Jump to content

Ephedrine: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m "probably" instead of "likely". "Likely" is an adjective, not an adverb. Therefore either "likely to be safe in pregnancy " or "probably safe in pregnancy" buit not "likely safe in pregnancy". This is a common grammar mistake.
 
(933 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Medication and stimulant}}
{{drugbox |
{{Distinguish|ephedrone|epinephrine}}
| width = 200
{{cs1 config|name-list-style=vanc}}
| image = Efedryna.svg
{{Infobox drug
| image2 = Ephedrine-3d-CPK.png
| Verifiedfields = verified
| IUPAC_name = (1''R'',2''S'')-2-(methylamino)-1-phenylpropan-1-ol
| Watchedfields = verified
| CAS_number = 299-42-3
| verifiedrevid = 464189705
| ATC_prefix=R01
| image = Ephedrine v2.svg
| ATC_suffix=AA03
| width = 200px
| ATC_supplemental = {{ATC|R03|CA02}} {{ATC|S01|FB02}}
| alt = Chemical structure of the (1''R'',2''S'')-ephedrine molecule
| PubChem=5032
| image2 = (1R,2S)-Ephedrine molecule from xtal ball.png
| DrugBank=DB01364
| ChemSpiderID = 8935
| width2 = 225px
| alt2 = Ball-and-stick model of the (1''R'',2''S'')-ephedrine molecule
|smiles = O[C@@H]([C@H](C)NC)c1ccccc1
| caption = (−)-(1''R'',2''S'')-ephedrine chemical structure (top) and ball-and-stick model (bottom)
| C=10 | H=15 | N=1 | O=1

| molecular_weight = 165.23
<!-- Clinical data -->| pronounce = {{IPAc-en|audio=En-us-ephedrine.ogg|ᵻ|ˈ|f|ɛ|d|r|ɪ|n}} or {{IPAc-en|ˈ|ɛ|f|ᵻ|d|r|iː|n}}
| bioavailability = 85%
| tradename = Akovaz, Corphedra, Emerphed, others
| metabolism = minimal [[hepatic]]
| Drugs.com = Ephedrine: {{drugs.com|monograph|ephedrine}}<br />HCl: {{drugs.com|monograph|ephedrine-hydrochloride}}<br />Sulfate: {{drugs.com|monograph|ephedrine-sulfate}}
| elimination_half-life = 3–6 hours
| excretion = 22-99% [[renal]]
| pregnancy_AU = A
| pregnancy_AU = A
| pregnancy_AU_comment =
| pregnancy_US = A
| pregnancy_category =
| pregnancy_category =
| ATC_prefix = C01
| ATC_suffix = CA26
| ATC_supplemental = {{ATC|R01|AA03}}, {{ATC|R01|AB05}} (combinations), {{ATC|R03|CA02}}, {{ATC|S01|FB02}}, {{ATCvet|G04|BX90}}
| legal_AU = S4
| legal_AU = S4
| legal_BR = D1
| legal_CA = Schedule VI
| legal_BR_comment = <ref>{{Cite web |author=Anvisa |author-link=Brazilian Health Regulatory Agency |date=2023-03-31 |title=RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial |trans-title=Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control|url=https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-784-de-31-de-marco-de-2023-474904992 |url-status=live |archive-url=https://web.archive.org/web/20230803143925/https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-784-de-31-de-marco-de-2023-474904992 |archive-date=2023-08-03 |access-date=2023-08-15 |publisher=[[Diário Oficial da União]] |language=pt-BR |publication-date=2023-04-04}}</ref>
| legal_UK = P
| legal_US = OTC
| legal_CA = Schedule VI
| legal_status =
| legal_UK = POM
| legal_UK_comment = /{{nbsp}}P<ref>{{cite web | title=Ephedrine Hydrochloride 15mg Tablets Summary of Product Characteristics (SmPC) | website=emc | url=https://www.medicines.org.uk/emc/product/2577/smpc | access-date=8 October 2020}}</ref><ref>{{cite web | title=Ephedrine Nasal Drops 1.0% Summary of Product Characteristics (SmPC) | website=emc | date=11 March 2015 | url=https://www.medicines.org.uk/emc/product/4840/smpc | access-date=8 October 2020 | archive-date=24 October 2020 | archive-url=https://web.archive.org/web/20201024054433/https://www.medicines.org.uk/emc/product/4840/smpc | url-status=dead }}</ref>
| routes_of_administration = oral, [[intravenous|IV]], [[intramuscular|IM]], [[subcutaneous|SC]]
| legal_US = Rx-only
| legal_US_comment = /{{nbsp}}OTC<ref>{{cite web | title=Akovaz- ephedrine sulfate injection | website=DailyMed | date=16 April 2020 | url=https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=25828db2-4942-4f7c-a0d5-dc66f82cfb71 | access-date=8 October 2020}}</ref><ref>{{cite web | url=https://ecfr.federalregister.gov/current/title-21/chapter-I/subchapter-D/part-341/subpart-C/section-341.80 | title=Title 21: Food And Drugs Part 341—Cold, Cough, Allergy, Bronchodilator, And Antiasthmatic Drug Products For Over-The-Counter Human Use | website=Electronic Code of Federal Regulations | access-date=8 October 2020}}</ref>
| routes_of_administration = [[Oral administration|By mouth]], [[intravenous]] (IV), [[intramuscular]] (IM), [[subcutaneous injection|subcutaneous]] (SC)

<!-- Pharmacokinetic data -->| bioavailability = 88%<ref name="DrugBank" />
| protein_bound = ~24–29% (5–10% to [[human serum albumin|albumin]])<ref name="VolppHolzgrabe2019">{{cite journal | vauthors = Volpp M, Holzgrabe U | title = Determination of plasma protein binding for sympathomimetic drugs by means of ultrafiltration | journal = Eur J Pharm Sci | volume = 127 | issue = | pages = 175–184 | date = January 2019 | pmid = 30391401 | doi = 10.1016/j.ejps.2018.10.027 | url = }}</ref><ref name="Schmidt2023">{{cite thesis | vauthors = Schmidt S | title=Lang-etablierte Arzneistoffe genauer unter die Lupe genommen: Enantioselektive Proteinbindung und Stabilitätsstudien | trans-title = A closer look at long-established drugs: enantioselective protein binding and stability studies | language = de | publisher= Universität Würzburg | date=2023 | doi=10.25972/opus-34594 | page=}}</ref><ref name="GadAzabKhattab2021">{{cite journal | vauthors = Gad MZ, Azab SS, Khattab AR, Farag MA | title = Over a century since ephedrine discovery: an updated revisit to its pharmacological aspects, functionality and toxicity in comparison to its herbal extracts | journal = Food Funct | volume = 12 | issue = 20 | pages = 9563–9582 | date = October 2021 | pmid = 34533553 | doi = 10.1039/d1fo02093e | url = }}</ref>
| metabolism = Largely unmetabolized<ref name="DrugBank" /><ref name="ChuaBenrimojTriggs1989" />
| metabolites = • [[Norephedrine]]<ref name="DrugBank" /><ref name="ChuaBenrimojTriggs1989">{{cite journal | vauthors = Chua SS, Benrimoj SI, Triggs EJ | title = Pharmacokinetics of non-prescription sympathomimetic agents | journal = Biopharm Drug Dispos | volume = 10 | issue = 1 | pages = 1–14 | date = 1989 | pmid = 2647163 | doi = 10.1002/bdd.2510100102 | url = }}</ref>
| onset = [[Oral administration|Oral]]: 15–60 minutes<ref name="AHFS2016" /><br />{{Abbrlink|IM|Intramuscular injection}}: 10–20 minutes<ref name="AHFS2016" /><br />{{Abbrlink|IV|Intravenous administration}}: Rapid<ref name="AHFS2016" />
| elimination_half-life = 6{{nbsp}}hours<ref name="DrugBank">{{cite web | title=Ephedrine: Uses, Interactions, Mechanism of Action | website=DrugBank Online | date=29 April 2016 | url=https://go.drugbank.com/drugs/DB01364 | access-date=14 July 2024}}</ref>
| duration_of_action = [[Oral administration|Oral]]: 2–4{{nbsp}}hours<br />IV/IM: 60{{nbsp}}minutes
| excretion = Mainly [[urine]] (60% unchanged)<ref name="DrugBank" />

<!-- Identifiers -->| index2_label = as sulfate
| CAS_number_Ref = {{cascite|correct|CAS}}
| CAS_number = 299-42-3
| CAS_number2_Ref = {{cascite|correct|CAS}}
| CAS_number2 = 134-72-5
| CAS_supplemental = <br />[https://commonchemistry.cas.org/detail?cas_rn=50-98-6 50-98-6] ([[hydrochloride]])
| PubChem = 9294
| IUPHAR_ligand = 556
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB01364
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 8935
| ChemSpiderID2_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID2 = 4514262
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = GN83C131XS
| UNII2 = U6X61U5ZEG
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00124
| KEGG2_Ref = {{keggcite|correct|kegg}}
| KEGG2 = D04018
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 15407
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 211456
| ChEMBL2_Ref = {{ebicite|correct|EBI}}
| ChEMBL2 = 1523964
| synonyms = (−)-Ephedrine; (1''R'',2''S'')-Ephedrine; (1''R'',2''S'')-β-Hydroxy-''N''-methylamphetamine; (1''R'',2''S'')-β-Hydroxy-''N''-methyl-α-methyl-β-phenethylamine

<!-- Chemical data -->| IUPAC_name = (1''R'',2''S'')-2-(methylamino)-1-phenylpropan-1-ol
| C = 10
| H = 15
| N = 1
| O = 1
| SMILES = C[C@@H]([C@@H](C1=CC=CC=C1)O)NC
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C10H15NO/c1-8(11-2)10(12)9-6-4-3-5-7-9/h3-8,10-12H,1-2H3/t8-,10-/m0/s1
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = KWGRBVOPPLSCSI-WPRPVWTQSA-N
}}
}}
<!-- Definition and medical uses -->
'''Ephedrine''' (EPH) is a [[sympathomimetic]] [[amine]] commonly used as a [[stimulant]], appetite suppressant, concentration aid, [[decongestant]], and to treat [[hypotension]] associated with anaesthesia. Ephedrine is similar in structure to the synthetic derivatives [[amphetamine]] and [[methamphetamine]]. Chemically, it is an [[alkaloid]] derived from various plants in the genus ''[[Ephedra (genus)|Ephedra]]'' (family [[Ephedraceae]]). It is most usually marketed in the '''hydrochloride''' and '''sulfate''' forms.


'''Ephedrine''' is a [[central nervous system]] (CNS) [[stimulant]] and [[sympathomimetic agent]] that is often used to prevent [[hypotension|low blood pressure]] during [[anesthesia]].<ref name=AHFS2016>{{cite web|title=Ephedrine|url=https://www.drugs.com/monograph/ephedrine.html|publisher=The American Society of Health-System Pharmacists|access-date= 8 September 2017 |url-status=live|archive-url=https://web.archive.org/web/20170909053108/https://www.drugs.com/monograph/ephedrine.html|archive-date=2017-09-09}}</ref> It has also been used for [[asthma]], [[narcolepsy]], and [[obesity]] but is not the preferred treatment.<ref name=AHFS2016/> It is of unclear benefit in [[nasal congestion]].<ref name=AHFS2016/> It can be taken [[oral administration|by mouth]] or by [[intramuscular|injection into a muscle]], [[intravenous|vein]], or [[subcutaneous injection|just under the skin]].<ref name=AHFS2016/> Onset with intravenous use is fast, while injection into a muscle can take 20{{nbsp}}minutes, and by mouth can take an hour for effect.<ref name=AHFS2016/> When given by injection, it lasts about an hour, and when taken by mouth, it can last up to four hours.<ref name=AHFS2016/>
In traditional Chinese medicines, the herb ''má huáng'' (麻黄, ''[[Ephedra sinica]]'') contains ephedrine and [[pseudoephedrine]] as its principal active constituents. The same is true of other herbal products containing extracts from ''Ephedra'' species. [[Nagayoshi Nagai]] was the first one to isolate ephedrine from ''[[Ephedra distachya]]'' ([[syn.]] ''Ephedra vulgaris'') in [[1885]]. The substance called [[soma]] mentioned in old [[Hindu]] books such as the [[Rig Veda]], may have been [[ephedra]] extract. This, however, is disputed, as the [[Botanical identity of Soma-Haoma|identity of ''soma'']].


<!-- Side effects and mechanism of action -->
The production of ephedrine in China has become a multi-million dollar export industry. Companies producing for export extract US$13 million worth of ephedrine from 30,000 tons of ephedra annually, 10 times the amount that is used in traditional Chinese medicine.<ref name=Chen> Long, Professor. http://www.chinadialogue.net/article/show/single/en/692-Chinese-medicine-s-great-waste-of-resources</ref>
Common [[side effect]]s include [[insomnia|trouble sleeping]], [[anxiety]], [[headache]], [[hallucination]]s, [[hypertension|high blood pressure]], [[tachycardia|fast heart rate]], [[decreased appetite|loss of appetite]], and [[urinary retention]].<ref name=AHFS2016/> Serious side effects include [[stroke]] and [[myocardial infarction|heart attack]].<ref name=AHFS2016/> While probably safe in [[pregnancy]], its use in this population is poorly studied.<ref>{{cite book| vauthors = Briggs GG, Freeman RK, Yaffe SJ |title=Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk|date=2011|publisher=Lippincott Williams & Wilkins|location=Philadelphia|isbn=9781608317080|page=495|edition=9th|url=https://books.google.com/books?id=OIgTE4aynrMC&pg=PA495|url-status=live|archive-url= https://web.archive.org/web/20170908191457/https://books.google.com/books?id=OIgTE4aynrMC&pg=PA495 |archive-date=2017-09-08}}</ref><ref name=PB2016>{{cite web|title=Ephedrine Pregnancy and Breastfeeding Warnings|url=https://www.drugs.com/pregnancy/ephedrine.html|access-date=8 October 2017|url-status=live|archive-url=https://web.archive.org/web/20170805145931/https://www.drugs.com/pregnancy/ephedrine.html|archive-date=5 August 2017}}</ref> Use during [[breastfeeding]] is not recommended.<ref name=PB2016/> Ephedrine works by [[norepinephrine releasing agent|inducing the release of norepinephrine]] and hence indirectly activating the [[α-adrenergic receptor|α-]] and [[β-adrenergic receptor]]s.<ref name=AHFS2016/> Chemically, ephedrine is a [[substituted amphetamine]] and is the (1''R'',2''S'')-[[enantiomer]] of [[hydroxymethylamphetamine|β-hydroxy-''N''-methylamphetamine]].<ref name="PubChem" />

<!-- History, society, and culture -->
Ephedrine was first [[chemical isolate|isolated]] in 1885 and came into commercial use in 1926.<ref>{{cite book | vauthors = Soni MG, Shelke K, Amin R, Talati | chapter = A Lessons from the Use of Ephedra Products as a Dietary Supplement | veditors = Bagchi D, Preuss HG |title=Obesity epidemiology, pathophysiology, and prevention|date=2013|publisher=CRC Press|location=Boca Raton, Florida|isbn=9781439854266|page=692|edition=2nd|chapter-url=https://books.google.com/books?id=6oHRBQAAQBAJ&pg=PA692|url-status=live|archive-url=https://web.archive.org/web/20170908191457/https://books.google.com/books?id=6oHRBQAAQBAJ&pg=PA692|archive-date=2017-09-08}}</ref><ref name=Fis2006>{{cite book | vauthors = Fischer J, Ganellin CR |title=Analogue-based Drug Discovery |date=2006 |publisher=John Wiley & Sons |isbn=9783527607495 |page=541 |url=https://books.google.com/books?id=FjKfqkaKkAAC&pg=PA541 }}</ref> It is on the [[WHO Model List of Essential Medicines|World Health Organization's List of Essential Medicines]].<ref name="WHO22nd">{{cite book | vauthors = ((World Health Organization)) | title = World Health Organization model list of essential medicines: 22nd list (2021) | year = 2021 | hdl = 10665/345533 | author-link = World Health Organization | publisher = World Health Organization | location = Geneva | id = WHO/MHP/HPS/EML/2021.02 | hdl-access=free }}</ref> It is available as a [[generic medication]].<ref name=AHFS2016/> It can normally be found in plants of the ''[[Ephedra (plant)|Ephedra]]'' genus.<ref name="AHFS2016" /><ref name="AbourashedEl-AlfyKhan2003">{{cite journal | vauthors = Abourashed EA, El-Alfy AT, Khan IA, Walker L | s2cid = 41083359 | title = Ephedra in perspective—a current review | journal = Phytotherapy Research | volume = 17 | issue = 7 | pages = 703–712 | date = August 2003 | pmid = 12916063 | doi = 10.1002/ptr.1337 }}</ref> [[Over-the-counter drug|Over-the-counter]] [[dietary supplement]]s containing ephedrine are illegal in the [[United States]],<ref name="AHFS2016" /> with the exception of those used in [[traditional Chinese medicine]], where its presence is noted by [[Ephedra (plant)|''má huáng'']].<ref name=AHFS2016/><ref name="AbourashedEl-AlfyKhan2003" />

==Medical uses==
[[Image:EphedrineInBottles.jpg|thumb|right|Ephedrine Sulphate (1932), Ephedrine Compound (1932), and Swan-Myers Ephedrine Inhalant No. 66 (''circa'' 1940).]]

