Cytokine storm: Difference between revisions
Starlighsky (talk | contribs) m →Relationship to COVID-19: Added link |
|||
(380 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Frequently fatal immune reaction}} |
|||
{{Infobox_Disease | |
|||
{{distinguish|Cytokine release syndrome}} |
|||
{{Infobox medical condition (new) |
|||
⚫ | |||
| name = Cytokine storm |
|||
| synonyms = hypercytokinemia |
|||
DiseasesDB = 34296 | |
|||
| image = |
|||
| caption = |
|||
| pronounce = |
|||
| field = [[Immunology]] |
|||
| symptoms = |
|||
| complications = |
|||
eMedicineSubj = | |
|||
| onset = |
|||
eMedicineTopic = | |
|||
| duration = |
|||
| types = |
|||
⚫ | |||
| risks = |
|||
| diagnosis = |
|||
| differential = |
|||
| prevention = |
|||
| treatment = |
|||
| medication = |
|||
| prognosis = |
|||
| frequency = |
|||
| deaths = |
|||
}} |
}} |
||
A '''cytokine storm''', also called '''hypercytokinemia''', is a pathological reaction in humans and other animals in which the [[innate immune system]] causes an uncontrolled and excessive release of [[Inflammation|pro-inflammatory]] signaling molecules called [[cytokine]]s. Cytokines are a normal part of the body's immune response to infection, but their sudden release in large quantities may cause [[Multiple organ dysfunction syndrome|multisystem organ failure]] and death.<ref name="farsalinos20">{{cite journal |doi=10.1007/s11739-020-02355-7|title=Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: Could nicotine be a therapeutic option?|year=2020|last1=Farsalinos|first1=Konstantinos|last2=Barbouni|first2=Anastasia|last3=Niaura|first3=Raymond|journal=Internal and Emergency Medicine|volume=15|issue=5|pages=845–852|pmid=32385628|pmc=7210099|doi-access=free}}</ref> |
|||
A '''cytokine storm''' is a potentially fatal immune reaction consisting of a [[positive feedback loop]] between [[cytokine]]s and [[immune cell]]s, with highly elevated levels of various cytokines.<ref name="osterholm">{{cite journal | last = Osterholm | first = Michael T. | author-link = Michael Osterholm |title = Preparing for the Next Pandemic | journal = The New England Journal of Medicine | volume = 352 | issue = 18 | pages = 1839–1842 | publisher = | date = 2005-05-05 | url = | doi = 10.1056/NEJMp058068 | id = | accessdate = 2007-10-18 | pmid = 15872196 }}</ref> |
|||
Cytokine storms may be caused by infectious or non-infectious [[etiologies]], especially viral respiratory infections such as [[Influenza A virus subtype H1N1|H1N1 influenza]], [[Influenza A virus subtype H5N1|H5N1 influenza]], [[Severe acute respiratory syndrome coronavirus|SARS-CoV-1]],<ref name="duIqL">{{Cite journal|last1=Wong|first1=Jonathan P.|last2=Viswanathan|first2=Satya|last3=Wang|first3=Ming|last4=Sun|first4=Lun-Quan|last5=Clark|first5=Graeme C.|last6=D'Elia|first6=Riccardo V.|date=February 2017|title=Current and future developments in the treatment of virus-induced hypercytokinemia|journal=Future Medicinal Chemistry|volume=9|issue=2|pages=169–178|doi=10.4155/fmc-2016-0181|issn=1756-8927|pmc=7079716|pmid=28128003}}</ref><ref name="lMDSR">{{cite journal |last1=Liu |first1=Qiang |last2=Zhou |first2=Yuan-hong |last3=Yang |first3=Zhan-qiu |title=The cytokine storm of severe influenza and development of immunomodulatory therapy |journal=Cellular & Molecular Immunology |date=January 2016 |volume=13 |issue=1 |pages=3–10 |doi=10.1038/cmi.2015.74 |pmid=26189369 |pmc=4711683}}</ref> [[SARS-CoV-2]], [[Influenza B]], and [[parainfluenza virus]]. Other causative agents include the [[Epstein–Barr virus|Epstein-Barr virus]], [[cytomegalovirus]], [[Streptococcus pyogenes|group A streptococcus]], and non-infectious conditions such as [[graft-versus-host disease]].<ref name="AnwRd">{{Cite journal|last1=Tisoncik|first1=Jennifer R.|last2=Korth|first2=Marcus J.|last3=Simmons|first3=Cameron P.|last4=Farrar|first4=Jeremy|last5=Martin|first5=Thomas R.|last6=Katze|first6=Michael G.|date=2012|title=Into the Eye of the Cytokine Storm|journal=Microbiology and Molecular Biology Reviews |volume=76|issue=1|pages=16–32|doi=10.1128/MMBR.05015-11|issn=1092-2172|pmc=3294426|pmid=22390970}}</ref> The viruses can invade lung [[Epithelium|epithelial]] cells and [[alveolar macrophage]]s to produce viral nucleic acid, which stimulates the infected cells to release cytokines and [[chemokines]], activating macrophages, dendritic cells, and others.<ref name="K6rGW">{{Cite journal|last1=Song|first1=Peipei|last2=Li|first2=Wei|last3=Xie|first3=Jianqin|last4=Hou|first4=Yanlong|last5=You|first5=Chongge|date=October 2020|title=Cytokine storm induced by SARS-CoV-2|journal=Clinica Chimica Acta; International Journal of Clinical Chemistry|volume=509|pages=280–287|doi=10.1016/j.cca.2020.06.017|issn=0009-8981|pmc=7283076|pmid=32531256}}</ref> |
|||
==Symptoms== |
|||
The primary symptoms of a cytokine storm are high fever, swelling and redness, extreme fatigue, and nausea.{{Fact|date=July 2008}} |
|||
'''Cytokine storm syndrome''' is a diverse set of conditions that can result in a cytokine storm. Cytokine storm syndromes include familial [[hemophagocytic lymphohistiocytosis]], Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis, systemic or non-systemic juvenile [[idiopathic]] [[arthritis]]–associated [[macrophage activation syndrome]], NLRC4 macrophage activation syndrome, [[cytokine release syndrome]] and [[sepsis]].<ref name="HHTtH">{{Cite journal|last1=Behrens|first1=Edward M.|last2=Koretzky|first2=Gary A.|date=2017|title=Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era|journal=Arthritis & Rheumatology|language=en|volume=69|issue=6|pages=1135–1143|doi=10.1002/art.40071|issn=2326-5205|pmid=28217930|doi-access=free}}</ref> |
|||
==Cause== |
|||
==Cytokine storms versus cytokine release syndrome== |
|||
When the [[immune system]] is fighting [[pathogen]]s, cytokines signal immune cells such as [[T-cell]]s and [[macrophage]]s to travel to the site of infection. In addition, cytokines activate those cells, stimulating them to produce more cytokines. Normally, this feedback loop is kept in check by the body. However, in some instances, the reaction becomes uncontrolled, and too many immune cells are activated in a single place. The precise reason for this is not entirely understood but may be caused by an exaggerated response when the immune system encounters a new and highly pathogenic invader. Cytokine storms have potential to do significant damage to body tissues and organs.{{Fact|date=July 2008}} If a cytokine storm occurs in the [[lung]]s, for example, fluids and immune cells such as macrophages may accumulate and eventually block off the airways, potentially resulting in death.{{Fact|date=July 2008}} |
|||
