US/en/product/aldrich/299405}}</ref> |
|||
| NFPA-H = 0 |
|||
| NFPA-F = 1 |
|||
| NFPA-R = 1 |
|||
| NFPA-S = |
|||
| NFPA_ref = <ref>{{cite web |url=https://cameochemicals.noaa.gov/chemical/6949 |title=MAGNESIUM |publisher=[[National Oceanic and Atmospheric Administration]] |website=CAMEO Chemicals}}</ref> |
|||
}} |
|||
}} |
|||
[[File:Burning Magnesium Block!.ogv|thumb|right|Magnesium block heated with [[blow torch|blowtorch]] to self-combustion, emitting intense white light]] |
|||
Magnesium metal and its alloys can be explosive hazards; they are highly flammable in their pure form when molten or in powder or ribbon form. Burning or molten magnesium reacts violently with water. When working with powdered magnesium, [[safety glasses]] with [[eye protection]] and UV filters (such as welders use) are employed because burning magnesium produces [[ultraviolet]] light that can permanently damage the [[retina]] of a human eye.<ref>{{cite web |url=http://www.edu.gov.mb.ca/k12/docs/support/scisafe/chapter8.html |title=Science Safety: Chapter 8 |publisher=Government of Manitoba |access-date=21 August 2007}}</ref> |
|||
Magnesium is capable of reducing [[water (molecule)|water]] and releasing highly flammable [[hydrogen]] gas:<ref>{{cite web| url=http://www.webelements.com/webelements/elements/text/Mg/chem.html| title=Chemistry : Periodic Table : magnesium : chemical reaction data| access-date=26 June 2006| publisher=webelements.com}}</ref> |
|||
:Mg(s) + 2 {{chem|H|2|O}}(l) → [[Magnesium hydroxide|{{chem|Mg(OH)|2}}]](s) + {{chem|H|2}}(g) |
|||
Therefore, water cannot extinguish magnesium fires. The hydrogen gas produced intensifies the fire. Dry sand is an effective smothering agent, but only on relatively level and flat surfaces. |
|||
Magnesium reacts with [[carbon dioxide]] exothermically to form [[magnesium oxide]] and [[carbon]]:<ref name=CO2>{{multiref|{{cite web |url=http://chemed.chem.purdue.edu/demos/main_pages/9.8.html |title=The Reaction Between Magnesium and CO<sub>2</sub>|publisher=Purdue University|access-date=2016-06-15}}|{{cite video|first1=David|last1=Whisnant|first2=David|last2=Phillips|first3=Kelly|last3=Houston Jetzer|orig-date=6 Mar 2012|year=2022|title=Reaction of magnesium with carbon dioxide|url=https://www.chemedx.org/video/reaction-magnesium-carbon-dioxide|type=web video|publisher=American Chemical Society, Division of Chemical Education|via=ChemEdX}}}}</ref> |
|||
:2 Mg(s) + {{chem|CO|2}}(g) → 2 MgO(s) + C(s) |
|||
Hence, carbon dioxide fuels rather than extinguishes magnesium fires. |
|||
Burning magnesium can be quenched by using a [[Fire extinguisher#Class D dry powder and other agents for metal fires|Class D]] dry chemical fire extinguisher, or by covering the fire with [[sand]] or magnesium foundry flux to remove its air source.<ref>{{cite book |last=Cote |first=Arthur E. |date=2003 |title=Operation of Fire Protection Systems |publisher= Jones & Bartlett Learning |page=667 |isbn= 978-0877655848}}</ref> |
|||
== See also == |
== See also == |
||
* [[List of countries by magnesium production]] |
|||
* [[:Category:Magnesium minerals|Magnesium minerals]] |
|||
* [[ |
* [[Magnesium oil]] |
||
==Notes== |
|||
{{Notelist}} |
|||
== References == |
== References == |
||
{{ |
{{Reflist}} |
||
==Cited sources== |
|||
*{{RubberBible99th}} |
|||
== External links == |
== External links == |
||
* [http://www.periodicvideos.com/videos/012.htm Magnesium] at ''[[The Periodic Table of Videos]]'' (University of Nottingham) |
|||
{{Commons|Magnesium}} |
|||
* [http://www.rsc.org/chemistryworld/podcast/element.asp Chemistry in its element podcast] (MP3) from the [[Royal Society of Chemistry]]'s [[Chemistry World]]: [http://www.rsc.org/images/CIIE_Magnesium_48kbps_tcm18-128524.mp3 Magnesium] |
|||
{{wiktionary|magnesium}} |
|||
* {{cite journal |title=Magnesium -- a versatile and often overlooked element: New perspectives with a focus on chronic kidney disease |journal=Clinical Kidney Journal |date=February 2012 |volume=5 |issue=Suppl 1 |pages=NP |doi=10.1093/ndtplus/sfs035 |pmid=26069823 |pmc=4455823 }} |
|||
*[http://www.webelements.com/magnesium/ WebElements.com – Magnesium] |
|||
*[http://www.magnesium.com Online Resource for industry professionals] - Magnesium.com |
|||
{{Subject bar |
|||
*[http://www.mgwater.com/index.shtml The Magnesium Website] – Includes full text papers and textbook chapters by leading magnesium authorities Mildred Seelig, Jean Durlach, Burton M. Altura and Bella T. Altura. Links to over 300 articles discussing magnesium and magnesium deficiency. |
|||
|portal=Chemistry |
|||
*[http://www.mg12.info Magnesium in Health] - Mg12.info |
|||
|book1=Magnesium |
|||
{{clear}} |
|||
|book2=Period 3 elements |
|||
{{Compact periodic table}} |
|||
|book3=Alkaline earth metals |
|||
|book4=Chemical elements (sorted alphabetically) |
|||
|book5=Chemical elements (sorted by number) |
|||
|commons=y |
|||
|wikt=y |
|||
|wikt-search=magnesium |
|||
|v=y |
|||
|v-search=Magnesium atom |
|||
|b=y |
|||
|b-search=Wikijunior:The Elements/Magnesium |
|||
}} |
|||
{{Periodic table (navbox)}} |
|||
{{Magnesium compounds}} |
|||
{{alkaline earth metals}} |
|||
{{Ionotropic glutamate receptor modulators}} |
|||
{{Authority control}} |
|||
[[Category:Magnesium| ]] |
|||
[[Category:Chemical elements]] |
[[Category:Chemical elements]] |
||
[[Category:Alkaline earth metals]] |
[[Category:Alkaline earth metals]] |
||
Line 130: | Line 389: | ||
[[Category:Food additives]] |
[[Category:Food additives]] |
||
[[Category:Pyrotechnic fuels]] |
[[Category:Pyrotechnic fuels]] |
||
[[Category: |
[[Category:Reducing agents]] |
||
[[Category:Chemical elements with hexagonal close-packed structure]] |
|||
[[Category:Desiccants]] |
|||
[[af:Magnesium]] |
|||
[[ar:مغنسيوم]] |
|||
[[ast:Magnesiu]] |
|||
[[az:Maqnezium]] |
|||
[[bn:ম্যাগনেসিয়াম]] |
|||
[[be:Магній]] |
|||
[[bs:Magnezijum]] |
|||
[[bg:Магнезий]] |
|||
[[ca:Magnesi]] |
|||
[[ceb:Magnesium]] |
|||
[[cs:Hořčík]] |
|||
[[co:Magnesiu]] |
|||
[[cy:Magnesiwm]] |
|||
[[da:Magnesium]] |
|||
[[de:Magnesium]] |
|||
[[dv:މެގްނީޒިއަމް]] |
|||
[[et:Magneesium]] |
|||
[[el:Μαγνήσιο]] |
|||
[[es:Magnesio]] |
|||
[[eo:Magnezio]] |
|||
[[eu:Magnesio]] |
|||
[[fa:منیزیم]] |
|||
[[fr:Magnésium]] |
|||
[[fur:Magnesi]] |
|||
[[gv:Magnaishum]] |
|||
[[gl:Magnesio]] |
|||
[[ko:마그네슘]] |
|||
[[haw:Makanekiuma]] |
|||
[[hy:Մագնիում]] |
|||
[[hi:मैग्नेशियम]] |
|||
[[hr:Magnezij]] |
|||
[[io:Magnezio]] |
|||
[[id:Magnesium]] |
|||
[[is:Magnesín]] |
|||
[[it:Magnesio]] |
|||
[[he:מגנזיום]] |
|||
[[jv:Magnesium]] |
|||
[[kn:ಮ್ಯಗ್ನೀಶಿಯಮ್]] |
|||
[[ka:მაგნიუმი]] |
|||
[[sw:Magnesi]] |
|||
[[ht:Manyezyòm]] |
|||
[[ku:Magnezyûm]] |
|||
[[la:Magnesium]] |
|||
[[lv:Magnijs]] |
|||
[[lb:Magnesium]] |
|||
[[lt:Magnis]] |
|||
[[jbo:lidgusyjinme]] |
|||
[[hu:Magnézium]] |
|||
[[mk:Магнезиум]] |
|||
[[ml:മഗ്നീഷ്യം]] |
|||
[[mi:Konupora]] |
|||
[[ms:Magnesium]] |
|||
[[nl:Magnesium]] |
|||
[[ja:マグネシウム]] |
|||
[[no:Magnesium]] |
|||
[[nn:Magnesium]] |
|||
[[oc:Magnèsi]] |
|||
[[uz:Magniy]] |
|||
[[pa:ਮੈਗਨੇਸ਼ਿਅਮ]] |
|||
[[nds:Magnesium]] |
|||
[[pl:Magnez]] |
|||
[[pt:Magnésio]] |
|||
[[ro:Magneziu]] |
|||
[[qu:Qunta q'illay]] |
|||
[[ru:Магний]] |
|||
[[sq:Magneziumi]] |
|||
[[scn:Magnesiu]] |
|||
[[simple:Magnesium]] |
|||
[[sk:Horčík]] |
|||
[[sl:Magnezij]] |
|||
[[sr:Магнезијум]] |
|||
[[sh:Magnezij]] |
|||
[[fi:Magnesium]] |