Ephedrine is a non-[[catecholamine]] [[sympathomimetic]] with cardiovascular effects similar to those of [[adrenaline]]/epinephrine: increased blood pressure, heart rate, and contractility. Like [[pseudoephedrine]] it is a [[bronchodilator]], with pseudoephedrine having considerably less effect.<ref name=Butterworth2022>{{cite book | vauthors = Butterworth IV JF, Mackey DC, Wasnick JD | chapter = Chapter 14. Adrenergic Agonists & Antagonists. | title = Morgan & Mikhail's Clinical Anesthesiology | edition = 7th | date = 2022 | publisher = McGraw-Hill Education | chapter-url = https://accessanesthesiology.mhmedical.com/content.aspx?bookid=3194&sectionid=266518784 | isbn = 978-1-260-47379-7 }}</ref><ref name='drew'>{{cite journal | vauthors = Drew CD, Knight GT, Hughes DT, Bush M | title = Comparison of the effects of D-(-)-ephedrine and L-(+)-pseudoephedrine on the cardiovascular and respiratory systems in man | journal = British Journal of Clinical Pharmacology | volume = 6 | issue = 3 | pages = 221–5 | date = September 1978 | pmid = 687500 | pmc = 1429447 | doi = 10.1111/j.1365-2125.1978.tb04588.x }}</ref>

Ephedrine may decrease [[motion sickness]], but it has mainly been used to decrease the sedating effects of other medications used for motion sickness.<ref>{{cite book | vauthors = Buckey Jr JC |title=Space Physiology |date=2006 |publisher=Oxford University Press |isbn= 978-0-1997-4790-0 |page=201 |url= https://books.google.com/books?id=Jn_i6KbutXYC&pg=PA201 }}</ref><ref>{{cite book | vauthors = Sanford CA, Jong EC |title=The Travel and Tropical Medicine Manual E-Book |date=2008 |publisher=Elsevier Health Sciences |isbn=978-1437710694 |page=139 |url= https://books.google.com/books?id=gAz-_hBG90sC&pg=PA139 }}</ref>

Ephedrine is also found to have quick and long-lasting responsiveness in [[congenital myasthenic syndrome]] in early childhood and also even in adults with a novel [[COLQ]] mutation.<ref>{{Cite journal| vauthors = Higashida K, Yamada M, Shimohata T |date=2021-04-13|title=Quick and long-lasting responsiveness by ephedrine in an adult woman with congenital myasthenic syndrome associated with a novel COLQ mutation. (2928) |url= https://n.neurology.org/content/96/15_Supplement/2928 |journal=Neurology|volume=96|issue=15 Supplement|doi=10.1212/WNL.96.15_supplement.2928 |s2cid=266124150 |issn=0028-3878}}</ref>

Ephedrine is administered by intravenous boluses. Redosing usually requires increased doses to offset the development of [[tachyphylaxis]], which is attributed to the depletion of catecholamine stores.<ref name=Butterworth2022/>

===Weight loss===
Ephedrine promotes modest short-term [[weight loss]],<ref>{{cite journal | vauthors = Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, Rhodes SL, Jungvig L, Gagné J | display-authors = 6 | title = Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis | journal = JAMA | volume = 289 | issue = 12 | pages = 1537–45 | date = March 2003 | pmid = 12672771 | doi = 10.1001/jama.289.12.1470 }}</ref> specifically fat loss, but its long-term effects are unknown.<ref>{{cite journal | vauthors = Dwyer JT, Allison DB, Coates PM | title = Dietary supplements in weight reduction | journal = Journal of the American Dietetic Association | volume = 105 | issue = 5 Suppl 1 | pages = S80-6 | date = May 2005 | pmid = 15867902 | doi = 10.1016/j.jada.2005.02.028 | url = https://zenodo.org/record/1259087 }}</ref> In mice, ephedrine is known to stimulate [[thermogenesis]] in the [[brown adipose tissue]], but because adult humans have only small amounts of brown fat, thermogenesis is assumed to take place mostly in the [[skeletal muscle]]. Ephedrine also decreases [[gastric emptying]]. [[Methylxanthine]]s such as [[caffeine]] and [[theophylline]] have a synergistic effect with ephedrine for weight loss. This led to the creation and marketing of compound products.<ref name="BrayBouchard2004">{{cite book | vauthors = Bray GA, Bouchard C |title=Handbook of obesity |url= https://books.google.com/books?id=YVQPOfKYJhUC&pg=PA494 |year=2004 |publisher= CRC Press |isbn=978-0-8247-4773-2 |pages=494–496 |url-status=live |archive-url= https://web.archive.org/web/20140626190101/http://books.google.com/books?id=YVQPOfKYJhUC&pg=PA494 |archive-date= 2014-06-26}}</ref> One of them, known as the [[ECA stack]], contains ephedrine with caffeine and aspirin. It is a popular supplement taken by [[bodybuilding|bodybuilders]] seeking to cut body fat before a competition.<ref>{{cite journal | vauthors = Magkos F, Kavouras SA | title = Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects | journal = Sports Medicine | volume = 34 | issue = 13 | pages = 871–89 | year = 2004 | pmid = 15487903 | doi = 10.2165/00007256-200434130-00002 | s2cid = 1966020 }}</ref>
A 2021 systematic review found that ephedrine led to a {{convert|2|kg}} weight loss greater than placebo, raised [[heart rate]], and reduced [[LDL]] and raised [[High-density lipoprotein|HDL]], with no statistically significant difference in [[blood pressure]].<ref>{{cite journal | vauthors = Yoo HJ, Yoon HY, Yee J, Gwak HS | title = Effects of Ephedrine-Containing Products on Weight Loss and Lipid Profiles: A Systematic Review and Meta-Analysis of Randomized Controlled Trials | journal = Pharmaceuticals | volume = 14 | issue = 11 | pages = 1198 | date = November 2021 | pmid = 34832979 | pmc = 8618781 | doi = 10.3390/ph14111198 | doi-access = free }}</ref>

===Available forms===
{{See also|Theophylline/ephedrine}}

Ephedrine is available as a [[prescription drug|prescription-only]] [[pharmaceutical drug]] in the form of an [[intravenous]] [[Solution (chemistry)|solution]], under brand names including Akovaz, Corphedra, Emerphed, and Rezipres as well as in [[generic drug|generic form]]s, in the [[United States]].<ref name="Drugs@FDA">{{cite web | title=Drugs@FDA: FDA-Approved Drugs | publisher = Food and Drug Administration | website=accessdata.fda.gov | url=https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm | access-date=14 July 2024}}</ref><ref name="DailyMed">{{cite web | title=Search Results for ephedrine | website=DailyMed | url=https://dailymed.nlm.nih.gov/dailymed/search.cfm?query=ephedrine&searchdb=all&labeltype=all&sortby=rel&audience=professional&page=1&pagesize=200 | access-date=14 July 2024}}</ref> It is also available [[over-the-counter drug|over-the-counter]] in the form of 12.5 and 25{{nbsp}}mg [[oral administration|oral]] [[tablet (pharmacy)|tablet]]s for use as a [[bronchodilator]] and as a 0.5% concentration [[nasal spray]] for use as a [[decongestant]].<ref name="DailyMed" /> The drug is additionally available in [[combination drug|combination]] with [[guaifenesin]] in the form of oral tablets and liquids.<ref name="DailyMed" /> Ephedrine is provided as the [[hydrochloride]] or [[sulfate]] [[salt (chemistry)|salt]] in pharmaceutical formulations.<ref name="Drugs@FDA" /><ref name="DailyMed" />

==Contraindications==
Ephedrine should not be used in conjunction with certain antidepressants, namely [[norepinephrine-dopamine reuptake inhibitors]] (NDRIs), as this increases the risk of symptoms due to excessive serum levels of norepinephrine.

[[Bupropion]] is an example of an antidepressant with an amphetamine-like structure similar to ephedrine, and it is an NDRI. Its action bears more resemblance to amphetamine than to [[fluoxetine]] in that its primary mode of therapeutic action involves norepinephrine and to a lesser degree dopamine, but it also releases some [[serotonin]] from presynaptic clefts. It should not be used with ephedrine, as it may increase the likelihood of side effects.

Ephedrine should be used with caution in patients with inadequate fluid replacement, impaired adrenal function, [[Hypoxia (medical)|hypoxia]], [[hypercapnia]], [[acidosis]], [[hypertension]], [[hyperthyroidism]], [[prostatic hypertrophy]], [[diabetes mellitus]], [[cardiovascular]] disease, during delivery if maternal blood pressure is >130/80 mmHg, and during lactation.<ref name =Mayne>Mayne Pharma. Ephedrine sulfate injection DBL (Approved Product Information). Melbourne: Mayne Pharma; 2004</ref>

[[Contraindications]] for the use of ephedrine include: [[glaucoma|closed-angle glaucoma]], [[phaeochromocytoma]], [[Hypertrophic cardiomyopathy#Obstructive and non-obstructive|asymmetric septal hypertrophy]] (idiopathic hypertrophic subaortic stenosis), concomitant or recent (previous 14 days) [[monoamine oxidase inhibitor]] (MAOI) therapy, general [[anaesthesia]] with halogenated hydrocarbons (particularly halothane), tachyarrhythmias or ventricular fibrillation, or hypersensitivity to ephedrine or other stimulants.{{citation needed|date=March 2023}}

Ephedrine should not be used at any time during pregnancy unless specifically indicated by a qualified physician and only when other options are unavailable.<ref name =Mayne />

==Side effects==
Ephedrine is a potentially dangerous natural compound; {{as of|2004|lc=yes}} the US [[Food and Drug Administration]] had received over 18,000 reports of adverse effects in people using it.<ref name="Palamar2011" />

[[Adverse drug reaction]]s (ADRs) are more common with systemic administration (e.g. injection or oral administration) compared to topical administration (e.g. nasal instillations). ADRs associated with ephedrine therapy include <ref name=JFC>Joint Formulary Committee. [[British National Formulary]], 47th edition. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2004. {{ISBN|0-85369-587-3}}</ref>

* Cardiovascular: [[tachycardia]], cardiac [[Heart arrhythmia|arrhythmia]]s, [[angina pectoris]], [[vasoconstriction]] with [[hypertension]]
* [[Dermatology|Dermatological]]: flushing, sweating, [[acne vulgaris]]
* [[Gastrointestinal tract|Gastrointestinal]]: nausea
* [[Genitourinary system|Genitourinary]]: decreased urination due to vasoconstriction of renal arteries, difficulty urinating is not uncommon, as alpha-agonists such as ephedrine constrict the internal urethral sphincter, mimicking the effects of sympathetic nervous system stimulation
* [[Nervous system]]: restlessness, [[confusion]], [[insomnia]], mild euphoria, [[mania]]/[[hallucinations]] (rare except in previously existing psychiatric conditions), [[delusions]], [[formication]] (may be possible, but lacks documented evidence) [[paranoia]], [[hostility]], [[panic]], [[Psychomotor agitation|agitation]]
* [[Respiratory system|Respiratory]]: [[dyspnea]], pulmonary edema
* Miscellaneous: dizziness, headache, tremor, [[hyperglycemia|hyperglycemic]] reactions, dry mouth

==Overdose==
[[Overdose]] of ephedrine may result in [[sympathomimetic]] [[symptom]]s like [[tachycardia]] and [[hypertension]].{{Citation needed|date=August 2024}}

==Interactions==
Ephedrine with [[monoamine oxidase inhibitor]]s (MAOIs) like [[phenelzine]] and [[tranylcypromine]] can result in [[hypertensive crisis]].{{Citation needed|date=August 2024}}

==Pharmacology==
===Pharmacodynamics===
{| class="wikitable sortable floatright" style="font-size:small;"
|+ Monoamine release by ephedrine and related agents ({{Abbrlink|EC<sub>50</sub>|half maximal effective concentration}}, nM)<ref name="RothmanBaumann2003">{{cite journal | vauthors = Rothman RB, Baumann MH | title = Monoamine transporters and psychostimulant drugs | journal = Eur. J. Pharmacol. | volume = 479 | issue = 1–3 | pages = 23–40 | year = 2003 | pmid = 14612135 | doi = 10.1016/j.ejphar.2003.08.054}}</ref><ref name="RothmanBaumann2006">{{cite journal | vauthors = Rothman RB, Baumann MH | title = Therapeutic potential of monoamine transporter substrates | journal = Curr Top Med Chem | volume = 6 | issue = 17 | pages = 1845–1859 | date = 2006 | pmid = 17017961 | doi = 10.2174/156802606778249766 | url = }}</ref>
|-
! Compound !! data-sort-type="number" | {{abbrlink|NE|Norepinephrine}} !! data-sort-type="number" | {{abbrlink|DA|Dopamine}} !! data-sort-type="number" | {{abbrlink|5-HT|Serotonin}} !! Ref
|-
| [[Dextroamphetamine]] (''S''(+)-amphetamine) || 6.6–7.2 || 5.8–24.8 || 698–1765 || <ref name="RothmanBaumannDersch2001">{{cite journal | vauthors = Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS | title = Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin | journal = Synapse | volume = 39 | issue = 1 | pages = 32–41 | date = January 2001 | pmid = 11071707 | doi = 10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3 | url = }}</ref><ref name="BaumannPartillaLehner2013">{{cite journal | vauthors = Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW | title = Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products | journal = Neuropsychopharmacology | volume = 38 | issue = 4 | pages = 552–562 | year = 2013 | pmid = 23072836 | pmc = 3572453 | doi = 10.1038/npp.2012.204 }}</ref>
|-
| [[Cathinone|''S''(–)-Cathinone]] || 12.4 || 18.5 || 2366 || <ref name="RothmanVuPartilla2003">{{cite journal | vauthors = Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA | title = In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates | journal = J Pharmacol Exp Ther | volume = 307 | issue = 1 | pages = 138–145 | date = October 2003 | pmid = 12954796 | doi = 10.1124/jpet.103.053975 | url = }}</ref>
|-
| Ephedrine ((–)-ephedrine) || 43.1–72.4 || 236–1350 || >10000 || <ref name="RothmanBaumannDersch2001" />
|-
| (+)-Ephedrine || 218 || 2104 || >10000 || <ref name="RothmanBaumannDersch2001" /><ref name="RothmanVuPartilla2003" />
|-
| [[Dextromethamphetamine]] (''S''(+)-methamphetamine) || 12.3–13.8 || 8.5–24.5 || 736–1291.7 || <ref name="RothmanBaumannDersch2001" /><ref name="BaumannAyestasPartilla2012">{{cite journal | vauthors = Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV | title = The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue | journal = Neuropsychopharmacology | volume = 37 | issue = 5 | pages = 1192–203 | date = April 2012 | pmid = 22169943 | pmc = 3306880 | doi = 10.1038/npp.2011.304 | url = }}</ref>
|-
| [[Levomethamphetamine]] (''R''(–)-methamphetamine) || 28.5 || 416 || 4640 || <ref name="RothmanBaumannDersch2001" />
|-
| [[Phenylpropanolamine|(+)-Phenylpropanolamine]] ((+)-norephedrine) || 42.1 || 302 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| [[Phenylpropanolamine|(–)-Phenylpropanolamine]] ((–)-norephedrine) || 137 || 1371 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| [[Cathine]] ((+)-norpseudoephedrine) || 15.0 || 68.3 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| [[L-Norpseudoephedrine|(–)-Norpseudoephedrine]] || 30.1 || 294 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| (–)-Pseudoephedrine || 4092 || 9125 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| [[Pseudoephedrine]] ((+)-pseudoephedrine) || 224 || 1988 || >10000 || <ref name="RothmanVuPartilla2003" />
|-
| colspan="7" style="width: 1px; background-color:#eaecf0; text-align: center;" | '''Notes:''' The smaller the value, the more strongly the substance releases the neurotransmitter. See also [[Monoamine releasing agent#Activity profiles|Monoamine releasing agent § Activity profiles]] for a larger table with more compounds.
|-
|}

