Jump to content

AMOLED: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Lol MD4 (talk | contribs)
No edit summary
 
Line 1: Line 1:
{{short description|Display technology for use in mobile devices and televisions}}
{{About|the display technology|the song|Amoled (song)}}
{{Merge from|Super AMOLED|date=June 2010}}
{{Update|date=May 2020}}
{{Use dmy dates|date=August 2016}}
[[File:Nexus one screen microscope.jpg|thumb|upright=1.1|Magnified image of the AMOLED screen on the [[Nexus One]] smartphone using the RGBG system of the [[PenTile matrix family]]]]
'''AMOLED''' ('''active-matrix organic light-emitting diode'''; {{IPAc-en|ˈ|æ|m|oʊ|ˌ|l|ɛ|d}}) is a type of [[OLED]] display device technology. OLED describes a specific type of thin-film-display technology in which [[organic compound]]s form the [[electroluminescence|electroluminescent]] material, and [[active matrix]] refers to the technology behind the addressing of [[pixel]]s.


Since 2007, AMOLED technology has been used in mobile phones, media players, TVs and digital cameras,<ref name="Auto21-1"/> and it has continued to make progress toward low-power, low-cost, high resolution and large size (for example, 88-inch and [[8K_resolution#Resolutio|8K]] resolution) applications.<ref name="Auto21-2"/><ref name="Auto21-3"/><ref name="Auto21-4"/>{{POV statement|date=May 2015}}
'''Active-matrix OLED''' ('''Active-matrix organic light-emitting diode''' or '''AMOLED''') is a display technology for use in mobile devices and televisions. [[OLED]] describes a specific type of thin display technology which doesn't require a [[backlight]], and [[active matrix addressing|Active-Matrix]] refers to the technology behind the addressing of pixels. AMOLED technology continues to make progress towards low-power and low-cost large size (e.g. 40-inch) for applications such as TV.<ref>{{cite web|url=http://www.oled-display.net/samsung-5-inch-or-larger-oled-panels-to-be-the-mainstream-in-2009-or-2010 |title=5-inch or larger OLED panels to become mainstream |publisher=Oled-display.net |date=2008-11-27 |accessdate=2010-01-25}}</ref>
[[File:Samsung AMOLED.jpg|thumb|250px|Primary colors shown on the Dynamic AMOLED displays of the [[Galaxy Note 10]] line]]


== Technical explanation ==
== Design ==
[[File:AMOLED-en.svg|thumb|upright=1.2|Schematic of an active-matrix OLED display]]
An AMOLED display consists of an [[active matrix]] of [[OLED]] pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a [[thin-film transistor]] (TFT) array, which functions as a series of switches to control the current flowing to each individual [[pixel]].<ref name="Auto21-5"/>


Typically, this [[continuous current]] flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage [[capacitor]] and the second to provide a [[voltage]] source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for [[passive matrix addressing|passive-matrix]] OLED operation.<ref name="Auto21-6"/>
An active-matrix OLED (AMOLED) display consists of OLED pixels that have been deposited or integrated onto a [[Thin film transistor|thin film transistor (TFT)]] array to form a matrix of pixels that generate light upon [[electricity|electrical]] activation, which functions as a series of switches to control the current flowing to each of the [[pixel]]s.<ref>Presentation [http://data.4dsystems.com.au/downloads/micro-OLED/Docs/4D_AMOLED_Presentation.pdf Introduction to OLED Displays]</ref>


TFT [[backplane]] technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, [[polycrystalline silicon]] (poly-Si) and [[amorphous silicon]] (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150&nbsp;°C) onto flexible plastic substrates for producing [[organic light-emitting diode roll-up display|flexible]] AMOLED displays.<ref name="prin"/>
Typically, this [[continuous current]] flow is controlled by at least two TFTs at each pixel, one to start and stop the charging of a storage [[capacitor]] and the second to provide a [[voltage]] source at the level needed to create a constant current to the pixel and eliminating need for the very high currents required for [[OLED|passive OLED]] matrix operation.<ref>[http://research.ncku.edu.tw/re/articles/e/20071102/3.html TFT circuit] A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED, Department of Electrical Engineering, National Cheng Kung University</ref>


==Characteristics==
==History==
AMOLED was developed in 2006. [[Samsung SDI]] was one of the main investors in the technology, and many other display companies were also developing it. One of the earliest consumer electronics products with an AMOLED display was the [[BenQ-Siemens]] S88 mobile handset<ref>{{Cite web|url=https://www.memsjournal.com/2006/07/active_oleds_cl.html|title = Active OLEDs close in on mobile phone market}}</ref> and, in 2007, the [[iriver Clix|iriver Clix 2]] portable media player.<ref>{{cite web |url=http://www.anythingbutipod.com/archives/2007/08/iriver-clix2-review.php |title=Iriver clix2 Review |website=www.anythingbutipod.com |access-date=19 April 2022 |archive-url=https://web.archive.org/web/20071028064406/http://www.anythingbutipod.com/archives/2007/08/iriver-clix2-review.php |archive-date=28 October 2007 |url-status=dead}}</ref> In 2008 it appeared on the [[Nokia N85]] followed by the Samsung i7110 - both [[Nokia]] and [[Samsung Electronics]] were early adopters of this technology on their smartphones.<ref>{{Cite web|url=https://spectrum.ieee.org/the-consumer-electronics-hall-of-fame-nokia-n85-cellphone|title = The Consumer Electronics Hall of Fame: Nokia N85 Cellphone|date = 13 December 2018}}</ref>


=== Future development ===
Active-matrix OLED displays provide higher refresh rate than their passive-matrix OLED counterparts, and they consume significantly less [[Electric power|power]].<ref>{{cite web|last=Freudenrich|first=Craig|publisher=HowStuffWorks| url=http://electronics.howstuffworks.com/oled3.htm| title=How OLEDs work| accessdate= 30 December 2009}}</ref> This advantage makes active-matrix OLEDs well suited for portable electronics, where power consumption is critical to battery life.
{{Multiple image
The amount of power the display consumes varies significantly depending on the color and brightness shown. As an example, one commercial [[QVGA]] OLED display consumes 3 watts while showing black text on a white background, but only 0.7 watts showing white text on a black background.<ref name=powerOLED>{{cite journal| author1=Mian Dong| author2=Choi, Y.-S.K| author3=Lin Zhong| month= July| year=2009| title=Power modeling of graphical user interfaces on OLED displays| journal=Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE| pages=652–657| publisher=IEEE}}</ref>
| align = right
| direction = horizontal
| caption_align = center
| image1 = Samsung foldable phones.jpg
| image2 = Samsung foldable smartphones.jpg
| footer = Samsung [[foldable smartphone]]s
| total_width = 350
}}
Manufacturers have developed in-cell touch panels, integrating the production of capacitive [[sensor array]]s in the AMOLED module fabrication process. In-cell sensor AMOLED fabricators include [[AU Optronics]] and [[Samsung Electronics|Samsung]]. Samsung has marketed its version of this technology as "Super AMOLED". Researchers at [[DuPont]] used computational fluid dynamics (CFD) software to optimize coating processes for a new solution-coated AMOLED display technology that is competitive in cost and performance with existing [[chemical vapor deposition]] (CVD) technology. Using custom modeling and analytic approaches, Samsung has developed short and long-range film-thickness control and uniformity that is commercially viable at large glass sizes.<ref name="Auto21-7"/>