|||
[[sv:Magnesium]] |
|||
[[ta:மக்னீசியம்]] |
|||
[[th:แมกนีเซียม]] |
|||
[[vi:Magiê]] |
|||
[[tg:Магний]] |
|||
[[tr:Magnezyum]] |
|||
[[uk:Магній]] |
|||
[[zh-yue:鎂]] |
|||
[[zh:镁]] |
Latest revision as of 19:36, 3 January 2025
Magnesium | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /mæɡˈniːziəm/ | |||||||||||||||||||||||||
Appearance | shiny grey solid | |||||||||||||||||||||||||
Standard atomic weight Ar°(Mg) | ||||||||||||||||||||||||||
Magnesium in the periodic table | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Atomic number (Z) | 12 | |||||||||||||||||||||||||
Group | group 2 (alkaline earth metals) | |||||||||||||||||||||||||
Period | period 3 | |||||||||||||||||||||||||
Block | s-block | |||||||||||||||||||||||||
Electron configuration | [Ne] 3s2 | |||||||||||||||||||||||||
Electrons per shell | 2, 8, 2 | |||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||
Phase at STP | solid | |||||||||||||||||||||||||
Melting point | 923 K (650 °C, 1202 °F) | |||||||||||||||||||||||||
Boiling point | 1363 K (1091 °C, 1994 °F) | |||||||||||||||||||||||||
Density (at 20° C) | 1.737 g/cm3[3] | |||||||||||||||||||||||||
when liquid (at m.p.) | 1.584 g/cm3 | |||||||||||||||||||||||||
Heat of fusion | 8.48 kJ/mol | |||||||||||||||||||||||||
Heat of vaporization | 128 kJ/mol | |||||||||||||||||||||||||
Molar heat capacity | 24.869[4] J/(mol·K) | |||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||
Oxidation states | common: +2 0,[5] +1[6] | |||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.31 | |||||||||||||||||||||||||
Ionization energies |
| |||||||||||||||||||||||||
Atomic radius | empirical: 160 pm | |||||||||||||||||||||||||
Covalent radius | 141±7 pm | |||||||||||||||||||||||||
Van der Waals radius | 173 pm | |||||||||||||||||||||||||
Spectral lines of magnesium | ||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||
Natural occurrence | primordial | |||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp) (hP2) | |||||||||||||||||||||||||
Lattice constants | a = 320.91 pm c = 521.03 pm (at 20 °C)[3] | |||||||||||||||||||||||||
Thermal expansion | 25.91×10−6/K (at 20 °C)[3][a] | |||||||||||||||||||||||||
Thermal conductivity | 156[7] W/(m⋅K) | |||||||||||||||||||||||||
Electrical resistivity | 43.9[8] nΩ⋅m (at 20 °C) | |||||||||||||||||||||||||
Magnetic ordering | paramagnetic | |||||||||||||||||||||||||
Molar magnetic susceptibility | +13.1×10−6 cm3/mol (298 K)[9] | |||||||||||||||||||||||||
Young's modulus | 45 GPa | |||||||||||||||||||||||||
Shear modulus | 17 GPa | |||||||||||||||||||||||||
Bulk modulus | 35.4[10] GPa | |||||||||||||||||||||||||
Speed of sound thin rod | 4940 m/s (at r.t.) (annealed) | |||||||||||||||||||||||||
Poisson ratio | 0.290 | |||||||||||||||||||||||||
Mohs hardness | 1–2.5 | |||||||||||||||||||||||||
Brinell hardness | 44–260 MPa | |||||||||||||||||||||||||
CAS Number | 7439-95-4 | |||||||||||||||||||||||||
History | ||||||||||||||||||||||||||
Naming | after Magnesia, Greece[11] | |||||||||||||||||||||||||
Discovery | Joseph Black (1755[11]) | |||||||||||||||||||||||||
First isolation | Humphry Davy (1808[11]) | |||||||||||||||||||||||||
Isotopes of magnesium | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Magnesium is a chemical element; it has symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic table) it occurs naturally only in combination with other elements and almost always has an oxidation state of +2. It reacts readily with air to form a thin passivation coating of magnesium oxide that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by electrolysis of magnesium salts obtained from brine. It is less dense than aluminium and is used primarily as a component in strong and lightweight alloys that contain aluminium.
In the cosmos, magnesium is produced in large, aging stars by the sequential addition of three helium nuclei to a carbon nucleus. When such stars explode as supernovas, much of the magnesium is expelled into the interstellar medium where it may recycle into new star systems. Magnesium is the eighth most abundant element in the Earth's crust[13] and the fourth most common element in the Earth (after iron, oxygen and silicon), making up 13% of the planet's mass and a large fraction of the planet's mantle. It is the third most abundant element dissolved in seawater, after sodium and chlorine.[14]
This element is the eleventh most abundant element by mass in the human body and is essential to all cells and some 300 enzymes.[15] Magnesium ions interact with polyphosphate compounds such as ATP, DNA, and RNA. Hundreds of enzymes require magnesium ions to function. Magnesium compounds are used medicinally as common laxatives and antacids (such as milk of magnesia), and to stabilize abnormal nerve excitation or blood vessel spasm in such conditions as eclampsia.[15]
Characteristics
Physical properties
Elemental magnesium is a gray-white lightweight metal, two-thirds the density of aluminium. Magnesium has the lowest melting (923 K (650 °C)) and the lowest boiling point (1,363 K (1,090 °C)) of all the alkaline earth metals.[16]
Pure polycrystalline magnesium is brittle and easily fractures along shear bands. It becomes much more malleable when alloyed with small amounts of other metals, such as 1% aluminium.[17] The malleability of polycrystalline magnesium can also be significantly improved by reducing its grain size to about 1 μm or less.[18]
When finely powdered, magnesium reacts with water to produce hydrogen gas:
- Mg(s) + 2 H2O(g) → Mg(OH)2(aq) + H2(g) + 1203.6 kJ/mol
However, this reaction is much less dramatic than the reactions of the alkali metals with water, because the magnesium hydroxide builds up on the surface of the magnesium metal and inhibits further reaction.[19]
Chemical properties
Oxidation
The principal property of magnesium metal is its reducing power. One hint is that it tarnishes slightly when exposed to air, although, unlike the heavier alkaline earth metals, an oxygen-free environment is unnecessary for storage because magnesium is protected by a thin layer of oxide that is fairly impermeable and difficult to remove.[20]
Direct reaction of magnesium with air or oxygen at ambient pressure forms only the "normal" oxide MgO. However, this oxide may be combined with hydrogen peroxide to form magnesium peroxide, MgO2, and at low temperature the peroxide may be further reacted with ozone to form magnesium superoxide Mg(O2)2.[21]
Magnesium reacts with nitrogen in the solid state if it is powdered and heated to just below the melting point, forming Magnesium nitride Mg3N2.[22]
Magnesium reacts with water at room temperature, though it reacts much more slowly than calcium, a similar group 2 metal.[20] When submerged in water, hydrogen bubbles form slowly on the surface of the metal; this reaction happens much more rapidly with powdered magnesium.[20] The reaction also occurs faster with higher temperatures (see § Safety precautions). Magnesium's reversible reaction with water can be harnessed to store energy and run a magnesium-based engine. Magnesium also reacts exothermically with most acids such as hydrochloric acid (HCl), producing magnesium chloride and hydrogen gas, similar to the HCl reaction with aluminium, zinc, and many other metals.[23] Although it is difficult to ignite in mass or bulk, magnesium metal will ignite.