Ephedrine, a [[sympathomimetic amine]], acts on part of the [[sympathetic nervous system]] (SNS). The principal mechanism of action relies on its indirect stimulation of the [[adrenergic receptor]] system by increasing activation of [[α-adrenergic receptor|α-]] and [[β-adrenergic receptor]]s via [[norepinephrine releasing agent|induction of norepinephrine release]].<ref name=merck>{{cite web | url = http://www.merckmanuals.com/professional/lexicomp/ephedrine.html | date = January 2010 | work = Merck Manuals | title = EPHEDrine | archive-url = https://web.archive.org/web/20110324031411/http://www.merckmanuals.com/professional/lexicomp/ephedrine.html | archive-date = 24 March 2011 }}</ref> The presence of direct interactions with α-adrenergic receptors is unlikely but still controversial.<ref name="Docherty2008" /><ref name='drew'/><ref name="Ma_2007">{{cite journal | vauthors = Ma G, Bavadekar SA, Davis YM, Lalchandani SG, Nagmani R, Schaneberg BT, Khan IA, Feller DR | display-authors = 6 | title = Pharmacological effects of ephedrine alkaloids on human alpha(1)- and alpha(2)-adrenergic receptor subtypes | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 322 | issue = 1 | pages = 214–221 | date = July 2007 | pmid = 17405867 | doi = 10.1124/jpet.107.120709 | s2cid = 86429875 }}</ref><ref name="pmid14570629">{{cite journal | vauthors = Kobayashi S, Endou M, Sakuraya F, Matsuda N, Zhang XH, Azuma M, Echigo N, Kemmotsu O, Hattori Y, Gando S | display-authors = 6 | title = The sympathomimetic actions of l-ephedrine and d-pseudoephedrine: direct receptor activation or norepinephrine release? | journal = Anesthesia and Analgesia | volume = 97 | issue = 5 | pages = 1239–1245 | date = November 2003 | pmid = 14570629 | doi = 10.1213/01.ANE.0000092917.96558.3C | doi-access = free }}</ref> <small>L</small>-ephedrine, and particularly its stereoisomer [[norpseudoephedrine]] (which is also present in ''[[Catha edulis]]'') has indirect [[sympathomimetic]] effects and due to its ability to cross the [[blood–brain barrier]], it is a [[Central nervous system|CNS]] [[stimulant]] similar to [[amphetamine]]s, but less pronounced, as it releases norepinephrine and [[dopamine]] in the [[brain]].<ref>{{cite journal | vauthors = Munhall AC, Johnson SW | title = Dopamine-mediated actions of ephedrine in the rat substantia nigra | journal = Brain Research | volume = 1069 | issue = 1 | pages = 96–103 | date = January 2006 | pmid = 16386715 | doi = 10.1016/j.brainres.2005.11.044 | s2cid = 40626692 }}</ref>

===Pharmacokinetics===
====Absorption====
The [[oral administration|oral]] [[bioavailability]] of ephedrine is 88%.<ref name="DrugBank" /> The [[onset of action]] of ephedrine orally is 15 to 60{{nbsp}}minutes, via [[intramuscular injection]] is 10 to 20{{nbsp}}minutes, and via [[intravenous infusion]] is within seconds.<ref name="AHFS2016" />

====Distribution====
Its [[plasma protein binding]] is approximately 24 to 29%, with 5 to 10% bound to [[human serum albumin|albumin]].<ref name="VolppHolzgrabe2019" /><ref name="Schmidt2023" /><ref name="GadAzabKhattab2021" />

====Metabolism====
Ephedrine is largely not [[drug metabolism|metabolized]].<ref name="DrugBank" /> [[Norephedrine]] (phenylpropanolamine) is an [[active metabolite]] of ephedrine formed via ''N''-[[demethylation]].<ref name="DrugBank" /><ref name="ChuaBenrimojTriggs1989" /> About 8 to 20% of an oral dose of ephedrine is demethylated into norephedrine, about 4 to 13% is [[oxidation|oxidatively]] [[deamination|deaminated]] into [[benzoic acid]], and a small fraction is converted into 1,2-dihydroxy-1-phenylpropane.<ref name="ChuaBenrimojTriggs1989" />

====Elimination====
Ephedrine is [[elimination (pharmacology)|eliminated]] mainly in [[urine]], with 60% (range 53–79%) [[excretion|excreted]] unchanged.<ref name="DrugBank" /><ref name="ChuaBenrimojTriggs1989" />

The [[elimination half-life]] of ephedrine is 6{{nbsp}}hours.<ref name="DrugBank" /> Its [[duration of action]] orally is 2 to 4{{nbsp}}hours and via intravenous or intramuscular injection is 60{{nbsp}}minutes.{{Citation needed|date=August 2024}}

The elimination of ephedrine is dependent on urinary [[pH]].<ref name="ChuaBenrimojTriggs1989" />


==Chemistry==
==Chemistry==
Ephedrine, or (−)-(1''R'',2''S'')-ephedrine, also known as (1''R'',2''S'')-β-hydroxy-''N''-methyl-α-methyl-β-phenethylamine or as (1''R'',2''S'')-β-hydroxy-''N''-methylamphetamine, is a [[substituted phenethylamine]] and [[substituted amphetamine|amphetamine]] [[chemical derivative|derivative]]. It is similar in [[chemical structure]] to [[phenylpropanolamine]], [[methamphetamine]], and [[epinephrine]] (adrenaline). It differs from methamphetamine only by the presence of a [[hydroxyl]] group (–OH). Chemically, ephedrine is an [[alkaloid]] with a [[phenethylamine]] skeleton found in various plants in the genus ''[[Ephedra (genus)|Ephedra]]'' (family [[Ephedraceae]]). It is most usually marketed as the [[hydrochloride]] or [[sulfate]] [[salt (chemistry)|salt]].<ref name="IndexNominum2004" />
Ephedrine needs to be illegal [[optical isomer]]ism and has two chiral centres. By convention the [[enantiomer]]s with opposite stereochemistry around the chiral centres are designated ephedrine, while [[pseudoephedrine]] has same stereochemistry around the chiral carbons. That is, (1''R'',2''R'')- and (1''S'',2''S'')-enantiomers are designated pseudoephedrine; while (1''R'',2''S'')- and (1''S'',2''R'')-enantiomers are designated ephedrine.


It has an experimental [[partition coefficient|log P]] of 1.13, while its predicted log P values range from 0.9 to 1.32.<ref name="PubChem">{{cite web | title=Ephedrine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/9294 | access-date=30 August 2024}}</ref><ref name="DrugBank" /><ref name="ChemSpider">{{cite web | title=L-(−)-Ephedrine | website=ChemSpider | date=30 August 2024 | url=https://www.chemspider.com/Chemical-Structure.8935.html | access-date=30 August 2024}}</ref> The [[lipophilicity]] of amphetamines is closely related to their [[blood–brain barrier|brain permeability]].<ref name="BharateMignaniWishwakarma2018">{{cite journal | vauthors = Bharate SS, Mignani S, Vishwakarma RA | title = Why Are the Majority of Active Compounds in the CNS Domain Natural Products? A Critical Analysis | journal = J Med Chem | volume = 61 | issue = 23 | pages = 10345–10374 | date = December 2018 | pmid = 29989814 | doi = 10.1021/acs.jmedchem.7b01922 | url = }}</ref> For comparison to ephedrine, the experimental log P of [[methamphetamine]] is 2.1,<ref name="SchepSlaughterBeasley2010">{{cite journal | vauthors = Schep LJ, Slaughter RJ, Beasley DM | title = The clinical toxicology of metamfetamine | journal = Clin Toxicol (Phila) | volume = 48 | issue = 7 | pages = 675–694 | date = August 2010 | pmid = 20849327 | doi = 10.3109/15563650.2010.516752 | url = | quote = Metamfetamine acts in a manner similar to amfetamine, but with the addition of the methyl group to the chemical structure. It is more lipophilic (Log p value 2.07, compared with 1.76 for amfetamine),<sup>4</sup> thereby enabling rapid and extensive transport across the blood–brain barrier.<sup>19</sup>}}</ref> of [[amphetamine]] is 1.8,<ref name="PubChem-Amphetamine">{{cite web | title=Amphetamine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/3007 | access-date=26 July 2024}}</ref><ref name="SchepSlaughterBeasley2010" /> of [[pseudoephedrine]] is 0.89,<ref name="PubChem-Pseudoephedrine">{{cite web | title=Pseudoephedrine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/7028 | access-date=25 July 2024}}</ref> of [[phenylpropanolamine]] is 0.7,<ref name="PubChem-Phenylpropanolamine">{{cite web | title=Norephedrine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/26934 | access-date=26 July 2024}}</ref> of [[phenylephrine]] is -0.3,<ref name="PubChem-Phenylephrine">{{cite web | title=Phenylephrine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/6041 | access-date=21 July 2024}}</ref> and of [[norepinephrine (medication)|norepinephrine]] is -1.2.<ref name="PubChem-Norepinephrine">{{cite web | title=Norepinephrine | website=PubChem | url=https://pubchem.ncbi.nlm.nih.gov/compound/439260 | access-date=26 July 2024}}</ref> Methamphetamine has high brain permeability,<ref name="SchepSlaughterBeasley2010" /> whereas phenylephrine and norepinephrine are [[peripherally selective drug]]s.<ref name="Eccles2007">{{cite journal | vauthors = Eccles R | title = Substitution of phenylephrine for pseudoephedrine as a nasal decongeststant. An illogical way to control methamphetamine abuse | journal = British Journal of Clinical Pharmacology | volume = 63 | issue = 1 | pages = 10–14 | date = January 2007 | pmid = 17116124 | pmc = 2000711 | doi = 10.1111/j.1365-2125.2006.02833.x }}</ref><ref name="FroeseDianGomez2020">{{cite journal | vauthors = Froese L, Dian J, Gomez A, Unger B, Zeiler FA | title = The cerebrovascular response to norepinephrine: A scoping systematic review of the animal and human literature | journal = Pharmacol Res Perspect | volume = 8 | issue = 5 | pages = e00655 | date = October 2020 | pmid = 32965778 | doi = 10.1002/prp2.655 | pmc = 7510331 | url = }}</ref> The optimal log P for brain permeation and central activity is about 2.1 (range 1.5–2.7).<ref name="PajouheshLenz2005">{{cite journal | vauthors = Pajouhesh H, Lenz GR | title = Medicinal chemical properties of successful central nervous system drugs | journal = NeuroRx | volume = 2 | issue = 4 | pages = 541–553 | date = October 2005 | pmid = 16489364 | pmc = 1201314 | doi = 10.1602/neurorx.2.4.541 | url = | quote = Lipophilicity was the first of the descriptors to be identified as important for CNS penetration. Hansch and Leo54 reasoned that highly lipophilic molecules will be partitioned into the lipid interior of membranes and will be retained there. However, ClogP correlates nicely with LogBBB with increasing lipophilicity and increasing brain penetration. For several classes of CNS active substances, Hansch and Leo54 found that blood-brain barrier penetration is optimal when the LogP values are in the range of 1.5-2.7, with a mean value of 2.1. An analysis of small drug-like molecules suggested that for better brain permeation46 and for good intestinal permeability55 the LogD values need to be greater than 0 and less than 3. In comparison, the mean value for ClogP for the marketed CNS drugs is 2.5, which is in good agreement with the range found by Hansch et al.22}}</ref>
The isomer which is marketed is (-)-(1''R'',2''S'')-ephedrine.<ref name=Reynolds>{{cite book | editor= Edited by Reynolds JEF | title=[[Martindale: The complete drug reference]] | edition=29th edition | date=1989 | publisher=Pharmaceutical Press | location=London | isbn= 0-85369-210-6}}</ref>


Ephedrine hydrochloride has a melting point of 187−188{{nbsp}}°C.<ref name=Budavari>{{cite book | veditors = Budavari S | title = The Merck Index: An encyclopedia of chemicals, drugs, and biologicals | edition = 12th | location = Whitehouse Station | publisher = Merck }}</ref>
As with other phenylethylamines, it is also somewhat chemically similar to [[methamphetamine]], although the amphetamines are more potent and have additional biological effects.


The [[racemic mixture|racemic]] form of ephedrine is [[racephedrine]] ((±)-ephedrine; ''dl''-ephedrine; (1''RS'',2''SR'')-ephedrine).<ref name="Elks2014" /> A [[stereoisomer]] of ephedrine is [[pseudoephedrine]].<ref name="Elks2014" /> [[Chemical derivative|Derivative]]s of ephedrine include [[methylephedrine]] (''N''-methylephedrine), [[etafedrine]] (''N''-ethylephedrine), [[cinnamedrine]] (''N''-cinnamylephedrine), and [[oxilofrine]] (4-hydroxyephedrine).<ref name="Elks2014" /> [[Structural analog|Analogue]]s of ephedrine include [[phenylpropanolamine]] (norephedrine) and [[metaraminol]] (3-hydroxynorephedrine).<ref name="Elks2014" />
Ephedrine may also be referred to as: (αR)-α-[(1S)-1-(methylamino)ethyl]benzenemethanol, α-[1-(methylamino)ethyl]benzyl alcohol, or L-erythro-2-(methylamino)-1-phenylpropan-1-ol. Ephedrine hydrochloride has a melting point of 187-188°C.<ref name=Budavari>Budavari S, editor. The Merck Index: An encyclopedia of chemicals, drugs, and biologicals, 12th edition. Whitehouse Station: Merck</ref>


The presence of an ''N''-[[methyl group]] decreases binding affinities at α-adrenergic receptors, compared with norephedrine. Ephedrine, though, binds better than [[N-Methylephedrine|''N''-methylephedrine]], which has an additional methyl group at the nitrogen atom. Also, the [[Stereochemistry|steric]] orientation of the hydroxyl group is important for receptor binding and functional activity.<ref name="Ma_2007" />
==Mode of action==


===Nomenclature===
Ephedrine is a sympathomimetic amine, the principal mechanism of its action relies on its direct and indirect actions on the [[adrenergic receptor]] system, which is part of the [[sympathetic nervous system]] or ''SNS''. Central nervous system or ''CNS'' involvement is present, but the predominant clinical effects are caused by involvement with the sympathetic segment of the peripheral nervous system because while ephedrine does cross the blood-brain barrier, it doesn't do this very efficiently (efficient crossers with similar modes of action would include amphetamine and methamphetamine).
[[File:Ephedrine and pseudoephedrine isomers.svg|class=skin-invert-image|thumb|400px|The four stereoisomers of ephedrine.]]


Ephedrine exhibits [[optical isomer]]ism and has two [[chirality (chemistry)|chiral]] centres, giving rise to four [[stereoisomer]]s. By convention, the pair of [[enantiomer]]s with the stereochemistry (1''R'',2''S'') and (1''S'',2''R'') is designated ephedrine, while the pair of enantiomers with the stereochemistry (1''R'',2''R'') and (1''S'',2''S'') is called pseudoephedrine.
Ephedrine increases post-synaptic noradrenergic receptor activity by (weakly) directly activating post-synaptic α-receptors and β-receptors, but the bulk of its effect comes from the pre-synaptic neuron being unable to distinguish between real adrenaline or noradrenaline from ephedrine. The ephedrine, mixed with noradrenaline, is transported through the noradrenaline reuptake complex and packaged (along with real noradrenaline) into vesicles that reside at the terminal button of a nerve cell.


The isomer which is marketed is (−)-(1''R'',2''S'')-ephedrine.<ref name=Reynolds>{{cite book | editor=Reynolds JEF | title=Martindale: The complete drug reference | edition=29th | year=1989 | publisher=Pharmaceutical Press | location=London | isbn= 978-0-85369-210-2 | vauthors = Reynolds J | title-link=Martindale: The complete drug reference }}</ref>
As an alkaloid, having some small amount of ephedrine within a noradrenaline vesicle increases the overall pH of the vesicle. This has the effect of increasing likelihood that the affected vesicle will be released during any subsequent action potential the nerve cell experiences. The nerve cells in question generally fire at some regular baseline rate; the effect of adding ephedrine is to increase the number of vesicles released during each action potential and possibly to extend the time during which noradrenaline has an opportunity to have an effect on the post-synaptic neuron by virtue of the fact that the reuptake complex has to process both noradrenaline AND ephedrine, presumably a longer process.


In the outdated [[Chirality (chemistry)#By configuration: D- and L-|<small>D</small>/<small>L</small> system]] (+)-ephedrine is also referred to as <small>D</small>-ephedrine and (−)-ephedrine as <small>L</small>-ephedrine (in which case, in the [[Fisher projection]], the [[Phenyl group|phenyl ring]] is drawn at the bottom).<ref name="Reynolds"/><ref>{{cite journal | vauthors = Patil PN, Tye A, Lapidus JB | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 148 | issue = 2 | pages = 158–68 | date = May 1965 | pmid = 14301006 | url = http://jpet.aspetjournals.org/content/148/2/158.full.pdf | title = A Pharmacological Study of the Ephedrine Isomers }}</ref>
Ephedrine's mechanism of action on neurotransmission in the brain is wide. Its action as an agonist at most major noradrenaline receptors and its ability to increase the release of both [[dopamine]] and to a lesser extent, [[serotonin]] by the same mechanism as explained above for norepinephrine, is presumed to have a major role in its mechanism of action.


Often, the <small>D</small>/<small>L</small> system (with [[small caps]]) and the d/l system (with [[lower-case]]) are confused. The result is that the levorotary l-ephedrine is wrongly named <small>L</small>-ephedrine and the dextrorotary d-pseudoephedrine (the diastereomer) wrongly <small>D</small>-pseudoephedrine.
Because of ephedrine's ability to potentiate [[dopamine]] neurotransmission it is thought to have addictive properties by some researchers{{Who|date=February 2009}}. The ability to potentiate serotonin and noradrenergic activity is clinically relevant, but is not thought to contribute to the potential for abuse.


The [[IUPAC name]]s of the two enantiomers are (1''R'',2''S'')- respectively (1''S'',2''R'')-2-methylamino-1-phenylpropan-1-ol. A synonym is ''erythro''-ephedrine.
While ephedrine's role in the serotonin system is less understood there is preliminary documentation of clinically significant agonism at excitory serotonin receptors, perhaps as a downstream response to the large release of norepinephrine in the [[nucleus accumbens]] (commonly referred to as the "pleasure center" of the brain). In mice, stereotypical behaviour was both easily induced by administration of ephedrine and its primary alkaloids and reversed when serotonin antagonists were administered.