The term "cytokine storm" is often loosely used interchangeably with [[cytokine release syndrome]] (CRS) but is more precisely a differentiable [[syndrome]] that may represent a severe episode of cytokine release syndrome or a component of another disease entity, such as [[macrophage activation syndrome]]. When occurring as a result of a therapy, CRS symptoms may be delayed until days or weeks after treatment. Immediate-onset ([[fulminant]]) CRS appears to be a cytokine storm.<ref name="d5W9y">{{cite journal | vauthors = Porter D, Frey N, Wood PA, Weng Y, Grupp SA | title = Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel | journal = Journal of Hematology & Oncology | volume = 11 | issue = 1 | pages = 35 | date = March 2018 | pmid = 29499750 | pmc = 5833070 | doi = 10.1186/s13045-018-0571-y | doi-access = free }}</ref> |
|||
== Research == |
|||
The cytokine storm (hypercytokinemia) is the systemic expression of a healthy and vigorous immune system resulting in the release of more than 150 [[inflammation|inflammatory]] mediators (cytokines, [[oxygen free radicals]], and [[coagulation factor]]s). {{Fact|date=July 2008}} |
|||
[[Nicotinamide]] (a form of [[Vitamin B3|vitamin B<sub>3</sub>]]) is a potent inhibitor of proinflammatory cytokines.<ref name="pmid12519385">{{cite journal|author=Ungerstedt JS, Blömback M, Söderström T|year=2003|title=Nicotinamide is a potent inhibitor of proinflammatory cytokines.|journal=Clin Exp Immunol|volume=131|issue=1|pages=48–52|doi=10.1046/j.1365-2249.2003.02031.x|pmc=1808598|pmid=12519385}}</ref><ref name="pmid31308445">{{cite journal|author=Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E|year=2019|title=Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation.|journal=Sci Rep|volume=9|issue=1|pages=10219|doi=10.1038/s41598-019-46678-8|pmc=6629694|pmid=31308445|bibcode=2019NatSR...910219Y}}</ref> Low blood plasma levels of trigonelline (one of the metabolites of vitamin B3) have been suggested for the prognosis of SARS-CoV-2 death (which is thought to be due to the inflammatory phase and cytokine storm).<ref>Caterino, Marianna, Michele Costanzo, Roberta Fedele, Armando Cevenini, Monica Gelzo, Alessandro Di Minno, Immacolata Andolfo et al. "The serum metabolome of moderate and severe COVID-19 patients reflects possible liver alterations involving carbon and nitrogen metabolism." International journal of molecular sciences 22, no. 17 (2021): 9548.</ref><ref>{{Cite journal|url=https://zenodo.org/record/5856445|doi=10.5281/zenodo.5856445|year=2021|last1=Besharati|first1=Mohammad Reza|last2=Izadi|first2=Mohammad|author3=Alireza Talebpour|title=Blood Plasma Trigonelline Concentration and the Early Prognosis of Death in SARS-Cov-2 Patients}}</ref> |
|||
Both pro-inflammatory cytokines (such as [[Tumor necrosis factor-alpha]], [[Interleukin]]-1, and Interleukin-6) and anti-inflammatory cytokines (such as [[interleukin 10]] and [[interleukin 1 receptor antagonist]]) are elevated in the [[Serous fluid|serum]] of patients experiencing a cytokine storm.{{Fact|date=July 2008}} |
|||
[[Magnesium]] decreases inflammatory cytokine production by modulation of the immune system.<ref name="pmid22611240">{{cite journal|author=Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N|display-authors=etal|year=2012|title=Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism.|journal=J Immunol|volume=188|issue=12|pages=6338–46|doi=10.4049/jimmunol.1101765|pmc=3884513|pmid=22611240}}</ref><ref name="pmid29403302">{{cite journal|author=Nielsen FH|year=2018|title=Magnesium deficiency and increased inflammation: current perspectives.|journal=J Inflamm Res|volume=11|pages=25–34|doi=10.2147/JIR.S136742|pmc=5783146|pmid=29403302 |doi-access=free }}</ref> |
|||
Cytokine storms can occur in a number of infectious and non-infectious diseases including [[graft versus host disease]] (GVHD), [[adult respiratory distress syndrome]] (ARDS), [[sepsis]], [[avian influenza]], [[smallpox]], and [[systemic inflammatory response syndrome]] (SIRS).<ref name="goldman">{{cite book|author=Goldman (ed.)|coauthors=Bennett (ed.)|title=Cecil Textbook of Medicine|edition=21st|year=2000}}</ref> |
|||
==History== |
|||
The first reference to the term ''cytokine storm'' in the published [[medical literature]] appears to be by Ferrara ''et al.''<ref>{{cite journal | last = Ferrara | first = JL. | coauthors = S. Abhyankar, DG. Gilliland | title = Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1 | journal = Transplant Proc. | volume = 2 | issue = 25 | pages = 1216–1217 | publisher = | month = February | year = 1993 | url = | doi = | pmid = 8442093 | accessdate = 2007-10-18 }}</ref> in GVHD in February 1993. |
|||
The first reference to the term ''cytokine storm'' in the published [[medical literature]] appears to be by James Ferrara in 1993 during a discussion of [[graft vs. host disease]], a condition in which the role of excessive and self-perpetuating cytokine release had already been under discussion for many years.<ref name="Clark2007rev">{{cite journal |last1=Clark |first1=Ian A |title=The advent of the cytokine storm |journal=Immunology & Cell Biology |date=June 2007 |volume=85 |issue=4 |pages=271–273 |doi=10.1038/sj.icb.7100062 |pmid=17551531 |s2cid=40463322}}</ref><ref name="PzvNw">{{cite journal | vauthors = Ferrara JL, Abhyankar S, Gilliland DG | title = Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1 | journal = Transplantation Proceedings | volume = 25 | issue = 1 Pt 2 | pages = 1216–7 | date = February 1993 | pmid = 8442093}}</ref><ref name="AbhyankarGilliland1993">{{cite journal|last1=Abhyankar|first1=Sunil|last2=Gilliland|first2=D. Gary|last3=Ferrara|first3=James L.M.|year=1993|title={{ucfirst:{{lc:INTERLEUKIN-1 IS A CRITICAL EFFECTOR MOLECULE DURING CYTOKINE DYSREGULATION IN GRAFT VERSUS HOST DISEASE TO MINOR HISTOCOMPATIBILITY ANTIGENS1}}}}|url=|journal=Transplantation|volume=56|issue=6|pages=1518–1522|doi=10.1097/00007890-199312000-00045|pmid=8279027|issn=0041-1337|doi-access=free}}</ref> The term next appeared in a discussion of [[pancreatitis]] in 2002. In 2003, it was first used in reference to a reaction to an infection.<ref name="Clark2007rev" /> |
|||
It is believed that cytokine storms were responsible for the disproportionate number of healthy young adult deaths during the [[1918 flu pandemic|1918 influenza pandemic]], which killed an estimated 50 million people worldwide. In this case, a healthy immune system may have been a liability rather than an asset.<ref name="osterholm">{{cite journal | vauthors = Osterholm MT | title = Preparing for the next pandemic | journal = The New England Journal of Medicine | volume = 352 | issue = 18 | pages = 1839–42 | date = May 2005 | pmid = 15872196 | doi = 10.1056/NEJMp058068 | citeseerx = 10.1.1.608.6200 | s2cid = 45893174 | author-link = Michael Osterholm}}</ref> Preliminary research results from [[Taiwan]] also indicated this as the probable reason for many deaths during the [[Severe acute respiratory syndrome|SARS]] epidemic in 2003.<ref name="pmid15602737">{{cite journal | vauthors = Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY | title = An interferon-gamma-related cytokine storm in SARS patients | journal = Journal of Medical Virology | volume = 75 | issue = 2 | pages = 185–94 | date = February 2005 | pmid = 15602737 | pmc = 7166886 | doi = 10.1002/jmv.20255}}</ref> Human deaths from the bird flu [[H5N1]] usually involve cytokine storms as well.<ref name="pmid18258000">{{cite journal | vauthors = Haque A, Hober D, Kasper LH | title = Confronting potential influenza A (H5N1) pandemic with better vaccines | journal = Emerging Infectious Diseases | volume = 13 | issue = 10 | pages = 1512–8 | date = October 2007 | pmid = 18258000 | pmc = 2851514 | doi = 10.3201/eid1310.061262}}</ref> Cytokine storm has also been implicated in [[Hantavirus|hantavirus pulmonary syndrome]].<ref name="y0wp6">{{cite journal | vauthors = Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB, Norman JE, Waite DC, Koster FT, Ennis FA | display-authors = 6 | title = High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome | journal = The Journal of Infectious Diseases | volume = 179 | issue = 2 | pages = 295–302 | date = February 1999 | pmid = 9878011 | doi = 10.1086/314597 | doi-access = free}}</ref> |
