Spermidine: Difference between revisions
m updating reference Tag: possibly non-minor edit |
The term "ichtyal" is not a recognized word. The term appears to refer to "ichthya-", meaning fish, which many amine/hydrazine compounds smell similar to. |
||
(182 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{cs1 config|name-list-style=vanc}} |
|||
{{chembox |
{{chembox |
||
| Verifiedfields = changed |
|||
| verifiedrevid = 282531491 |
|||
| Watchedfields = changed |
|||
|ImageFile=Spermidine-2D-skeletal.png |
|||
| verifiedrevid = 458280836 |
|||
|ImageSize= |
|||
| ImageFile = N1-(3-aminopropyl)butane-1,4-diamine_200_2.svg |
|||
|ImageFile2=Spermidine-3D-balls.png |
|||
| ImageFile_Ref = {{chemboximage|correct|??}} |
|||
|IUPACName=N-(3-aminopropyl)butane-1,4-diamine |
|||
| ImageName = Skeletal formula of spermidine |
|||
|OtherNames= 1,5,10-triazadecane |
|||
| ImageFile2 = Spermidine-3D-balls.png |
|||
|Section1= {{Chembox Identifiers |
|||
| ImageFile2_Ref = {{chemboximage|correct|??}} |
|||
| CASNo_Ref = {{cascite}} |
|||
| ImageName2 = Ball and stick model of spermidine |
|||
| CASNo=124-20-9 |
|||
| PIN = ''N''<sup>1</sup>-(3-Aminopropyl)butane-1,4-diamine |
|||
| PubChem=1102 |
|||
|Section1={{Chembox Identifiers |
|||
| CASNo = 124-20-9 |
|||
| CASNo_Ref = {{cascite|correct|CAS}} |
|||
| CASNo_Comment = (free base) |
|||
| CASNo2_Ref = {{cascite|correct|CAS}} |
|||
| CASNo2 = 334-50-9 |
|||
| CASNo2_Comment = (trihydrochloride) <!--also verified against the Chemical Abstracts Service list --> |
|||
| UNII_Ref = {{fdacite|correct|FDA}} |
|||
| UNII = U87FK77H25 |
|||
| UNII_Comment = (free base) |
|||
| UNII2_Ref = {{fdacite|correct|FDA}} |
|||
| UNII2 = 1O14BED398 |
|||
| UNII2_Comment = (trihydrochloride) |
|||
| PubChem = 1102 |
|||
| ChemSpiderID = 1071 |
|||
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}} |
|||
| EINECS = 204-689-0 |
|||
| UNNumber = 2735 |
|||
| DrugBank = DB03566 |
|||
| DrugBank_Ref = {{drugbankcite|correct|drugbank}} |
|||
| KEGG = C00315 |
|||
| KEGG_Ref = {{keggcite|changed|kegg}} |
|||
| MeSHName = Spermidine |
|||
| ChEBI = 16610 |
|||
| ChEBI_Ref = {{ebicite|changed|EBI}} |
|||
| ChEMBL = 19612 |
|||
| ChEMBL_Ref = {{ebicite|changed|EBI}} |
|||
| IUPHAR_ligand = 2390 |
| IUPHAR_ligand = 2390 |
||
| RTECS = EJ7000000 |
|||
| SMILES=C(CCNCCCN)CN |
|||
| Beilstein = 1698591 |
|||
| MeSHName=Spermidine |
|||
| Gmelin = 454510 |
|||
}} |
|||
| 3DMet = B01214 |
|||
|Section2= {{Chembox Properties |
|||
| SMILES = NCCCCNCCCN |
|||
| Formula=C<sub>7</sub>H<sub>19</sub>N<sub>3</sub> |
|||
| StdInChI = 1S/C7H19N3/c8-4-1-2-6-10-7-3-5-9/h10H,1-9H2 |
|||
| MolarMass=145.246 |
|||
| StdInChI_Ref = {{stdinchicite|changed|chemspider}} |
|||
| Appearance= |
|||
| StdInChIKey = ATHGHQPFGPMSJY-UHFFFAOYSA-N |
|||
| Density=0.925 g/mL at 25 °C |
|||
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}} |
|||
| MeltingPt=22-25.0 °C |
|||
| BoilingPt= |
|||
| Solubility= |
|||
}} |
|||
|Section3= {{Chembox Hazards |
|||
| MainHazards= |
|||
| FlashPt= |
|||
| Autoignition= |
|||
}} |
|||
}} |
}} |
||
|Section2={{Chembox Properties |
|||