== Comparison to other display technologies ==
==Advantages==


[[Comparison of CRT, LCD, plasma, and OLED displays|Compared to other display technologies]], AMOLED screens have several advantages and disadvantages.
OLED displays fabricated on flexible plastic substrates{{Clarify|date=August 2010}} have the following advantages:<ref>{{cite web|url=http://www.oled-research.com/oleds/oleds-lcd.html |title=Fraunhofer IAP - OLED Research: OLED vs LCD |publisher=OLED Research |date=2008-11-18 |accessdate=2010-01-25}}</ref>


AMOLED displays can provide higher refresh rates than passive-matrix,{{Nonspecific|date=November 2011}} often have response times less than a millisecond, and they consume significantly less [[electric power|power]].<ref name="Auto21-8"/> This advantage makes active-matrix OLEDs well-suited for portable electronics, where power consumption is critical to battery life.
* Thin, lightweight and rugged
* Lower-power, superior image quality, and low cost compared to current [[LCD]]s
* [[Rollable display]] to tuck away when not in use


The amount of power the display consumes varies significantly depending on the color and brightness shown. As an example, one old [[QVGA]] OLED display consumes 0.3 watts while showing white text on a black background, but more than 0.7 watts showing black text on a white background, while an [[LCD]] may consume only a constant 0.35 watts regardless of what is being shown on screen.
==Disadvantages==
A new FHD+ or WQHD+ display will consume much more.
<ref name="powerOLED"/> Because the black pixels turn completely off, AMOLED also has contrast ratios that are significantly higher than LCDs.<ref>{{Cite web|url=http://www.androidauthority.com/amoled-vs-lcd-differences-572859/|title=AMOLED vs LCD: differences explained|website=Android Authority|language=en-US|access-date=2017-02-06|url-status=live|archive-url=https://web.archive.org/web/20161227012435/http://www.androidauthority.com/amoled-vs-lcd-differences-572859/|archive-date=27 December 2016|df=dmy-all|date=8 February 2016}}</ref>


AMOLED displays may be difficult to view in direct sunlight compared with LCDs because of their reduced maximum brightness.<ref name="Auto21-9"/> Samsung's ''Super AMOLED'' technology addresses this issue by reducing the size of gaps between layers of the screen.<ref name="sam"/><ref name="Auto21-10"/> Additionally, [[PenTile]] technology is often used for a higher resolution display while requiring fewer subpixels than needed otherwise, sometimes resulting in a display less sharp and more grainy than a non-PenTile display with the same resolution.
* AMOLED displays are prone to material degradation.{{Clarify|date=July 2010}} However, technology has been invented to circumvent this problem.<ref>http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4054018%2F4054019%2F04054244.pdf%3Farnumber%3D4054244&authDecision=-203</ref><ref>http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9425%2F4114308%2F04114309.pdf%3Farnumber%3D4114309&authDecision=-203</ref><ref>{{cite web|url=http://www.patentstorm.us/patents/7352345/description.html |title=Driving apparatus and method for light emitting diode display - US Patent 7352345 Description |publisher=Patentstorm.us |date=2008-04-01 |accessdate=2010-01-25}}</ref> Whether these mechanisms have been implemented in current applications of AMOLED displays is unknown, as are potential effects on power consumption.


The organic materials used in AMOLED displays are very prone to degradation over a relatively short period of time, resulting in color shifts as one color fades faster than another, [[image persistence]], or [[screen burn-in#Plasma, LCD and OLED displays|burn-in]].<ref name="Auto21-11"/><ref name="Auto21-12"/>
* AMOLED displays may be difficult to view in direct sunlight. Samsung's [[Super AMOLED]] technology addresses this issue by reducing the size of gaps between layers of the screen.


Flagship smartphones sold in 2020 and 2021 used a Super AMOLED. Super AMOLED displays, such as the one on the [[Samsung Galaxy S21+]] / [[S21 Ultra]] and [[Samsung Galaxy Note 20 Ultra]] have often been compared to [[IPS panel|IPS LCDs]], found in phones such as the [[Xiaomi Mi 10T]], [[Huawei Nova 5T]], and [[Samsung Galaxy A20e]].<ref>{{cite web|url=http://www.digitaltrends.com/mobile/amoled-vs-lcd-which-screen-is-best-for-your-phone/|title=AMOLED vs LCD: Which screen is best for your phone?|date=29 August 2014|website=digitaltrends.com|access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180329044710/https://www.digitaltrends.com/mobile/amoled-vs-lcd-which-screen-is-best-for-your-phone/|archive-date=29 March 2018|df=dmy-all}}</ref><ref name="androidpit.com">{{cite web|url=http://www.androidpit.com/super-amoled-vs-retina-display|title=Smartphone screens explained: display types, resolutions and more - AndroidPIT|website=androidpit.com|access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20150512050251/http://www.androidpit.com/super-amoled-vs-retina-display|archive-date=12 May 2015|df=dmy-all}}</ref><ref>{{cite web|url=https://techcrunch.com/2012/11/02/nexus-4-review-not-exactly-perfect-but-close-enough-for-me/|title=Nexus 4 Review: Not Exactly Perfect, But Close Enough For Me – TechCrunch|website=techcrunch.com|date=2 November 2012 |access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180207110037/https://techcrunch.com/2012/11/02/nexus-4-review-not-exactly-perfect-but-close-enough-for-me/|archive-date=7 February 2018|df=dmy-all}}</ref> For example, according to [[ABI Research]], the AMOLED display found in the [[Motorola Moto X]] draws just 92 mA during bright conditions and 68 mA while dim.<ref name="abiresearch.com">[https://www.abiresearch.com/press/googlemotorola-mobility-display-a-bright-efficient Google/Motorola Mobility Display a Bright Efficient Future], ABI Research</ref> On the other hand, compared with the IPS, the yield rate of AMOLED is low; the cost is also higher.
==Active matrix element: TFT backplane technology==


== Marketing terms ==
TFT backplane technology is a crucial enabler for the fabrication of flexible AM OLED displays.


=== Super AMOLED ===
Two primary TFT backplane technologies (poly-Silicon (poly-Si) and amorphous-Silicon (a-Si)) are used today in AMOLEDs. These technologies offer the potential for fabricating the required active matrix [[backplanes]] at low temperatures (< 150°C) directly on the flexible plastic substrate for producing flexible AM OLED displays.{{Citation needed|date=October 2009}}
"Super AMOLED" is a marketing term created by [[Samsung Electronics|Samsung]] for an AMOLED display with an integrated touch screen [[digitizer]]: the layer that detects touch is integrated into the display, rather than overlaid on top of it and cannot be separated from the display itself. Super AMOLED is a more advanced version and it integrates touch-sensors and the actual screen in a single layer.When compared with a regular LCD display an AMOLED display consumes less power, provides more vivid picture quality, and renders faster motion response as compared to other display technologies such as LCD. However, Super AMOLED is even better at this with 20% brighter screen, 20% lower power consumption and 80% less sunlight reflection. According to Samsung, Super AMOLED reflects one-fifth as much sunlight as the first generation AMOLED.<ref name="Auto21-15"/><ref name="Auto21-16"/> The generic term for this technology is [[One Glass Solution]] (OGS).