|||
== Role in pandemic deaths == |
|||
In 2006, a study at [[Northwick Park Hospital]] in England resulted in all 6 of the volunteers given the drug [[theralizumab]] becoming critically ill, with multiple organ failure, high fever, and a systemic [[inflammatory response]].<ref name="LancetLEHSHR17267317">{{cite journal | title = High stakes, high risks | journal = The Lancet. Oncology | volume = 8 | issue = 2 | pages = 85 | date = February 2007 | pmid = 17267317 | doi = 10.1016/S1470-2045(07)70004-9 | last1 = The Lancet Oncology}}</ref> [[Parexel]], a company conducting trials for pharmaceutical companies claimed that theralizumab could cause a cytokine storm—the dangerous reaction the men experienced.<ref name="urlMystery over drug trial debacle deepens">{{cite web | url = https://www.newscientist.com/article/dn9734-mystery-over-drug-trial-debacle-deepens-.html | title = Mystery over drug trial debacle deepens | author = Coghlan A | date = 2006-08-14 | work = Health | publisher = New Scientist | access-date = 2009-04-29}}</ref> |
|||
It is believed that cytokine storms were responsible for many of the deaths during the [[Spanish flu|1918 influenza pandemic]], which killed a disproportionate number of young adults.<ref name="osterholm"/> In this case, a healthy immune system may have been a liability rather than an asset. Preliminary research results from [[Hong Kong]] also indicated this as the probable reason for many deaths during the [[Severe acute respiratory syndrome|SARS]] epidemic in 2003.{{Fact|date=July 2008}} Human deaths from the bird flu [[H5N1]] usually involve cytokine storms as well.{{Fact|date=July 2008}} |
|||
===Relationship to COVID-19=== |
|||
== Clinical trials of TGN1412 == |
|||
[[File:Cytokine release following SARS-Cov-2 infection resulting in ARDS related to COVID-19.png|thumb|300x300px|Cytokine release via activation of [[JAK-STAT signaling pathway|JAK/STAT]] signalling pathway following [[SARS-CoV-2|SARS-Cov-2]] infection resulting in ARDS related to COVID-19. Abbreviations: [[Angiotensin-converting enzyme 2|ACE2]]: Angiotensin-converting enzyme 2, [[CXCL9]]: Chemokine (C–X–C motif) ligand 9, IL: [[interleukin]], JAK: [[Janus kinase]], and STAT: [[STAT1|signal transducer]] and activator of transcription.<ref name=":0">{{Cite journal |last1=Razaghi |first1=Ali |last2=Szakos |first2=Attila |last3=Alouda |first3=Marwa |last4=Bozóky |first4=Béla |last5=Björnstedt |first5=Mikael |last6=Szekely |first6=Laszlo |date=2022-11-14 |title=Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: Enhanced Inflammatory Markers |journal=Diagnostics |language=en |volume=12 |issue=11 |pages=2789 |doi=10.3390/diagnostics12112789 |pmid=36428847 |pmc=9689825 |issn=2075-4418|doi-access=free }}</ref>]] |
|||
During the [[COVID-19 pandemic]], some doctors have attributed many deaths to cytokine storms.<ref name="covid-3">{{cite journal | vauthors = Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ | title = COVID-19: consider cytokine storm syndromes and immunosuppression | journal = Lancet | volume = 395 | issue = 10229 | pages = 1033–1034 | date = March 2020 | pmid = 32192578 | doi = 10.1016/S0140-6736(20)30628-0 | pmc = 7270045 | doi-access = free}}</ref><ref name="covid-2">{{cite journal | vauthors = Ruan Q, Yang K, Wang W, Jiang L, Song J | title = Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China | journal = Intensive Care Medicine | date = March 2020 | volume = 46 | issue = 5 | pages = 846–848 | pmid = 32125452 | pmc = 7080116 | doi = 10.1007/s00134-020-05991-x}}</ref> A cytokine storm can cause the severe symptoms of [[acute respiratory distress syndrome]] (ARDS), which has a high mortality rate in COVID-19 patients.<ref name="covid-10">{{cite journal | vauthors = Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T | title = How covid-19 induces cytokine storm with high mortality | journal = Inflammation and Regeneration | date = October 2020 | volume = 40 | issue = 37 | page = 37 | pmid = 33014208 | pmc = 7527296 | doi = 10.1186/s41232-020-00146-3 | doi-access = free }}</ref> SARS-CoV-2 activates the immune system resulting in a release of a large number of cytokines, including [[Interleukin 6|IL-6]], which can increase [[vascular permeability]] and cause a migration of fluid and blood cells into the alveoli leading to such consequent symptoms as dyspnea and respiratory failure.<ref name="LPOeI">{{Cite journal|last1=Farsalinos|first1=Konstantinos|last2=Barbouni|first2=Anastasia|last3=Niaura|first3=Raymond|date=2020-05-09|title=Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option?|journal=Internal and Emergency Medicine|volume=15|issue=5|pages=845–852|doi=10.1007/s11739-020-02355-7|issn=1828-0447|pmc=7210099|pmid=32385628}}</ref> In an [[autopsy]] study from [[Karolinska University Hospital|Karolinska Hospital]], 29 [[Pleural effusion|pleural effusions]] of deceased COVID-19 patients were analyzed. Out of 184 protein markers, 20 markers were raised significantly in COVID-19 deceased patients. A group of markers showed over-stimulation of the immune system, including [[Adenosine deaminase|ADA]], [[Betacellulin|BTC]], [[Carbonic anhydrase 12|CA12]], [[CAPG]], [[CD40 (protein)|CD40]], [[CDCP1]], [[CXCL9]], [[ENTPD2]], [[FMS-like tyrosine kinase 3 ligand|Flt3L]], [[Interleukin 6|IL-6]], [[Interleukin 8|IL-8]], [[LRP1]], [[Oncostatin M|OSM]], [[PD-L1]], [[PTN (gene)|PTN]], [[STX8]], and [[VEGFA]]; furthermore, [[DPP6]] and [[EDIL3]] indicated damage to [[arterial]] and [[cardiovascular]] organs.<ref name=":0" /> The higher mortality has been linked to the effects of ARDS aggravation and the tissue damage that can result in organ-failure and/or death.<ref name="doi.org">{{cite journal |last1=Ragad |first1=Dina |title=The COVID-19 Cytokine Storm; What we know so far |journal=Front. Immunol. |date=16 June 2020 |volume=11 |page=1446 |doi=10.3389/fimmu.2020.01446 |pmid=32612617 |pmc=7308649 |url=|doi-access=free }}</ref> |
|||
