Jump to content

Computational geometry: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m "CAD /CAM" => "CAD/CAM"
mNo edit summary
 
(141 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{for|the journal|Computational Geometry (journal)}}
'''Computational geometry''' is a branch of [[computer science]] devoted to the study of algorithms which can be stated in terms of [[geometry]]. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.
{{short description|Branch of computer science}}
'''Computational geometry''' is a branch of [[computer science]] devoted to the study of [[Algorithm|algorithms]] which can be stated in terms of [[geometry]]. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.


[[Analysis of algorithms|Computational complexity]] is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''<sup>2</sup>) and O(''n'' log ''n'') may be the difference between days and seconds of computation.
The main impetus for the development of computational geometry as a discipline was progress in [[computer graphics]], computer-aided design and manufacturing ([[CAD]]/[[CAM]]), but many problems in computational geometry are classical in nature.


The main impetus for the development of computational geometry as a discipline was progress in [[computer graphics]] and computer-aided design and manufacturing ([[Computer-aided design|CAD]]/[[Computer-aided manufacturing|CAM]]), but many problems in computational geometry are classical in nature, and may come from [[mathematical visualization]].
Other important applications of computational geometry include [[robotics]] (motion planning and visibility problems), [[geographic information system]]s (GIS) (geometrical location and search, route planning), [[integrated circuit]] design (IC geometry design and verification), computer-aided engineering (CAE) (programming of numerically controlled (NC) machines).

Other important applications of computational geometry include [[robotics]] ([[motion planning]] and visibility problems), [[geographic information system]]s (GIS) (geometrical location and search, route planning), [[integrated circuit]] design (IC geometry design and verification), [[computer-aided engineering]] (CAE) (mesh generation), and [[computer vision]] ([[3D reconstruction]]).


The main branches of computational geometry are:
The main branches of computational geometry are:


*''Combinatorial computational geometry'', also called ''algorithmic geometry'', which deals with geometric objects as [[discrete mathematics|discrete]] entities. A groundlaying book in the subject by Preparata and Shamos dates the first use of the term "computational geometry" in this sense by 1975.<ref name=PS>{{cite book
*''Combinatorial computational geometry'', also called ''algorithmic geometry'', which deals with geometric objects as [[discrete mathematics|discrete]] entities. A groundlaying book in the subject by [[Franco P. Preparata|Preparata]] and [[Michael Ian Shamos|Shamos]] dates the first use of the term "computational geometry" in this sense by 1975.<ref name=PS>{{cite book
|author = [[Franco P. Preparata]] and [[Michael Ian Shamos]] | title = Computational Geometry - An Introduction | publisher = [[Springer-Verlag]]| year = 1985 | id = 1st edition: ISBN 0-387-96131-3; 2nd printing, corrected and expanded, 1988: ISBN 3-540-96131-3}}</ref>
|author = [[Franco P. Preparata]] and [[Michael Ian Shamos]] | title = Computational Geometry - An Introduction | publisher = [[Springer-Verlag]]| year = 1985 | id = 1st edition; 2nd printing, corrected and expanded, 1988| isbn = 0-387-96131-3 }}</ref>
* ''Numerical computational geometry'', also called ''machine geometry'', ''computer-aided geometric design'' (CAGD), or ''geometric modeling'', which deals primarily with representing real-world objects in forms suitable for computer computations in [[CAD]]/[[Computer-aided manufacturing|CAM]] systems. This branch may be seen as a further development of [[descriptive geometry]] and is often considered a branch of [[computer graphics]] or CAD. The term "computational geometry" in this meaning has been in use since 1971.<ref>A.R. Forrest, "Computational geometry", ''Proc. Royal Society London'', 321, series 4, 187-195 (1971)</ref>
* ''Numerical computational geometry'', also called ''machine geometry'', ''[[computer-aided geometric design]]'' (CAGD), or ''geometric modeling'', which deals primarily with representing real-world objects in forms suitable for computer computations in CAD/CAM systems. This branch may be seen as a further development of [[descriptive geometry]] and is often considered a branch of computer graphics or CAD. The term "computational geometry" in this meaning has been in use since 1971.<ref>A.R. Forrest, "Computational geometry", ''Proc. Royal Society London'', 321, series 4, 187-195 (1971)</ref>