===Detection in body fluids===
==Clinical use==
Ephedrine may be quantified in blood, plasma, or urine to monitor possible abuse by athletes, confirm a diagnosis of poisoning, or assist in a medicolegal death investigation. Many commercial [[immunoassay]] screening tests directed at the amphetamines cross-react appreciably with ephedrine, but chromatographic techniques can easily distinguish ephedrine from other phenethylamine derivatives. Blood or plasma ephedrine concentrations are typically in the 20–200{{nbsp}}μg/L range in persons taking the drug therapeutically, 300–3000{{nbsp}}μg/L in abusers or poisoned patients, and 3–20{{nbsp}}mg/L in cases of acute fatal overdosage. The current [[World Anti-Doping Agency]] (WADA) limit for ephedrine in an athlete's urine is 10{{nbsp}}μg/mL.<ref>{{cite web |url= http://list.wada-ama.org/list/s6-stimulants |title=S6. Stimulants &#124; List of Prohibited Substances and Methods |access-date= 2015-10-19 |url-status=dead |archive-url= https://web.archive.org/web/20151023042222/http://list.wada-ama.org/list/s6-stimulants/ |archive-date=2015-10-23 }}</ref><ref>{{cite journal | vauthors = Schier JG, Traub SJ, Hoffman RS, Nelson LS | title = Ephedrine-induced cardiac ischemia: exposure confirmed with a serum level | journal = Journal of Toxicology. Clinical Toxicology | volume = 41 | issue = 6 | pages = 849–53 | year = 2003 | pmid = 14677795 | doi = 10.1081/clt-120025350 | s2cid = 23359388 }}</ref><ref>WADA. ''The World Anti-Doping Code'', World Anti-Doping Agency, Montreal, Canada, 2010. [http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/WADA_Prohibited_List_2010_EN.pdf url] {{webarchive|url=https://web.archive.org/web/20130911050811/http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/WADA_Prohibited_List_2010_EN.pdf |date=2013-09-11 }}</ref><ref>{{cite book | vauthors = Baselt R | title = Disposition of Toxic Drugs and Chemicals in Man | edition = 8th | publisher = Biomedical Publications | location = Foster City, CA | date = 2008 | pages = 542–544 }}</ref>
[[Image:EphedrineInBottles.jpg|thumb|right|Ephedrine Sulphate (1932) Ephedrine Compound (1932) and Swan-Myers Ephedrine Inhalant No. 66 (ca. 1940)]]
===Indications===
Ephedrine was once widely used as a [[topical decongestant]] and as a [[bronchodilator]] in the treatment for [[asthma]]. It continues to be used for these indications, although its popularity is waning due to the availability of more effective agents for these indications which exhibit fewer adverse effects.<ref name=JFC>Joint Formulary Committee. [[British National Formulary]], 47th edition. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2004. ISBN 0853695873 </ref> The role in nasal congestion has largely been replaced by more potent α-adrenergic receptor agonists (e.g. [[oxymetazoline]]). Similarly the role of ephedrine in asthma has been almost entirely replaced by β<sub>2</sub>-adrenergic receptor agonists (e.g. [[salbutamol]]). Ephedrine continues to be used [[intravenous]]ly in the reversal of [[hypotension]] from spinal/[[epidural anaesthesia]].<ref name=JFC /> It is also used in other hypotensive states, including overdose with [[muscle relaxant|ganglionic blocking agents]], antiadrenergic agents, or other medications that lower blood pressure.<ref name=Bicopoulous>Bicopoulos D, editor. AusDI: Drug information for the healthcare professional, 2nd edition. Castle Hill: Pharmaceutical Care Information Services; 2002.</ref> It can be used in [[narcolepsy]] and nocturnal [[enuresis]]. It also remains the only drug available to treat the symptoms of certain types of Congenital Myasthenia.


==History==
In traditional Chinese medicine, ephedrine has been used in the treatment of asthma and bronchitis for centuries.<ref name=Ford>Ford MD, Delaney KA, Ling LJ, Erickson T, editors. Clinical Toxicology. Philadelphia: WB Saunders; 2001. ISBN 0-7216-5485-1
===Asia===
Research Laboratories; 1996. ISBN 0-911910-12-3</ref>
Ephedrine in its natural form, known as [[Ephedra (plant)|''máhuáng'']] (麻黄) in [[traditional Chinese medicine]], has been documented in China since the [[Han dynasty]] (206 BC – 220 AD) as an [[Asthma|antiasthmatic]] and stimulant.<ref name="principles">{{cite book| vauthors = Levy WO, Kalidas K | veditors = Miller NS |title=Principles of Addictions and the Law: Applications in Forensic, Mental Health, and Medical Practice|date=26 February 2010|publisher=Academic Press|isbn=978-0-12-496736-6|pages=307–308}}</ref> In traditional Chinese medicine, ''máhuáng'' has been used as a treatment for asthma and bronchitis for centuries.<ref name=Ford>{{cite book | veditors = Ford MD, Delaney KA, Ling LJ, Erickson T | title = Clinical Toxicology | location = Philadelphia | publisher = WB Saunders | date = 2001 | isbn = 0-7216-5485-1}}</ref>


In 1885, the chemical synthesis of ephedrine was first accomplished by Japanese [[organic chemist]] [[Nagai Nagayoshi]] based on his research on [[Japanese traditional medicine|traditional Japanese]] and [[Chinese herbology|Chinese herbal medicines]].
An [[ECA stack]] is a component found in thermogenic weight loss pills, composed of ephedrine, caffeine and aspirin (many supplement manufacturers include [[salicin]] instead of aspirin) working to speed up the metabolism and thus cause [[food energy]] to burn faster. The ECA stack is a popular supplement taken by [[bodybuilding|body builders]] before workouts due to the increased amount of energy and alertness.


The industrial manufacture of ephedrine in China began in the 1920s, when [[Merck & Co.|Merck]] began marketing and selling the drug as ephetonin. Ephedrine exports from China to the West grew from 4 to 216 tonnes between 1926 and 1928.<ref name="Dikotter">{{cite book | vauthors = Dikotter F, Laamann LP |title= Narcotic Culture: A History of Drugs in China |date=16 April 2004 |publisher=University of Chicago Press |isbn=978-0-226-14905-9 |page= 199 }}</ref>
For many years, the US Coast Guard recommended ephedrine together with an equal 25&nbsp;mg dose of [[promethazine]] to its sailors to combat [[seasickness]]. Promethazine manages nausea and ephedrine fights the ensuing drowsiness. Commonly referred to as the [[Coast Guard cocktail]], ephedrine may still be available for prescription for this purpose.


===Adverse effects===
===Western medicine===
Ephedrine was first introduced for medical use in the [[United States]] in 1926.<ref name="Palamar2011">{{cite journal | vauthors = Palamar J | title = How ephedrine escaped regulation in the United States: a historical review of misuse and associated policy | journal = Health Policy | volume = 99 | issue = 1 | pages = 1–9 | date = January 2011 | pmid = 20685002 | doi = 10.1016/j.healthpol.2010.07.007 | url = }}</ref>
[[Adverse drug reaction]]s (ADRs) are more common with systemic administration (e.g. injection or oral administration) compared to topical administration (e.g. nasal instillations). ADRs associated with ephedrine therapy include:<ref name=JFC />


It was introduced in 1948 in [[Vicks]] Vatronol nose drops (now discontinued) which contained ephedrine sulfate as the active ingredient for rapid nasal decongestion.
*Cardiovascular: [[tachycardia]], cardiac [[arrhythmia]]s, [[Angina pectoris]], [[vasoconstriction]] with [[hypertension]]
*[[Dermatology|Dermatological]]: flushing, sweating, [[acne vulgaris]]
*[[Gastrointestinal tract|Gastrointestinal]]: nausea, appetite loss
*[[Genitourinary system|Genitourinary]]: increased urine output due to increased blood flow (difficulty urinating is not uncommon, as alpha-agonists such as ephedrine constrict the internal urethral sphincter, mimicking the effects of sympathetic nervous system stimulation)
*[[Nervous system]]: restlessness, [[confusion]], [[insomnia]], mild euphoria, [[mania]]/[[hallucinations]] (rare except in previously existing psychiatric conditions), [[delusions]], [[formication]] (may be possible, but lacks documented evidence) [[paranoia]], [[hostility]], [[panic]], [[agitation]]
*[[Respiratory system|Respiratory]]: [[dyspnea]], pulmonary edema
*Miscellaneous: dizziness, headache, tremor, [[hyperglycemia|hyperglycemic]] reactions


==Society and culture==
The approved maximum daily dosage of ephedrine for use as a bronchodilator is 150&nbsp;mg, as specified on the packaging of the bronchodilator and expectorant combination, '''Bronkaid''', made by Bayer pharmaceuticals.
===Names===
''Ephedrine'' is the [[generic term|generic name]] of the drug and its {{Abbrlink|BAN|British Approved Name}}.<ref name="Elks2014">{{cite book | last=Elks | first=J. | title=The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies | publisher=Springer US | year=2014 | isbn=978-1-4757-2085-3 | url=https://books.google.com/books?id=0vXTBwAAQBAJ&pg=PA793 | access-date=30 August 2024 | page=793}}</ref><ref name="IndexNominum2004">{{cite book | author=Schweizerischer Apotheker-Verein | title=Index Nominum: International Drug Directory | publisher=Medpharm Scientific Publishers | year=2004 | isbn=978-3-88763-101-7 | url=https://books.google.com/books?id=EgeuA47Ocm4C&pg=PA450 | access-date=30 August 2024 | page=450}}</ref><ref name="Drugs.com-International">{{cite web | title=Ephedrine (International database) | website=Drugs.com | date=5 August 2024 | url=https://www.drugs.com/international/ephedrine.html | access-date=30 August 2024}}</ref> Its {{Abbrlink|DCF|Dénomination Commune Française}} is ''ephédrine'' while its {{Abbrlink|DCIT|Denominazione Comune Italiana}} is ''efedrina''.<ref name="IndexNominum2004" /><ref name="Drugs.com-International" /> In the case of the [[hydrochloride]] [[salt (chemistry)|salt]], its generic name is ''ephedrine hydrochloride'' and this is its {{Abbrlink|USAN|United States Adopted Name}}, {{Abbrlink|BANM|British Approved Name}}, and {{Abbrlink|JAN|Japanese Accepted Name}}.<ref name="Elks2014" /><ref name="IndexNominum2004" /><ref name="Drugs.com-International" /> In the case of the [[sulfate]] salt, its generic name is ''ephedrine sulfate'' or ''ephedrine sulphate'' and the former is its {{Abbrlink|USAN|United States Adopted Name}} while the latter is its {{Abbrlink|BANM|British Approved Name}}.<ref name="Elks2014" /><ref name="IndexNominum2004" /><ref name="Drugs.com-International" /> A synonym of ephedrine sulfate is ''isofedrol''.<ref name="Elks2014" /> These names all refer to the (1''R'',2''R'')-[[enantiomer]] of ephedrine.<ref name="Elks2014" /><ref name="IndexNominum2004" /> The [[racemic mixture|racemic]] form of ephedrine is known as ''[[racephedrine]]'' and this is its {{Abbrlink|INN|International Nonproprietary Name}} and {{Abbrlink|BAN|British Approved Name}}, while the hydrochloride salt of the racemic form is ''racephedrine hydrochloride'' and this is its {{Abbrlink|USAN|United States Adopted Name}}.<ref name="IndexNominum2000">{{cite book | author=Schweizerischer Apotheker-Verein | title=Index Nominum 2000: International Drug Directory | publisher=Medpharm Scientific Publishers | year=2000 | isbn=978-3-88763-075-1 | url=https://books.google.com/books?id=5GpcTQD_L2oC&pg=PA390 | access-date=30 August 2024 | page=390}}</ref>


===Recreational use===
Overdose can lead to death, although the approved dose is not likely to cause severe reactions when used as directed.
[[Image:Ephedrine - 10 x 30mg.jpg|thumb|right|Ephedrine tablets.]]


As a [[substituted phenethylamine|phenethylamine]], ephedrine has a similar chemical structure to [[substituted amphetamine|amphetamines]] and is a [[methamphetamine]] [[Structural analog|analog]] having the methamphetamine structure with a [[hydroxyl]] group at the [[Phenylethylamine#Substituted phenethylamines|β position]]. Because of ephedrine's structural similarity to methamphetamine, it can be used to create methamphetamine using [[Redox|chemical reduction]] in which ephedrine's hydroxyl group is removed; this has made ephedrine a highly sought-after chemical precursor in the [[Clandestine chemistry|illicit manufacture]] of [[methamphetamine]].
Ephedrine can also lead to damage of the brain receptors' over a period of high usage; this is because of its constant action on the neurochemicals. It also leads to high increase in blood pressure which over time can lead to damage in the blood vessels.


The most popular method for reducing ephedrine to methamphetamine is similar to the [[Birch reduction]], in that it uses [[anhydrous ammonia]] and [[lithium]] metal in the reaction. The second-most popular method uses red [[phosphorus]] and [[iodine]] in the reaction with ephedrine. Moreover, ephedrine can be synthesized into [[methcathinone]] via simple [[oxidation]]. As such, ephedrine is listed as a table-I precursor under the ''[[United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances]]''.<ref name=UN>[http://www.incb.org/pdf/e/list/red.pdf Microsoft Word – RedListE2007.doc<!-- Bot generated title -->] {{webarchive |url= https://web.archive.org/web/20080227224025/http://www.incb.org/pdf/e/list/red.pdf |date=February 27, 2008 }}</ref>
===Contraindications===
Ephedrine should not be used in conjunction with certain antidepressants, namely [[Serotonin-norepinephrine reuptake inhibitor|SNRI]]s (serotonin-norepinephrine re-uptake inhibitors), as this increases the risk of the above symptoms due to excessive serum levels of norepinephrine.


===Use in exercise and sports===
[[Bupropion]] is an example of an antidepressant with an amphetamine-like structure similar to ephedrine, and it is known as an [[Norepinephrine-dopamine reuptake inhibitor|NDRI]] (norepinephrine-dopamine re-uptake inhibitor). It has an action which bears more resemblance to amphetamine than to [[fluoxetine]] in that its primary mode of therapeutic action involves norepinephrine and to a lesser degree dopamine, but it also releases some serotonin from presynaptic clefts. It should not be used with ephedrine as it may increase the likelihood of the above side effects.
Ephedrine has been used as a [[performance-enhancing drug]] in [[exercise]] and [[sports]].<ref name="Docherty2008">{{cite journal | vauthors = Docherty JR | title = Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA) | journal = Br J Pharmacol | volume = 154 | issue = 3 | pages = 606–622 | date = June 2008 | pmid = 18500382 | pmc = 2439527 | doi = 10.1038/bjp.2008.124 | url = }}</ref><ref name="Lieberman2001">{{cite journal | vauthors = Lieberman HR | title = The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy | journal = Nutr Rev | volume = 59 | issue = 4 | pages = 91–102 | date = April 2001 | pmid = 11368507 | doi = 10.1111/j.1753-4887.2001.tb06995.x | url = }}</ref><ref name="MagkosKayouras2004">{{cite journal | vauthors = Magkos F, Kavouras SA | title = Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects | journal = Sports Med | volume = 34 | issue = 13 | pages = 871–889 | date = 2004 | pmid = 15487903 | doi = 10.2165/00007256-200434130-00002 | url = }}</ref><ref name="Graham2001">{{cite journal | vauthors = Graham TE | title = Caffeine, coffee and ephedrine: impact on exercise performance and metabolism | journal = Can J Appl Physiol | volume = 26 Suppl | issue = | pages = S103–S119 | date = 2001 | pmid = 11897887 | doi = | url = }}</ref> It can increase [[heart rate]], [[blood pressure]], and [[cardiac contractility]] as well as act as a [[psychostimulant]].<ref name="Docherty2008" /> Ephedrine is often used in combination with [[caffeine]] for performance-enhancing purposes.<ref name="MagkosKayouras2004" /><ref name="Graham2001" />


===Other uses===
Ephedrine should be used with caution in patients with inadequate fluid replacement, impaired adrenal function, [[Hypoxia (medical)|hypoxia]], [[hypercapnia]], [[acidosis]], [[hypertension]], [[hyperthyroidism]], [[prostatic hypertrophy]], [[diabetes mellitus]], [[cardiovascular]] disease, during delivery if maternal BP > 130/80 mmHg, and lactation.<ref name =Mayne>Mayne Pharma. Ephedrine sulfate injection DBL (Approved Product Information). Melbourne: Mayne Pharma; 2004</ref>
In [[chemical synthesis]], ephedrine is used in bulk quantities as a [[chiral auxiliary]] group.<ref>{{cite journal | vauthors = Borsato G, Linden A, Lucchi OD, Lucchini V, Wolstenholme D, Zambon A | title = Chiral polycyclic ketones via desymmetrization of dihaloolefins | journal = The Journal of Organic Chemistry | volume = 72 | issue = 11 | pages = 4272–5 | date = May 2007 | pmid = 17474779 | doi = 10.1021/jo070222g | hdl = 11380/1138891 | url = https://figshare.com/articles/Chiral_Polycyclic_Ketones_via_Desymmetrization_of_Dihaloolefins/3005413 }}</ref>