ARDS was shown to be the cause of mortality in 70% of COVID-19 deaths.<ref name="DpIOk">{{Cite journal|last1=Hojyo|first1=Shintaro|last2=Uchida|first2=Mona|last3=Tanaka|first3=Kumiko|last4=Hasebe|first4=Rie|last5=Tanaka|first5=Yuki|last6=Murakami|first6=Masaaki|last7=Hirano|first7=Toshio|date=2020-10-01|title=How COVID-19 induces cytokine storm with high mortality|journal=Inflammation and Regeneration|volume=40|page=37|doi=10.1186/s41232-020-00146-3|pmid=33014208|issn=1880-9693|pmc=7527296 |doi-access=free }}</ref> A cytokine plasma level analysis showed that in cases of severe SARS-CoV-2 infection, the levels of many interleukins and cytokines are highly elevated, indicating evidence of a cytokine storm.<ref name="doi.org" /> Additionally, [[postmortem examination]] of patients with COVID-19 has shown a large accumulation of inflammatory cells in lung tissues including macrophages and T-helper cells.<ref name="i7sKd">{{Cite journal|last1=Tang|first1=Yujun|last2=Liu|first2=Jiajia|last3=Zhang|first3=Dingyi|last4=Xu|first4=Zhenghao|last5=Ji|first5=Jinjun|last6=Wen|first6=Chengping|date=2020-07-10|title=Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies|journal=Frontiers in Immunology|volume=11|page=1708|doi=10.3389/fimmu.2020.01708|issn=1664-3224|pmc=7365923|pmid=32754163|doi-access=free}}</ref> |
|||
In March 2006, all six men who had received the experimental drug [[TGN1412]] suffered extremely serious symptoms<ref>{{cite journal | title = Leading Edge: High stakes, high risks | journal = Lancet Oncology | volume = 8 | issue = 2 | publisher = [[The Lancet]] | month = February | year = 2007 | url = | pmid = 17267317 | doi =10.1016/S1470-2045(07)70004-9 | accessdate = 2007-10-18 | author = Thelancetoncology,| pages = 85 }}</ref><ref>[http://www.ciaomed.org/articles.cfm?articleID=871 Superagonist Trial Hit By Cytokine Storm] - ciaomed.com</ref> from what were most likely the effects of a cytokine storm.<ref>[http://www.newscientist.com/article/dn9734-mystery-over-drug-trial-debacle-deepens-.html Mystery over drug trial debacle deepens], New Scientist.com news service, 14 August 2006.</ref> Based on results from animal trials, the company claimed that TGN1412 could activate T-cells in a way that would not cause the cytokine storm one would expect based on results from other drugs with similar mechanisms of action. All six men had been participating in a [[Clinical_trial#Phase_I|Phase I trial]]. |
|||
Early recognition of a cytokine storm in COVID-19 patients is crucial to ensure the best outcome for recovery, allowing treatment with a variety of biological agents that target the cytokines to reduce their levels. Meta-analysis suggests clear patterns distinguishing patients with or without severe disease. Possible predictors of severe and fatal cases may include [[lymphopenia]], [[thrombocytopenia]] and high levels of [[ferritin]], [[D-dimer]], [[aspartate aminotransferase]], [[lactate dehydrogenase]], [[C-reactive protein]], [[neutrophils]], [[procalcitonin]] and [[creatinine]] as well as [[interleukin-6]] (IL-6). Ferritin and IL-6 are considered to be possible immunological biomarkers for severe and fatal cases of COVID-19. Ferritin and C-reactive protein may be possible screening tools for early diagnosis of [[systemic inflammatory response syndrome]] in cases of COVID-19.<ref name="Melo">{{cite journal |last1=Melo |first1=Ana Karla G. |last2=Milby |first2=Keilla M. |last3=Caparroz |first3=Ana Luiza M. A. |last4=Pinto |first4=Ana Carolina P. N. |last5=Santos |first5=Rodolfo R. P. |last6=Rocha |first6=Aline P. |last7=Ferreira |first7=Gilda A. |last8=Souza |first8=Viviane A. |last9=Valadares |first9=Lilian D. A. |last10=Vieira |first10=Rejane M. R. A. |last11=Pileggi |first11=Gecilmara S. |last12=Trevisani |first12=Virgínia F. M. |title=Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis |journal=PLOS ONE |date=29 June 2021 |volume=16 |issue=6 |pages=e0253894 |doi=10.1371/journal.pone.0253894 |pmid=34185801 |pmc=8241122 |bibcode=2021PLoSO..1653894M |doi-access=free }}</ref> |
|||
== Treatment == |
|||
=== OX40 IG === |
|||
Due to the increased levels of cytokines and interferons in patients with severe COVID-19, both have been investigated as potential targets for SARS-CoV-2 therapy. An [[animal study]] found that mice producing an early strong interferon response to SARS-CoV-2 were likely to live, but in other cases the disease progressed to a highly morbid overactive immune system.<ref name="ChannappanavarPerlman2017">{{cite journal|last1=Channappanavar|first1=Rudragouda|last2=Perlman|first2=Stanley|year=2017|title=Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology|journal=Seminars in Immunopathology|volume=39|issue=5|pages=529–539|doi=10.1007/s00281-017-0629-x|pmid=28466096|issn=1863-2297|pmc=7079893}}</ref><ref name="jgg4K">{{Cite news|last=Velasquez-Manoff|first=Moises|date=2020-08-11|title=How Covid Sends Some Bodies to War With Themselves|language=en-US|work=[[The New York Times]]|url=https://www.nytimes.com/2020/08/11/magazine/covid-cytokine-storms.html|access-date=2020-12-28|issn=0362-4331}}</ref> The high mortality rate of COVID-19 in older populations has been attributed to the impact of age on interferon responses. |
|||
A 2003 report in the ''Journal of Experimental Medicine'' published by researchers at [[Imperial College London]] demonstrates<ref name="ImpCol">{{cite journal | last = Humphreys | first = IR | coauthors = G Walzl, L Edwards, A Rae, S Hill, T Hussell | title = A critical role for OX40 in T cell-mediated immunopathology during lung viral infection | journal = J Exp Med. | volume = 198 | issue = 8 | pages = 1237–1242 | publisher = | date = 2003-10-20 | url = | pmc = 2194232 | doi = 10.1084/jem.20030351 | pmid = 14568982 | accessdate = 2007-10-18 }}</ref> the possibility of preventing a cytokine storm by inhibiting or disabling [[T-cell]] response. A few days after T cells are activated, they produce a biologic molecule called [[OX40]], a "survival signal" that keeps activated T-cells working at the site of inflammation during infection with influenza or other pathogens. OX40 binds to receptors on T-cells, preventing them from dying and subsequently increasing cytokine production. A combined protein, OX40-[[immunoglobulin]] (OX40-Ig), a man-made [[fusion protein]], prevents OX40 from reaching the T-cell receptors, thus reducing the T-cell response. Experiments in mice have demonstrated that OX40-Ig can reduce the symptoms associated with an immune overreaction while allowing the immune system to fight off the virus successfully. By blocking the OX40 receptor on T-cells, researchers were able to prevent the development of the most serious flu symptoms in these experimental mice<ref name="ImpCol" /> and reported the results in ''[[New Scientist]]''.<ref>[http://www.newscientist.com/article.ns?id=dn4293 New flu drug calms the 'storm'] - [[New Scientist]]</ref> The drug, to be made by a company called Xenova Research (Xenova Research was purchased by Celtic Pharma, a private equity firm, in September 2005), was supposed to be in phase I clinical trial in 2004, but its status is currently unknown.<ref>[http://www.clinicaltrials.gov/ct/search;jsessionid=32E2FC88152AAF2035034EDFE4048F58?term=OX-40&submit=Search OX-40 Clinical Trial details]</ref> |