Although most algorithms of computational geometry have been developed (and are being developed) for electronic computers, some algorithms were developed for unconventional computers (e.g. optical computers <ref name=YK>{{cite book
|author = [[Yevgeny B. Karasik]] | title = Optical Computational Geometry | year = 2019 | isbn = 979-8511243344 }}</ref>)

== Combinatorial computational geometry ==
== Combinatorial computational geometry ==


The primary goal of research in combinatorial computational geometry is to develop efficient [[algorithm]]s and [[data structure]]s for solving problems stated in terms of basic geometrical objects: points, line segments, [[polygon]]s, [[polyhedron|polyhedra]], etc.
The primary goal of research in combinatorial computational geometry is to develop efficient [[algorithm]]s and [[data structure]]s for solving problems stated in terms of basic geometrical objects: points, line segments, [[polygon]]s, [[polyhedron|polyhedra]], etc.


Some of these problems seem so simple that they were not regarded as problems at all until the advent of [[computer]]s. Consider, for example, the ''[[Closest pair problem]]'':
Some of these problems seem so simple that they were not regarded as problems at all until the advent of [[computer]]s. Consider, for example, the ''[[Closest pair problem]]'':
Line 19: Line 26:
* Given ''n'' points in the plane, find the two with the smallest distance from each other.
* Given ''n'' points in the plane, find the two with the smallest distance from each other.


One could compute the distances between all the pairs of points, of which there are ''n(n-1)/2'', then pick the pair with the smallest distance. This [[brute-force search|brute-force]] algorithm takes [[Big O notation|O]](''n''<sup>2</sup>) time; i.e. its execution time is proportional to the square of the number of points. A classic result in computational geometry was the formulation of an algorithm that takes O(''n'' log ''n''). [[Randomized algorithm]]s that take O(''n'') expected time, as well as a deterministic algorithm that takes O(''n'' log log ''n'') time, have also been discovered.
One could compute the distances between all the pairs of points, of which there are ''n(n-1)/2'', then pick the pair with the smallest distance. This [[brute-force search|brute-force]] algorithm takes [[Big O notation|O]](''n''<sup>2</sup>) time; i.e. its execution time is proportional to the square of the number of points. A classic result in computational geometry was the formulation of an algorithm that takes O(''n'' log ''n''). [[Randomized algorithm]]s that take O(''n'') expected time,<ref>S. Khuller and Y. Matias. [https://www.sciencedirect.com/science/article/pii/S0890540185710498/pdf?md5=aef3739b6ce3d0a18f11ef1915827ffe&pid=1-s2.0-S0890540185710498-main.pdf&_valck=1 A simple randomized sieve algorithm for the closest-pair problem]. Inf. Comput., 118(1):34—37,1995 ([[PDF]])</ref> as well as a deterministic algorithm that takes O(''n'' log log ''n'') time,<ref>S. Fortune and J.E. Hopcroft. "A note on Rabin's nearest-neighbor algorithm." Information Processing Letters, 8(1), pp. 20&mdash;23, 1979</ref> have also been discovered.

Computational geometry focuses heavily on [[computational complexity]] since the algorithms are meant to be used on very large datasets containing tens and hundreds of million points. For large data sets, the difference between O(''n''<sup>2</sup>) and O(''n'' log ''n'') can be the difference between days and seconds of computation.


=== Problem classes ===
=== Problem classes ===
Line 27: Line 32:
The core problems in computational geometry may be classified in different ways, according to various criteria. The following general classes may be distinguished.
The core problems in computational geometry may be classified in different ways, according to various criteria. The following general classes may be distinguished.