:[[Image:EphedrineChiralAuxiliary.svg|class=skin-invert-image|600px|Ephedrine as chiral auxiliary]]
Contraindications for the use of ephedrine include: [[closed angle glaucoma]], [[phaeochromocytoma]], [[asymmetric septal hypertrophy]] (idiopathic hypertrophic subaortic stenosis), concomitant or recent (previous 14 days) [[monoamine oxidase inhibitor]] (MAOI) therapy, general [[anaesthesia]] with halogenated hydrocarbons (particularly cyclopropane or halothane), tachyarrhythmias or ventricular fibrillation, hypersensitivity to ephedrine or other stimulants.
Ephedrine should NOT be used at any time during pregnancy unless specifically indicated by a qualified physician and ONLY when other options are unavailable.<ref name =Mayne />


In [[saquinavir]] synthesis, the half-acid is resolved as its salt with l-ephedrine.
==Recreational and illicit use==
{{Refimprove|date=February 2007}}
[[Image:Ephedrine - 10 x 30mg.jpg|thumb|right|Ephedrine tablets]]
Anecdotal reports have suggested that ephedrine helps studying, thinking, or concentrating to a greater extent than caffeine. Some students and some [[white-collar worker]]s have used ephedrine (or Ephedra-containing herbal supplements) for this purpose, as well as some professional athletes and weightlifters. It is common for many athletes to use [[Exercise and stimulants|stimulants while exercising]]. Such use of ephedrine has been associated with stimulant [[drug dependence|dependence]], as well as deaths from [[hyperthermia|heatstroke]] in athletes and circulatory problems such as [[aortic aneurysm]] in weightlifters, though these side effects are rare.{{Verify source|date=June 2007}}


===Legal status===
As a [[phenylethylamine]], ephedrine has a similar chemical structure to [[amphetamine]]s. Ephedrine can be used in the synthesis of methamphetamine by chemical reduction; this has made ephedrine a highly sought-after chemical precursor in the [[Clandestine chemistry|illicit manufacture]] of [[methamphetamine]]. The most popular method for reducing ephedrine to methamphetamine is similar to the [[Birch reduction]], in that it uses [[anhydrous ammonia]] and [[lithium]] metal in the [[chemical reaction|reaction]]. The second most popular method uses red [[phosphorus]], [[iodine]], and ephedrine in the reaction.
====Canada====
In January 2002, [[Health Canada]] issued a voluntary recall of all ephedrine products containing more than 8{{nbsp}}mg per dose, all combinations of ephedrine with other stimulants such as caffeine, and all ephedrine products marketed for weight-loss or bodybuilding indications, citing a serious risk to health.<ref name="health-canada">{{cite web |url = http://www.hc-sc.gc.ca/ahc-asc/media/advisories-avis/2002/2002_01_e.html |title= Health Canada requests recall of certain products containing Ephedra/ephedrine |publisher=[[Health Canada]] |date= January 9, 2002 |access-date= July 7, 2009 |archive-url= https://web.archive.org/web/20070206073244/http://www.hc-sc.gc.ca/ahc-asc/media/advisories-avis/2002/2002_01_e.html |archive-date= February 6, 2007}}</ref> Ephedrine is still sold as an oral nasal decongestant<ref name= "LaccourreyeWerner2015">{{cite journal | vauthors = Laccourreye O, Werner A, Giroud JP, Couloigner V, Bonfils P, Bondon-Guitton E | title = Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants | journal = European Annals of Otorhinolaryngology, Head and Neck Diseases | volume = 132 | issue = 1 | pages = 31–4 | date = February 2015 | pmid = 25532441 | doi = 10.1016/j.anorl.2014.11.001 | doi-access = free }}</ref> in 8{{nbsp}}mg pills as a natural health product, with a limit of 0.4{{spaces}}g (400{{spaces}}mg) per package, the limit established by the Controlled Drugs and Substances Act as it is considered as Class A Precursor.<ref>{{Cite web|author=Legislative Services Branch|date=2021-03-18|title=Consolidated federal laws of canada, Controlled Drugs and Substances Act|url=https://laws-lois.justice.gc.ca/eng/acts/c-38.8/page-18.html|access-date=2021-07-30|website=laws-lois.justice.gc.ca|archive-date=2021-07-30|archive-url=https://web.archive.org/web/20210730190944/https://laws-lois.justice.gc.ca/eng/acts/c-38.8/page-18.html|url-status=dead}}</ref>


====United States====
In [[E for Ecstasy]]<ref>Saunders, N., & Heron, L., (1993) ''E for Ecstasy'' (Paperback), N. Saunders, London. (ISBN 0950162884)</ref> (a book examining the uses of the street drug [[Methylenedioxymethamphetamine|Ecstasy]] in the UK) the writer, activist and Ecstasy advocate [[Nicholas Saunders (activist)|Nicholas Saunders]] highlighted test results showing that certain consignments of the drug also contained ephedrine. Consignments of Ecstasy known as "Strawberry" contained what Saunders described as a "potentially dangerous combination of [[ketamine]], ephedrine and [[selegiline]]," as did a consignment of "Sitting Duck" Ecstasy tablets.<ref>See: [http://ecstasy.org/testing/pillstilJuly.html] for details online.</ref>
In 1997, the [[Food and Drug Administration|FDA]] proposed a regulation on ephedra (the herb from which ephedrine is obtained), which limited an ephedra dose to 8{{nbsp}}mg (of active ephedrine) with no more than 24{{nbsp}}mg per day.<ref>[https://web.archive.org/web/20080102053737/http://www.cfsan.fda.gov/~lrd/fr97064a.html Federal Register: June 4, 1997 (Volume 62, Number 107): Dietary Supplements Containing Ephedrine Alkaloids; Proposed Rule]</ref> This proposed rule was withdrawn, in part, in 2000 because of "concerns regarding the agency's basis for proposing a certain dietary ingredient level and a duration of use limit for these products."<ref>[https://web.archive.org/web/20080126192127/http://www.cfsan.fda.gov/~lrd/fr00043a.html Federal Register: April 3, 2000 (Volume 65, Number 64): Dietary Supplements Containing Ephedrine Alkaloids; Withdrawal in Part]</ref> In 2004, the FDA created a ban on ephedrine alkaloids marketed for reasons other than asthma, colds, allergies, other disease, or traditional Asian use.<ref>[https://web.archive.org/web/20070929121300/http://www.cfsan.fda.gov/~lrd/fr040211.html Federal Register: February 11, 2004 (Volume 69, Number 28): Final Rule Declaring Dietary Supplements Containing Ephedrine Alkaloids Adulterated Because They Present an Unreasonable Risk; Final Rule]</ref> On April 14, 2005, the [[United States District Court for the District of Utah|U.S. District Court for the District of Utah]] ruled the FDA did not have proper evidence that low dosages of ephedrine alkaloids are actually unsafe,<ref>{{cite web |url= http://www.ephedrinehydrochloride.com/204cv409-28.pdf |title=Nutraceutical Corporation; Solaray, Inc., Plaintiffs-appellees, v. Andrew Von Eschenbach, Acting Commissioner, U.S. Food and Drug Administration; United States Food and Drug Administration; Michael O. Leavitt, Secretary of the Department of Health and Human Services; Department of Health and Human Services; United States of America | quote = Defendants-appellants, 459 F.3d 1033 (10th Cir. 2006) |access-date= 2010-07-01 |url-status=dead |archive-url= https://web.archive.org/web/20110710194438/http://www.ephedrinehydrochloride.com/204cv409-28.pdf |archive-date= 2011-07-10 }}</ref> but on August 17, 2006, the [[United States Court of Appeals for the Tenth Circuit|U.S. Court of Appeals for the Tenth Circuit]] in Denver upheld the FDA's final rule declaring all dietary supplements containing ephedrine alkaloids adulterated, and therefore illegal for marketing in the United States.<ref>{{cite court |litigants= Nutraceutical Corporation; Solaray, Inc. Plaintiffs-Appellees vs. Andrew Von Eschenbach, Acting Commissioner, US.. Food and Drug Administration; United States Food and Drug Administration; Michael O. Leavitt, Secretary of the Department of Health and Human Services; Department of Health and Human Services; United States of America |opinion= We find that the FDA correctly followed the congressional directive to analyze the risks and benefits of EDS in determining that there is no dosage level of EDS acceptable for the market. |court= United States Court of Appeals Tenth Circuit |date= August 17, 2006 |access-date= 2007-02-16 |url= http://www.ck10.uscourts.gov/opinions/05/05-4151.pdf |archive-url= https://web.archive.org/web/20080921084346/http://www.ck10.uscourts.gov/opinions/05/05-4151.pdf |url-status= dead }}</ref> Furthermore, ephedrine is banned by the NCAA, MLB, NFL, and PGA.<ref>{{cite web |url= http://www.drugfreesport.com/drug-resources/faq.asp |title=Sport Drug Testing – Drug Programs & Policy – Athletics |access-date= 2011-03-21 |url-status=dead |archive-url=https://web.archive.org/web/20110210135236/http://www.drugfreesport.com/drug-resources/faq.asp |archive-date=2011-02-10 }}</ref> Ephedrine is, however, still legal in many applications outside of dietary supplements. Purchasing is currently limited and monitored, with specifics varying from state to state.


The [[United States House of Representatives|House]] passed the [[Combat Methamphetamine Epidemic Act of 2005]] as an amendment to the renewal of the [[USA PATRIOT Act]]. Signed into law by President [[George W. Bush]] on March 6, 2006, the act amended the [[US Code]] (21 USC 830) concerning the sale of products containing ephedrine and the closely related drug [[pseudoephedrine]]. Both substances are used as [[Precursor chemicals|precursors]] in the [[Clandestine chemistry|illicit production]] of [[methamphetamine]], and to discourage that use the federal statute included the following requirements for merchants who sell these products:
Through [[oxidation]], ephedrine can be easily synthesized into [[methcathinone]]. Ephedrine is listed as a Table I precursor under the [[United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances]].<ref name=UN>[http://www.incb.org/pdf/e/list/red.pdf Microsoft Word - RedListE2007.doc<!-- Bot generated title -->]</ref>


* A retrievable record of all purchases identifying the name and address of each party to be kept for two years
==Other uses==
* Required verification of proof of identity of all purchasers
Ephedrine is used in bulk quantities to produce [[chiral auxiliary]] groups.
* Required protection and disclosure methods in the collection of personal information
* Reports to the [[United States Attorney General|Attorney General]] of any suspicious payments or disappearances of the regulated products
* Non-liquid dose form of regulated product may only be sold in unit-dose blister packs
* Regulated products are to be sold behind the counter or in a locked cabinet in such a way as to restrict access
* Daily sales of regulated products not to exceed 3.6{{nbsp}}g to a single purchaser, without regard to the number of transactions
* Monthly sales to a single purchaser not to exceed 9{{nbsp}}g of pseudoephedrine base in regulated products


The law gives similar regulations to mail-order purchases, except the monthly sales limit is 7.5{{nbsp}}g.
==Neurotoxicity==
{{Unreferenced section|date=December 2006}}
As a sympathomimetic agent similar in structure and activity to amphetamines, there has been a dispute over whether ephedrine produces any neurodegenerative effects. It has been shown clinically that certain amphetamines (namely (d)-amphetamine and (d)-methamphetamine) can cause varying levels of long-term dopamine depletion in dopamine-rich brain and nervous centers such as the putamen and the basal ganglia.


As a pure herb or tea, ''má huáng'', containing ephedrine, is still sold legally in the US. The law restricts/prohibits its being sold as a dietary supplement (pill) or as an ingredient/additive to other products, like diet pills.
Several studies have recently compared the quantities of such neurotransmitters as serotonin, dopamine, glutamate, and epinephrine after concurrent administration of ephedrine and various amphetamine-like agents. The results showed that ephedrine has no neurotoxic effects on said neurotransmitters nor has amphetamine counterparts.


====Australia====
Ephedrine increases serum dopamine levels minimally in comparison with an equivalent dose of dextroamphetamine (Dexedrine). Dextromethamphetamine (Desoxyn) raises dopamine levels dramatically (more than two times that of an equivalent dose of dextroamphetamine). This supports the general consensus that ephedrine has more of a peripheral action on the sympathetic nervous system, whereas amphetamines appear to cross the blood brain barrier more freely and tend to have a stronger central action. The fact that dopamine is believed to play a major role in the addiction response has been used in recent years as justification for controlling the distribution of dextroamphetamine and dextromethamphetamine, along with various other amphetamines.<ref>[http://toxsci.oxfordjournals.org/cgi/reprint/55/1/133 Txsci.oxfordjournals]</ref>
Ephedrine and all ''Ephedra'' species that contain it are considered Schedule 4 substances under the [[Standard for the Uniform Scheduling of Medicines and Poisons|Poisons Standard]]. A Schedule 4 drug is considered a Prescription Only Medicine, or Prescription Animal Remedy – Substances, the use or supply of which should be by or on the order of persons permitted by State or Territory legislation to prescribe and should be available from a pharmacist on prescription under the [[Standard for the Uniform Scheduling of Medicines and Poisons|Poisons Standard]].


====South Africa====
==Legality==
In South Africa, ephedrine was moved to schedule 6 on 27 May 2008,<ref>{{cite web |url=http://www.doh.gov.za/docs/pr/2008/pr0527.html |title=Rescheduling of Medicines that Contain Ephedrine |access-date=2009-04-18 |url-status=dead |archive-url= https://web.archive.org/web/20090628091843/http://www.doh.gov.za/docs/pr/2008/pr0527.html |archive-date=2009-06-28 }}</ref> which makes pure ephedrine tablets prescription only. Pills containing ephedrine up to 30&nbsp;mg per tablet in combination with other medications are still available OTC, schedule 1 and 2, for sinus, head colds, and influenza.
===USA===
Ephedrine itself has never been illegal in the United States. In 1997, the [[Food and Drug Administration|FDA]] proposed a regulation on ephedra (the herb from which ephedrine is obtained), which limited an ephedra dose to 8&nbsp;mg (of active ephedrine) with no more than 24&nbsp;mg per day.[http://www.cfsan.fda.gov/~lrd/fr97064a.html] This proposed rule was withdrawn in part in 2000 because of "concerns regarding the agency's basis for proposing a certain dietary ingredient level and a duration of use limit for these products."[http://www.cfsan.fda.gov/~lrd/fr00043a.html] In 2004, the FDA created a ban on ephedrine alkaloids that are marketed for reasons other than asthma, colds, allergies, other disease, or traditional Asian use.[http://www.cfsan.fda.gov/~lrd/fr040211.html] On [[April 14]], [[2005]], the [[United States District Court for the District of Utah|U.S. District Court for the District of Utah]] ruled that the FDA did not have proper evidence that low dosages of ephedrine alkaloids are actually unsafe,[http://www.utd.uscourts.gov/reports/204cv409-28.pdf] but on [[August 17]], [[2006]], the [[United States Court of Appeals for the Tenth Circuit|U.S. Court of Appeals for the Tenth Circuit]] in Denver upheld the FDA's final rule declaring all dietary supplements containing ephedrine alkaloids adulterated, and therefore illegal for marketing in the United States.[http://www.ck10.uscourts.gov/opinions/05/05-4151.pdf] Ephedrine is, however, still legal in many applications outside of dietary supplements. However, purchasing is currently limited and monitored, with specifics varying from state to state.