|||
Short-term use of dexamethasone, a synthetic corticosteroid, has been demonstrated to reduce the severity of inflammation and lung damage induced by a cytokine storm by inhibiting the severe cytokine storm or the hyperinflammatory phase in patients with COVID-19.<ref name="gwh7s">{{cite journal |last1=Sharun |first1=Khan |last2=Tiwari |first2=Ruchi |last3=Dhama |first3=Jaideep |last4=Dhama |first4=Kuldeep |title=Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence |journal=International Journal of Surgery |date=October 2020 |volume=82 |pages=179–181 |doi=10.1016/j.ijsu.2020.08.038 |pmid=32896649 |pmc=7472975 }}</ref> |
|||
=== ACE inhibitors and Angiotensin II Receptor Blockers === |
|||
Clinical trials continue to identify causes of cytokine storms in COVID-19 cases.<ref name="jc5OJ">{{cite journal |last1=Hermine |first1=Olivier |last2=Mariette |first2=Xavier |last3=Tharaux |first3=Pierre-Louis |last4=Resche-Rigon |first4=Matthieu |last5=Porcher |first5=Raphaël |last6=Ravaud |first6=Philippe |author7=CORIMUNO-19 Collaborative Group |title=Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial |journal=JAMA Internal Medicine |date=20 October 2020 |volume=181 |issue=1 |pages=32–40 |doi=10.1001/jamainternmed.2020.6820 |issn=2168-6106 |pmid=33080017 |pmc=7577198}}</ref><ref name="cAZBr">{{cite journal |last1=Gupta |first1=Shruti |last2=Wang |first2=Wei |last3=Hayek |first3=Salim S. |last4=Chan |first4=Lili |last5=Mathews |first5=Kusum S. |last6=Melamed |first6=Michal L. |last7=Brenner |first7=Samantha K. |last8=Leonberg-Yoo |first8=Amanda |last9=Schenck |first9=Edward J. |last10=Radbel |first10=Jared |last11=Reiser |first11=Jochen |last12=Bansal |first12=Anip |last13=Srivastava |first13=Anand |last14=Zhou |first14=Yan |last15=Finkel |first15=Diana |last16=Green |first16=Adam |last17=Mallappallil |first17=Mary |last18=Faugno |first18=Anthony J. |last19=Zhang |first19=Jingjing |last20=Velez |first20=Juan Carlos Q. |last21=Shaefi |first21=Shahzad |last22=Parikh |first22=Chirag R. |last23=Charytan |first23=David M. |last24=Athavale |first24=Ambarish M. |last25=Friedman |first25=Allon N. |last26=Redfern |first26=Roberta E. |last27=Short |first27=Samuel A. P. |last28=Correa |first28=Simon |last29=Pokharel |first29=Kapil K. |last30=Admon |first30=Andrew J. |last31=Donnelly |first31=John P. |last32=Gershengorn |first32=Hayley B. |last33=Douin |first33=David J. |last34=Semler |first34=Matthew W. |last35=Hernán |first35=Miguel A. |last36=Leaf |first36=David E. |author37=STOP-COVID Investigators |title=Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19 |journal=JAMA Internal Medicine |date=20 October 2020 |volume=181 |issue=1 |pages=41–51 |doi=10.1001/jamainternmed.2020.6252 |pmid=33080002 |pmc=757720}}</ref> One such cause is the delayed Type I interferon response that leads to accumulation of pathogenic [[monocyte]]s. High [[viremia]] is also associated with exacerbated Type I interferons response and worse [[prognosis]].<ref name="GoEhf">{{Cite journal|last1=Sa Ribero|first1=Margarida|last2=Jouvenet|first2=Nolwenn|last3=Dreux|first3=Marlène|last4=Nisole|first4=Sébastien|date=2020-07-29|title=Interplay between SARS-CoV-2 and the type I interferon response|journal=PLOS Pathogens|volume=16|issue=7|pages=e1008737|doi=10.1371/journal.ppat.1008737|issn=1553-7366|pmc=7390284|pmid=32726355 |doi-access=free }}</ref> [[Diabetes]], [[hypertension]], and [[cardiovascular disease]] are all [[risk factor]]s of cytokine storms in COVID-19 patients.<ref name="nsNvW">{{Cite journal|last1=Mangalmurti|first1=Nilam|last2=Hunter|first2=Christopher A.|date=14 July 2020|title=Cytokine Storms: Understanding COVID-19|url= |journal=Immunity|volume=53|issue=1|pages=19–25|doi=10.1016/j.immuni.2020.06.017|pmid=32610079|pmc=7321048}}</ref> |
|||
The Renin Angiotensin system (RAS) has been implicated in the mediation of the cytokine storm,<ref>{{cite journal | last = Genctoy | first = G | coauthors = B Altun et al | title = TNF alpha-308 genotype and renin-angiotensin system in hemodialysis patients: an effect on inflammatory cytokine levels? | journal = Artif Organs | volume = 29 | issue = 2 | pages = 174–178 | publisher = | month = February | year = 2005 | url = | doi = 10.1111/j.1525-1594.2005.29029.x | pmid = 15670287 | accessdate = 2007-10-18 }}</ref> suggesting a potential benefit for [[Angiotensin Converting Enzyme]] (ACE) inhibitors and Angiotensin II Receptor Blockers (ARBs), and ACE has been implicated in inflammatory lung pathologies.<ref>{{cite journal | last = Moldobaeva | first = A | coauthors = EM Wagner | title = Angiotensin-converting enzyme activity in ovine bronchial vasculature | journal = J Appl Physiol | volume = 95 | issue = 6 | pages = 2278–2284 | publisher = Department of Medicine, Johns Hopkins University | month = December | year = 2003 | url = | doi = 10.1152/japplphysiol.00266.2003 | pmid = 15670287 | accessdate = 2007-10-18 }}</ref> Shigehara ''et al.'' published research confirming that serum angiotensin-converting enzyme (ACE) is a useful marker for disease activity in cytokine-mediated inflammatory lung disease.<ref>{{cite journal | last = Shigehara | first = K | coauthors = N Shijubo et al | title = Increased circulating interleukin-12 (IL-12) p40 in pulmonary sarcoidosis | journal = Clin Exp Immunol | volume = 132 | issue = 1 | pages = 152–157 | publisher = Sapporo Medical University School of Medicine | month = April | year = 2003 | url = | pmc = 1808667 | pmid = 12653850 | accessdate = 2007-10-18 | doi = 10.1046/j.1365-2249.2003.02105.x }}</ref> Marshall and co-workers also found that angiotensin II was associated with cytokine-mediated lung injury<ref>{{cite journal | last = Marshall | first = RP | coauthors = P Gohlke et al | title = Angiotensin II and the fibroproliferative response to acute lung injury | journal = Am J Physiol Lung Cell Mol Physiol | volume = 286 | issue = 1 | pages = 156–164 | publisher = Royal Free and University College London Medical School | month = January | year = 2004 | url = | pmid = 12754187 | accessdate = 2007-10-18 | doi = 10.1152/ajplung.00313.2002 }}</ref> and suggested a role for ACE inhibitors. |
|||
⚫ | |||
Wang and co-workers published data that cytokine-mediated pulmonary damage (apoptosis of lung [[Epithelium|epithelial cells]]) in response to the pro-inflammatory cytokine TNF-alpha (implicated in the cytokine storm) requires the presence of angiotensin II, suggesting that ARBs might have clinical utility in this setting.<ref>{{cite journal | last = Wang | first = R | coauthors = G Alam et al | title = Apoptosis of lung epithelial cells in response to TNF-alpha requires angiotensin II generation de novo | journal = J Cell Physiol | volume = 185 | issue = 2 | pages = 253–259 | publisher = The Cardiovascular Institute, Michael Reese Hospital and Medical Center | month = November | year = 2000 | url = | pmid = 11025447 | accessdate = 2007-10-18 | doi = 10.1002/1097-4652(200011)185:2<253::AID-JCP10>3.0.CO;2-# }}</ref> |
|||