====Static problems====
====Static problem====
In the problems of this category, some input is given and the corresponding output needs to be constructed or found. Some fundamental problems of this type are:
In the problems of this category, some input is given and the corresponding output needs to be constructed or found. Some fundamental problems of this type are:


Line 33: Line 38:
* [[Line segment intersection]]: Find the intersections between a given set of line segments.
* [[Line segment intersection]]: Find the intersections between a given set of line segments.
* [[Delaunay triangulation]]
* [[Delaunay triangulation]]
* [[Voronoi diagram]]: Given a set of points, partition the space according to which point is closest.
* [[Voronoi diagram]]: Given a set of points, partition the space according to which points are closest to the given points.
* [[Linear programming]]
* [[Linear programming]]
* [[Closest pair of points]]: Given a set of points, find the two with the smallest distance from each other.
* [[Closest pair of points]]: Given a set of points, find the two with the smallest distance from each other.
* Farthest pair of points
* [[Largest empty circle]]: Given a set of points, find a largest circle with its center inside of their convex hull and enclosing none of them.
* [[Euclidean shortest path]]: Connect two points in a Euclidean space (with polyhedral obstacles) by a shortest path.
* [[Euclidean shortest path]]: Connect two points in a Euclidean space (with polyhedral obstacles) by a shortest path.
* [[Polygon triangulation]]: Given a polygon, partition its interior into triangles
* [[Polygon triangulation]]: Given a polygon, partition its interior into triangles
* [[Mesh generation]]
* [[Boolean operations on polygons]]


The computational complexity for this class of problems is estimated by the time and space (computer memory) required to solve a given problem instance.
The computational complexity for this class of problems is estimated by the time and space (computer memory) required to solve a given problem instance.


====Geometric query problems====
====Geometric query problems {{anchor|Query|Search}}====
{{see also|Spatial query}}


In geometric query problems, commonly known as [[geometric search problems]], the input consists of two parts: the [[search space]] part and the [[query]] part, which varies over the problem instances. The search space typically needs to be [[preprocessing|preprocessed]], in a way that multiple queries can be answered efficiently.
In ''geometric query problems'', commonly known as ''geometric search problems'', the input consists of two parts: the search space part and the [[query (complexity)|query]] part, which varies over the problem instances. The search space typically needs to be [[data pre-processing|preprocessed]], in a way that multiple queries can be answered efficiently.


Some fundamental geometric query problems are:
Some fundamental geometric query problems are:


* [[Range searching]]: Preprocess a set of points, in order to efficiently count the number of points inside a query region.
* [[Range searching]]: Preprocess a set of points, in order to efficiently count the number of points inside a query region.
* [[Point location]]: Given a partitioning of the space into cells, produce a data structure that efficiently tells in which cell a query point is located.
* [[Point location problem]]: Given a partitioning of the space into cells, produce a data structure that efficiently tells in which cell a query point is located.
* [[nearest neighbor search|Nearest neighbor]]: Preprocess a set of points, in order to efficiently find which point is closest to a query point.
* [[nearest neighbour search|Nearest neighbor]]: Preprocess a set of points, in order to efficiently find which point is closest to a query point.
* [[Ray tracing]]: Given a set of objects in space, produce a data structure that efficiently tells which object a query ray intersects first.
* [[Ray tracing (graphics)|Ray tracing]]: Given a set of objects in space, produce a data structure that efficiently tells which object a query ray intersects first.


If the search space is fixed, the computational complexity for this class of problems is usually estimated by:
If the search space is fixed, the computational complexity for this class of problems is usually estimated by:
*the time and space required to construct the data structure to be searched in
*the time and space required to construct the data structure to be searched in
*the time (and sometimes an extra space) to answer queries.
*the time (and sometimes an extra space) to answer queries.
Line 60: Line 70:
====Dynamic problems====
====Dynamic problems====


A yet another major class are the [[dynamic problem (algorithms)|dynamic problem]]s, in which the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition or deletion input geometric elements). Algorithms for problems of this type typically involve [[dynamic data structures]]. Any of the computational geometric problems may be converted into a dynamic one. For example, the [[range searching]] problem may be converted into the [[dynamic range searching]] problem by providing for addition and/or deletion of the points. The [[dynamic convex hull]] problem is to keep track of the convex hull, e.g., for the dynamically changing set of points, i.e., while the input points are inserted or deleted.
Yet another major class is the [[dynamic problem (algorithms)|dynamic problem]]s, in which the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition or deletion input geometric elements). Algorithms for problems of this type typically involve [[dynamic data structures]]. Any of the computational geometric problems may be converted into a dynamic one, at the cost of increased processing time. For example, the [[range searching]] problem may be converted into the [[dynamic range searching]] problem by providing for addition and/or deletion of the points. The [[dynamic convex hull]] problem is to keep track of the convex hull, e.g., for the dynamically changing set of points, i.e., while the input points are inserted or deleted.