Magnesium may also be used as an igniter for thermite, a mixture of aluminium and iron oxide powder that ignites only at a very high temperature.
Organic chemistry
Organomagnesium compounds are widespread in organic chemistry. They are commonly found as Grignard reagents, formed by reaction of magnesium with haloalkanes. Examples of Grignard reagents are phenylmagnesium bromide and ethylmagnesium bromide. The Grignard reagents function as a common nucleophile, attacking the electrophilic group such as the carbon atom that is present within the polar bond of a carbonyl group.
A prominent organomagnesium reagent beyond Grignard reagents is magnesium anthracene, which is used as a source of highly active magnesium. The related butadiene-magnesium adduct serves as a source for the butadiene dianion.
Complexes of dimagnesium(I) have been observed.[24]
Detection in solution
The presence of magnesium ions can be detected by the addition of ammonium chloride, ammonium hydroxide and monosodium phosphate to an aqueous or dilute HCl solution of the salt. The formation of a white precipitate indicates the presence of magnesium ions.
Azo violet dye can also be used, turning deep blue in the presence of an alkaline solution of magnesium salt. The color is due to the adsorption of azo violet by Mg(OH)2.
Forms
Alloys
As of 2013, magnesium alloys consumption was less than one million tonnes per year, compared with 50 million tonnes of aluminium alloys. Their use has been historically limited by the tendency of Mg alloys to corrode,[25] creep at high temperatures, and combust.[26]
Corrosion
In magnesium alloys, the presence of iron, nickel, copper, or cobalt strongly activates corrosion. In more than trace amounts, these metals precipitate as intermetallic compounds, and the precipitate locales function as active cathodic sites that reduce water, causing the loss of magnesium.[26] Controlling the quantity of these metals improves corrosion resistance. Sufficient manganese overcomes the corrosive effects of iron. This requires precise control over composition, increasing costs.[26] Adding a cathodic poison captures atomic hydrogen within the structure of a metal. This prevents the formation of free hydrogen gas, an essential factor of corrosive chemical processes. The addition of about one in three hundred parts arsenic reduces the corrosion rate of magnesium in a salt solution by a factor of nearly ten.[26][27]
High-temperature creep and flammability
Magnesium's tendency to creep (gradually deform) at high temperatures is greatly reduced by alloying with zinc and rare-earth elements.[28] Flammability is significantly reduced by a small amount of calcium in the alloy.[26] By using rare-earth elements, it may be possible to manufacture magnesium alloys that are able to not catch fire at higher temperatures compared to magnesium's liquidus and in some cases potentially pushing it close to magnesium's boiling point.[29]
Compounds
Magnesium forms a variety of compounds important to industry and biology, including magnesium carbonate, magnesium chloride, magnesium citrate, magnesium hydroxide (milk of magnesia), magnesium oxide, magnesium sulfate, and magnesium sulfate heptahydrate (Epsom salts).[30][31]
As recently as 2020, magnesium hydride was under investigation as a way to store hydrogen.[32][33]
Isotopes
Magnesium has three stable isotopes: 24
Mg, 25
Mg and 26
Mg. All are present in significant amounts in nature (see table of isotopes above). About 79% of Mg is 24
Mg. The isotope 28
Mg is radioactive and in the 1950s to 1970s was produced by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 hours) and its use was limited by shipping times.
The nuclide 26
Mg has found application in isotopic geology, similar to that of aluminium. 26
Mg is a radiogenic daughter product of 26
Al, which has a half-life of 717,000 years. Excessive quantities of stable 26
Mg have been observed in the Ca-Al-rich inclusions of some carbonaceous chondrite meteorites. This anomalous abundance is attributed to the decay of its parent 26
Al in the inclusions, and researchers conclude that such meteorites were formed in the solar nebula before the 26
Al had decayed. These are among the oldest objects in the Solar System and contain preserved information about its early history.
It is conventional to plot 26
Mg/24
Mg against an Al/Mg ratio. In an isochron dating plot, the Al/Mg ratio plotted is 27
Al/24
Mg. The slope of the isochron has no age significance, but indicates the initial 26
Al/27
Al ratio in the sample at the time when the systems were separated from a common reservoir.
Production
Occurrence
Magnesium is the eighth-most-abundant element in the Earth's crust by mass and tied in seventh place with iron in molarity.[13] It is found in large deposits of magnesite, dolomite, and other minerals, and in mineral waters, where magnesium ion is soluble.[34]
Although magnesium is found in more than 60 minerals, only dolomite, magnesite, brucite, carnallite, talc, and olivine are of commercial importance.[35]
The Mg2+
cation is the second-most-abundant cation in seawater (about 1⁄8 the mass of sodium ions in a given sample), which makes seawater and sea salt attractive commercial sources for Mg. To extract the magnesium, calcium hydroxide is added to the seawater to precipitate magnesium hydroxide.[36]
- MgCl
2 + Ca(OH)
2 → Mg(OH)
2 + CaCl
2
Magnesium hydroxide (brucite) is poorly soluble in water and can be collected by filtration. It reacts with hydrochloric acid to magnesium chloride.[37]
- Mg(OH)
2 + 2 HCl → MgCl
2 + 2 H
2O
From magnesium chloride, electrolysis produces magnesium.[38]
Production quantities
World production was approximately 1,100 kt in 2017, with the bulk being produced in China (930 kt) and Russia (60 kt).[39] The United States was in the 20th century the major world supplier of this metal, supplying 45% of world production even as recently as 1995. Since the Chinese mastery of the Pidgeon process the US market share is at 7%, with a single US producer left as of 2013: US Magnesium, a Renco Group company located on the shores of the Great Salt Lake.[40]
In September 2021, China took steps to reduce production of magnesium as a result of a government initiative to reduce energy availability for manufacturing industries, leading to a significant price increase.[41]
Pidgeon and Bolzano processes
The Pidgeon process and the Bolzano process are similar. In both, magnesium oxide is the precursor to magnesium metal. The magnesium oxide is produced as a solid solution with calcium oxide by calcining the mineral dolomite, which is a solid solution of calcium and magnesium carbonates:
- CaCO3·MgCO3 → MgO·CaO + 2 CO2
Reduction occurs at high temperatures with silicon. A ferrosilicon alloy is used rather than pure silicon as it is more economical. The iron component has no bearing on the reaction, having the simplified equation:[citation needed]
- MgO·CaO +Si → 2 Mg + Ca2SiO4
The calcium oxide combines with silicon as the oxygen scavenger, yielding the very stable calcium silicate. The Mg/Ca ratio of the precursors can be adjusted by the addition of MgO or CaO.[42]
The Pidgeon and the Bolzano process differ in the details of the heating and the configuration of the reactor. Both generate gaseous Mg that is condensed and collected. The Pidgeon process dominates the worldwide production.[43][44] The Pidgeon method is less technologically complex and because of distillation/vapour deposition conditions, a high purity product is easily achievable.[43] China is almost completely reliant on the silicothermic Pidgeon process.