=== Comparison ===
==Commercial devices==
{{Cleanup list|section|date=March 2022}}
'''Phones:'''


Below is a mapping table of marketing terms versus resolutions and sub-pixel types. Note how the pixel density relates to choices of sub-pixel type.
* [[Nokia Nseries| Nokia N8]]
* [[Samsung_Galaxy|Samsung i7500 Galaxy]]
* [[Samsung i9000 Galaxy S]]
* [[Google Nexus one]]
* [[HTC Desire]]
* [[HTC Droid Incredible]]
* [[Samsung Rogue]]
* [[Samsung Omnia 2]]


{| class="wikitable sortable"
'''Music Players:'''
! Term
! Reso-<br />lution
! data-sort-type="number" | Size<br />(inches)
! PPI
!Color depth
(bits)
! Pixel<br />layout
! Used in
|-
| rowspan="2" | AMOLED
| rowspan="2" |{{0}}320×240
| 2.2
| 182
|
|
|[[Iriver clix|iriver clix 2]]
|-
|2.6
|154
|
| rowspan="2" |RGBG [[PenTile]]
|[[Nokia N85]]
|-
| AMOLED<br />Capacitive Touchscreen
| rowspan="3" |{{0}}640×360
| 3.2
| 229
|
|[[Nokia C6-01]]
|-
| rowspan="7" | Super AMOLED
| 3.5
| 210
|
| rowspan="3" | RGB S-Stripe
|[[Nokia N8]]
|-
| 4.0
| 184
|
|[[Nokia 808 PureView]]
|-
|{{0}}720×720
|3.1
|328
|
|[[BlackBerry Q10]]
|-
|{{0}}854×480
| 3.9
| 251
|
| rowspan="2" | RGBG [[PenTile]]
|[[Nokia N9]]
|-
|{{0}}800×480
| 4.0
| 233
|
|[[Samsung Galaxy S (2010 smartphone)|Samsung Galaxy S]]
|-
|{{0}}960×540
| 4.3
| 256
|
| RGB S-Stripe
|[[Samsung Galaxy S4 Mini]]
|-
| 1280×768
| 4.5
| 332
|
| RGBG [[PenTile]]
|[[Nokia Lumia 1020]]
|-
| Super AMOLED Plus
|{{0}}800×480
| 4.3 (4.27)
| 218
|
| RGB stripe
|[[Samsung Galaxy S II]]
|-
| Super AMOLED Advanced
|{{0}}960×540
| 4.3
| 256
|
| rowspan="2" |RGBG [[PenTile]]
|[[Motorola Droid RAZR]]
|-
| rowspan="7" | HD Super AMOLED
| 1280×800
| 5.3 (5.29)
| 285
|
|[[Samsung Galaxy Note (original)|Samsung Galaxy Note]]
|-
| rowspan="6" | 1280×720
| 5.0
| 295
|
| RGB S-Stripe
|[[BlackBerry Z30]]<br />[[Samsung Galaxy J7]]<br />[[Samsung Galaxy J5]]<br />[[Samsung Galaxy E5]]<br />[[Samsung Galaxy J3 (2016)]]
|-
| 4.7 (4.65)
| 316
|
| RGBG [[PenTile]]
|[[Galaxy Nexus|Samsung Galaxy Nexus]]
|-
| 4.7 (4.65)
| 316
|
| RGB S-Stripe
|[[Moto X (1st generation)]]
|-
| 4.8
| 306
|
| RGBG [[PenTile]]
|[[Samsung Galaxy S III]]
|-
| 5.6 (5.55)
| 267
|
| rowspan="2" | RGB S-Stripe
|[[Samsung Galaxy Note II]]
|-
| 5.6 (5.55)
| 267
|
|[[Samsung Galaxy Note 3 Neo]]
|-
| HD Super AMOLED Plus
| 1280×800
| 7.7
| 197
|
| RGB stripe
|[[Samsung Galaxy Tab 7.7]]
|-
| rowspan="8" | Full HD Super AMOLED
| rowspan="8" | 1920×1080
|5.5
|400
|
| rowspan="26" |RGBG [[PenTile]]
|[[Meizu MX5]]
|-
| 5.0 (4.99)
| 441
|
|[[Samsung Galaxy S4]]
|-
| 5.0 (4.99)
| 441
|
|[[OnePlus X]]
|-
| 5.0 (4.99)
| 441
|
|[[Pixel (smartphone)|Google Pixel]]
|-
| 5.2
| 423
|
|[[Moto X (2nd generation)|Motorola Moto X (2nd gen)]]
|-
| 5.1
| 432
|
|[[Samsung Galaxy S5]]
|-
| 5.5
| 401
|
|[[OnePlus 3]]<br />[[OnePlus 3T]]<br />[[OnePlus 5]]
|-
| 5.7
| 388
|
| [[Samsung Galaxy Note 3]]
|-
| rowspan="3" |Full HD+ Super AMOLED
| rowspan="2" |2160×1080
|6.0
|402
|
|[[Pixel 3|Google Pixel 3]]
|-


|6.0
* [[Cowon |Cowon S9]]
|402
* [[Cowon |Cowon J3]]
|
|[[Huawei Mate 10]] Pro
|-


|2220x1080
==References==
|6.01
{{Reflist}}
|411
|
|[[Samsung Galaxy A8 (2018)|Samsung Galaxy A8+ (2018)]]
|-
|Full HD+ Super AMOLED
|2220x1080
|5.61
|441
|
|[[Samsung Galaxy A8 (2018)]]
|-
| rowspan="2" |Super Retina HD
| 2436×1125
| 5.8 (5.85)
| rowspan="2" |458
|
|[[iPhone X|Apple iPhone X]]<br />[[iPhone XS]]<br />[[iPhone 11 Pro]]
|-
| 2688×1242
| 6.5 (6.46)
|
| [[iPhone XS Max]]<br />[[iPhone 11 Pro Max]]
|-
| rowspan="11" | WQHD Super AMOLED
| rowspan="7" | 2560×1440
| 5.1
| 577
|
|[[Samsung Galaxy S6]]<br />[[Samsung Galaxy S6]] Edge<br />[[Samsung Galaxy S6 Active]]<br />[[Samsung Galaxy S7]]<br />[[Samsung Galaxy S7 Active]]
|-
|5.2
|564
|
|[[Microsoft Lumia 950]]
|-
|5.2
|565
|
|[[Motorola Droid Turbo]]
|-
|5.4
|540
|
|[[BlackBerry Priv]]
|-
|5.5
|534
|
|[[BlackBerry DTEK60]]<br />[[Samsung Galaxy S7]] Edge<br />[[Pixel (smartphone)|Google Pixel XL]]<br />[[Alcatel Idol 4]]S<br />vodafone smart platinum 7(Alcatel Sol Prime)<br />[[Moto Z]]<br />[[Moto Z]] Force<br />ZTE Axon 7
|-
| 5.7
| 515
| rowspan="12" |8
|[[Samsung Galaxy Note 4]]<br />[[Samsung Galaxy Note 5]]<br />[[Samsung Galaxy S6]] Edge+<br />[[Nexus 6P]]<br />[[Samsung Galaxy Note 7]]
|-
| 5.7
| 518
|[[Microsoft Lumia 950 XL]]
|-
| rowspan="4" |2960×1440
|5.8
|571
|[[Samsung Galaxy S8]]<br />[[Samsung Galaxy S9]]
|-
|6.2
|529
|[[Samsung Galaxy S8]]+<br />[[Samsung Galaxy S9]]+
|-
|6.3
|521
|[[Samsung Galaxy Note 8]]
|-
|6.4
|514
|[[Samsung Galaxy Note 9]]
|-
| rowspan="2" | WQXGA Super AMOLED
| rowspan="2" | 2560×1600
| 8.4
| 359
|[[Samsung Galaxy Tab S 8.4]]
|-
| 10.5
| 287
| RGB S-Stripe
|[[Samsung Galaxy Tab S 10.5]]
|-
| 3K AMOLED
| 2880×1600
| 3.5
| 615
| (unknown)
|HTC Vive Focus Plus<ref>{{cite web|title=HTC VIVE Focus Plus|url=https://business.vive.com/product/focus-plus/|website=vive.com|access-date=July 30, 2021|url-status=live|archive-url=https://web.archive.org/web/20171213144504/https://www.vive.com/cn/product/vive-focus-en/|archive-date=13 December 2017|df=dmy-all}}</ref>
|-
|Dynamic AMOLED
|2280x1080
3040x1440