The computational complexity for this class of problems is estimated by:
The computational complexity for this class of problems is estimated by:
*the time and space required to construct the data structure to be searched in
*the time and space required to construct the data structure to be searched in
*the time and space to modify the searched data structure after an incremental change in the search space
*the time and space to modify the searched data structure after an incremental change in the search space
Line 72: Line 82:
* [[Point in polygon]]: Decide whether a point is inside or outside a given polygon.
* [[Point in polygon]]: Decide whether a point is inside or outside a given polygon.


In many applications this problem is treated as a single-shot one, i.e., belonging to the first class. For example, in many applications of [[computer graphics]] a common problem is to find which area on the screen is clicked by a [[mouse cursor]]. However in some applications the polygon in question is invariant, while the point represents a query. For example, the input polygon may represent a border of a country and a point is a position of an aircraft, and the problem is to determine whether the aircraft violated the border. Finally, in the previously mentioned example of computer graphics, in [[CAD]] applications the changing input data are often stored in dynamic data structures, which may be exploited to speed-up the point-in-polygon queries.
In many applications this problem is treated as a single-shot one, i.e., belonging to the first class. For example, in many applications of [[computer graphics]] a common problem is to find which area on the screen is clicked by a [[pointer (graphical user interfaces)|pointer]]. However, in some applications, the polygon in question is invariant, while the point represents a query. For example, the input polygon may represent a border of a country and a point is a position of an aircraft, and the problem is to determine whether the aircraft violated the border. Finally, in the previously mentioned example of computer graphics, in [[Computer-aided design|CAD]] applications the changing input data are often stored in dynamic data structures, which may be exploited to speed-up the point-in-polygon queries.


In some contexts of query problems there are reasonable expectations on the sequence of the queries, which may be exploited either for efficient data structures or for tighter computational complexity estimates. For example, in some cases it is important to know the worst case for the total time for the whole sequence of N queries, rather than for a single query. See also "[[amortized analysis]]".
In some contexts of query problems there are reasonable expectations on the sequence of the queries, which may be exploited either for efficient data structures or for tighter computational complexity estimates. For example, in some cases it is important to know the worst case for the total time for the whole sequence of N queries, rather than for a single query. See also "[[amortized analysis]]".
Line 78: Line 88:
== Numerical computational geometry ==
== Numerical computational geometry ==


{{main|computer-aided geometric design}}
{{Main|computer-aided geometric design}}


This branch is also known as '''geometric modelling''' and '''computer-aided geometric design''' (CAGD).
This branch is also known as '''geometric modelling''' and '''computer-aided geometric design''' (CAGD).
Line 84: Line 94:
Core problems are curve and surface modelling and representation.
Core problems are curve and surface modelling and representation.


The most important instruments here are [[parametric curve]]s and [[parametric surface]]s, such as [[Bezier curve]]s, [[spline (mathematics)|spline]] curves and surfaces. An important non-parametric approach is the [[level set method]].
The most important instruments here are [[parametric curve]]s and [[parametric surface]]s, such as [[Bézier curve]]s, [[spline (mathematics)|spline]] curves and surfaces. An important non-parametric approach is the [[level-set method]].


Application areas include shipbuilding, aircraft, and automotive industries. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by shipbuilders of 1960s.
Application areas of computational geometry include shipbuilding, aircraft, and automotive industries.

== List of algorithms ==
{{excerpt|List_of_algorithms#Geometry}}


== See also ==
== See also ==
* [[List of combinatorial computational geometry topics]]
* [[List of combinatorial computational geometry topics]]
* [[List of numerical computational geometry topics]]
* [[List of numerical computational geometry topics]]
* [[CAD]]/[[Computer-aided manufacturing|CAM]]/[[Computer-aided engineering|CAE]]
* [[Computer-aided design|CAD]]/[[Computer-aided manufacturing|CAM]]/[[Computer-aided engineering|CAE]]
* [[Robotics]]
* [[Solid modeling]]
* [[Solid modeling]]
* [[Computational topology]]
* [[Computational topology]]
* [[Computer representation of surfaces]]
* [[Digital geometry]]
* [[Digital geometry]]
* [[Discrete geometry]] (combinatorial geometry)
* [[CGAL|Computational Geometry Algorithms Library (CGAL)]]
* [[Space partitioning]]
* [[Space partitioning]]
* [[Multicomplex number|Tricomplex number]]
* [[Robust geometric computation]]
* [[Wikiversity:Topic:Computational geometry]]
* [[Wikiversity:Topic:Computational geometry]]
* [[Wikiversity:CAGD|Wikiversity:Computer-aided geometric design]]