Dow process
Besides the Pigeon process, the second most used process for magnesium production is electrolysis. This is a two step process. The first step is to prepare feedstock containing magnesium chloride and the second step is to dissociate the compound in electrolytic cells as magnesium metal and chlorine gas.[44] The basic reaction is as follows:
- MgCl2 → Mg(g) + Cl2(g)
The temperatures at which this reaction is operated is between 680 and 750 °C.[44]
The magnesium chloride can be obtained using the Dow process, a process that mixes sea water and dolomite in a flocculator or by dehydration of magnesium chloride brines. The electrolytic cells are partially submerged in a molten salt electrolyte to which the produced magnesium chloride is added in concentrations between 6–18%.[44] This process does have its share of disadvantages including production of harmful chlorine gas and the overall reaction being very energy intensive, creating environmental risks.[45] The Pidgeon process is more advantageous regarding its simplicity, shorter construction period, low power consumption and overall good magnesium quality compared to the electrolysis method.[20]
In the United States, magnesium was once obtained principally with the Dow process in Corpus Christi TX, by electrolysis of fused magnesium chloride from brine and sea water. A saline solution containing Mg2+
ions is first treated with lime (calcium oxide) and the precipitated magnesium hydroxide is collected:
- Mg2+
(aq) + CaO(s) + H
2O(l) → Ca2+
(aq) + Mg(OH)
2(s)
The hydroxide is then converted to magnesium chloride by treatment with hydrochloric acid and heating of the product to eliminate water:
- Mg(OH)2 + 2 HCl → MgCl2 + 2 H2O
The salt is then electrolyzed in the molten state. At the cathode, the Mg2+
ion is reduced by two electrons to magnesium metal:
- Mg2+
+ 2
e−
→ Mg
At the anode, each pair of Cl−
ions is oxidized to chlorine gas, releasing two electrons to complete the circuit:
- 2Cl−
→ Cl
2(g) + 2
e−
Carbothermic process
The carbothermic route to magnesium has been recognized as a low energy, yet high productivity path to magnesium extraction. The chemistry is as follows:
C + MgO → CO + Mg
A disadvantage of this method is that slow cooling the vapour can cause the reaction to quickly revert. To prevent this from happening, the magnesium can be dissolved directly in a suitable metal solvent before reversion starts happening. Rapid quenching of the vapour can also be performed to prevent reversion.[46]
YSZ process
A newer process, solid oxide membrane technology, involves the electrolytic reduction of MgO. At the cathode, Mg2+
ion is reduced by two electrons to magnesium metal. The electrolyte is yttria-stabilized zirconia (YSZ). The anode is a liquid metal. At the YSZ/liquid metal anode O2−
is oxidized. A layer of graphite borders the liquid metal anode, and at this interface carbon and oxygen react to form carbon monoxide. When silver is used as the liquid metal anode, there is no reductant carbon or hydrogen needed, and only oxygen gas is evolved at the anode.[47] It was reported in 2011 that this method provides a 40% reduction in cost per pound over the electrolytic reduction method.[48]
Rieke process
Rieke et al. developed a "general approach for preparing highly reactive metal powders by reducing metal salts in ethereal or hydrocarbon solvents using alkali metals as reducing agents" now known as the Rieke process.[49] Rieke finalized the identification of Rieke metals in 1989,[50] one of which was Rieke-magnesium, first produced in 1974.[51]
History
The name magnesium originates from the Greek word for locations related to the tribe of the Magnetes, either a district in Thessaly called Magnesia[52] or Magnesia ad Sipylum, now in Turkey.[53] It is related to magnetite and manganese, which also originated from this area, and required differentiation as separate substances. See manganese for this history.
In 1618, a farmer at Epsom in England attempted to give his cows water from a local well. The cows refused to drink because of the water's bitter taste, but the farmer noticed that the water seemed to heal scratches and rashes. The substance obtained by evaporating the water became known as Epsom salts and its fame spread.[54] It was eventually recognized as hydrated magnesium sulfate, MgSO
4·7 H
2O.[55]
The metal itself was first isolated by Sir Humphry Davy in England in 1808. He used electrolysis on a mixture of magnesia and mercuric oxide.[56] Antoine Bussy prepared it in coherent form in 1831. Davy's first suggestion for a name was 'magnium',[56] but the name magnesium is now used in most European languages.[57]
Uses
Magnesium metal
Magnesium is the third-most-commonly-used structural metal, following iron and aluminium.[58] The main applications of magnesium are, in order: aluminium alloys, die-casting (alloyed with zinc),[59] removing sulfur in the production of iron and steel, and the production of titanium in the Kroll process.[60]
Magnesium is used in lightweight materials and alloys. For example, when infused with silicon carbide nanoparticles, it has extremely high specific strength.[61]
Historically, magnesium was one of the main aerospace construction metals and was used for German military aircraft as early as World War I and extensively for German aircraft in World War II. The Germans coined the name "Elektron" for magnesium alloy, a term which is still used today. In the commercial aerospace industry, magnesium was generally restricted to engine-related components, due to fire and corrosion hazards. Magnesium alloy use in aerospace is increasing in the 21st century, driven by the importance of fuel economy.[62] Magnesium alloys can act as replacements for aluminium and steel alloys in structural applications.[63][64]
Aircraft
- Wright Aeronautical used a magnesium crankcase in the WWII-era Wright R-3350 Duplex Cyclone aviation engine. This presented a serious problem for the earliest models of the Boeing B-29 Superfortress heavy bomber when an in-flight engine fire ignited the engine crankcase. The resulting combustion was as hot as 5,600 °F (3,100 °C) and could sever the wing spar from the fuselage.[65][66][67]
Automotive
- Mercedes-Benz used the alloy Elektron in the bodywork of an early model Mercedes-Benz 300 SLR; these cars competed in the 1955 World Sportscar Championship including a win at the Mille Miglia, and at Le Mans where one was involved in the 1955 Le Mans disaster when spectators were showered with burning fragments of elektron.[68]
- Porsche used magnesium alloy frames in the 917/053 that won Le Mans in 1971, and continues to use magnesium alloys for its engine blocks due to the weight advantage.[69]
- Volkswagen Group has used magnesium in its engine components for many years.[70]
- Mitsubishi Motors uses magnesium for its paddle shifters.[71]
- BMW used magnesium alloy blocks in their N52 engine, including an aluminium alloy insert for the cylinder walls and cooling jackets surrounded by a high-temperature magnesium alloy AJ62A. The engine was used worldwide between 2005 and 2011 in various 1, 3, 5, 6, and 7 series models; as well as the Z4, X1, X3, and X5.[72]
- Chevrolet used the magnesium alloy AE44 in the 2006 Corvette Z06.[73]
Both AJ62A and AE44 are recent developments in high-temperature low-creep magnesium alloys. The general strategy for such alloys is to form intermetallic precipitates at the grain boundaries, for example by adding mischmetal or calcium.[74]
Electronics
Because of low density and good mechanical and electrical properties, magnesium is used for manufacturing of mobile phones, laptop and tablet computers, cameras, and other electronic components.[75] It was used as a premium feature because of its light weight in some 2020 laptops.[76]
Source of light
When burning in air, magnesium produces a brilliant white light that includes strong ultraviolet wavelengths. Magnesium powder (flash powder) was used for subject illumination in the early days of photography.[77][78] Later, magnesium filament was used in electrically ignited single-use photography flashbulbs. Magnesium powder is used in fireworks and marine flares where a brilliant white light is required. It was also used for various theatrical effects,[79] such as lightning,[80] pistol flashes,[81] and supernatural appearances.[82]
Magnesium is flammable, burning at a temperature of approximately 3,100 °C (3,370 K; 5,610 °F),[83] and the autoignition temperature of magnesium ribbon is approximately 473 °C (746 K; 883 °F).[84] Magnesium's high combustion temperature makes it a useful tool for starting emergency fires. Other uses include flash photography, flares, pyrotechnics, fireworks sparklers, and trick birthday candles. Magnesium is also often used to ignite thermite or other materials that require a high ignition temperature. Magnesium continues to be used as an incendiary element in warfare.[85]
Flame temperatures of magnesium and magnesium alloys can reach 3,100 °C (5,610 °F),[83] although flame height above the burning metal is usually less than 300 mm (12 in).[86] Once ignited, such fires are difficult to extinguish because they resist several substances commonly used to put out fires; combustion continues in nitrogen (forming magnesium nitride),[citation needed] in carbon dioxide (forming magnesium oxide and carbon),[87] and in water (forming magnesium oxide and hydrogen, which also combusts due to heat in the presence of additional oxygen). This property was used in incendiary weapons during the firebombing of cities in World War II, where the only practical civil defense was to smother a burning flare under dry sand to exclude atmosphere from the combustion.