'''Spermidine''' is a [[polyamine]] involved in [[cellular metabolism]] that can be used to stimulate the enzyme [[T7 RNA polymerase]], a type of [[RNA polymerase]]{{Citation needed|date=July 2010}}. Spermidine has also been found to reduce the amount of aging in yeast, flies, worms, and human immune cells by inducing [[autophagy]]<ref name=Nature Cell Biology>{{cite journal |title=Induction of autophagy by spermidine promotes longevity,|author = Tobias Eisenberg, Heide Knauer, Alexandra Schauer, Sabrina Büttner, Christoph Ruckenstuhl, Didac Carmona-Gutierrez, Julia Ring, Sabrina Schroeder, Christoph Magnes, Lucia Antonacci, Heike Fussi, Luiza Deszcz, Regina Hart, Elisabeth Schraml, Alfredo Criollo, Evgenia Megalou, Daniela Weiskopf, Peter Laun, Gino Heeren, Michael Breitenbach, Beatrix Grubeck-Loebenstein, Eva Herker, Birthe Fahrenkrog, Kai-Uwe Fröhlich, Frank Sinner, Nektarios Tavernarakis, Nadege Minois, Guido Kroemer, Frank Madeo |
|||
| C=7 | H=19 | N=3 |
|||
|url=http://www.nature.com/ncb/journal/v11/n11/abs/ncb1975.html |date=4 October 2009|journal=Nature Cell Biology }}</ref> |
|||
| Appearance = Colourless liquid |
|||
| Odor = Fishy, ammoniacal |
|||
| Density = 925 mg mL<sup>−1</sup> |
|||
| MeltingPtC = 22 to 25 |
|||
| Solubility = 145 g L<sup>−1</sup> (at 20 °C) |
|||
| LogP = −0.504 |
|||
| LambdaMax = 260 nm |
|||
| Absorbance = 0.1 |
|||
| RefractIndex = 1.479 |
|||
}} |
|||
|Section3={{Chembox Hazards |
|||
| GHSPictograms = {{gHS corrosion}} |
|||
| GHSSignalWord = '''DANGER''' |
|||
| HPhrases = {{h-phrases|314}} |
|||
| PPhrases = {{p-phrases|280|305+351+338|310}} |
|||
| FlashPtC = 112 |
|||
}} |
|||
|Section4={{Chembox Related |
|||
| OtherFunction_label = amines |
|||
| OtherFunction = {{unbulleted list|[[Dipropylamine]]|[[methyl-n-amylnitrosamine|Methyl-''n''-amylnitrosamine]]|[[Norspermidine]]|[[Dibutylamine]]|[[Iproheptine]]}} |
|||
}} |
|||
}} |
|||
'''Spermidine''' is a [[polyamine]] compound ({{chem|C|7|H|19|N|3}}) found in [[ribosome]]s and living tissues and having various metabolic functions within organisms. |
|||
==Function== |
|||
Spermidine is an [[Aliphatic compound|aliphatic]] polyamine. [[Spermidine synthase]] (SPDS) catalyzes its formation from [[putrescine]]. It is a precursor to other polyamines, such as [[spermine]] and its structural [[isomer]] [[polyamine#thermospermine|thermospermine]]. |
|||
Spermidine synchronizes an array of biological processes, (such as Ca<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup> -ATPase) thus maintaining membrane potential and controlling intracellular pH and volume. Spermidine regulates biological processes, such as Ca<sup>2+</sup> influx by glutamatergic [[N-Methyl-D-aspartic acid|''N''-methyl-<small>D</small>-aspartate]] receptor (NMDA receptor), which has been associated with [[nitric oxide synthase]] (NOS) and cGMP/PKG pathway activation and a decrease of Na<sup>+</sup>,K<sup>+</sup>-ATPase activity in cerebral cortex synaptosomes. |
|||
[[File:Polyamine synthesis.svg|left|thumb|400x400px|Biosynthesis of spermidine and spermine from putrescine. Ado = 5'-adenosyl.]] |
|||