==References==
==References==
Line 107: Line 123:


===Journals===
===Journals===

====Combinatorial/algorithmic computational geometry====
====Combinatorial/algorithmic computational geometry====
Below is the list of the major journals that have been publishing research in geometric algorithms. Please notice with the appearance of journals specifically dedicated to computational geometry, the share of geometric publications in general-purpose computer science and computer graphics journals decreased.
Below is the list of the major journals that have been publishing research in geometric algorithms. Please notice with the appearance of journals specifically dedicated to computational geometry, the share of geometric publications in general-purpose computer science and computer graphics journals decreased.
Line 114: Line 131:
*''[[Advances in Geometry]]''
*''[[Advances in Geometry]]''
*''[[Algorithmica]]''
*''[[Algorithmica]]''
*''[[Ars Combinatoria]]''
*''[[Ars Combinatoria (journal)|Ars Combinatoria]]''
*''[[Computational Geometry: Theory and Applications]]''
*''[[Computational Geometry (journal)|Computational Geometry: Theory and Applications]]''
*''[[Communications of the ACM]]''
*''[[Communications of the ACM]]''
*''[http://www.elsevier.com/wps/find/journaldescription.cws_home/505604/description#description Computer Aided Geometric Design]''
*''[https://web.archive.org/web/20111122080921/http://www.journals.elsevier.com/computer-aided-geometric-design/#description Computer Aided Geometric Design]''
*''[[Computer Graphics and Applications]]''
*''[[Computer Graphics and Applications]]''
*''[[Computer Graphics World]]''
*''[[Computer Graphics World]]''
*''[https://www.cgt-journal.org/index.php/cgt/index Computing in Geometry and Topology]''
*''[[Discrete & Computational Geometry]]''
*''[[Discrete & Computational Geometry]]''
*''[[Geombinatorics]]''
*''[[Geombinatorics]]''
Line 128: Line 146:
*''[[Information Processing Letters]]''
*''[[Information Processing Letters]]''
*''[[International Journal of Computational Geometry and Applications]]''
*''[[International Journal of Computational Geometry and Applications]]''
*''[[Journal of Combinatorial Theory]], series B''
*''[[Journal of Combinatorial Theory]], Series B''
*''[[Journal of Computational Geometry]]''
*''[http://intlpress.com/site/pub/pages/journals/items/jdg/_home/_main Journal of Differential Geometry]''
*''[[Journal of the ACM]]''
*''[[Journal of the ACM]]''
*''[[Journal of Algorithms]]''
*''[[Journal of Algorithms]]''
*''[[Journal of Computer and System Sciences]]
*''[[Journal of Computer and System Sciences]]''
*''[[Management Science (journal)|Management Science]]''
*''[[Management Science (journal)|Management Science]]''
*''[[Pattern Recognition (journal)|Pattern Recognition]]''
*''[[Pattern Recognition (journal)|Pattern Recognition]]''
*''[[Pattern Recognition Letters]]''
*''[[Pattern Recognition Letters]]''
*''[[SIAM Journal on Computing]]''
*''[[SIAM Journal on Computing]]''
*''[[SIGACT News]]''; featured the "Computational Geometry Column" by [[Joseph O'Rourke (professor)|Joseph O'Rourke]]
*''[[SIGACT News]]''; featured the "Computational Geometry Column" by [[Joseph O'Rourke (professor)|Joseph O'Rourke]]
*''[[Theoretical Computer Science]]''
*''[[Theoretical Computer Science (journal)|Theoretical Computer Science]]''
*''[[The Visual Computer]]''
*''[[The Visual Computer]]''