2280x1080

3040x1440

3040x1440
|5.8
6.1

6.3

6.4

6.8
|438
550

401

522

498
|
|[[Samsung Galaxy S10]]e
[[Samsung Galaxy S10]]

[[Samsung Galaxy Note 10]]

[[Samsung Galaxy S10|Samsung Galaxy S10+]]

[[Samsung Galaxy Note 10|Samsung Galaxy Note 10+]]

[[Samsung Galaxy Fold]]

[[Samsung Galaxy Z Flip]]
|-
|Fluid AMOLED
|3120x1440
|6.67
|516
|
|[[OnePlus 7 Pro]]
|-
|Dynamic AMOLED 2X
|2208×1768
2400x1080

3200x1440
|7.6
6.1

6.4

6.7

6.8

6.9
|373 <small>(Display resolution for Samsung Galaxy Z Fold 2)</small><br />
386 <small>(External display resolution for Samsung Galaxy Z Fold 2)</small>

563

525

511

421

394

515

411

374 <small>(Display resolution for Samsung Galaxy Z Fold 3)</small><br />
389 <small>(External display resolution for Samsung Galaxy Z Fold 3)</small>
|RGBG [[PenTile]]
|[[Samsung Galaxy S20]]

Samsung Galaxy S20+

Samsung Galaxy S20 Ultra

(Samsung Galaxy Note 20)

(Samsung Galaxy Note 20 Ultra)

[[Samsung Galaxy Z Fold 2]]

[[Samsung Galaxy S21]]

Samsung Galaxy S21+

Samsung Galaxy S21 Ultra

Samsung Galaxy S21 FE

[[Samsung Galaxy Z Fold 3]]

[[Samsung Galaxy Z Flip 3]]

[[Samsung Galaxy S22]]

Samsung Galaxy S22+

Samsung Galaxy S22 Ultra

[[Samsung Galaxy Z Fold 4]]

[[Samsung Galaxy Z Flip 4]]

[[Samsung Galaxy S23]]

Samsung Galaxy S23+

Samsung Galaxy S23 Ultra

[[Samsung Galaxy Z Fold 5]]

[[Samsung Galaxy Z Flip 5]]

[[Samsung Galaxy S24]]

Samsung Galaxy S24+

Samsung Galaxy S24 Ultra
|}

== Future ==
Future displays exhibited from 2011 to 2013 by Samsung have shown flexible, 3D, transparent Super AMOLED Plus displays using very high resolutions and in varying sizes for phones. These unreleased prototypes use a [[polymer]] as a substrate removing the need for glass cover, a metal backing, and touch matrix, combining them into one integrated layer.<ref>{{cite web|url=https://www.engadget.com/2011/12/05/samsung-teases-flexible-transparent-display-in-concept-video/|title=Samsung teases flexible, transparent display in concept video|website=engadget.com|date=5 December 2011 |access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20161011230335/https://www.engadget.com/2011/12/05/samsung-teases-flexible-transparent-display-in-concept-video/|archive-date=11 October 2016|df=dmy-all}}</ref>

So far, Samsung plans on branding the newer displays as Youm,<ref>{{cite web|url=https://www.engadget.com/2013/01/09/samsung-names-flexible-oled-display-series-youm-shows-prototype/|title=Samsung names flexible OLED display series 'Youm', shows new prototype handheld device|website=engadget.com|date=9 January 2013 |access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180216205237/https://www.engadget.com/2013/01/09/samsung-names-flexible-oled-display-series-youm-shows-prototype/|archive-date=16 February 2018|df=dmy-all}}</ref> or y-octa.<ref>{{cite web|url=https://www.forbes.com/sites/gordonkelly/2018/01/21/samsung-galaxy-s9-specs-design-price-release-date-galaxy-s9-plus/#38c4c7e1577c|title=Samsung Report 'Confirms' Significant Galaxy S9 Design Changes|first=Gordon|last=Kelly|website=forbes.com|access-date=6 May 2018|url-status=live|archive-url=https://web.archive.org/web/20180401213743/https://www.forbes.com/sites/gordonkelly/2018/01/21/samsung-galaxy-s9-specs-design-price-release-date-galaxy-s9-plus/#38c4c7e1577c|archive-date=1 April 2018|df=dmy-all}}</ref>

Also planned for the future are 3D stereoscopic displays that use eye-tracking (via stereoscopic front-facing cameras) to provide full resolution 3D visuals.

==See also==
*[[List of flat panel display manufacturers]]
*[[microLED]]
*[[OLED]]