{{reflist}} |
|||
{{Authority control}} |
|||
Das published a review of ACE inhibitor and angiotensin-II receptor blocker use in a number of cytokine-mediated inflammatory pathologies and suggested that ACE inhibitors and Angiotensin receptor blockers have theoretical benefit in downregulation of the cytokine storm.<ref>{{cite journal | last = Das | first = | title = Angiotensin-II behaves as an endogenous pro-inflammatory molecule | journal = J Assoc Physicians India | issue = 53 | pages = 472–476| publisher = UND Life Sciences | month = May | year = 2005 | url = | pmid = 16124358 | accessdate = 2007-10-18 }}</ref> |
|||
⚫ | |||
=== Corticosteroids === |
|||
⚫ | |||
[[Category:Cytokines| ]] |
|||
Although frequently employed to treat patients experiencing the cytokine storm associated with [[ARDS]], [[corticosteroids]] and [[NSAID]]s have been evaluated in [[clinical trials]] and have shown no effect on lung mechanics, gas exchange or beneficial outcome in early established ARDS.<ref name="goldman"/> |
|||
=== Free radical scavengers === |
|||
Preliminary data from [[clinical trials]] involving patients with [[sepsis]]-induced [[ARDS]] have shown a reduction in organ damage and a trend toward improvement in survival (survival in ARDS is approximately 60%) after administering or upregulating a variety of [[free radical scavengers]] (antioxidants).<ref name="goldman"/> |
|||
=== TNF-alpha blockers === |
|||
Some types of arthritis medications are designed to reduce inflammation by inhibiting the tumor necrosis factor-alpha pathway to immune cell activation; these drugs are known as TNF-alpha blockers. One study<ref>Ann Rheum Dis. 2008 May;67(5):713-6 PMID: 17965123[http://www.ncbi.nlm.nih.gov/pubmed/17965123]</ref> found that three different TNF-alpha blockers afforded a slight reduction in antibody presentation after vaccination against influenza in a group of immunocompromised patients, however it did not significantly affect patients' protective factor gained from inoculation. More research is necessary before any conclusions may be made regarding the efficacy of TNF-apha blockers at reducing the effects of a cytokine storm in hospitalized flu patients. |
|||
== External links == |
|||
* [http://www.jem.org/cgi/content/full/198/8/1237 A Critical Role for OX40 in T Cell–mediated Immunopathology during Lung Viral Infection] |
|||
* [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=50&db=PubMed&pmfilter_EDatLimit=No+Limit&cmd_current=Limits&orig_db=PubMed&cmd=Search&term=OX-40+&doptcmdl=DocSum Pub Med data on OX-40] |
|||
* [http://www.cytokinestorm.com Cytokine Storm and the Influenza Pandemic] |
|||
⚫ | |||
{{Reflist|2}} |
|||
⚫ | |||
⚫ | |||
[[es:Tormenta de citocinas]] |
Latest revision as of 02:05, 24 June 2024
Cytokine storm | |
---|---|
Other names | hypercytokinemia |
Specialty | Immunology |
A cytokine storm, also called hypercytokinemia, is a pathological reaction in humans and other animals in which the innate immune system causes an uncontrolled and excessive release of pro-inflammatory signaling molecules called cytokines. Cytokines are a normal part of the body's immune response to infection, but their sudden release in large quantities may cause multisystem organ failure and death.[1]
Cytokine storms may be caused by infectious or non-infectious etiologies, especially viral respiratory infections such as H1N1 influenza, H5N1 influenza, SARS-CoV-1,[2][3] SARS-CoV-2, Influenza B, and parainfluenza virus. Other causative agents include the Epstein-Barr virus, cytomegalovirus, group A streptococcus, and non-infectious conditions such as graft-versus-host disease.[4] The viruses can invade lung epithelial cells and alveolar macrophages to produce viral nucleic acid, which stimulates the infected cells to release cytokines and chemokines, activating macrophages, dendritic cells, and others.[5]
Cytokine storm syndrome is a diverse set of conditions that can result in a cytokine storm. Cytokine storm syndromes include familial hemophagocytic lymphohistiocytosis, Epstein-Barr virus–associated hemophagocytic lymphohistiocytosis, systemic or non-systemic juvenile idiopathic arthritis–associated macrophage activation syndrome, NLRC4 macrophage activation syndrome, cytokine release syndrome and sepsis.[6]
Cytokine storms versus cytokine release syndrome
[edit]The term "cytokine storm" is often loosely used interchangeably with cytokine release syndrome (CRS) but is more precisely a differentiable syndrome that may represent a severe episode of cytokine release syndrome or a component of another disease entity, such as macrophage activation syndrome. When occurring as a result of a therapy, CRS symptoms may be delayed until days or weeks after treatment. Immediate-onset (fulminant) CRS appears to be a cytokine storm.[7]
Research
[edit]Nicotinamide (a form of vitamin B3) is a potent inhibitor of proinflammatory cytokines.[8][9] Low blood plasma levels of trigonelline (one of the metabolites of vitamin B3) have been suggested for the prognosis of SARS-CoV-2 death (which is thought to be due to the inflammatory phase and cytokine storm).[10][11]
Magnesium decreases inflammatory cytokine production by modulation of the immune system.[12][13]
History
[edit]The first reference to the term cytokine storm in the published medical literature appears to be by James Ferrara in 1993 during a discussion of graft vs. host disease, a condition in which the role of excessive and self-perpetuating cytokine release had already been under discussion for many years.[14][15][16] The term next appeared in a discussion of pancreatitis in 2002. In 2003, it was first used in reference to a reaction to an infection.[14]
It is believed that cytokine storms were responsible for the disproportionate number of healthy young adult deaths during the 1918 influenza pandemic, which killed an estimated 50 million people worldwide. In this case, a healthy immune system may have been a liability rather than an asset.[17] Preliminary research results from Taiwan also indicated this as the probable reason for many deaths during the SARS epidemic in 2003.[18] Human deaths from the bird flu H5N1 usually involve cytokine storms as well.[19] Cytokine storm has also been implicated in hantavirus pulmonary syndrome.[20]
In 2006, a study at Northwick Park Hospital in England resulted in all 6 of the volunteers given the drug theralizumab becoming critically ill, with multiple organ failure, high fever, and a systemic inflammatory response.[21] Parexel, a company conducting trials for pharmaceutical companies claimed that theralizumab could cause a cytokine storm—the dangerous reaction the men experienced.[22]
Relationship to COVID-19