== External links ==
== External links ==
*[http://www.computational-geometry.org/ Computational Geometry]
*[http://www.computational-geometry.org/ Computational Geometry]
*[http://compgeom.cs.uiuc.edu/~jeffe/compgeom/ Computational Geometry Pages]
*[https://web.archive.org/web/20111106212300/http://compgeom.cs.uiuc.edu/~jeffe/compgeom/ Computational Geometry Pages]
*[http://www.ics.uci.edu/~eppstein/geom.html Geometry In Action]
*[http://www.ics.uci.edu/~eppstein/geom.html Geometry In Action]
*[http://www.cs.brown.edu/people/rt/sdcr/report/report.html "Strategic Directions in Computational Geometry &mdash; Working Group Report" (1996)]
*[http://www.cs.brown.edu/people/rt/sdcr/report/report.html "Strategic Directions in Computational Geometry—Working Group Report" (1996)]
*[http://jocg.org/ Journal of Computational Geometry]
*[https://web.archive.org/web/20140106103137/http://cg.aut.ac.ir/wscg (Annual) Winter School on Computational Geometry]
*[https://cglab.ca/ Computational Geometry Lab]

{{Spoken Wikipedia|en-ComputationalGeometry.ogg|date=2013-09-17}}

{{Applied mathematics}}
{{Computer science}}


{{Authority control}}
[[Category:Geometric algorithms]]
[[Category:Computational science|Geometry]]


{{DEFAULTSORT:Computational Geometry}}
[[ar:هندسة رياضية حاسوبية]]
[[Category:Computational geometry| ]]
[[de:Algorithmische Geometrie]]
[[Category:Computational fields of study]]
[[eu:Geometria konputazional]]
[[Category:Geometry processing]]
[[fa:هندسه‌ محاسباتی]]
[[fr:Géométrie algorithmique]]
[[ko:계산기하학]]
[[ja:計算幾何学]]
[[pt:Geometria computacional]]
[[ru:Вычислительная геометрия]]
[[sl:Računalniška geometrija]]
[[zh:计算几何]]

Latest revision as of 04:13, 7 April 2024

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(n2) and O(n log n) may be the difference between days and seconds of computation.

The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (CAD/CAM), but many problems in computational geometry are classical in nature, and may come from mathematical visualization.

Other important applications of computational geometry include robotics (motion planning and visibility problems), geographic information systems (GIS) (geometrical location and search, route planning), integrated circuit design (IC geometry design and verification), computer-aided engineering (CAE) (mesh generation), and computer vision (3D reconstruction).

The main branches of computational geometry are:

  • Combinatorial computational geometry, also called algorithmic geometry, which deals with geometric objects as discrete entities. A groundlaying book in the subject by Preparata and Shamos dates the first use of the term "computational geometry" in this sense by 1975.[1]
  • Numerical computational geometry, also called machine geometry, computer-aided geometric design (CAGD), or geometric modeling, which deals primarily with representing real-world objects in forms suitable for computer computations in CAD/CAM systems. This branch may be seen as a further development of descriptive geometry and is often considered a branch of computer graphics or CAD. The term "computational geometry" in this meaning has been in use since 1971.[2]

Although most algorithms of computational geometry have been developed (and are being developed) for electronic computers, some algorithms were developed for unconventional computers (e.g. optical computers [3])

Combinatorial computational geometry

[edit]

The primary goal of research in combinatorial computational geometry is to develop efficient algorithms and data structures for solving problems stated in terms of basic geometrical objects: points, line segments, polygons, polyhedra, etc.

Some of these problems seem so simple that they were not regarded as problems at all until the advent of computers. Consider, for example, the Closest pair problem:

  • Given n points in the plane, find the two with the smallest distance from each other.

One could compute the distances between all the pairs of points, of which there are n(n-1)/2, then pick the pair with the smallest distance. This brute-force algorithm takes O(n2) time; i.e. its execution time is proportional to the square of the number of points. A classic result in computational geometry was the formulation of an algorithm that takes O(n log n). Randomized algorithms that take O(n) expected time,[4] as well as a deterministic algorithm that takes O(n log log n) time,[5] have also been discovered.

Problem classes

[edit]

The core problems in computational geometry may be classified in different ways, according to various criteria. The following general classes may be distinguished.

Static problem

[edit]

In the problems of this category, some input is given and the corresponding output needs to be constructed or found. Some fundamental problems of this type are:

The computational complexity for this class of problems is estimated by the time and space (computer memory) required to solve a given problem instance.