== References ==
{{reflist|30em|refs=
<ref name="Auto21-1">{{cite journal|doi=10.1063/1.3400224|title=Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles|year=2010|last1=Lee|first1=Hyunkoo|last2=Park|first2=Insun|last3=Kwak|first3=Jeonghun|last4=Yoon|first4=Do Y.|last5=Kallmann|first5=Changhee Lee|journal=Applied Physics Letters|volume=96|issue=15|page=153306|bibcode=2010ApPhL..96o3306L}}</ref>
<ref name="Auto21-2">{{cite journal|doi=10.1889/1.3256930|title=40 Inch FHD AM-OLED Display with IR Drop Compensation Pixel Circuit|year=2009|last1=Kim|first1=Yang Wan|last2=Kwak|first2=Won Kyu|last3=Lee|first3=Jae Yong|last4=Choi|first4=Wong Sik|last5=Lee|first5=Ki Yong|last6=Kim|first6=Sung Chul|last7=Yoo|first7=Eui Jin|journal=SID Symposium Digest of Technical Papers|volume=40|page=85|s2cid=110871831}}</ref>
<ref name="Auto21-3">{{cite journal|doi=10.1889/1.3256911|title=Development of 31-Inch Full-HD AMOLED TV Using LTPS-TFT and RGB FMM|year=2009|last1=Lee|first1=Myung Ho|last2=Seop|first2=Song Myoung|last3=Kim|first3=Jong Soo|last4=Hwang|first4=Jung Ho|last5=Shin|first5=Hye Jin|last6=Cho|first6=Sang Kyun|last7=Min|first7=Kyoung Wook|last8=Kwak|first8=Won Kyu|last9=Jung|first9=Sun I|last10=Kim|first10=Chang Soo|last11=Choi|first11=Woong Sik|last12=Kim|first12=Sung Cheol|last13=Yoo|first13=Eu Jin|journal=SID Symposium Digest of Technical Papers|volume=40|page=802|s2cid=110948118}}</ref>
<ref name="Auto21-4">{{cite journal|doi=10.1889/1.2835033|title=System design for a wide-color-gamut TV-sized AMOLED display|year=2008|last1=Hamer|first1=John W.|last2=Arnold|first2=Andrew D.|last3=Boroson|first3=Michael L.|last4=Itoh|first4=Masahiro|last5=Hatwar|first5=Tukaram K.|last6=Helber|first6=Margaret J.|last7=Miwa|first7=Koichi|last8=Levey|first8=Charles I.|last9=Long|first9=Michael|last10=Ludwicki|first10=John E.|last11=Scheirer|first11=David C.|last12=Spindler|first12=Jeffrey P.|last13=Van Slyke|first13=Steven A.|journal=Journal of the Society for Information Display|volume=16|page=3|s2cid=62669850}}</ref>
<ref name="Auto21-5">{{cite web|url=http://data.4dsystems.com.au/downloads/micro-OLED/Docs/4D_AMOLED_Presentation.pdf |title=Introduction to OLED Displays&nbsp;– Design Guide for Active Matrix OLED (AMOLED) Displays |publisher=4D Systems |date=2008-05-22 |access-date=2010-09-06 |url-status=dead |archive-url=https://web.archive.org/web/20100705004637/http://data.4dsystems.com.au/downloads/micro-OLED/Docs/4D_AMOLED_Presentation.pdf |archive-date=5 July 2010 }}</ref>
<ref name="Auto21-6">{{cite journal|doi=10.1109/LED.2006.889523|title=A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED|last1=Lin|first1=Chih-Lung|last2=Chen|first2=Yung-Chih|journal=[[IEEE Electron Device Letters]]|volume=28|issue=2|page=129|year=2007|bibcode=2007IEDL...28..129L|s2cid=11194344}}</ref>
<ref name=prin>{{cite book|doi=10.1117/12.497638|title=Cockpit Displays X|year=2003|last1=Sarma|first1=Kalluri R.|last2=Chanley|first2=Charles|last3=Dodd|first3=Sonia R.|last4=Roush|first4=Jared|last5=Schmidt|first5=John|last6=Srdanov|first6=Gordana|last7=Stevenson|first7=Matthew|last8=Wessel|first8=Ralf|last9=Innocenzo|first9=Jeffrey|last10=Yu|first10=Gang|last11=O'Regan|first11=Marie B.|last12=MacDonald|first12=W. A.|last13=Eveson|first13=R.|last14=Long|first14=Ke|last15=Gleskova|first15=Helena|last16=Wagner|first16=Sigurd|last17=Sturm|first17=James C.|editor-first1=Darrel G. |editor-last1=Hopper |chapter=Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate |volume=5080|page=180|s2cid=12958469}} {{cite web|url=http://www.princeton.edu/~sturmlab/pdfs/publications/CP.211.pdf |title=Archived copy |access-date=2010-09-06 |url-status=dead |archive-url=https://web.archive.org/web/20110628192052/http://www.princeton.edu/~sturmlab/pdfs/publications/CP.211.pdf |archive-date=28 June 2011 |df=dmy }}</ref>
<ref name="Auto21-7">Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, "[http://www2.dupont.com/OLED/en_US/assets/downloads/pdf/frontline_technology_AMOLED.pdf Solution-Coating Technology for AMOLED Displays] {{webarchive|url=https://web.archive.org/web/20110516071914/http://www2.dupont.com/OLED/en_US/assets/downloads/pdf/frontline_technology_AMOLED.pdf |date=16 May 2011 }}", Information Display Magazine, January 2011.</ref>
<ref name="Auto21-8">Suyko, Alan. "Oleds Ready For The Mainstream." ''Electronics News'' (2009): 20. ''Associates Programs Source Plus''. Web. 9 Dec. 2011.</ref>
<ref name=powerOLED>{{Cite book |doi = 10.1145/1629911.1630084|chapter = Power modeling of graphical user interfaces on OLED displays|title = Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC '09|pages = 652|year = 2009|last1 = Dong|first1 = Mian|last2 = Choi|first2 = Yung-Seok Kevin|last3 = Zhong|first3 = Lin|isbn = 9781605584973|s2cid = 442526}}</ref>
<ref name="Auto21-9">{{cite web |last=Carmody |first=Tim |title=How Super AMOLED displays work |url=https://www.wired.com/2010/11/how-super-amoled-displays-work |access-date=2024-09-04 |website=Wired |date=2010-11-18 |language=en }}</ref>
<ref name=sam>{{cite web|url=http://ars.samsung.com/customer/usa/jsp/faqs/faqs_view_us.jsp?SITE_ID=22&PG_ID=2&PROD_SUB_ID=557&PROD_ID=560&AT_ID=290435 |archive-url=https://web.archive.org/web/20110716000052/http://ars.samsung.com/customer/usa/jsp/faqs/faqs_view_us.jsp?SITE_ID=22&PG_ID=2&PROD_SUB_ID=557&PROD_ID=560&AT_ID=290435 |url-status=dead |archive-date=2011-07-16 |title=What Are The Benefits Of Using The Super AMOLED Display In My SGH-t959 (Vibrant) Phone? |publisher=Samsung |date=2010-07-15 |access-date=2010-09-07 }}</ref>
<ref name="Auto21-10">{{cite web|url=http://digihub.theage.com.au/node/1799|title=Big is beautiful|publisher=The Age|date=2010-08-12|access-date=2010-09-07|archive-url=https://web.archive.org/web/20100829060732/http://digihub.theage.com.au/node/1799|archive-date=29 August 2010|url-status=dead|df=dmy-all}}</ref>
<ref name="Auto21-11">{{cite journal|doi=10.1109/JDT.2006.890711|title=AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation|last1=Ashtiani|first1=Shahin J.|last2=Reza Chaji|first2=G.|last3=Nathan|first3=Arokia|journal=Journal of Display Technology|volume=38|issue=1|page=36|year=2007|bibcode=2007JDisT...3...36A|s2cid=44204246}}</ref>
<ref name="Auto21-12">{{cite patent|country=US|number=7352345|title=Driving apparatus and method for light emitting diode display|inventor=Chun-huai Li|gdate=2008-04-01}}</ref>
<!-- <ref name="Auto21-13b">{{cite web|url=http://www.ibtimes.com/articles/38429/20100726/htc-ditches-samsung-amoled-display-for-sony-s-super-lcds.htm|title=HTC ditches Samsung AMOLED display for Sony's Super LCDs|publisher=International Business Times|date=2010-07-26|access-date=2011-01-01}}</ref> -->
<!--
<ref name="Auto21-14">{{cite web|url=http://online.wsj.com/article/SB10001424052748703713504575475553352680096.html|title=Samsung Mobile Display to Boost 2011 Production|publisher=Wall Street Journal|date=2010-09-06|access-date=2011-01-01}}</ref>-->
<ref name="Auto21-15">{{cite web |url=http://www.samsung.com/au/smartphone/technology/super-amoled.html |title=Samsung Smartphones &#124; Technology |publisher=Samsung.com |date=2012-01-06 |access-date=2012-10-10 |url-status=dead |archive-url=https://web.archive.org/web/20120627073023/http://www.samsung.com/au/smartphone/technology/super-amoled.html |archive-date=27 June 2012 |df=dmy-all }}</ref>
<ref name="Auto21-16">{{cite web |url=http://www.oled-info.com/super-amoled |title=Super AMOLED |publisher=Oled-info.com |access-date=2012-10-10 |url-status=live |archive-url=https://web.archive.org/web/20121009141240/http://www.oled-info.com/super-amoled |archive-date=9 October 2012 |df=dmy-all }}</ref>