Spermidine is a [[longevity]] agent in mammals due to various mechanisms of action, which are just beginning to be understood. [[Autophagy]] is the main mechanism at the molecular level, but evidence has been found for other mechanisms, including inflammation reduction, lipid metabolism, and regulation of cell growth, proliferation, and death.<ref name=Minios>{{cite journal| last=Minois |first=Nadège| title= Molecular Basis of the "Anti-Aging" Effect of Spermidine and Other Natural Polyamines – A Mini-Review| journal=[[Gerontology (journal)|Gerontology]]| date=28 January 2014| volume=60| issue=4| pages=319–326| pmid=24481223| doi=10.1159/000356748| url=http://www.karger.com/Article/Pdf/356748| doi-access=free}}</ref><ref name="pmid29371440">{{cite journal | vauthors=Madeo F, Eisenberg T, Pietrocola F, Kroemer G| title=Spermidine in health and disease | journal=[[Science (journal)|Science]] | volume=359 | issue=6374 | pages=eaan2788 | year=2018 | doi = 10.1126/science.aan2788 | pmid=29371440 | doi-access=free }}</ref> Spermidine has been theorized to promote autophagy via the [[MAPK/ERK pathway|MAPK pathway]] by inhibiting phosphorylation of [[c-Raf|raf]],<ref name=Minios></ref> or possibly by inhibiting cytosolic [[autophagy-related protein]] acetylation by [[EP300]] and thereby increasing acetylation of [[tubulin]].<ref name="pmid29371440"></ref> |
|||
Spermidine is known to regulate plant growth, assisting the ''in vitro'' process of transcribing RNA, and inhibition of NOS. Also, spermidine is a precursor to other polyamines, such as spermine and thermospermine, some of which contribute to tolerance against [[drought]] and [[salinity]] in plants. |
|||
Spermidine has been tested and discovered to encourage hair shaft elongation and lengthen hair growth. Spermidine has also been found to “upregulate expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity ''in situ'' and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells ''in vitro''.”<ref>{{cite journal |last1=Ramot |first1=Yuval |last2=Tiede |first2=Stephan |last3=Bíró |first3=Tamás |last4=Abu Bakar |first4=Mohd Hilmi |last5=Sugawara |first5=Koji |last6=Philpott |first6=Michael P. |last7=Harrison |first7=Wesley |last8=Pietilä |first8=Marko |last9=Paus |first9=Ralf |title=Spermidine Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem Cell Functions |journal=PLOS ONE |date=27 July 2011 |volume=6 |issue=7 |pages=e22564 |doi=10.1371/journal.pone.0022564 |pmid=21818338 |pmc=3144892 |bibcode=2011PLoSO...622564R |issn=1932-6203|doi-access=free }}</ref> |
|||
==Biochemical actions== |
==Biochemical actions== |
||
Spermidine's known actions include: |
|||
* Inhibits neuronal [[nitric oxide synthase]] (nNOS) |
|||
* Inhibits neuronal [[nitric oxide synthase]] (nNOS)<ref>{{cite journal | pmid = 7526294 | year = 1994 | last1 = Hu | first1 = J | last2 = Mahmoud | first2 = MI | last3 = El-Fakahany | first3 = EE | title = Polyamines inhibit nitric oxide synthase in rat cerebellum | volume = 175 | issue = 1–2 | pages = 41–5 | journal = Neuroscience Letters | doi = 10.1016/0304-3940(94)91073-1| s2cid = 37856308 }}</ref> |
|||
* Binds and precipitates DNA |
|||
* Binds and precipitates DNA<ref>{{cite journal | pmid = 8118404 | year = 1993 | last1 = Wan | first1 = CY | last2 = Wilkins | first2 = TA | title = Spermidine facilitates PCR amplification of target DNA | volume = 3 | issue = 3 | pages = 208–10 | journal = PCR Methods and Applications | doi=10.1101/gr.3.3.208| doi-access = free }}</ref> |