Chemical reagent
In the form of turnings or ribbons, to prepare Grignard reagents, which are useful in organic synthesis.[88]
Other
- As an additive agent in conventional propellants and the production of nodular graphite in cast iron.[89]
- As a reducing agent to separate uranium and other metals from their salts.[90]
- As a sacrificial (galvanic) anode to protect boats, underground tanks, pipelines, buried structures, and water heaters.[91]
- Alloyed with zinc to produce the zinc sheet used in photoengraving plates in the printing industry, dry-cell battery walls, and roofing.[59]
- Alloyed with aluminium with aluminium-magnesium alloys being used mainly for beverage cans,[92] sports equipment such as golf clubs,[93] fishing reels,[94] and archery bows and arrows.[95]
- Many car and aircraft manufacturers have made engine and body parts from magnesium.[96]
- Magnesium batteries have been commercialized as primary batteries, and are an active topic of research for rechargeable batteries.[97]
Compounds
Magnesium compounds, primarily magnesium oxide (MgO), are used as a refractory material in furnace linings for producing iron, steel, nonferrous metals, glass, and cement. Magnesium oxide and other magnesium compounds are also used in the agricultural, chemical, and construction industries. Magnesium oxide from calcination is used as an electrical insulator in fire-resistant cables.[98]
Magnesium reacts with haloalkanes to give Grignard reagents, which are used for a wide variety of organic reactions forming carbon–carbon bonds.[99]
Magnesium salts are included in various foods,[100] fertilizers[101] (magnesium is a component of chlorophyll[102]), and microbe culture media.[103]
Magnesium sulfite is used in the manufacture of paper (sulfite process).[104]
Magnesium phosphate is used to fireproof wood used in construction.[105]
Magnesium hexafluorosilicate is used for moth-proofing textiles.[106]
Biological roles
Mechanism of action
The important interaction between phosphate and magnesium ions makes magnesium essential to the basic nucleic acid chemistry of all cells of all known living organisms. More than 300 enzymes require magnesium ions for their catalytic action, including all enzymes using or synthesizing ATP and those that use other nucleotides to synthesize DNA and RNA. The ATP molecule is normally found in a chelate with a magnesium ion.[107]
Nutrition
Diet
Spices, nuts, cereals, cocoa and vegetables are good sources of magnesium.[15] Green leafy vegetables such as spinach are also rich in magnesium.[108]
Dietary recommendations
In the UK, the recommended daily values for magnesium are 300 mg for men and 270 mg for women.[109] In the U.S. the Recommended Dietary Allowances (RDAs) are 400 mg for men ages 19–30 and 420 mg for older; for women 310 mg for ages 19–30 and 320 mg for older.[110]
Supplementation
Numerous pharmaceutical preparations of magnesium and dietary supplements are available. In two human trials magnesium oxide, one of the most common forms in magnesium dietary supplements because of its high magnesium content per weight, was less bioavailable than magnesium citrate, chloride, lactate or aspartate.[111][112]
Metabolism
An adult body has 22–26 grams of magnesium,[15][113] with 60% in the skeleton, 39% intracellular (20% in skeletal muscle), and 1% extracellular.[15] Serum levels are typically 0.7–1.0 mmol/L or 1.8–2.4 mEq/L. Serum magnesium levels may be normal even when intracellular magnesium is deficient. The mechanisms for maintaining the magnesium level in the serum are varying gastrointestinal absorption and renal excretion. Intracellular magnesium is correlated with intracellular potassium. Increased magnesium lowers calcium[114] and can either prevent hypercalcemia or cause hypocalcemia depending on the initial level.[114] Both low and high protein intake conditions inhibit magnesium absorption, as does the amount of phosphate, phytate, and fat in the gut. Unabsorbed dietary magnesium is excreted in feces; absorbed magnesium is excreted in urine and sweat.[115]
Detection in serum and plasma
Magnesium status may be assessed by measuring serum and erythrocyte magnesium concentrations coupled with urinary and fecal magnesium content, but intravenous magnesium loading tests are more accurate and practical.[116] A retention of 20% or more of the injected amount indicates deficiency.[117] As of 2004, no biomarker has been established for magnesium.[118]
Magnesium concentrations in plasma or serum may be monitored for efficacy and safety in those receiving the drug therapeutically, to confirm the diagnosis in potential poisoning victims, or to assist in the forensic investigation in a case of fatal overdose. The newborn children of mothers who received parenteral magnesium sulfate during labor may exhibit toxicity with normal serum magnesium levels.[119]
Deficiency
Low plasma magnesium (hypomagnesemia) is common: it is found in 2.5–15% of the general population.[120] From 2005 to 2006, 48 percent of the United States population consumed less magnesium than recommended in the Dietary Reference Intake.[121] Other causes are increased renal or gastrointestinal loss, an increased intracellular shift, and proton-pump inhibitor antacid therapy. Most are asymptomatic, but symptoms referable to neuromuscular, cardiovascular, and metabolic dysfunction may occur.[120] Alcoholism is often associated with magnesium deficiency. Chronically low serum magnesium levels are associated with metabolic syndrome, diabetes mellitus type 2, fasciculation, and hypertension.[122]
Therapy
- Intravenous magnesium is recommended by the ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death for patients with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome; and for the treatment of patients with digoxin induced arrhythmias.[123]
- Intravenous magnesium sulfate is used for the management of pre-eclampsia and eclampsia.[124][125]
- Hypomagnesemia, including that caused by alcoholism, is reversible by oral or parenteral magnesium administration depending on the degree of deficiency.[126]
- There is limited evidence that magnesium supplementation may play a role in the prevention and treatment of migraine.[127]
Sorted by type of magnesium salt, other therapeutic applications include:
- Magnesium sulfate, as the heptahydrate called Epsom salts, is used as bath salts, a laxative, and a highly soluble fertilizer.[128]
- Magnesium hydroxide, suspended in water, is used in milk of magnesia antacids and laxatives.
- Magnesium chloride, oxide, gluconate, malate, orotate, glycinate, ascorbate and citrate are all used as oral magnesium supplements.
- Magnesium borate, magnesium salicylate, and magnesium sulfate are used as antiseptics.
- Magnesium bromide is used as a mild sedative (this action is due to the bromide, not the magnesium).
- Magnesium stearate is a slightly flammable white powder with lubricating properties. In pharmaceutical technology, it is used in pharmacological manufacture to prevent tablets from sticking to the equipment while compressing the ingredients into tablet form.
- Magnesium carbonate powder is used by athletes such as gymnasts, weightlifters, and climbers to eliminate palm sweat, prevent sticking, and improve the grip on gymnastic apparatus, lifting bars, and climbing rocks.
Overdose
Overdose from dietary sources alone is unlikely because excess magnesium in the blood is promptly filtered by the kidneys,[120] and overdose is more likely in the presence of impaired renal function. Overdose is not unlikely in case of excessive intake of supplements. Indeed, megadose therapy has caused death in a young child,[129] and severe hypermagnesemia in a woman[130] and a young girl[131] who had healthy kidneys. The most common symptoms of overdose are nausea, vomiting, and diarrhea; other symptoms include hypotension, confusion, slowed heart and respiratory rates, deficiencies of other minerals, coma, cardiac arrhythmia, and death from cardiac arrest.[114]
Function in plants
Plants require magnesium to synthesize chlorophyll, essential for photosynthesis.[132] Magnesium in the center of the porphyrin ring in chlorophyll functions in a manner similar to the iron in the center of the porphyrin ring in heme. Magnesium deficiency in plants causes late-season yellowing between leaf veins,[133] especially in older leaves, and can be corrected by either applying epsom salts (which is rapidly leached), or crushed dolomitic limestone, to the soil.
Safety precautions
Hazards | |
---|---|
GHS labelling: | |
Danger | |
H228, H251, H261 | |
P210, P231, P235, P410, P422[134] | |
NFPA 704 (fire diamond) |
Magnesium metal and its alloys can be explosive hazards; they are highly flammable in their pure form when molten or in powder or ribbon form. Burning or molten magnesium reacts violently with water. When working with powdered magnesium, safety glasses with eye protection and UV filters (such as welders use) are employed because burning magnesium produces ultraviolet light that can permanently damage the retina of a human eye.[136]
Magnesium is capable of reducing water and releasing highly flammable hydrogen gas:[137]
- Mg(s) + 2 H
2O(l) → Mg(OH)
2(s) + H
2(g)
Therefore, water cannot extinguish magnesium fires. The hydrogen gas produced intensifies the fire. Dry sand is an effective smothering agent, but only on relatively level and flat surfaces.
Magnesium reacts with carbon dioxide exothermically to form magnesium oxide and carbon:[87]
- 2 Mg(s) + CO
2(g) → 2 MgO(s) + C(s)
Hence, carbon dioxide fuels rather than extinguishes magnesium fires.
Burning magnesium can be quenched by using a Class D dry chemical fire extinguisher, or by covering the fire with sand or magnesium foundry flux to remove its air source.[138]
See also
Notes
- ^ The thermal expansion is anisotropic: the parameters (at 20 °C) for each crystal axis are αa = 25.31×10−6/K, αc = 27.03×10−6/K, and αaverage = αV/3 = 25.91×10−6/K.[3]
References
- ^ "Standard Atomic Weights: Magnesium". CIAAW. 2011.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ a b c d Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
- ^ Rumble, p. 4.61
- ^ Mg(0) has been synthesized in a compound containing a Na2Mg22+ cluster coordinated to a bulky organic ligand; see Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Li, W.; Harder, S. (2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380
- ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.. See also Low valent magnesium compounds.
- ^ Rumble, p. 12.137
- ^ Rumble, p. 12.28
- ^ Rumble, p. 4.70
- ^ Gschneider, K. A. (1964). Physical Properties and Interrelationships of Metallic and Semimetallic Elements. Solid State Physics. Vol. 16. p. 308. doi:10.1016/S0081-1947(08)60518-4. ISBN 9780126077162.
- ^ a b c Rumble, p. 4.19
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ a b Railsback, L. Bruce. "Abundance and form of the most abundant elements in Earth's continental crust" (PDF). Some Fundamentals of Mineralogy and Geochemistry. Archived from the original (PDF) on 27 September 2011. Retrieved 15 February 2008.
- ^ Anthoni, J. Floor (2006). "The chemical composition of seawater". Seafriends.
- ^ a b c d e "Dietary Supplement Fact Sheet: Magnesium". Office of Dietary Supplements, US National Institutes of Health. 11 February 2016. Retrieved 13 October 2016.