<!-- Not in use
<ref name="Auto21-17">{{cite web|url=http://www.oled-info.com/super-amoled-plus|publisher=OLED-Info|title=www.oled-info.com/super-amoled-plus|access-date=23 August 2011|url-status=live|archive-url=https://web.archive.org/web/20110816001954/http://www.oled-info.com/super-amoled-plus|archive-date=16 August 2011|df=dmy-all}}</ref>
Not in use-->

<!-- Not in use
<ref name="Auto21-20">{{cite web |url=http://bestboyz.de/galaxy-note-2-display-hat-keine-pentile-matrix/ |title=Galaxy Note 2: Display hat keine PenTile-Matrix &#124; BestBoyZ |publisher=Bestboyz.de |date=2012-08-30 |access-date=2012-10-10 |url-status=live |archive-url=http://archive.wikiwix.com/cache/20121010155624/http://bestboyz.de/galaxy-note-2-display-hat-keine-pentile-matrix/ |archive-date=10 October 2012 |df=dmy-all }}</ref>
Not in use-->

<!--REF NOT BEING USED IN ARTICLE
<ref name="Auto21-19">{{cite web |url=http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9250TSAXEU |title=Galaxy Nexus&nbsp;– Android 4. 0 Smartphone&nbsp;– SAMSUNG UK&nbsp;– OVERVIEW |language=uk |publisher=Samsung.com |access-date=2012-10-10 |url-status=dead |archive-url=https://web.archive.org/web/20121102041548/http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9250TSAXEU |archive-date=2 November 2012 |df=dmy-all }}</ref>-->
}}


== External links ==
== External links ==
* {{HowStuffWorks|page=oled3|name=Types of OLEDs: Passive and Active Matrix|author=Craig Freudenrich}}
*[http://www2.dupont.com/Displays/en_US/products_services/oled/amoled/index.html Examples of AMOLED displays]
*[http://www.oled-info.com/devices A list of gadgets with AMOLED displays]


{{Display Technology}}
{{Display technology}}


[[Category:Mobile phones]]
{{DEFAULTSORT:Active-Matrix Oled}}
[[Category:Conductive polymers]]
[[Category:Conductive polymers]]
[[Category:Display technology]]
[[Category:Display technology]]
Line 67: Line 543:
[[Category:Optical diodes]]
[[Category:Optical diodes]]
[[Category:Organic electronics]]
[[Category:Organic electronics]]

[[ca:AMOLED]]
[[de:AMOLED]]
[[es:AMOLED]]
[[fr:AMOLED]]
[[it:AMOLED]]
[[nl:Amoled]]
[[pl:AMOLED]]
[[ru:Active-Matrix OLED]]
[[vls:Amoled]]

Latest revision as of 06:28, 6 January 2025

Magnified image of the AMOLED screen on the Nexus One smartphone using the RGBG system of the PenTile matrix family

AMOLED (active-matrix organic light-emitting diode; /ˈæmˌlɛd/) is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

Since 2007, AMOLED technology has been used in mobile phones, media players, TVs and digital cameras,[1] and it has continued to make progress toward low-power, low-cost, high resolution and large size (for example, 88-inch and 8K resolution) applications.[2][3][4][neutrality is disputed]

Primary colors shown on the Dynamic AMOLED displays of the Galaxy Note 10 line

Design

[edit]
Schematic of an active-matrix OLED display

An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.[5]

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for passive-matrix OLED operation.[6]

TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays.[7]

History

[edit]

AMOLED was developed in 2006. Samsung SDI was one of the main investors in the technology, and many other display companies were also developing it. One of the earliest consumer electronics products with an AMOLED display was the BenQ-Siemens S88 mobile handset[8] and, in 2007, the iriver Clix 2 portable media player.[9] In 2008 it appeared on the Nokia N85 followed by the Samsung i7110 - both Nokia and Samsung Electronics were early adopters of this technology on their smartphones.[10]

Future development

[edit]

Manufacturers have developed in-cell touch panels, integrating the production of capacitive sensor arrays in the AMOLED module fabrication process. In-cell sensor AMOLED fabricators include AU Optronics and Samsung. Samsung has marketed its version of this technology as "Super AMOLED". Researchers at DuPont used computational fluid dynamics (CFD) software to optimize coating processes for a new solution-coated AMOLED display technology that is competitive in cost and performance with existing chemical vapor deposition (CVD) technology. Using custom modeling and analytic approaches, Samsung has developed short and long-range film-thickness control and uniformity that is commercially viable at large glass sizes.[11]

Comparison to other display technologies

[edit]

Compared to other display technologies, AMOLED screens have several advantages and disadvantages.

AMOLED displays can provide higher refresh rates than passive-matrix,[not specific enough to verify] often have response times less than a millisecond, and they consume significantly less power.[12] This advantage makes active-matrix OLEDs well-suited for portable electronics, where power consumption is critical to battery life.

The amount of power the display consumes varies significantly depending on the color and brightness shown. As an example, one old QVGA OLED display consumes 0.3 watts while showing white text on a black background, but more than 0.7 watts showing black text on a white background, while an LCD may consume only a constant 0.35 watts regardless of what is being shown on screen. A new FHD+ or WQHD+ display will consume much more. [13] Because the black pixels turn completely off, AMOLED also has contrast ratios that are significantly higher than LCDs.[14]

AMOLED displays may be difficult to view in direct sunlight compared with LCDs because of their reduced maximum brightness.[15] Samsung's Super AMOLED technology addresses this issue by reducing the size of gaps between layers of the screen.[16][17] Additionally, PenTile technology is often used for a higher resolution display while requiring fewer subpixels than needed otherwise, sometimes resulting in a display less sharp and more grainy than a non-PenTile display with the same resolution.

The organic materials used in AMOLED displays are very prone to degradation over a relatively short period of time, resulting in color shifts as one color fades faster than another, image persistence, or burn-in.[18][19]

Flagship smartphones sold in 2020 and 2021 used a Super AMOLED. Super AMOLED displays, such as the one on the Samsung Galaxy S21+ / S21 Ultra and Samsung Galaxy Note 20 Ultra have often been compared to IPS LCDs, found in phones such as the Xiaomi Mi 10T, Huawei Nova 5T, and Samsung Galaxy A20e.[20][21][22] For example, according to ABI Research, the AMOLED display found in the Motorola Moto X draws just 92 mA during bright conditions and 68 mA while dim.[23] On the other hand, compared with the IPS, the yield rate of AMOLED is low; the cost is also higher.