====Germany====
The [[United States House of Representatives|House]] passed the ''[[Combat Methamphetamine Epidemic Act of 2005]]'' as an amendment to the renewal of the [[USA PATRIOT Act]]. Signed into law by president [[George W. Bush]] on March 6, 2006, the act amended the [[US Code]] (21 USC 830) concerning the sale of ephedrine-containing products. The federal statute included the following requirements for merchants who sell these products:
Ephedrine was freely available in pharmacies in Germany until 2001. Afterward, access was restricted since it was mostly bought for unindicated uses. Similarly, ephedra can only be bought with a prescription. Since April 2006, all products, including plant parts, that contain ephedrine are only available with a prescription.<ref>[http://www.buzer.de/gesetz/7048/index.htm ''Verordnung zur Neuordnung der Verschreibungspflicht von Arzneimitteln (AMVVNV).''] {{webarchive |url= https://web.archive.org/web/20140517122414/http://www.buzer.de/gesetz/7048/index.htm |date=2014-05-17 }} V. v. 21. Dezember 2005 BGBl. I S. 3632; Geltung ab 1. Januar 2006.</ref>


==Sources==
*A retrievable record of all purchases identifying the name and address of each party to be kept for two years
===Agricultural===
*Required verification of proof of identity of all purchasers
Ephedrine is obtained from the plant ''[[Ephedra sinica]]'' and other members of the genus ''[[Ephedra (plant)|Ephedra]],'' from which the name of the substance is derived. Raw materials for the manufacture of ephedrine and traditional Chinese medicines are produced in China on a large scale. As of 2007, companies produced for export US$13 million worth of ephedrine from 30,000 tons of ephedra annually, or about ten times the amount used in traditional Chinese medicine.<ref name=Chen>{{cite web | vauthors = Long C |url= http://www.chinadialogue.net/article/show/single/en/692-Chinese-medicine-s-great-waste-of-resources |title=Chinese medicine's great waste of resources |date= 15 January 2007 |access-date= 9 May 2016 |url-status=live |archive-url=https://web.archive.org/web/20160530231517/https://www.chinadialogue.net/article/show/single/en/692-Chinese-medicine-s-great-waste-of-resources |archive-date= 30 May 2016 }}</ref>
*Required protection and disclosure methods in the collection of personal information
*Reports to the [[Attorney General]] of any suspicious payments or disappearances of the regulated products
*Non-liquid dose form of regulated product may only be sold in unit dose blister packs
*Regulated products are to be sold behind the counter or in a locked cabinet in such a way as to restrict access
*Daily sales of regulated products not to exceed 3.6 grams without regard to the number of transactions
*Monthly sales not to exceed 9 grams of pseudoephedrine base in regulated products


===Synthetic===
The law gives similar regulations to mail-order purchases, except the monthly sales limit is only 7.5 grams.
Most of the l-ephedrine produced today for official medical use is made synthetically as the extraction and isolation process from ''E. sinica'' is tedious and no longer cost-effective.<ref>{{cite news |url= http://english.peopledaily.com.cn/english/200111/05/eng20011105_83931.html |title=Chemically Synthesized Ephedrine Put into Mass Production in China |date=November 5, 2001 |url-status=live |archive-url= https://web.archive.org/web/20110629175239/http://english.peopledaily.com.cn/english/200111/05/eng20011105_83931.html |archive-date=June 29, 2011 }}</ref>{{unreliable source?|date=May 2016}}


===UK===
===Biosynthetic===
[[File:Ephedrine biosynthesis.svg|class=skin-invert-image|thumb|400px|right|Proposed biosynthetic pathway of ephedrine from <small>L</small>-phenylalanine and pyruvic acid.<ref name="Hertweck">{{cite journal | vauthors = Hertweck C, Jarvis AP, Xiang L, Moore BS, Oldham NJ | title = A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid beta-oxidation | journal = ChemBioChem | volume = 2 | issue = 10 | pages = 784–6 | date = October 2001 | pmid = 11948863 | doi = 10.1002/1439-7633(20011001)2:10<784::AID-CBIC784>3.0.CO;2-K | s2cid = 28159196 }}<!--|access-date = 2015-06-10--></ref><ref name="Grue-Sorensen 3714–3715">{{Cite journal |title= Biosynthesis of ephedrine |journal= Journal of the American Chemical Society |date= May 1, 1988 |issn= 0002-7863 |pages= 3714–3715 |volume= 110 |issue= 11 |doi= 10.1021/ja00219a086 | vauthors = Grue-Sorensen G, Spenser ID }}</ref>]]
In the UK ephedrine is Schedule VI, which is prescription only, but is legal to possess.

Ephedrine was long thought to come from modifying the amino acid <small>L</small>-phenylalanine.<ref name="sciencedirect.com">{{cite journal |title= Participation of C6-C1 unit in the biosynthesis of ephedrine in Ephedra |doi= 10.1016/0031-9422(73)80499-6 |volume=12 |issue=12 |journal= Phytochemistry |pages= 2877–2882 |year= 1973 | vauthors = Yamasaki K, Tamaki T, Uzawa S, Sankawa U, Shibata S |bibcode= 1973PChem..12.2877Y }}</ref> <small>L</small>-Phenylalanine would be decarboxylated and subsequently attacked with ω-aminoacetophenone. Methylation of this product would then produce ephedrine. This pathway has since been disproven.<ref name="sciencedirect.com"/> A new pathway proposed suggests that phenylalanine first forms [[cinnamoyl-CoA]] via the enzymes [[phenylalanine ammonia-lyase]] and acyl CoA ligase.<ref name="Hertweck"/> The cinnamoyl-CoA is then reacted with a hydratase to attach the alcohol functional group. The product is then reacted with a retro-aldolase, forming [[benzaldehyde]]. Benzaldehyde reacts with [[pyruvic acid]] to attach a 2-carbon unit. This product then undergoes transamination and methylation to form ephedrine and its stereoisomer, pseudoephedrine.<ref name="Grue-Sorensen 3714–3715"/>


==References==
==References==
{{Reflist|2}}
{{Reflist}}


==See also==
==External links==
{{Commons category|L-Ephedrine}}
*[[Ephedra]]
*[[Phenethylamine]]
*[[Synephrine]]
*[[Methcathinone]]
*[[Soma]]


== External links ==
*[http://www.erowid.org/chemicals/ephedrine/ Erowid Ephedrine Vault]
*[http://www.scitechinfo.com/node/1327 Ephedrine Seized]
*[http://www.ephedra.nu/en/ The Ephedra Site]

{{Adrenergic agonists}}
{{Phenethylamines}}
{{Nasal preparations}}
{{Nasal preparations}}
{{Mydriatics and cycloplegics}}
{{Mydriatics and cycloplegics}}
{{Drugs for obstructive airway diseases}}
{{Monoamine releasing agents}}
{{Phenethylamines}}
{{Portal bar | Medicine}}
{{Authority control}}


[[Category:Amphetamine alkaloids]]
[[Category:Amphetamine alkaloids]]
[[Category:Amphetamines]]
[[Category:Anorectics]]
[[Category:Sympathomimetic amines]]
[[Category:Anti-obesity drugs]]
[[Category:Stimulants]]
[[Category:Antihypotensive agents]]
[[Category:Beta-Hydroxyamphetamines]]
[[Category:Bronchodilators]]
[[Category:Cardiac stimulants]]
[[Category:Chinese inventions]]
[[Category:Decongestants]]
[[Category:Decongestants]]
[[Category:DEA List I chemicals]]
[[Category:Drugs acting on the cardiovascular system]]
[[Category:Drugs acting on the nervous system]]

[[Category:Drugs in sport]]
[[ar:أفدرين]]
[[Category:Enantiopure drugs]]
[[da:Efedrin]]
[[Category:Ergogenic aids]]
[[de:Ephedrin]]
[[es:Efedrina]]
[[Category:Euphoriants]]
[[fr:Éphédrine]]
[[Category:Han dynasty]]
[[Category:Methamphetamine]]
[[gl:Efedrina]]
[[Category:Methamphetamines]]
[[it:Efedrina]]
[[Category:Norepinephrine releasing agents]]
[[lt:Efedrinas]]
[[Category:Ophthalmology drugs]]
[[hu:Efedrin]]
[[Category:Peripherally selective drugs]]
[[nl:Efedrine]]
[[Category:Stimulants]]
[[ja:エフェドリン]]
[[Category:Sympathomimetics]]
[[no:Efedrin]]
[[Category:Traditional Chinese medicine]]
[[pl:Efedryna]]
[[Category:Wakefulness-promoting agents]]
[[pt:Efedrina]]
[[Category:Wikipedia medicine articles ready to translate]]
[[ru:Эфедрин]]
[[Category:World Anti-Doping Agency prohibited substances]]
[[simple:Ephedrine]]
[[Category:World Health Organization essential medicines]]
[[sk:Efedrín]]
[[fi:Efedriini]]
[[sv:Efedrin]]
[[tr:Efedrin]]
[[zh:麻黄]]

Latest revision as of 19:47, 1 January 2025

Ephedrine
Chemical structure of the (1R,2S)-ephedrine molecule
Ball-and-stick model of the (1R,2S)-ephedrine molecule
(−)-(1R,2S)-ephedrine chemical structure (top) and ball-and-stick model (bottom)
Clinical data
Pronunciation/ɪˈfɛdrɪn/ or /ˈɛfɪdrn/
Trade namesAkovaz, Corphedra, Emerphed, others
Other names(−)-Ephedrine; (1R,2S)-Ephedrine; (1R,2S)-β-Hydroxy-N-methylamphetamine; (1R,2S)-β-Hydroxy-N-methyl-α-methyl-β-phenethylamine
AHFS/Drugs.comEphedrine: Monograph
HCl: Monograph
Sulfate: Monograph
Pregnancy
category
  • AU: A
Routes of
administration
By mouth, intravenous (IV), intramuscular (IM), subcutaneous (SC)
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability88%[6]
Protein binding~24–29% (5–10% to albumin)[7][8][9]
MetabolismLargely unmetabolized[6][10]
MetabolitesNorephedrine[6][10]
Onset of actionOral: 15–60 minutes[11]
IMTooltip Intramuscular injection: 10–20 minutes[11]
IVTooltip Intravenous administration: Rapid[11]
Elimination half-life6 hours[6]
Duration of actionOral: 2–4 hours
IV/IM: 60 minutes
ExcretionMainly urine (60% unchanged)[6]
Identifiers
  • (1R,2S)-2-(methylamino)-1-phenylpropan-1-ol
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.005.528 Edit this at Wikidata
Chemical and physical data
FormulaC10H15NO
Molar mass165.236 g·mol−1
3D model (JSmol)
  • C[C@@H]([C@@H](C1=CC=CC=C1)O)NC
  • InChI=1S/C10H15NO/c1-8(11-2)10(12)9-6-4-3-5-7-9/h3-8,10-12H,1-2H3/t8-,10-/m0/s1 checkY
  • Key:KWGRBVOPPLSCSI-WPRPVWTQSA-N checkY
  (verify)

Ephedrine is a central nervous system (CNS) stimulant and sympathomimetic agent that is often used to prevent low blood pressure during anesthesia.[11] It has also been used for asthma, narcolepsy, and obesity but is not the preferred treatment.[11] It is of unclear benefit in nasal congestion.[11] It can be taken by mouth or by injection into a muscle, vein, or just under the skin.[11] Onset with intravenous use is fast, while injection into a muscle can take 20 minutes, and by mouth can take an hour for effect.[11] When given by injection, it lasts about an hour, and when taken by mouth, it can last up to four hours.[11]

Common side effects include trouble sleeping, anxiety, headache, hallucinations, high blood pressure, fast heart rate, loss of appetite, and urinary retention.[11] Serious side effects include stroke and heart attack.[11] While probably safe in pregnancy, its use in this population is poorly studied.[12][13] Use during breastfeeding is not recommended.[13] Ephedrine works by inducing the release of norepinephrine and hence indirectly activating the α- and β-adrenergic receptors.[11] Chemically, ephedrine is a substituted amphetamine and is the (1R,2S)-enantiomer of β-hydroxy-N-methylamphetamine.[14]

Ephedrine was first isolated in 1885 and came into commercial use in 1926.[15][16] It is on the World Health Organization's List of Essential Medicines.[17] It is available as a generic medication.[11] It can normally be found in plants of the Ephedra genus.[11][18] Over-the-counter dietary supplements containing ephedrine are illegal in the United States,[11] with the exception of those used in traditional Chinese medicine, where its presence is noted by má huáng.[11][18]

Medical uses

[edit]
Ephedrine Sulphate (1932), Ephedrine Compound (1932), and Swan-Myers Ephedrine Inhalant No. 66 (circa 1940).

Ephedrine is a non-catecholamine sympathomimetic with cardiovascular effects similar to those of adrenaline/epinephrine: increased blood pressure, heart rate, and contractility. Like pseudoephedrine it is a bronchodilator, with pseudoephedrine having considerably less effect.[19][20]

Ephedrine may decrease motion sickness, but it has mainly been used to decrease the sedating effects of other medications used for motion sickness.[21][22]

Ephedrine is also found to have quick and long-lasting responsiveness in congenital myasthenic syndrome in early childhood and also even in adults with a novel COLQ mutation.[23]

Ephedrine is administered by intravenous boluses. Redosing usually requires increased doses to offset the development of tachyphylaxis, which is attributed to the depletion of catecholamine stores.[19]

Weight loss

[edit]

Ephedrine promotes modest short-term weight loss,[24] specifically fat loss, but its long-term effects are unknown.[25] In mice, ephedrine is known to stimulate thermogenesis in the brown adipose tissue, but because adult humans have only small amounts of brown fat, thermogenesis is assumed to take place mostly in the skeletal muscle. Ephedrine also decreases gastric emptying. Methylxanthines such as caffeine and theophylline have a synergistic effect with ephedrine for weight loss. This led to the creation and marketing of compound products.[26] One of them, known as the ECA stack, contains ephedrine with caffeine and aspirin. It is a popular supplement taken by bodybuilders seeking to cut body fat before a competition.[27] A 2021 systematic review found that ephedrine led to a 2 kilograms (4.4 lb) weight loss greater than placebo, raised heart rate, and reduced LDL and raised HDL, with no statistically significant difference in blood pressure.[28]

Available forms

[edit]

Ephedrine is available as a prescription-only pharmaceutical drug in the form of an intravenous solution, under brand names including Akovaz, Corphedra, Emerphed, and Rezipres as well as in generic forms, in the United States.[29][30] It is also available over-the-counter in the form of 12.5 and 25 mg oral tablets for use as a bronchodilator and as a 0.5% concentration nasal spray for use as a decongestant.[30] The drug is additionally available in combination with guaifenesin in the form of oral tablets and liquids.[30] Ephedrine is provided as the hydrochloride or sulfate salt in pharmaceutical formulations.[29][30]

Contraindications

[edit]

Ephedrine should not be used in conjunction with certain antidepressants, namely norepinephrine-dopamine reuptake inhibitors (NDRIs), as this increases the risk of symptoms due to excessive serum levels of norepinephrine.

Bupropion is an example of an antidepressant with an amphetamine-like structure similar to ephedrine, and it is an NDRI. Its action bears more resemblance to amphetamine than to fluoxetine in that its primary mode of therapeutic action involves norepinephrine and to a lesser degree dopamine, but it also releases some serotonin from presynaptic clefts. It should not be used with ephedrine, as it may increase the likelihood of side effects.

Ephedrine should be used with caution in patients with inadequate fluid replacement, impaired adrenal function, hypoxia, hypercapnia, acidosis, hypertension, hyperthyroidism, prostatic hypertrophy, diabetes mellitus, cardiovascular disease, during delivery if maternal blood pressure is >130/80 mmHg, and during lactation.[31]

Contraindications for the use of ephedrine include: closed-angle glaucoma, phaeochromocytoma, asymmetric septal hypertrophy (idiopathic hypertrophic subaortic stenosis), concomitant or recent (previous 14 days) monoamine oxidase inhibitor (MAOI) therapy, general anaesthesia with halogenated hydrocarbons (particularly halothane), tachyarrhythmias or ventricular fibrillation, or hypersensitivity to ephedrine or other stimulants.[citation needed]

Ephedrine should not be used at any time during pregnancy unless specifically indicated by a qualified physician and only when other options are unavailable.[31]

Side effects

[edit]

Ephedrine is a potentially dangerous natural compound; as of 2004 the US Food and Drug Administration had received over 18,000 reports of adverse effects in people using it.[32]

Adverse drug reactions (ADRs) are more common with systemic administration (e.g. injection or oral administration) compared to topical administration (e.g. nasal instillations). ADRs associated with ephedrine therapy include [33]

Overdose

[edit]

Overdose of ephedrine may result in sympathomimetic symptoms like tachycardia and hypertension.[citation needed]

Interactions

[edit]

Ephedrine with monoamine oxidase inhibitors (MAOIs) like phenelzine and tranylcypromine can result in hypertensive crisis.[citation needed]

Pharmacology

[edit]

Pharmacodynamics

[edit]
Monoamine release by ephedrine and related agents (EC50Tooltip half maximal effective concentration, nM)[34][35]
Compound NETooltip Norepinephrine DATooltip Dopamine 5-HTTooltip Serotonin Ref
Dextroamphetamine (S(+)-amphetamine) 6.6–7.2 5.8–24.8 698–1765 [36][37]
S(–)-Cathinone 12.4 18.5 2366 [38]
Ephedrine ((–)-ephedrine) 43.1–72.4 236–1350 >10000 [36]
(+)-Ephedrine 218 2104 >10000 [36][38]
Dextromethamphetamine (S(+)-methamphetamine) 12.3–13.8 8.5–24.5 736–1291.7 [36][39]
Levomethamphetamine (R(–)-methamphetamine) 28.5 416 4640 [36]
(+)-Phenylpropanolamine ((+)-norephedrine) 42.1 302 >10000 [38]
(–)-Phenylpropanolamine ((–)-norephedrine) 137 1371 >10000 [38]
Cathine ((+)-norpseudoephedrine) 15.0 68.3 >10000 [38]
(–)-Norpseudoephedrine 30.1 294 >10000 [38]
(–)-Pseudoephedrine 4092 9125 >10000 [38]
Pseudoephedrine ((+)-pseudoephedrine) 224 1988 >10000 [38]
Notes: The smaller the value, the more strongly the substance releases the neurotransmitter. See also Monoamine releasing agent § Activity profiles for a larger table with more compounds.