[edit]During the COVID-19 pandemic, some doctors have attributed many deaths to cytokine storms.[24][25] A cytokine storm can cause the severe symptoms of acute respiratory distress syndrome (ARDS), which has a high mortality rate in COVID-19 patients.[26] SARS-CoV-2 activates the immune system resulting in a release of a large number of cytokines, including IL-6, which can increase vascular permeability and cause a migration of fluid and blood cells into the alveoli leading to such consequent symptoms as dyspnea and respiratory failure.[27] In an autopsy study from Karolinska Hospital, 29 pleural effusions of deceased COVID-19 patients were analyzed. Out of 184 protein markers, 20 markers were raised significantly in COVID-19 deceased patients. A group of markers showed over-stimulation of the immune system, including ADA, BTC, CA12, CAPG, CD40, CDCP1, CXCL9, ENTPD2, Flt3L, IL-6, IL-8, LRP1, OSM, PD-L1, PTN, STX8, and VEGFA; furthermore, DPP6 and EDIL3 indicated damage to arterial and cardiovascular organs.[23] The higher mortality has been linked to the effects of ARDS aggravation and the tissue damage that can result in organ-failure and/or death.[28]
ARDS was shown to be the cause of mortality in 70% of COVID-19 deaths.[29] A cytokine plasma level analysis showed that in cases of severe SARS-CoV-2 infection, the levels of many interleukins and cytokines are highly elevated, indicating evidence of a cytokine storm.[28] Additionally, postmortem examination of patients with COVID-19 has shown a large accumulation of inflammatory cells in lung tissues including macrophages and T-helper cells.[30]
Early recognition of a cytokine storm in COVID-19 patients is crucial to ensure the best outcome for recovery, allowing treatment with a variety of biological agents that target the cytokines to reduce their levels. Meta-analysis suggests clear patterns distinguishing patients with or without severe disease. Possible predictors of severe and fatal cases may include lymphopenia, thrombocytopenia and high levels of ferritin, D-dimer, aspartate aminotransferase, lactate dehydrogenase, C-reactive protein, neutrophils, procalcitonin and creatinine as well as interleukin-6 (IL-6). Ferritin and IL-6 are considered to be possible immunological biomarkers for severe and fatal cases of COVID-19. Ferritin and C-reactive protein may be possible screening tools for early diagnosis of systemic inflammatory response syndrome in cases of COVID-19.[31]
Due to the increased levels of cytokines and interferons in patients with severe COVID-19, both have been investigated as potential targets for SARS-CoV-2 therapy. An animal study found that mice producing an early strong interferon response to SARS-CoV-2 were likely to live, but in other cases the disease progressed to a highly morbid overactive immune system.[32][33] The high mortality rate of COVID-19 in older populations has been attributed to the impact of age on interferon responses.
Short-term use of dexamethasone, a synthetic corticosteroid, has been demonstrated to reduce the severity of inflammation and lung damage induced by a cytokine storm by inhibiting the severe cytokine storm or the hyperinflammatory phase in patients with COVID-19.[34]
Clinical trials continue to identify causes of cytokine storms in COVID-19 cases.[35][36] One such cause is the delayed Type I interferon response that leads to accumulation of pathogenic monocytes. High viremia is also associated with exacerbated Type I interferons response and worse prognosis.[37] Diabetes, hypertension, and cardiovascular disease are all risk factors of cytokine storms in COVID-19 patients.[38]
References
[edit]- ^ Farsalinos, Konstantinos; Barbouni, Anastasia; Niaura, Raymond (2020). "Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: Could nicotine be a therapeutic option?". Internal and Emergency Medicine. 15 (5): 845–852. doi:10.1007/s11739-020-02355-7. PMC 7210099. PMID 32385628.
- ^ Wong, Jonathan P.; Viswanathan, Satya; Wang, Ming; Sun, Lun-Quan; Clark, Graeme C.; D'Elia, Riccardo V. (February 2017). "Current and future developments in the treatment of virus-induced hypercytokinemia". Future Medicinal Chemistry. 9 (2): 169–178. doi:10.4155/fmc-2016-0181. ISSN 1756-8927. PMC 7079716. PMID 28128003.
- ^ Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu (January 2016). "The cytokine storm of severe influenza and development of immunomodulatory therapy". Cellular & Molecular Immunology. 13 (1): 3–10. doi:10.1038/cmi.2015.74. PMC 4711683. PMID 26189369.
- ^ Tisoncik, Jennifer R.; Korth, Marcus J.; Simmons, Cameron P.; Farrar, Jeremy; Martin, Thomas R.; Katze, Michael G. (2012). "Into the Eye of the Cytokine Storm". Microbiology and Molecular Biology Reviews. 76 (1): 16–32. doi:10.1128/MMBR.05015-11. ISSN 1092-2172. PMC 3294426. PMID 22390970.
- ^ Song, Peipei; Li, Wei; Xie, Jianqin; Hou, Yanlong; You, Chongge (October 2020). "Cytokine storm induced by SARS-CoV-2". Clinica Chimica Acta; International Journal of Clinical Chemistry. 509: 280–287. doi:10.1016/j.cca.2020.06.017. ISSN 0009-8981. PMC 7283076. PMID 32531256.
- ^ Behrens, Edward M.; Koretzky, Gary A. (2017). "Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era". Arthritis & Rheumatology. 69 (6): 1135–1143. doi:10.1002/art.40071. ISSN 2326-5205. PMID 28217930.
- ^ Porter D, Frey N, Wood PA, Weng Y, Grupp SA (March 2018). "Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel". Journal of Hematology & Oncology. 11 (1): 35. doi:10.1186/s13045-018-0571-y. PMC 5833070. PMID 29499750.
- ^ Ungerstedt JS, Blömback M, Söderström T (2003). "Nicotinamide is a potent inhibitor of proinflammatory cytokines". Clin Exp Immunol. 131 (1): 48–52. doi:10.1046/j.1365-2249.2003.02031.x. PMC 1808598. PMID 12519385.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E (2019). "Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation". Sci Rep. 9 (1): 10219. Bibcode:2019NatSR...910219Y. doi:10.1038/s41598-019-46678-8. PMC 6629694. PMID 31308445.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Caterino, Marianna, Michele Costanzo, Roberta Fedele, Armando Cevenini, Monica Gelzo, Alessandro Di Minno, Immacolata Andolfo et al. "The serum metabolome of moderate and severe COVID-19 patients reflects possible liver alterations involving carbon and nitrogen metabolism." International journal of molecular sciences 22, no. 17 (2021): 9548.
- ^ Besharati, Mohammad Reza; Izadi, Mohammad; Alireza Talebpour (2021). "Blood Plasma Trigonelline Concentration and the Early Prognosis of Death in SARS-Cov-2 Patients". doi:10.5281/zenodo.5856445.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N; et al. (2012). "Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism". J Immunol. 188 (12): 6338–46. doi:10.4049/jimmunol.1101765. PMC 3884513. PMID 22611240.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Nielsen FH (2018). "Magnesium deficiency and increased inflammation: current perspectives". J Inflamm Res. 11: 25–34. doi:10.2147/JIR.S136742. PMC 5783146. PMID 29403302.
- ^ a b Clark, Ian A (June 2007). "The advent of the cytokine storm". Immunology & Cell Biology. 85 (4): 271–273. doi:10.1038/sj.icb.7100062. PMID 17551531. S2CID 40463322.
- ^ Ferrara JL, Abhyankar S, Gilliland DG (February 1993). "Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1". Transplantation Proceedings. 25 (1 Pt 2): 1216–7. PMID 8442093.