Geometric query problems

[edit]

In geometric query problems, commonly known as geometric search problems, the input consists of two parts: the search space part and the query part, which varies over the problem instances. The search space typically needs to be preprocessed, in a way that multiple queries can be answered efficiently.

Some fundamental geometric query problems are:

  • Range searching: Preprocess a set of points, in order to efficiently count the number of points inside a query region.
  • Point location problem: Given a partitioning of the space into cells, produce a data structure that efficiently tells in which cell a query point is located.
  • Nearest neighbor: Preprocess a set of points, in order to efficiently find which point is closest to a query point.
  • Ray tracing: Given a set of objects in space, produce a data structure that efficiently tells which object a query ray intersects first.

If the search space is fixed, the computational complexity for this class of problems is usually estimated by:

  • the time and space required to construct the data structure to be searched in
  • the time (and sometimes an extra space) to answer queries.

For the case when the search space is allowed to vary, see "Dynamic problems".

Dynamic problems

[edit]

Yet another major class is the dynamic problems, in which the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition or deletion input geometric elements). Algorithms for problems of this type typically involve dynamic data structures. Any of the computational geometric problems may be converted into a dynamic one, at the cost of increased processing time. For example, the range searching problem may be converted into the dynamic range searching problem by providing for addition and/or deletion of the points. The dynamic convex hull problem is to keep track of the convex hull, e.g., for the dynamically changing set of points, i.e., while the input points are inserted or deleted.

The computational complexity for this class of problems is estimated by:

  • the time and space required to construct the data structure to be searched in
  • the time and space to modify the searched data structure after an incremental change in the search space
  • the time (and sometimes an extra space) to answer a query.

Variations

[edit]

Some problems may be treated as belonging to either of the categories, depending on the context. For example, consider the following problem.

In many applications this problem is treated as a single-shot one, i.e., belonging to the first class. For example, in many applications of computer graphics a common problem is to find which area on the screen is clicked by a pointer. However, in some applications, the polygon in question is invariant, while the point represents a query. For example, the input polygon may represent a border of a country and a point is a position of an aircraft, and the problem is to determine whether the aircraft violated the border. Finally, in the previously mentioned example of computer graphics, in CAD applications the changing input data are often stored in dynamic data structures, which may be exploited to speed-up the point-in-polygon queries.

In some contexts of query problems there are reasonable expectations on the sequence of the queries, which may be exploited either for efficient data structures or for tighter computational complexity estimates. For example, in some cases it is important to know the worst case for the total time for the whole sequence of N queries, rather than for a single query. See also "amortized analysis".

Numerical computational geometry

[edit]

This branch is also known as geometric modelling and computer-aided geometric design (CAGD).

Core problems are curve and surface modelling and representation.

The most important instruments here are parametric curves and parametric surfaces, such as Bézier curves, spline curves and surfaces. An important non-parametric approach is the level-set method.

Application areas of computational geometry include shipbuilding, aircraft, and automotive industries.

List of algorithms

[edit]

See also

[edit]

References

[edit]
  1. ^ Franco P. Preparata and Michael Ian Shamos (1985). Computational Geometry - An Introduction. Springer-Verlag. ISBN 0-387-96131-3. 1st edition; 2nd printing, corrected and expanded, 1988.
  2. ^ A.R. Forrest, "Computational geometry", Proc. Royal Society London, 321, series 4, 187-195 (1971)
  3. ^ Yevgeny B. Karasik (2019). Optical Computational Geometry. ISBN 979-8511243344.
  4. ^ S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair problem. Inf. Comput., 118(1):34—37,1995 (PDF)
  5. ^ S. Fortune and J.E. Hopcroft. "A note on Rabin's nearest-neighbor algorithm." Information Processing Letters, 8(1), pp. 20—23, 1979

Further reading

[edit]

Journals

[edit]

Combinatorial/algorithmic computational geometry

[edit]

Below is the list of the major journals that have been publishing research in geometric algorithms. Please notice with the appearance of journals specifically dedicated to computational geometry, the share of geometric publications in general-purpose computer science and computer graphics journals decreased.

[edit]
Listen to this article (9 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 17 September 2013 (2013-09-17), and does not reflect subsequent edits.