- ^ "alkaline-earth metal – Physical and chemical behaviour". Encyclopædia Britannica. Retrieved 27 March 2022.
- ^ Sandlöbes, S.; Friák, M.; Korte-Kerzel, S.; Pei, Z.; Neugebauer, J.; Raabe, D. (2017). "A rare-earth free magnesium alloy with improved intrinsic ductility". Scientific Reports. 7 (1): 10458. Bibcode:2017NatSR...710458S. doi:10.1038/s41598-017-10384-0. PMC 5585333. PMID 28874798.
- ^ Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; Davies, Chris H. J.; Birbilis, Nick (2017). "Super-formable pure magnesium at room temperature". Nature Communications. 8 (1): 972. Bibcode:2017NatCo...8..972Z. doi:10.1038/s41467-017-01330-9. PMC 5715137. PMID 29042555.
- ^ "Reactions of Group 2 Elements with Water". Chemistry LibreTexts. 3 October 2013. Retrieved 27 March 2022.
- ^ a b c d MMTA. "Magnesium". MMTA. Retrieved 8 November 2023.
- ^ Vol'nov, I. I.; Tokareva, S. A.; Belevskii, V. N.; Latysheva, E. I. (March 1970). "The formation of magnesium perperoxide Mg(O2)2 in the reaction of magnesium peroxide with ozone". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 19 (3): 468–471. doi:10.1007/bf00848959.
- ^ Zong, Fujian; Meng, Chunzhan; Guo, Zhiming; Ji, Feng; Xiao, Hongdi; Zhang, Xijian; Ma, Jin; Ma, Honglei (2010). "Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2". _Journal of Alloys and Compounds. 508 (1): 172–176. doi:10.1016/j.jallcom.2010.07.224.
- ^ "The rate of reaction of magnesium with hydrochloric acid". RSC Education. Retrieved 8 November 2023.
- ^ Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Harder, S. (29 April 2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380.
- ^ Makar, G. L.; Kruger, J. (1993). "Corrosion of magnesium". International Materials Reviews. 38 (3): 138–153. Bibcode:1993IMRv...38..138M. doi:10.1179/imr.1993.38.3.138.
- ^ a b c d e Dodson, Brian (29 August 2013). "Stainless magnesium breakthrough bodes well for manufacturing industries". Gizmag.com. Retrieved 29 August 2013.
- ^ Birbilis, N.; Williams, G.; Gusieva, K.; Samaniego, A.; Gibson, M. A.; McMurray, H. N. (2013). "Poisoning the corrosion of magnesium". Electrochemistry Communications. 34: 295–298. doi:10.1016/j.elecom.2013.07.021.
- ^ Choudhuri, Deep; Srinivasan, Srivilliputhur G.; Gibson, Mark A.; Zheng, Yufeng; Jaeger, David L.; Fraser, Hamish L.; Banerjee, Rajarshi (8 December 2017). "Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening". Nature Communications. 8 (1): 2000. Bibcode:2017NatCo...8.2000C. doi:10.1038/s41467-017-02112-z. PMC 5722870. PMID 29222427.
- ^ Czerwinski, Frank (September 2014). "Controlling the ignition and flammability of magnesium for aerospace applications". Corrosion Science. 86: 1–16. Bibcode:2014Corro..86....1C. doi:10.1016/j.corsci.2014.04.047.
- ^ "8 Types of magnesium and their benefits". www.medicalnewstoday.com. 23 March 2021. Retrieved 4 May 2024.
- ^ "Chemistry of Magnesium (Z=12)". Chemistry LibreTexts. 2 October 2013. Retrieved 4 May 2024.
- ^ Ren, Chai; Fang, Z. Zak; Zhou, Chengshang; Lu, Jun; Ren, Yang; Zhang, Xiaoyi (25 September 2014). "Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives". The Journal of Physical Chemistry C. 118 (38): 21778–21784. doi:10.1021/jp504766b.
- ^ Baran, Agata; Polański, Marek (9 September 2020). "Magnesium-Based Materials for Hydrogen Storage—A Scope Review". Materials. 13 (18): 3993. Bibcode:2020Mate...13.3993B. doi:10.3390/ma13183993. PMC 7559164. PMID 32916910.
- ^ "Magnesium EA65RS-T4 Alloy". AZoM. 30 April 2013. Retrieved 4 May 2024.
- ^ "Magnesium Statistics and Information | U.S. Geological Survey". www.usgs.gov. Retrieved 4 May 2024.
- ^ Battaglia, Giuseppe; Domina, Maria Alda; Lo Brutto, Rita; Lopez Rodriguez, Julio; Fernandez de Labastida, Marc; Cortina, Jose Luis; Pettignano, Alberto; Cipollina, Andrea; Tamburini, Alessandro; Micale, Giorgio (21 December 2022). "Evaluation of the Purity of Magnesium Hydroxide Recovered from Saltwork Bitterns". Water. 15 (1): 29. doi:10.3390/w15010029. hdl:2117/384847.
- ^ "Magnesium processing | Techniques & Methods | Britannica". www.britannica.com. Retrieved 4 May 2024.
- ^ "Magnesium metal is produced by the electrolysis of molten magnesi... | Channels for Pearson+". www.pearson.com. Retrieved 4 May 2024.
- ^ Bray, E. Lee (February 2019) Magnesium Metal. Mineral Commodity Summaries, U.S. Geological Survey
- ^ Vardi, Nathan (6 June 2013). "Man With Many Enemies". Forbes.
- ^ "What to do about the magnesium shortage". Supply Management. 17 February 2022. Archived from the original on 17 February 2022.
- ^ Amundsen, Ketil; Aune, Terje Kr.; Bakke, Per; et al. (2003). "Magnesium". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley. doi:10.1002/14356007.a15_559. ISBN 978-3-527-30385-4.
- ^ a b Bamberger M, Dobrzański LA, Totten GE (2020). Magnesium and its alloys : technology and applications (First ed.). Boca Raton, FL: CRC Press, Inc. ISBN 978-1-351-04547-6. OCLC 1111577710.
- ^ a b c d "Magnesium Processing | Techniques & Methods | Britannica". www.britannica.com. Retrieved 16 April 2023.
- ^ Lee, Tae-Hyuk; Okabe, Toru H.; Lee, Jin-Young; Kim, Young Min; Kang, Jungshin (September 2021). "Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode". Journal of Magnesium and Alloys. 9 (5): 1644–1655. doi:10.1016/j.jma.2021.01.004. S2CID 233930398.
- ^ Brooks, Geoffrey; Trang, Simon; Witt, Peter; Khan, M. N. H.; Nagle, Michael (May 2006). "The carbothermic route to magnesium". JOM. 58 (5): 51–55. Bibcode:2006JOM....58e..51B. doi:10.1007/s11837-006-0024-x. ISSN 1047-4838. S2CID 67763716.
- ^ Pal, Uday B.; Powell, Adam C. (2007). "The Use of Solid-Oxide-Membrane Technology for Electrometallurgy". JOM. 59 (5): 44–49. Bibcode:2007JOM....59e..44P. doi:10.1007/s11837-007-0064-x. S2CID 97971162.
- ^ Derezinski, Steve (12 May 2011). "Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles" (PDF). MOxST. Archived from the original (PDF) on 13 November 2013. Retrieved 27 May 2013.
- ^ "Magnesium". Chemical Synthesis Using Highly Reactive Metals. 2017. pp. 161–208. doi:10.1002/9781118929124.ch4. ISBN 978-1-118-92911-7.
- ^ Rieke, Reuben D.; Sell, Matthew S.; Klein, Walter R.; Chen, Tian-An; Brown, Jeffrey D.; Hanson, Mark V. (1995). "Rieke Metals: Highly Reactive Metal Powders Prepared by Alkali Metal Reduction of Metal Salts". Active Metals. pp. 1–59. doi:10.1002/9783527615179.ch01. ISBN 978-3-527-29207-3.
- ^ Rieke, Reuben D.; Bales, Stephen E. (1974). "ChemInform Abstract: ACTIVATED METALS PART 4, PREPARATION AND REACTIONS OF HIGHLY REACTIVE MAGNESIUM METAL". Chemischer Informationsdienst. 5 (21). doi:10.1002/chin.197421315.
- ^ "Magnesium: historical information". webelements.com. Retrieved 9 October 2014.
- ^ languagehat (28 May 2005). "Magnet". languagehat.com. Retrieved 18 June 2020.
- ^ Ainsworth, Steve (1 June 2013). "Epsom's deep bath". Nurse Prescribing. 11 (6): 269. doi:10.12968/npre.2013.11.6.269.
- ^ PubChem. "Magnesium Sulfate Heptahydrate". pubchem.ncbi.nlm.nih.gov. Retrieved 28 April 2024.