Marketing terms

[edit]

Super AMOLED

[edit]

"Super AMOLED" is a marketing term created by Samsung for an AMOLED display with an integrated touch screen digitizer: the layer that detects touch is integrated into the display, rather than overlaid on top of it and cannot be separated from the display itself. Super AMOLED is a more advanced version and it integrates touch-sensors and the actual screen in a single layer.When compared with a regular LCD display an AMOLED display consumes less power, provides more vivid picture quality, and renders faster motion response as compared to other display technologies such as LCD. However, Super AMOLED is even better at this with 20% brighter screen, 20% lower power consumption and 80% less sunlight reflection. According to Samsung, Super AMOLED reflects one-fifth as much sunlight as the first generation AMOLED.[24][25] The generic term for this technology is One Glass Solution (OGS).

Comparison

[edit]

Below is a mapping table of marketing terms versus resolutions and sub-pixel types. Note how the pixel density relates to choices of sub-pixel type.

Term Reso-
lution
Size
(inches)
PPI Color depth

(bits)

Pixel
layout
Used in
AMOLED 320×240 2.2 182 iriver clix 2
2.6 154 RGBG PenTile Nokia N85
AMOLED
Capacitive Touchscreen
640×360 3.2 229 Nokia C6-01
Super AMOLED 3.5 210 RGB S-Stripe Nokia N8
4.0 184 Nokia 808 PureView
720×720 3.1 328 BlackBerry Q10
854×480 3.9 251 RGBG PenTile Nokia N9
800×480 4.0 233 Samsung Galaxy S
960×540 4.3 256 RGB S-Stripe Samsung Galaxy S4 Mini
1280×768 4.5 332 RGBG PenTile Nokia Lumia 1020
Super AMOLED Plus 800×480 4.3 (4.27) 218 RGB stripe Samsung Galaxy S II
Super AMOLED Advanced 960×540 4.3 256 RGBG PenTile Motorola Droid RAZR
HD Super AMOLED 1280×800 5.3 (5.29) 285 Samsung Galaxy Note
1280×720 5.0 295 RGB S-Stripe BlackBerry Z30
Samsung Galaxy J7
Samsung Galaxy J5
Samsung Galaxy E5
Samsung Galaxy J3 (2016)
4.7 (4.65) 316 RGBG PenTile Samsung Galaxy Nexus
4.7 (4.65) 316 RGB S-Stripe Moto X (1st generation)
4.8 306 RGBG PenTile Samsung Galaxy S III
5.6 (5.55) 267 RGB S-Stripe Samsung Galaxy Note II
5.6 (5.55) 267 Samsung Galaxy Note 3 Neo
HD Super AMOLED Plus 1280×800 7.7 197 RGB stripe Samsung Galaxy Tab 7.7
Full HD Super AMOLED 1920×1080 5.5 400 RGBG PenTile Meizu MX5
5.0 (4.99) 441 Samsung Galaxy S4
5.0 (4.99) 441 OnePlus X
5.0 (4.99) 441 Google Pixel
5.2 423 Motorola Moto X (2nd gen)
5.1 432 Samsung Galaxy S5
5.5 401 OnePlus 3
OnePlus 3T
OnePlus 5
5.7 388 Samsung Galaxy Note 3
Full HD+ Super AMOLED 2160×1080 6.0 402 Google Pixel 3
6.0 402 Huawei Mate 10 Pro
2220x1080 6.01 411 Samsung Galaxy A8+ (2018)
Full HD+ Super AMOLED 2220x1080 5.61 441 Samsung Galaxy A8 (2018)
Super Retina HD 2436×1125 5.8 (5.85) 458 Apple iPhone X
iPhone XS
iPhone 11 Pro
2688×1242 6.5 (6.46) iPhone XS Max
iPhone 11 Pro Max
WQHD Super AMOLED 2560×1440 5.1 577 Samsung Galaxy S6
Samsung Galaxy S6 Edge
Samsung Galaxy S6 Active
Samsung Galaxy S7
Samsung Galaxy S7 Active
5.2 564 Microsoft Lumia 950
5.2 565 Motorola Droid Turbo
5.4 540 BlackBerry Priv
5.5 534 BlackBerry DTEK60
Samsung Galaxy S7 Edge
Google Pixel XL
Alcatel Idol 4S
vodafone smart platinum 7(Alcatel Sol Prime)
Moto Z
Moto Z Force
ZTE Axon 7
5.7 515 8 Samsung Galaxy Note 4
Samsung Galaxy Note 5
Samsung Galaxy S6 Edge+
Nexus 6P
Samsung Galaxy Note 7
5.7 518 Microsoft Lumia 950 XL
2960×1440 5.8 571 Samsung Galaxy S8
Samsung Galaxy S9
6.2 529 Samsung Galaxy S8+
Samsung Galaxy S9+
6.3 521 Samsung Galaxy Note 8
6.4 514 Samsung Galaxy Note 9
WQXGA Super AMOLED 2560×1600 8.4 359 Samsung Galaxy Tab S 8.4
10.5 287 RGB S-Stripe Samsung Galaxy Tab S 10.5
3K AMOLED 2880×1600 3.5 615 (unknown) HTC Vive Focus Plus[26]
Dynamic AMOLED 2280x1080

3040x1440

2280x1080

3040x1440

3040x1440

5.8

6.1

6.3

6.4

6.8

438

550

401

522

498

Samsung Galaxy S10e

Samsung Galaxy S10

Samsung Galaxy Note 10

Samsung Galaxy S10+

Samsung Galaxy Note 10+

Samsung Galaxy Fold

Samsung Galaxy Z Flip

Fluid AMOLED 3120x1440 6.67 516 OnePlus 7 Pro
Dynamic AMOLED 2X 2208×1768

2400x1080

3200x1440

7.6

6.1

6.4

6.7

6.8

6.9

373 (Display resolution for Samsung Galaxy Z Fold 2)

386 (External display resolution for Samsung Galaxy Z Fold 2)

563

525

511

421

394

515

411

374 (Display resolution for Samsung Galaxy Z Fold 3)
389 (External display resolution for Samsung Galaxy Z Fold 3)

RGBG PenTile Samsung Galaxy S20

Samsung Galaxy S20+

Samsung Galaxy S20 Ultra

(Samsung Galaxy Note 20)

(Samsung Galaxy Note 20 Ultra)

Samsung Galaxy Z Fold 2

Samsung Galaxy S21

Samsung Galaxy S21+

Samsung Galaxy S21 Ultra

Samsung Galaxy S21 FE

Samsung Galaxy Z Fold 3

Samsung Galaxy Z Flip 3

Samsung Galaxy S22

Samsung Galaxy S22+

Samsung Galaxy S22 Ultra

Samsung Galaxy Z Fold 4

Samsung Galaxy Z Flip 4

Samsung Galaxy S23

Samsung Galaxy S23+

Samsung Galaxy S23 Ultra

Samsung Galaxy Z Fold 5

Samsung Galaxy Z Flip 5

Samsung Galaxy S24

Samsung Galaxy S24+

Samsung Galaxy S24 Ultra

Future

[edit]

Future displays exhibited from 2011 to 2013 by Samsung have shown flexible, 3D, transparent Super AMOLED Plus displays using very high resolutions and in varying sizes for phones. These unreleased prototypes use a polymer as a substrate removing the need for glass cover, a metal backing, and touch matrix, combining them into one integrated layer.[27]

So far, Samsung plans on branding the newer displays as Youm,[28] or y-octa.[29]

Also planned for the future are 3D stereoscopic displays that use eye-tracking (via stereoscopic front-facing cameras) to provide full resolution 3D visuals.