Ephedrine, a sympathomimetic amine, acts on part of the sympathetic nervous system (SNS). The principal mechanism of action relies on its indirect stimulation of the adrenergic receptor system by increasing activation of α- and β-adrenergic receptors via induction of norepinephrine release.[40] The presence of direct interactions with α-adrenergic receptors is unlikely but still controversial.[41][20][42][43] L-ephedrine, and particularly its stereoisomer norpseudoephedrine (which is also present in Catha edulis) has indirect sympathomimetic effects and due to its ability to cross the blood–brain barrier, it is a CNS stimulant similar to amphetamines, but less pronounced, as it releases norepinephrine and dopamine in the brain.[44]

Pharmacokinetics

[edit]

Absorption

[edit]

The oral bioavailability of ephedrine is 88%.[6] The onset of action of ephedrine orally is 15 to 60 minutes, via intramuscular injection is 10 to 20 minutes, and via intravenous infusion is within seconds.[11]

Distribution

[edit]

Its plasma protein binding is approximately 24 to 29%, with 5 to 10% bound to albumin.[7][8][9]

Metabolism

[edit]

Ephedrine is largely not metabolized.[6] Norephedrine (phenylpropanolamine) is an active metabolite of ephedrine formed via N-demethylation.[6][10] About 8 to 20% of an oral dose of ephedrine is demethylated into norephedrine, about 4 to 13% is oxidatively deaminated into benzoic acid, and a small fraction is converted into 1,2-dihydroxy-1-phenylpropane.[10]

Elimination

[edit]

Ephedrine is eliminated mainly in urine, with 60% (range 53–79%) excreted unchanged.[6][10]

The elimination half-life of ephedrine is 6 hours.[6] Its duration of action orally is 2 to 4 hours and via intravenous or intramuscular injection is 60 minutes.[citation needed]

The elimination of ephedrine is dependent on urinary pH.[10]

Chemistry

[edit]

Ephedrine, or (−)-(1R,2S)-ephedrine, also known as (1R,2S)-β-hydroxy-N-methyl-α-methyl-β-phenethylamine or as (1R,2S)-β-hydroxy-N-methylamphetamine, is a substituted phenethylamine and amphetamine derivative. It is similar in chemical structure to phenylpropanolamine, methamphetamine, and epinephrine (adrenaline). It differs from methamphetamine only by the presence of a hydroxyl group (–OH). Chemically, ephedrine is an alkaloid with a phenethylamine skeleton found in various plants in the genus Ephedra (family Ephedraceae). It is most usually marketed as the hydrochloride or sulfate salt.[45]

It has an experimental log P of 1.13, while its predicted log P values range from 0.9 to 1.32.[14][6][46] The lipophilicity of amphetamines is closely related to their brain permeability.[47] For comparison to ephedrine, the experimental log P of methamphetamine is 2.1,[48] of amphetamine is 1.8,[49][48] of pseudoephedrine is 0.89,[50] of phenylpropanolamine is 0.7,[51] of phenylephrine is -0.3,[52] and of norepinephrine is -1.2.[53] Methamphetamine has high brain permeability,[48] whereas phenylephrine and norepinephrine are peripherally selective drugs.[54][55] The optimal log P for brain permeation and central activity is about 2.1 (range 1.5–2.7).[56]

Ephedrine hydrochloride has a melting point of 187−188 °C.[57]

The racemic form of ephedrine is racephedrine ((±)-ephedrine; dl-ephedrine; (1RS,2SR)-ephedrine).[58] A stereoisomer of ephedrine is pseudoephedrine.[58] Derivatives of ephedrine include methylephedrine (N-methylephedrine), etafedrine (N-ethylephedrine), cinnamedrine (N-cinnamylephedrine), and oxilofrine (4-hydroxyephedrine).[58] Analogues of ephedrine include phenylpropanolamine (norephedrine) and metaraminol (3-hydroxynorephedrine).[58]

The presence of an N-methyl group decreases binding affinities at α-adrenergic receptors, compared with norephedrine. Ephedrine, though, binds better than N-methylephedrine, which has an additional methyl group at the nitrogen atom. Also, the steric orientation of the hydroxyl group is important for receptor binding and functional activity.[42]

Nomenclature

[edit]
The four stereoisomers of ephedrine.

Ephedrine exhibits optical isomerism and has two chiral centres, giving rise to four stereoisomers. By convention, the pair of enantiomers with the stereochemistry (1R,2S) and (1S,2R) is designated ephedrine, while the pair of enantiomers with the stereochemistry (1R,2R) and (1S,2S) is called pseudoephedrine.

The isomer which is marketed is (−)-(1R,2S)-ephedrine.[59]

In the outdated D/L system (+)-ephedrine is also referred to as D-ephedrine and (−)-ephedrine as L-ephedrine (in which case, in the Fisher projection, the phenyl ring is drawn at the bottom).[59][60]

Often, the D/L system (with small caps) and the d/l system (with lower-case) are confused. The result is that the levorotary l-ephedrine is wrongly named L-ephedrine and the dextrorotary d-pseudoephedrine (the diastereomer) wrongly D-pseudoephedrine.

The IUPAC names of the two enantiomers are (1R,2S)- respectively (1S,2R)-2-methylamino-1-phenylpropan-1-ol. A synonym is erythro-ephedrine.

Detection in body fluids

[edit]

Ephedrine may be quantified in blood, plasma, or urine to monitor possible abuse by athletes, confirm a diagnosis of poisoning, or assist in a medicolegal death investigation. Many commercial immunoassay screening tests directed at the amphetamines cross-react appreciably with ephedrine, but chromatographic techniques can easily distinguish ephedrine from other phenethylamine derivatives. Blood or plasma ephedrine concentrations are typically in the 20–200 μg/L range in persons taking the drug therapeutically, 300–3000 μg/L in abusers or poisoned patients, and 3–20 mg/L in cases of acute fatal overdosage. The current World Anti-Doping Agency (WADA) limit for ephedrine in an athlete's urine is 10 μg/mL.[61][62][63][64]

History

[edit]

Asia

[edit]

Ephedrine in its natural form, known as máhuáng (麻黄) in traditional Chinese medicine, has been documented in China since the Han dynasty (206 BC – 220 AD) as an antiasthmatic and stimulant.[65] In traditional Chinese medicine, máhuáng has been used as a treatment for asthma and bronchitis for centuries.[66]

In 1885, the chemical synthesis of ephedrine was first accomplished by Japanese organic chemist Nagai Nagayoshi based on his research on traditional Japanese and Chinese herbal medicines.

The industrial manufacture of ephedrine in China began in the 1920s, when Merck began marketing and selling the drug as ephetonin. Ephedrine exports from China to the West grew from 4 to 216 tonnes between 1926 and 1928.[67]

Western medicine

[edit]

Ephedrine was first introduced for medical use in the United States in 1926.[32]

It was introduced in 1948 in Vicks Vatronol nose drops (now discontinued) which contained ephedrine sulfate as the active ingredient for rapid nasal decongestion.

Society and culture

[edit]

Names

[edit]

Ephedrine is the generic name of the drug and its BANTooltip British Approved Name.[58][45][68] Its DCFTooltip Dénomination Commune Française is ephédrine while its DCITTooltip Denominazione Comune Italiana is efedrina.[45][68] In the case of the hydrochloride salt, its generic name is ephedrine hydrochloride and this is its USANTooltip United States Adopted Name, BANMTooltip British Approved Name, and JANTooltip Japanese Accepted Name.[58][45][68] In the case of the sulfate salt, its generic name is ephedrine sulfate or ephedrine sulphate and the former is its USANTooltip United States Adopted Name while the latter is its BANMTooltip British Approved Name.[58][45][68] A synonym of ephedrine sulfate is isofedrol.[58] These names all refer to the (1R,2R)-enantiomer of ephedrine.[58][45] The racemic form of ephedrine is known as racephedrine and this is its INNTooltip International Nonproprietary Name and BANTooltip British Approved Name, while the hydrochloride salt of the racemic form is racephedrine hydrochloride and this is its USANTooltip United States Adopted Name.[69]

Recreational use

[edit]
Ephedrine tablets.

As a phenethylamine, ephedrine has a similar chemical structure to amphetamines and is a methamphetamine analog having the methamphetamine structure with a hydroxyl group at the β position. Because of ephedrine's structural similarity to methamphetamine, it can be used to create methamphetamine using chemical reduction in which ephedrine's hydroxyl group is removed; this has made ephedrine a highly sought-after chemical precursor in the illicit manufacture of methamphetamine.

The most popular method for reducing ephedrine to methamphetamine is similar to the Birch reduction, in that it uses anhydrous ammonia and lithium metal in the reaction. The second-most popular method uses red phosphorus and iodine in the reaction with ephedrine. Moreover, ephedrine can be synthesized into methcathinone via simple oxidation. As such, ephedrine is listed as a table-I precursor under the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances.[70]

Use in exercise and sports

[edit]

Ephedrine has been used as a performance-enhancing drug in exercise and sports.[41][71][72][73] It can increase heart rate, blood pressure, and cardiac contractility as well as act as a psychostimulant.[41] Ephedrine is often used in combination with caffeine for performance-enhancing purposes.[72][73]

Other uses

[edit]

In chemical synthesis, ephedrine is used in bulk quantities as a chiral auxiliary group.[74]

Ephedrine as chiral auxiliary

In saquinavir synthesis, the half-acid is resolved as its salt with l-ephedrine.

[edit]

Canada

[edit]

In January 2002, Health Canada issued a voluntary recall of all ephedrine products containing more than 8 mg per dose, all combinations of ephedrine with other stimulants such as caffeine, and all ephedrine products marketed for weight-loss or bodybuilding indications, citing a serious risk to health.[75] Ephedrine is still sold as an oral nasal decongestant[76] in 8 mg pills as a natural health product, with a limit of 0.4 g (400 mg) per package, the limit established by the Controlled Drugs and Substances Act as it is considered as Class A Precursor.[77]

United States

[edit]

In 1997, the FDA proposed a regulation on ephedra (the herb from which ephedrine is obtained), which limited an ephedra dose to 8 mg (of active ephedrine) with no more than 24 mg per day.[78] This proposed rule was withdrawn, in part, in 2000 because of "concerns regarding the agency's basis for proposing a certain dietary ingredient level and a duration of use limit for these products."[79] In 2004, the FDA created a ban on ephedrine alkaloids marketed for reasons other than asthma, colds, allergies, other disease, or traditional Asian use.[80] On April 14, 2005, the U.S. District Court for the District of Utah ruled the FDA did not have proper evidence that low dosages of ephedrine alkaloids are actually unsafe,[81] but on August 17, 2006, the U.S. Court of Appeals for the Tenth Circuit in Denver upheld the FDA's final rule declaring all dietary supplements containing ephedrine alkaloids adulterated, and therefore illegal for marketing in the United States.[82] Furthermore, ephedrine is banned by the NCAA, MLB, NFL, and PGA.[83] Ephedrine is, however, still legal in many applications outside of dietary supplements. Purchasing is currently limited and monitored, with specifics varying from state to state.

The House passed the Combat Methamphetamine Epidemic Act of 2005 as an amendment to the renewal of the USA PATRIOT Act. Signed into law by President George W. Bush on March 6, 2006, the act amended the US Code (21 USC 830) concerning the sale of products containing ephedrine and the closely related drug pseudoephedrine. Both substances are used as precursors in the illicit production of methamphetamine, and to discourage that use the federal statute included the following requirements for merchants who sell these products:

  • A retrievable record of all purchases identifying the name and address of each party to be kept for two years
  • Required verification of proof of identity of all purchasers
  • Required protection and disclosure methods in the collection of personal information
  • Reports to the Attorney General of any suspicious payments or disappearances of the regulated products
  • Non-liquid dose form of regulated product may only be sold in unit-dose blister packs
  • Regulated products are to be sold behind the counter or in a locked cabinet in such a way as to restrict access
  • Daily sales of regulated products not to exceed 3.6 g to a single purchaser, without regard to the number of transactions
  • Monthly sales to a single purchaser not to exceed 9 g of pseudoephedrine base in regulated products

The law gives similar regulations to mail-order purchases, except the monthly sales limit is 7.5 g.

As a pure herb or tea, má huáng, containing ephedrine, is still sold legally in the US. The law restricts/prohibits its being sold as a dietary supplement (pill) or as an ingredient/additive to other products, like diet pills.

Australia

[edit]

Ephedrine and all Ephedra species that contain it are considered Schedule 4 substances under the Poisons Standard. A Schedule 4 drug is considered a Prescription Only Medicine, or Prescription Animal Remedy – Substances, the use or supply of which should be by or on the order of persons permitted by State or Territory legislation to prescribe and should be available from a pharmacist on prescription under the Poisons Standard.

South Africa

[edit]

In South Africa, ephedrine was moved to schedule 6 on 27 May 2008,[84] which makes pure ephedrine tablets prescription only. Pills containing ephedrine up to 30 mg per tablet in combination with other medications are still available OTC, schedule 1 and 2, for sinus, head colds, and influenza.

Germany

[edit]

Ephedrine was freely available in pharmacies in Germany until 2001. Afterward, access was restricted since it was mostly bought for unindicated uses. Similarly, ephedra can only be bought with a prescription. Since April 2006, all products, including plant parts, that contain ephedrine are only available with a prescription.[85]

Sources

[edit]

Agricultural

[edit]

Ephedrine is obtained from the plant Ephedra sinica and other members of the genus Ephedra, from which the name of the substance is derived. Raw materials for the manufacture of ephedrine and traditional Chinese medicines are produced in China on a large scale. As of 2007, companies produced for export US$13 million worth of ephedrine from 30,000 tons of ephedra annually, or about ten times the amount used in traditional Chinese medicine.[86]

Synthetic

[edit]

Most of the l-ephedrine produced today for official medical use is made synthetically as the extraction and isolation process from E. sinica is tedious and no longer cost-effective.[87][unreliable source?]

Biosynthetic

[edit]
Proposed biosynthetic pathway of ephedrine from L-phenylalanine and pyruvic acid.[88][89]

Ephedrine was long thought to come from modifying the amino acid L-phenylalanine.[90] L-Phenylalanine would be decarboxylated and subsequently attacked with ω-aminoacetophenone. Methylation of this product would then produce ephedrine. This pathway has since been disproven.[90] A new pathway proposed suggests that phenylalanine first forms cinnamoyl-CoA via the enzymes phenylalanine ammonia-lyase and acyl CoA ligase.[88] The cinnamoyl-CoA is then reacted with a hydratase to attach the alcohol functional group. The product is then reacted with a retro-aldolase, forming benzaldehyde. Benzaldehyde reacts with pyruvic acid to attach a 2-carbon unit. This product then undergoes transamination and methylation to form ephedrine and its stereoisomer, pseudoephedrine.[89]