- ^ a b Davy, H. (1808). "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia". Philosophical Transactions of the Royal Society of London. 98: 333–370. Bibcode:1808RSPT...98..333D. doi:10.1098/rstl.1808.0023. JSTOR 107302. S2CID 96364168.
- ^ "Magnesium (Mg) - Periodic Table". www.periodictable.one. Retrieved 4 May 2024.
- ^ Segal, David (2017). Materials for the 21st Century. Oxford University Press. ISBN 978-0192526090.
- ^ a b Baker, Hugh D. R.; Avedesian, Michael (1999). Magnesium and magnesium alloys. Materials Park, OH: Materials Information Society. p. 4. ISBN 978-0871706577.
- ^ Ketil Amundsen; Terje Kr. Aune; Per Bakke; Hans R. Eklund; Johanna Ö. Haagensen; Carlos Nicolas; et al. (2002). "Magnesium". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a15_559. ISBN 978-3527306732.
- ^ Chin, Matthew (23 December 2015). "UCLA researchers create super-strong magnesium metal". ucla.edu.
- ^ Aghion, E.; Bronfin, B. (2000). "Magnesium Alloys Development towards the 21st Century". Materials Science Forum. 350–351: 19–30. doi:10.4028/www.scientific.net/MSF.350-351.19. S2CID 138429749.
- ^ Shu, Dong Wei; Ahmad, Iram Raza (December 2010). "Magnesium Alloys: An Alternative for Aluminium in Structural Applications". Advanced Materials Research. 168–170: 1631–1635. doi:10.4028/www.scientific.net/amr.168-170.1631.
- ^ "Magnesium alloy as a lighter alternative to aluminum alloy". Phys.org. 29 November 2017.
- ^ Dreizin, Edward L.; Berman, Charles H.; Vicenzi, Edward P. (2000). "Condensed-phase modifications in magnesium particle combustion in air". Scripta Materialia. 122 (1–2): 30–42. Bibcode:2000CoFl..122...30D. CiteSeerX 10.1.1.488.2456. doi:10.1016/S0010-2180(00)00101-2.
- ^ Dorr, Robert F. (2012). Mission to Tokyo: The American Airmen Who Took the War to the Heart of Japan. Zenith Press. pp. 40–41. ISBN 978-1610586634.
- ^ AAHS Journal. Vol. 44–45. American Aviation Historical Society. 1999.
- ^ Spurgeon, Brad (11 June 2015). "On Auto Racing's Deadliest Day". The New York Times.
- ^ Perkins, Chris (1 July 2021). "The 1971 Porsche 917 KH Had a Chassis Made of Ultra-Flammable Magnesium". Road & Track. Retrieved 7 May 2023.
- ^ "1950: The metal is magnesium, the car is the Beetle". hydro.com. 18 August 2020. Retrieved 5 April 2021.
- ^ "2007 Mitsubishi Outlander brings sport sedan dynamics to compact sport-utility vehicle segment; performance credentials include 220 Hp V-6, 6-speed Sportronic(R) transmission and aluminum roof". Mitsubishi Newsroom. 12 April 2006. Retrieved 7 May 2023.
- ^ Kumar, Sachin; Wu, Chuansong (2017). "Review:Mg and Its Alloy——Scope, Future Perspectives and Recent Advancements in Welding and Processing". Journal of Harbin Institute of Technology. 24 (6): 1–37. doi:10.11916/j.issn.1005-9113.17065.
- ^ Aragones, Jonathon; Goundan, Kasi; Kolp, Scott; Osborne, Richard; Ouimet, Larry; Pinch, William (11 April 2005). "Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember". SAE Technical Paper Series. Vol. 1. Warrendale, PA. doi:10.4271/2005-01-0340.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Luo, Alan A. & Powell, Bob R. (2001). Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys (PDF) (Report). Materials & Processes Laboratory, General Motors Research & Development Center. Archived from the original (PDF) on 28 September 2007. Retrieved 21 August 2007.
- ^ "Evaluation of Mechanical Properties of Magnesium [AZ91] Reinforced With Carbon Nanotubes And Sic/Al2O3" (PDF). Elementary Education Online. 19 (4): 6907. 2020. Archived from the original (PDF) on 7 May 2023. Retrieved 7 May 2023.
- ^ Dignan, Larry (2 January 2020). "Blue magnesium alloy laptops: Premium price, plastic feel, but lightweight". ZDNet.
- ^ Hannavy, John (2013). Encyclopedia of Nineteenth-Century Photography. Routledge. p. 84. ISBN 978-1-135-87327-1.
- ^ Scientific American: Supplement. Vol. 48. Munn and Company. 1899. p. 20035.
- ^ Billboard. Nielsen Business Media, Inc. 1974. p. 20.
- ^ Altman, Rick (2004). Silent Film Sound. Columbia University Press. p. 41. ISBN 978-0-231-11663-3.
- ^ Lindsay, David (2005). Madness in the Making: The Triumphant Rise and Untimely Fall of America's Show Inventors. iUniverse. p. 210. ISBN 978-0-595-34766-7.
- ^ McCormick, John; Pratasik, Bennie (2005). Popular Puppet Theatre in Europe, 1800-1914. Cambridge University Press. p. 106. ISBN 978-0-521-61615-7.
- ^ a b Dreizin, Edward L.; Berman, Charles H. & Vicenzi, Edward P. (2000). "Condensed-phase modifications in magnesium particle combustion in air". Scripta Materialia. 122 (1–2): 30–42. Bibcode:2000CoFl..122...30D. CiteSeerX 10.1.1.488.2456. doi:10.1016/S0010-2180(00)00101-2.
- ^ "Magnesium (Powder)". International Programme on Chemical Safety (IPCS). IPCS INCHEM. April 2000. Retrieved 21 December 2011.
- ^ "9N510 (ML-5) Submunition". Collective Awareness to UXO. Retrieved 22 November 2022.
- ^ DOE Handbook – Primer on Spontaneous Heating and Pyrophoricity. United States Department of Energy. December 1994. p. 20. DOE-HDBK-1081-94. Archived from the original on 15 April 2012. Retrieved 21 December 2011.
- ^ a b
- "The Reaction Between Magnesium and CO2". Purdue University. Retrieved 15 June 2016.
- Whisnant, David; Phillips, David; Houston Jetzer, Kelly (2022) [6 Mar 2012]. Reaction of magnesium with carbon dioxide (web video). American Chemical Society, Division of Chemical Education – via ChemEdX.
- ^ Ashenhurst, James (14 October 2011). "Grignard Reagents For Addition To Aldehydes and Ketones". Master Organic Chemistry. Retrieved 4 May 2024.
- ^ "Periodic Table of Elements: Los Alamos National Laboratory". periodic.lanl.gov. Retrieved 4 May 2024.
- ^ Ainscough, J.B.; Rigby, F (July 1974). "Magnesium reduction of uranium oxide". Journal of Inorganic and Nuclear Chemistry. 36 (7): 1531–1534. doi:10.1016/0022-1902(74)80618-4.
- ^ "Sacrificial Anode". Chemistry LibreTexts. 2 October 2013. Retrieved 4 May 2024.
- ^ Multiview (17 December 2019). "Strong and Ductile: Magnesium Adds Benefits to Aluminum Alloys". Belmont Metals. Retrieved 4 May 2024.
- ^ "Golf Clubheads: Material Differences".
- ^ Purnell, Ross. "How Aluminum Changed Fly Fishing Forever". Fly Fisherman. Retrieved 4 May 2024.
- ^ "Compound Bow – Facts and History of Modern Bows". www.historyofarchery.com. Retrieved 4 May 2024.
- ^ "Automotive Applications - International Magnesium Association". www.intlmag.org. Retrieved 4 May 2024.
- ^ Leong, Kee Wa; Pan, Wending; Wang, Yifei (21 July 2022). "Reversibility of a High-Voltage, Cl – Regulated, Aqueous Mg Metal Battery Enabled by a Water-in-Salt Electrolyte". ACS Energy Lett. 7 (8): 2657–2666. doi:10.1021/acsenergylett.2c01255. S2CID 250965568. Retrieved 25 June 2023.
- ^ Linsley, Trevor (2011). "Properties of conductors and insulators". Basic Electrical Installation Work. Taylor & Francis. p. 362. ISBN 978-0080966281.
- ^ Wade Jr., L. G. (2012). Organic Chemistry (8th ed.). Pearson. p. 441. ISBN 978-0321768414.
- ^ "Magnesium-Rich Food Information". Cleveland Clinic. Retrieved 4 May 2024.
- ^ "Magnesium for crop production". extension.umn.edu. Retrieved 4 May 2024.