See also

[edit]

References

[edit]
  1. ^ Lee, Hyunkoo; Park, Insun; Kwak, Jeonghun; Yoon, Do Y.; Kallmann, Changhee Lee (2010). "Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles". Applied Physics Letters. 96 (15): 153306. Bibcode:2010ApPhL..96o3306L. doi:10.1063/1.3400224.
  2. ^ Kim, Yang Wan; Kwak, Won Kyu; Lee, Jae Yong; Choi, Wong Sik; Lee, Ki Yong; Kim, Sung Chul; Yoo, Eui Jin (2009). "40 Inch FHD AM-OLED Display with IR Drop Compensation Pixel Circuit". SID Symposium Digest of Technical Papers. 40: 85. doi:10.1889/1.3256930. S2CID 110871831.
  3. ^ Lee, Myung Ho; Seop, Song Myoung; Kim, Jong Soo; Hwang, Jung Ho; Shin, Hye Jin; Cho, Sang Kyun; Min, Kyoung Wook; Kwak, Won Kyu; Jung, Sun I; Kim, Chang Soo; Choi, Woong Sik; Kim, Sung Cheol; Yoo, Eu Jin (2009). "Development of 31-Inch Full-HD AMOLED TV Using LTPS-TFT and RGB FMM". SID Symposium Digest of Technical Papers. 40: 802. doi:10.1889/1.3256911. S2CID 110948118.
  4. ^ Hamer, John W.; Arnold, Andrew D.; Boroson, Michael L.; Itoh, Masahiro; Hatwar, Tukaram K.; Helber, Margaret J.; Miwa, Koichi; Levey, Charles I.; Long, Michael; Ludwicki, John E.; Scheirer, David C.; Spindler, Jeffrey P.; Van Slyke, Steven A. (2008). "System design for a wide-color-gamut TV-sized AMOLED display". Journal of the Society for Information Display. 16: 3. doi:10.1889/1.2835033. S2CID 62669850.
  5. ^ "Introduction to OLED Displays – Design Guide for Active Matrix OLED (AMOLED) Displays" (PDF). 4D Systems. 22 May 2008. Archived from the original (PDF) on 5 July 2010. Retrieved 6 September 2010.
  6. ^ Lin, Chih-Lung; Chen, Yung-Chih (2007). "A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED". IEEE Electron Device Letters. 28 (2): 129. Bibcode:2007IEDL...28..129L. doi:10.1109/LED.2006.889523. S2CID 11194344.
  7. ^ Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C. (2003). "Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate". In Hopper, Darrel G. (ed.). Cockpit Displays X. Vol. 5080. p. 180. doi:10.1117/12.497638. S2CID 12958469. "Archived copy" (PDF). Archived from the original (PDF) on 28 June 2011. Retrieved 2010-09-06.{{cite web}}: CS1 maint: archived copy as title (link)
  8. ^ "Active OLEDs close in on mobile phone market".
  9. ^ "Iriver clix2 Review". www.anythingbutipod.com. Archived from the original on 28 October 2007. Retrieved 19 April 2022.
  10. ^ "The Consumer Electronics Hall of Fame: Nokia N85 Cellphone". 13 December 2018.
  11. ^ Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, "Solution-Coating Technology for AMOLED Displays Archived 16 May 2011 at the Wayback Machine", Information Display Magazine, January 2011.
  12. ^ Suyko, Alan. "Oleds Ready For The Mainstream." Electronics News (2009): 20. Associates Programs Source Plus. Web. 9 Dec. 2011.
  13. ^ Dong, Mian; Choi, Yung-Seok Kevin; Zhong, Lin (2009). "Power modeling of graphical user interfaces on OLED displays". Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC '09. p. 652. doi:10.1145/1629911.1630084. ISBN 9781605584973. S2CID 442526.
  14. ^ "AMOLED vs LCD: differences explained". Android Authority. 8 February 2016. Archived from the original on 27 December 2016. Retrieved 6 February 2017.
  15. ^ Carmody, Tim (18 November 2010). "How Super AMOLED displays work". Wired. Retrieved 4 September 2024.
  16. ^ "What Are The Benefits Of Using The Super AMOLED Display In My SGH-t959 (Vibrant) Phone?". Samsung. 15 July 2010. Archived from the original on 16 July 2011. Retrieved 7 September 2010.
  17. ^ "Big is beautiful". The Age. 12 August 2010. Archived from the original on 29 August 2010. Retrieved 7 September 2010.
  18. ^ Ashtiani, Shahin J.; Reza Chaji, G.; Nathan, Arokia (2007). "AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation". Journal of Display Technology. 38 (1): 36. Bibcode:2007JDisT...3...36A. doi:10.1109/JDT.2006.890711. S2CID 44204246.
  19. ^ US 7352345, Chun-huai Li, "Driving apparatus and method for light emitting diode display", issued 2008-04-01 
  20. ^ "AMOLED vs LCD: Which screen is best for your phone?". digitaltrends.com. 29 August 2014. Archived from the original on 29 March 2018. Retrieved 6 May 2018.
  21. ^ "Smartphone screens explained: display types, resolutions and more - AndroidPIT". androidpit.com. Archived from the original on 12 May 2015. Retrieved 6 May 2018.
  22. ^ "Nexus 4 Review: Not Exactly Perfect, But Close Enough For Me – TechCrunch". techcrunch.com. 2 November 2012. Archived from the original on 7 February 2018. Retrieved 6 May 2018.
  23. ^ Google/Motorola Mobility Display a Bright Efficient Future, ABI Research
  24. ^ "Samsung Smartphones | Technology". Samsung.com. 6 January 2012. Archived from the original on 27 June 2012. Retrieved 10 October 2012.
  25. ^ "Super AMOLED". Oled-info.com. Archived from the original on 9 October 2012. Retrieved 10 October 2012.
  26. ^ "HTC VIVE Focus Plus". vive.com. Archived from the original on 13 December 2017. Retrieved 30 July 2021.
  27. ^ "Samsung teases flexible, transparent display in concept video". engadget.com. 5 December 2011. Archived from the original on 11 October 2016. Retrieved 6 May 2018.
  28. ^ "Samsung names flexible OLED display series 'Youm', shows new prototype handheld device". engadget.com. 9 January 2013. Archived from the original on 16 February 2018. Retrieved 6 May 2018.
  29. ^ Kelly, Gordon. "Samsung Report 'Confirms' Significant Galaxy S9 Design Changes". forbes.com. Archived from the original on 1 April 2018. Retrieved 6 May 2018.
[edit]