References

[edit]
  1. ^ Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-15.
  2. ^ "Ephedrine Hydrochloride 15mg Tablets Summary of Product Characteristics (SmPC)". emc. Retrieved 8 October 2020.
  3. ^ "Ephedrine Nasal Drops 1.0% Summary of Product Characteristics (SmPC)". emc. 11 March 2015. Archived from the original on 24 October 2020. Retrieved 8 October 2020.
  4. ^ "Akovaz- ephedrine sulfate injection". DailyMed. 16 April 2020. Retrieved 8 October 2020.
  5. ^ "Title 21: Food And Drugs Part 341—Cold, Cough, Allergy, Bronchodilator, And Antiasthmatic Drug Products For Over-The-Counter Human Use". Electronic Code of Federal Regulations. Retrieved 8 October 2020.
  6. ^ a b c d e f g h i j k "Ephedrine: Uses, Interactions, Mechanism of Action". DrugBank Online. 29 April 2016. Retrieved 14 July 2024.
  7. ^ a b Volpp M, Holzgrabe U (January 2019). "Determination of plasma protein binding for sympathomimetic drugs by means of ultrafiltration". Eur J Pharm Sci. 127: 175–184. doi:10.1016/j.ejps.2018.10.027. PMID 30391401.
  8. ^ a b Schmidt S (2023). Lang-etablierte Arzneistoffe genauer unter die Lupe genommen: Enantioselektive Proteinbindung und Stabilitätsstudien [A closer look at long-established drugs: enantioselective protein binding and stability studies] (Thesis) (in German). Universität Würzburg. doi:10.25972/opus-34594.
  9. ^ a b Gad MZ, Azab SS, Khattab AR, Farag MA (October 2021). "Over a century since ephedrine discovery: an updated revisit to its pharmacological aspects, functionality and toxicity in comparison to its herbal extracts". Food Funct. 12 (20): 9563–9582. doi:10.1039/d1fo02093e. PMID 34533553.
  10. ^ a b c d e f Chua SS, Benrimoj SI, Triggs EJ (1989). "Pharmacokinetics of non-prescription sympathomimetic agents". Biopharm Drug Dispos. 10 (1): 1–14. doi:10.1002/bdd.2510100102. PMID 2647163.
  11. ^ a b c d e f g h i j k l m n o p q "Ephedrine". The American Society of Health-System Pharmacists. Archived from the original on 2017-09-09. Retrieved 8 September 2017.
  12. ^ Briggs GG, Freeman RK, Yaffe SJ (2011). Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk (9th ed.). Philadelphia: Lippincott Williams & Wilkins. p. 495. ISBN 9781608317080. Archived from the original on 2017-09-08.
  13. ^ a b "Ephedrine Pregnancy and Breastfeeding Warnings". Archived from the original on 5 August 2017. Retrieved 8 October 2017.
  14. ^ a b "Ephedrine". PubChem. Retrieved 30 August 2024.
  15. ^ Soni MG, Shelke K, Amin R, Talati (2013). "A Lessons from the Use of Ephedra Products as a Dietary Supplement". In Bagchi D, Preuss HG (eds.). Obesity epidemiology, pathophysiology, and prevention (2nd ed.). Boca Raton, Florida: CRC Press. p. 692. ISBN 9781439854266. Archived from the original on 2017-09-08.
  16. ^ Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 541. ISBN 9783527607495.
  17. ^ World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.
  18. ^ a b Abourashed EA, El-Alfy AT, Khan IA, Walker L (August 2003). "Ephedra in perspective—a current review". Phytotherapy Research. 17 (7): 703–712. doi:10.1002/ptr.1337. PMID 12916063. S2CID 41083359.
  19. ^ a b Butterworth IV JF, Mackey DC, Wasnick JD (2022). "Chapter 14. Adrenergic Agonists & Antagonists.". Morgan & Mikhail's Clinical Anesthesiology (7th ed.). McGraw-Hill Education. ISBN 978-1-260-47379-7.
  20. ^ a b Drew CD, Knight GT, Hughes DT, Bush M (September 1978). "Comparison of the effects of D-(-)-ephedrine and L-(+)-pseudoephedrine on the cardiovascular and respiratory systems in man". British Journal of Clinical Pharmacology. 6 (3): 221–5. doi:10.1111/j.1365-2125.1978.tb04588.x. PMC 1429447. PMID 687500.
  21. ^ Buckey Jr JC (2006). Space Physiology. Oxford University Press. p. 201. ISBN 978-0-1997-4790-0.
  22. ^ Sanford CA, Jong EC (2008). The Travel and Tropical Medicine Manual E-Book. Elsevier Health Sciences. p. 139. ISBN 978-1437710694.
  23. ^ Higashida K, Yamada M, Shimohata T (2021-04-13). "Quick and long-lasting responsiveness by ephedrine in an adult woman with congenital myasthenic syndrome associated with a novel COLQ mutation. (2928)". Neurology. 96 (15 Supplement). doi:10.1212/WNL.96.15_supplement.2928. ISSN 0028-3878. S2CID 266124150.
  24. ^ Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, et al. (March 2003). "Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis". JAMA. 289 (12): 1537–45. doi:10.1001/jama.289.12.1470. PMID 12672771.
  25. ^ Dwyer JT, Allison DB, Coates PM (May 2005). "Dietary supplements in weight reduction". Journal of the American Dietetic Association. 105 (5 Suppl 1): S80-6. doi:10.1016/j.jada.2005.02.028. PMID 15867902.
  26. ^ Bray GA, Bouchard C (2004). Handbook of obesity. CRC Press. pp. 494–496. ISBN 978-0-8247-4773-2. Archived from the original on 2014-06-26.
  27. ^ Magkos F, Kavouras SA (2004). "Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects". Sports Medicine. 34 (13): 871–89. doi:10.2165/00007256-200434130-00002. PMID 15487903. S2CID 1966020.
  28. ^ Yoo HJ, Yoon HY, Yee J, Gwak HS (November 2021). "Effects of Ephedrine-Containing Products on Weight Loss and Lipid Profiles: A Systematic Review and Meta-Analysis of Randomized Controlled Trials". Pharmaceuticals. 14 (11): 1198. doi:10.3390/ph14111198. PMC 8618781. PMID 34832979.
  29. ^ a b "Drugs@FDA: FDA-Approved Drugs". accessdata.fda.gov. Food and Drug Administration. Retrieved 14 July 2024.
  30. ^ a b c d "Search Results for ephedrine". DailyMed. Retrieved 14 July 2024.
  31. ^ a b Mayne Pharma. Ephedrine sulfate injection DBL (Approved Product Information). Melbourne: Mayne Pharma; 2004
  32. ^ a b Palamar J (January 2011). "How ephedrine escaped regulation in the United States: a historical review of misuse and associated policy". Health Policy. 99 (1): 1–9. doi:10.1016/j.healthpol.2010.07.007. PMID 20685002.
  33. ^ Joint Formulary Committee. British National Formulary, 47th edition. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2004. ISBN 0-85369-587-3
  34. ^ Rothman RB, Baumann MH (2003). "Monoamine transporters and psychostimulant drugs". Eur. J. Pharmacol. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID 14612135.
  35. ^ Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Curr Top Med Chem. 6 (17): 1845–1859. doi:10.2174/156802606778249766. PMID 17017961.
  36. ^ a b c d e Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID 11071707.
  37. ^ Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–562. doi:10.1038/npp.2012.204. PMC 3572453. PMID 23072836.
  38. ^ a b c d e f g h Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (October 2003). "In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates". J Pharmacol Exp Ther. 307 (1): 138–145. doi:10.1124/jpet.103.053975. PMID 12954796.
  39. ^ Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (April 2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–203. doi:10.1038/npp.2011.304. PMC 3306880. PMID 22169943.
  40. ^ "EPHEDrine". Merck Manuals. January 2010. Archived from the original on 24 March 2011.
  41. ^ a b c Docherty JR (June 2008). "Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA)". Br J Pharmacol. 154 (3): 606–622. doi:10.1038/bjp.2008.124. PMC 2439527. PMID 18500382.
  42. ^ a b Ma G, Bavadekar SA, Davis YM, Lalchandani SG, Nagmani R, Schaneberg BT, et al. (July 2007). "Pharmacological effects of ephedrine alkaloids on human alpha(1)- and alpha(2)-adrenergic receptor subtypes". The Journal of Pharmacology and Experimental Therapeutics. 322 (1): 214–221. doi:10.1124/jpet.107.120709. PMID 17405867. S2CID 86429875.
  43. ^ Kobayashi S, Endou M, Sakuraya F, Matsuda N, Zhang XH, Azuma M, et al. (November 2003). "The sympathomimetic actions of l-ephedrine and d-pseudoephedrine: direct receptor activation or norepinephrine release?". Anesthesia and Analgesia. 97 (5): 1239–1245. doi:10.1213/01.ANE.0000092917.96558.3C. PMID 14570629.
  44. ^ Munhall AC, Johnson SW (January 2006). "Dopamine-mediated actions of ephedrine in the rat substantia nigra". Brain Research. 1069 (1): 96–103. doi:10.1016/j.brainres.2005.11.044. PMID 16386715. S2CID 40626692.
  45. ^ a b c d e f Schweizerischer Apotheker-Verein (2004). Index Nominum: International Drug Directory. Medpharm Scientific Publishers. p. 450. ISBN 978-3-88763-101-7. Retrieved 30 August 2024.
  46. ^ "L-(−)-Ephedrine". ChemSpider. 30 August 2024. Retrieved 30 August 2024.
  47. ^ Bharate SS, Mignani S, Vishwakarma RA (December 2018). "Why Are the Majority of Active Compounds in the CNS Domain Natural Products? A Critical Analysis". J Med Chem. 61 (23): 10345–10374. doi:10.1021/acs.jmedchem.7b01922. PMID 29989814.
  48. ^ a b c Schep LJ, Slaughter RJ, Beasley DM (August 2010). "The clinical toxicology of metamfetamine". Clin Toxicol (Phila). 48 (7): 675–694. doi:10.3109/15563650.2010.516752. PMID 20849327. Metamfetamine acts in a manner similar to amfetamine, but with the addition of the methyl group to the chemical structure. It is more lipophilic (Log p value 2.07, compared with 1.76 for amfetamine),4 thereby enabling rapid and extensive transport across the blood–brain barrier.19
  49. ^ "Amphetamine". PubChem. Retrieved 26 July 2024.
  50. ^ "Pseudoephedrine". PubChem. Retrieved 25 July 2024.
  51. ^ "Norephedrine". PubChem. Retrieved 26 July 2024.
  52. ^ "Phenylephrine". PubChem. Retrieved 21 July 2024.
  53. ^ "Norepinephrine". PubChem. Retrieved 26 July 2024.
  54. ^ Eccles R (January 2007). "Substitution of phenylephrine for pseudoephedrine as a nasal decongeststant. An illogical way to control methamphetamine abuse". British Journal of Clinical Pharmacology. 63 (1): 10–14. doi:10.1111/j.1365-2125.2006.02833.x. PMC 2000711. PMID 17116124.
  55. ^ Froese L, Dian J, Gomez A, Unger B, Zeiler FA (October 2020). "The cerebrovascular response to norepinephrine: A scoping systematic review of the animal and human literature". Pharmacol Res Perspect. 8 (5): e00655. doi:10.1002/prp2.655. PMC 7510331. PMID 32965778.
  56. ^ Pajouhesh H, Lenz GR (October 2005). "Medicinal chemical properties of successful central nervous system drugs". NeuroRx. 2 (4): 541–553. doi:10.1602/neurorx.2.4.541. PMC 1201314. PMID 16489364. Lipophilicity was the first of the descriptors to be identified as important for CNS penetration. Hansch and Leo54 reasoned that highly lipophilic molecules will be partitioned into the lipid interior of membranes and will be retained there. However, ClogP correlates nicely with LogBBB with increasing lipophilicity and increasing brain penetration. For several classes of CNS active substances, Hansch and Leo54 found that blood-brain barrier penetration is optimal when the LogP values are in the range of 1.5-2.7, with a mean value of 2.1. An analysis of small drug-like molecules suggested that for better brain permeation46 and for good intestinal permeability55 the LogD values need to be greater than 0 and less than 3. In comparison, the mean value for ClogP for the marketed CNS drugs is 2.5, which is in good agreement with the range found by Hansch et al.22
  57. ^ Budavari S (ed.). The Merck Index: An encyclopedia of chemicals, drugs, and biologicals (12th ed.). Whitehouse Station: Merck.
  58. ^ a b c d e f g h i Elks J (2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer US. p. 793. ISBN 978-1-4757-2085-3. Retrieved 30 August 2024.
  59. ^ a b Reynolds J (1989). Reynolds JEF (ed.). Martindale: The complete drug reference (29th ed.). London: Pharmaceutical Press. ISBN 978-0-85369-210-2.
  60. ^ Patil PN, Tye A, Lapidus JB (May 1965). "A Pharmacological Study of the Ephedrine Isomers" (PDF). The Journal of Pharmacology and Experimental Therapeutics. 148 (2): 158–68. PMID 14301006.
  61. ^ "S6. Stimulants | List of Prohibited Substances and Methods". Archived from the original on 2015-10-23. Retrieved 2015-10-19.
  62. ^ Schier JG, Traub SJ, Hoffman RS, Nelson LS (2003). "Ephedrine-induced cardiac ischemia: exposure confirmed with a serum level". Journal of Toxicology. Clinical Toxicology. 41 (6): 849–53. doi:10.1081/clt-120025350. PMID 14677795. S2CID 23359388.
  63. ^ WADA. The World Anti-Doping Code, World Anti-Doping Agency, Montreal, Canada, 2010. url Archived 2013-09-11 at the Wayback Machine
  64. ^ Baselt R (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publications. pp. 542–544.
  65. ^ Levy WO, Kalidas K (26 February 2010). Miller NS (ed.). Principles of Addictions and the Law: Applications in Forensic, Mental Health, and Medical Practice. Academic Press. pp. 307–308. ISBN 978-0-12-496736-6.
  66. ^ Ford MD, Delaney KA, Ling LJ, Erickson T, eds. (2001). Clinical Toxicology. Philadelphia: WB Saunders. ISBN 0-7216-5485-1.
  67. ^ Dikotter F, Laamann LP (16 April 2004). Narcotic Culture: A History of Drugs in China. University of Chicago Press. p. 199. ISBN 978-0-226-14905-9.
  68. ^ a b c d "Ephedrine (International database)". Drugs.com. 5 August 2024. Retrieved 30 August 2024.
  69. ^ Schweizerischer Apotheker-Verein (2000). Index Nominum 2000: International Drug Directory. Medpharm Scientific Publishers. p. 390. ISBN 978-3-88763-075-1. Retrieved 30 August 2024.
  70. ^ Microsoft Word – RedListE2007.doc Archived February 27, 2008, at the Wayback Machine
  71. ^ Lieberman HR (April 2001). "The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy". Nutr Rev. 59 (4): 91–102. doi:10.1111/j.1753-4887.2001.tb06995.x. PMID 11368507.
  72. ^ a b Magkos F, Kavouras SA (2004). "Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects". Sports Med. 34 (13): 871–889. doi:10.2165/00007256-200434130-00002. PMID 15487903.
  73. ^ a b Graham TE (2001). "Caffeine, coffee and ephedrine: impact on exercise performance and metabolism". Can J Appl Physiol. 26 Suppl: S103 – S119. PMID 11897887.
  74. ^ Borsato G, Linden A, Lucchi OD, Lucchini V, Wolstenholme D, Zambon A (May 2007). "Chiral polycyclic ketones via desymmetrization of dihaloolefins". The Journal of Organic Chemistry. 72 (11): 4272–5. doi:10.1021/jo070222g. hdl:11380/1138891. PMID 17474779.
  75. ^ "Health Canada requests recall of certain products containing Ephedra/ephedrine". Health Canada. January 9, 2002. Archived from the original on February 6, 2007. Retrieved July 7, 2009.
  76. ^ Laccourreye O, Werner A, Giroud JP, Couloigner V, Bonfils P, Bondon-Guitton E (February 2015). "Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants". European Annals of Otorhinolaryngology, Head and Neck Diseases. 132 (1): 31–4. doi:10.1016/j.anorl.2014.11.001. PMID 25532441.
  77. ^ Legislative Services Branch (2021-03-18). "Consolidated federal laws of canada, Controlled Drugs and Substances Act". laws-lois.justice.gc.ca. Archived from the original on 2021-07-30. Retrieved 2021-07-30.
  78. ^ Federal Register: June 4, 1997 (Volume 62, Number 107): Dietary Supplements Containing Ephedrine Alkaloids; Proposed Rule
  79. ^ Federal Register: April 3, 2000 (Volume 65, Number 64): Dietary Supplements Containing Ephedrine Alkaloids; Withdrawal in Part
  80. ^ Federal Register: February 11, 2004 (Volume 69, Number 28): Final Rule Declaring Dietary Supplements Containing Ephedrine Alkaloids Adulterated Because They Present an Unreasonable Risk; Final Rule
  81. ^ "Nutraceutical Corporation; Solaray, Inc., Plaintiffs-appellees, v. Andrew Von Eschenbach, Acting Commissioner, U.S. Food and Drug Administration; United States Food and Drug Administration; Michael O. Leavitt, Secretary of the Department of Health and Human Services; Department of Health and Human Services; United States of America" (PDF). Archived from the original (PDF) on 2011-07-10. Retrieved 2010-07-01. Defendants-appellants, 459 F.3d 1033 (10th Cir. 2006)
  82. ^ Nutraceutical Corporation; Solaray, Inc. Plaintiffs-Appellees vs. Andrew Von Eschenbach, Acting Commissioner, US.. Food and Drug Administration; United States Food and Drug Administration; Michael O. Leavitt, Secretary of the Department of Health and Human Services; Department of Health and Human Services; United States of America, We find that the FDA correctly followed the congressional directive to analyze the risks and benefits of EDS in determining that there is no dosage level of EDS acceptable for the market. (United States Court of Appeals Tenth Circuit August 17, 2006), archived from the original.
  83. ^ "Sport Drug Testing – Drug Programs & Policy – Athletics". Archived from the original on 2011-02-10. Retrieved 2011-03-21.
  84. ^ "Rescheduling of Medicines that Contain Ephedrine". Archived from the original on 2009-06-28. Retrieved 2009-04-18.
  85. ^ Verordnung zur Neuordnung der Verschreibungspflicht von Arzneimitteln (AMVVNV). Archived 2014-05-17 at the Wayback Machine V. v. 21. Dezember 2005 BGBl. I S. 3632; Geltung ab 1. Januar 2006.
  86. ^ Long C (15 January 2007). "Chinese medicine's great waste of resources". Archived from the original on 30 May 2016. Retrieved 9 May 2016.
  87. ^ "Chemically Synthesized Ephedrine Put into Mass Production in China". November 5, 2001. Archived from the original on June 29, 2011.
  88. ^ a b Hertweck C, Jarvis AP, Xiang L, Moore BS, Oldham NJ (October 2001). "A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid beta-oxidation". ChemBioChem. 2 (10): 784–6. doi:10.1002/1439-7633(20011001)2:10<784::AID-CBIC784>3.0.CO;2-K. PMID 11948863. S2CID 28159196.
  89. ^ a b Grue-Sorensen G, Spenser ID (May 1, 1988). "Biosynthesis of ephedrine". Journal of the American Chemical Society. 110 (11): 3714–3715. doi:10.1021/ja00219a086. ISSN 0002-7863.
  90. ^ a b Yamasaki K, Tamaki T, Uzawa S, Sankawa U, Shibata S (1973). "Participation of C6-C1 unit in the biosynthesis of ephedrine in Ephedra". Phytochemistry. 12 (12): 2877–2882. Bibcode:1973PChem..12.2877Y. doi:10.1016/0031-9422(73)80499-6.
[edit]