- ^ Ishfaq, Muhammad; Wang, Yongqi; Yan, Minwen; Wang, Zheng; Wu, Liangquan; Li, Chunjian; Li, Xuexian (25 April 2022). "Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China". Frontiers in Plant Science. 13. doi:10.3389/fpls.2022.802274. PMC 9085447. PMID 35548291.
- ^ Christensen, David G.; Orr, James S.; Rao, Christopher V.; Wolfe, Alan J. (15 March 2017). "Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media". Applied and Environmental Microbiology. 83 (6). Bibcode:2017ApEnM..83E3034C. doi:10.1128/AEM.03034-16. PMC 5335519. PMID 28062462.
- ^ "Magnesium sulfite - Hazardous Agents | Haz-Map". haz-map.com. Retrieved 4 May 2024.
- ^ Yan, Long; Xu, Zhisheng; Liu, Dingli (April 2019). "Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates". Progress in Organic Coatings. 129: 327–337. doi:10.1016/j.porgcoat.2019.01.013.
- ^ "NCATS Inxight Drugs — MAGNESIUM HEXAFLUOROSILICATE". drugs.ncats.io. Retrieved 4 May 2024.
- ^
Romani, Andrea, M.P. (2013). "Magnesium in Health and Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel (eds.). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. Vol. 13. Springer. pp. 49–79. doi:10.1007/978-94-007-7500-8_3. ISBN 978-94-007-7499-5. PMID 24470089.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ "Magnesium in diet". MedlinePlus, U.S. National Library of Medicine, National Institutes of Health. 2 February 2016. Retrieved 13 October 2016.
- ^ "Vitamins and minerals – Others – NHS Choices". Nhs.uk. 26 November 2012. Archived from the original on 7 April 2011. Retrieved 19 September 2013.
- ^ "6, Magnesium". Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press. 1997. pp. 190–249.
- ^ Firoz M; Graber M (2001). "Bioavailability of US commercial magnesium preparations". Magnes Res. 14 (4): 257–262. PMID 11794633.
- ^ Lindberg JS; Zobitz MM; Poindexter JR; Pak CY (1990). "Magnesium bioavailability from magnesium citrate and magnesium oxide". J Am Coll Nutr. 9 (1): 48–55. doi:10.1080/07315724.1990.10720349. PMID 2407766.
- ^ Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (April 2000). "Magnesium. An update on physiological, clinical and analytical aspects". Clin Chim Acta. 294 (1–2): 1–26. doi:10.1016/S0009-8981(99)00258-2. PMID 10727669.
- ^ a b c "Magnesium". Umm.edu. University of Maryland Medical Center. 7 May 2013. Archived from the original on 16 February 2017. Retrieved 19 September 2013.
- ^ Wester PO (1987). "Magnesium". Am. J. Clin. Nutr. 45 (5 Suppl): 1305–1312. doi:10.1093/ajcn/45.5.1305. PMID 3578120.
- ^ Arnaud MJ (2008). "Update on the assessment of magnesium status". Br. J. Nutr. 99 (Suppl 3): S24 – S36. doi:10.1017/S000711450800682X. PMID 18598586.
- ^ Rob PM; Dick K; Bley N; Seyfert T; Brinckmann C; Höllriegel V; et al. (1999). "Can one really measure magnesium deficiency using the short-term magnesium loading test?". J. Intern. Med. 246 (4): 373–378. doi:10.1046/j.1365-2796.1999.00580.x. PMID 10583708. S2CID 6734801.
- ^ Franz KB (2004). "A functional biological marker is needed for diagnosing magnesium deficiency". J Am Coll Nutr. 23 (6): 738S – 741S. doi:10.1080/07315724.2004.10719418. PMID 15637224. S2CID 37427458.
- ^ Baselt, R. (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Biomedical Publications. pp. 875–877. ISBN 978-0962652370.
- ^ a b c Ayuk J.; Gittoes N.J. (March 2014). "Contemporary view of the clinical relevance of magnesium homeostasis". Annals of Clinical Biochemistry. 51 (2): 179–188. doi:10.1177/0004563213517628. PMID 24402002. S2CID 21441840.
- ^ Rosanoff, Andrea; Weaver, Connie M; Rude, Robert K (March 2012). "Suboptimal magnesium status in the United States: are the health consequences underestimated?" (PDF). Nutrition Reviews. 70 (3): 153–164. doi:10.1111/j.1753-4887.2011.00465.x. PMID 22364157.
- ^ Geiger H; Wanner C (2012). "Magnesium in disease". Clin Kidney J. 5 (Suppl 1): i25 – i38. doi:10.1093/ndtplus/sfr165. PMC 4455821. PMID 26069818.
- ^ Zipes DP; Camm AJ; Borggrefe M; et al. (2012). "ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society". Circulation. 114 (10): e385 – e484. doi:10.1161/CIRCULATIONAHA.106.178233. PMID 16935995.
- ^ James MF (2010). "Magnesium in obstetrics". Best Pract Res Clin Obstet Gynaecol. 24 (3): 327–337. doi:10.1016/j.bpobgyn.2009.11.004. PMID 20005782.
- ^ Euser, A. G.; Cipolla, M. J. (2009). "Magnesium Sulfate for the Treatment of Eclampsia: A Brief Review". Stroke. 40 (4): 1169–1175. doi:10.1161/STROKEAHA.108.527788. PMC 2663594. PMID 19211496.
- ^ Giannini, A. J. (1997). Drugs of Abuse (Second ed.). Los Angeles: Physicians Management Information Co. ISBN 978-0874894998.
- ^ Teigen L, Boes CJ (2014). "An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine". Cephalalgia (Review). 35 (10): 912–922. doi:10.1177/0333102414564891. PMID 25533715. S2CID 25398410.
There is a strong body of evidence demonstrating a relationship between magnesium status and migraine. Magnesium likely plays a role in migraine development at a biochemical level, but the role of oral magnesium supplementation in migraine prophylaxis and treatment remains to be fully elucidated. The strength of evidence supporting oral magnesium supplementation is limited at this time.
- ^ Gowariker, Vasant; Krishnamurthy, V. P.; Gowariker, Sudha; Dhanorkar, Manik; Paranjape, Kalyani (8 April 2009). The Fertilizer Encyclopedia. John Wiley & Sons. p. 224. ISBN 978-0470431764.
- ^ McGuire, John K.; Kulkarni, Mona Shah; Baden, Harris P. (1 February 2000). "Fatal Hypermagnesemia in a Child Treated with Megavitamin/Megamineral Therapy". Pediatrics. 105 (2): e18. doi:10.1542/peds.105.2.e18. PMID 10654978.
- ^ Kontani M; Hara A; Ohta S; Ikeda T (2005). "Hypermagnesemia induced by massive cathartic ingestion in an elderly woman without pre-existing renal dysfunction". Intern. Med. 44 (5): 448–452. doi:10.2169/internalmedicine.44.448. hdl:2297/16751. PMID 15942092.
- ^ Kutsal, Ebru; Aydemir, Cumhur; Eldes, Nilufer; Demirel, Fatma; Polat, Recep; Taspınar, Ozan; Kulah, Eyup (February 2000). "Severe Hypermagnesemia as a Result of Excessive Cathartic Ingestion in a Child Without Renal Failure". Pediatrics. 205 (2): 570–572. doi:10.1097/PEC.0b013e31812eef1c. PMID 17726419.
- ^ "Magnesium" (PDF). The Fertilizer Institute. Archived from the original (PDF) on 18 March 2023. Retrieved 14 July 2023.
- ^ "What Is the Connection between Chlorophyll and Magnesium?". All Things Nature. 12 June 2023. Retrieved 14 July 2023.
- ^ "Magnesium rod, diam. 6mm, 99.9+ trace metals 7439-95-4". MilliporeSigma.
- ^ "MAGNESIUM". CAMEO Chemicals. National Oceanic and Atmospheric Administration.
- ^ "Science Safety: Chapter 8". Government of Manitoba. Retrieved 21 August 2007.
- ^ "Chemistry : Periodic Table : magnesium : chemical reaction data". webelements.com. Retrieved 26 June 2006.
- ^ Cote, Arthur E. (2003). Operation of Fire Protection Systems. Jones & Bartlett Learning. p. 667. ISBN 978-0877655848.
Cited sources
- Rumble, John R., ed. (2018). CRC Handbook of Chemistry and Physics (99th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-1385-6163-2.
External links
- Magnesium at The Periodic Table of Videos (University of Nottingham)
- Chemistry in its element podcast (MP3) from the Royal Society of Chemistry's Chemistry World: Magnesium
- "Magnesium -- a versatile and often overlooked element: New perspectives with a focus on chronic kidney disease". Clinical Kidney Journal. 5 (Suppl 1): NP. February 2012. doi:10.1093/ndtplus/sfs035. PMC 4455823. PMID 26069823.