- ^ Abhyankar, Sunil; Gilliland, D. Gary; Ferrara, James L.M. (1993). "Interleukin-1 is a critical effector molecule during cytokine dysregulation in graft versus host disease to minor histocompatibility antigens1". Transplantation. 56 (6): 1518–1522. doi:10.1097/00007890-199312000-00045. ISSN 0041-1337. PMID 8279027.
- ^ Osterholm MT (May 2005). "Preparing for the next pandemic". The New England Journal of Medicine. 352 (18): 1839–42. CiteSeerX 10.1.1.608.6200. doi:10.1056/NEJMp058068. PMID 15872196. S2CID 45893174.
- ^ Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY (February 2005). "An interferon-gamma-related cytokine storm in SARS patients". Journal of Medical Virology. 75 (2): 185–94. doi:10.1002/jmv.20255. PMC 7166886. PMID 15602737.
- ^ Haque A, Hober D, Kasper LH (October 2007). "Confronting potential influenza A (H5N1) pandemic with better vaccines". Emerging Infectious Diseases. 13 (10): 1512–8. doi:10.3201/eid1310.061262. PMC 2851514. PMID 18258000.
- ^ Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB, Norman JE, et al. (February 1999). "High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome". The Journal of Infectious Diseases. 179 (2): 295–302. doi:10.1086/314597. PMID 9878011.
- ^ The Lancet Oncology (February 2007). "High stakes, high risks". The Lancet. Oncology. 8 (2): 85. doi:10.1016/S1470-2045(07)70004-9. PMID 17267317.
- ^ Coghlan A (2006-08-14). "Mystery over drug trial debacle deepens". Health. New Scientist. Retrieved 2009-04-29.
- ^ a b Razaghi, Ali; Szakos, Attila; Alouda, Marwa; Bozóky, Béla; Björnstedt, Mikael; Szekely, Laszlo (2022-11-14). "Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: Enhanced Inflammatory Markers". Diagnostics. 12 (11): 2789. doi:10.3390/diagnostics12112789. ISSN 2075-4418. PMC 9689825. PMID 36428847.
- ^ Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (March 2020). "COVID-19: consider cytokine storm syndromes and immunosuppression". Lancet. 395 (10229): 1033–1034. doi:10.1016/S0140-6736(20)30628-0. PMC 7270045. PMID 32192578.
- ^ Ruan Q, Yang K, Wang W, Jiang L, Song J (March 2020). "Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China". Intensive Care Medicine. 46 (5): 846–848. doi:10.1007/s00134-020-05991-x. PMC 7080116. PMID 32125452.
- ^ Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T (October 2020). "How covid-19 induces cytokine storm with high mortality". Inflammation and Regeneration. 40 (37): 37. doi:10.1186/s41232-020-00146-3. PMC 7527296. PMID 33014208.
- ^ Farsalinos, Konstantinos; Barbouni, Anastasia; Niaura, Raymond (2020-05-09). "Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option?". Internal and Emergency Medicine. 15 (5): 845–852. doi:10.1007/s11739-020-02355-7. ISSN 1828-0447. PMC 7210099. PMID 32385628.
- ^ a b Ragad, Dina (16 June 2020). "The COVID-19 Cytokine Storm; What we know so far". Front. Immunol. 11: 1446. doi:10.3389/fimmu.2020.01446. PMC 7308649. PMID 32612617.
- ^ Hojyo, Shintaro; Uchida, Mona; Tanaka, Kumiko; Hasebe, Rie; Tanaka, Yuki; Murakami, Masaaki; Hirano, Toshio (2020-10-01). "How COVID-19 induces cytokine storm with high mortality". Inflammation and Regeneration. 40: 37. doi:10.1186/s41232-020-00146-3. ISSN 1880-9693. PMC 7527296. PMID 33014208.
- ^ Tang, Yujun; Liu, Jiajia; Zhang, Dingyi; Xu, Zhenghao; Ji, Jinjun; Wen, Chengping (2020-07-10). "Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies". Frontiers in Immunology. 11: 1708. doi:10.3389/fimmu.2020.01708. ISSN 1664-3224. PMC 7365923. PMID 32754163.
- ^ Melo, Ana Karla G.; Milby, Keilla M.; Caparroz, Ana Luiza M. A.; Pinto, Ana Carolina P. N.; Santos, Rodolfo R. P.; Rocha, Aline P.; Ferreira, Gilda A.; Souza, Viviane A.; Valadares, Lilian D. A.; Vieira, Rejane M. R. A.; Pileggi, Gecilmara S.; Trevisani, Virgínia F. M. (29 June 2021). "Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis". PLOS ONE. 16 (6): e0253894. Bibcode:2021PLoSO..1653894M. doi:10.1371/journal.pone.0253894. PMC 8241122. PMID 34185801.
- ^ Velasquez-Manoff, Moises (2020-08-11). "How Covid Sends Some Bodies to War With Themselves". The New York Times. ISSN 0362-4331. Retrieved 2020-12-28.
- ^ Sharun, Khan; Tiwari, Ruchi; Dhama, Jaideep; Dhama, Kuldeep (October 2020). "Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence". International Journal of Surgery. 82: 179–181. doi:10.1016/j.ijsu.2020.08.038. PMC 7472975. PMID 32896649.
- ^ Hermine, Olivier; Mariette, Xavier; Tharaux, Pierre-Louis; Resche-Rigon, Matthieu; Porcher, Raphaël; Ravaud, Philippe; CORIMUNO-19 Collaborative Group (20 October 2020). "Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial". JAMA Internal Medicine. 181 (1): 32–40. doi:10.1001/jamainternmed.2020.6820. ISSN 2168-6106. PMC 7577198. PMID 33080017.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Gupta, Shruti; Wang, Wei; Hayek, Salim S.; Chan, Lili; Mathews, Kusum S.; Melamed, Michal L.; Brenner, Samantha K.; Leonberg-Yoo, Amanda; Schenck, Edward J.; Radbel, Jared; Reiser, Jochen; Bansal, Anip; Srivastava, Anand; Zhou, Yan; Finkel, Diana; Green, Adam; Mallappallil, Mary; Faugno, Anthony J.; Zhang, Jingjing; Velez, Juan Carlos Q.; Shaefi, Shahzad; Parikh, Chirag R.; Charytan, David M.; Athavale, Ambarish M.; Friedman, Allon N.; Redfern, Roberta E.; Short, Samuel A. P.; Correa, Simon; Pokharel, Kapil K.; Admon, Andrew J.; Donnelly, John P.; Gershengorn, Hayley B.; Douin, David J.; Semler, Matthew W.; Hernán, Miguel A.; Leaf, David E.; STOP-COVID Investigators (20 October 2020). "Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19". JAMA Internal Medicine. 181 (1): 41–51. doi:10.1001/jamainternmed.2020.6252. PMC 757720. PMID 33080002.
- ^ Sa Ribero, Margarida; Jouvenet, Nolwenn; Dreux, Marlène; Nisole, Sébastien (2020-07-29). "Interplay between SARS-CoV-2 and the type I interferon response". PLOS Pathogens. 16 (7): e1008737. doi:10.1371/journal.ppat.1008737. ISSN 1553-7366. PMC 7390284. PMID 32726355.
- ^ Mangalmurti, Nilam; Hunter, Christopher A. (14 July 2020). "Cytokine Storms: Understanding COVID-19". Immunity. 53 (1): 19–25. doi:10.1016/j.immuni.2020.06.017. PMC 7321048. PMID 32610079.