|||
* May be used for purification of DNA-binding proteins |
|||
* Polyamine plant growth regulator<ref>{{cite book | pmid = 2107372 | year = 1990 | last1 = Cull | first1 = M | last2 = McHenry | first2 = CS | chapter = Preparation of extracts from prokaryotes | title = Guide to Protein Purification | volume = 182 | pages = 147–53 | doi = 10.1016/0076-6879(90)82014-S | series = Methods in Enzymology | isbn = 978-0-12-182083-1}}</ref><ref>{{cite journal | pmid = 4870599 | year = 1968 | last1 = Blethen | first1 = SL | last2 = Boeker | first2 = EA | last3 = Snell | first3 = EE | title = Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme | volume = 243 | issue = 8 | pages = 1671–7 | journal = The Journal of Biological Chemistry| doi = 10.1016/S0021-9258(18)93498-8 | doi-access = free }}</ref><ref>{{cite journal | pmid = 4571774 | year = 1973 | last1 = Wu | first1 = WH | last2 = Morris | first2 = DR | title = Biosynthetic arginine decarboxylase from Escherichia coli. Subunit interactions and the role of magnesium ion | volume = 248 | issue = 5 | pages = 1696–9 | journal = The Journal of Biological Chemistry| doi = 10.1016/S0021-9258(19)44246-4 | doi-access = free }}</ref><ref>{{cite journal | pmid = 6206782 | year = 1984 | last1 = Tabor | first1 = CW | last2 = Tabor | first2 = H | title = Polyamines | volume = 53 | pages = 749–90 | doi = 10.1146/annurev.bi.53.070184.003533 | journal = Annual Review of Biochemistry}}</ref><ref>{{cite book | pmid = 2443800 | year = 1987 | last1 = Krug | first1 = MS | last2 = Berger | first2 = SL | chapter = First-strand cDNA synthesis primed with oligo(dT) | title = Guide to Molecular Cloning Techniques | volume = 152 | pages = 316–25 | doi = 10.1016/0076-6879(87)52036-5 | series = Methods in Enzymology | isbn = 978-0-12-182053-4}}</ref><ref>{{cite journal | pmid = 241752 | year = 1975 | last1 = Karkas | first1 = JD | last2 = Margulies | first2 = L | last3 = Chargaff | first3 = E | title = A DNA polymerase from embryos of Drosophila melanogaster. Purification and properties | volume = 250 | issue = 22 | pages = 8657–63 | journal = The Journal of Biological Chemistry |
|||
* Stimulates T4 polynucleotide kinase activity |
|||
| doi = 10.1016/S0021-9258(19)40721-7 | doi-access = free }}</ref><ref>{{cite journal | pmid = 6272602 | year = 1981 | last1 = Bouché | first1 = JP | title = The effect of spermidine on endonuclease inhibition by agarose contaminants | volume = 115 | issue = 1 | pages = 42–5 | journal = Analytical Biochemistry | doi = 10.1016/0003-2697(81)90519-4}}</ref> |
|||
==Sources== |
|||
==Some of the uses== |
|||
Good dietary sources of spermidine are aged cheese, mushrooms, soy products, legumes, corn, and whole grains.<ref name=Ali2011>{{cite journal | doi = 10.3402/fnr.v55i0.5572 | title = Polyamines in foods: development of a food database | year = 2011 | last1 = Ali | first1 = Mohamed Atiya | last2 = Poortvliet | first2 = Eric | last3 = Strömberg | first3 = Roger | last4 = Yngve | first4 = Agneta | journal = Food Nutr Res | volume = 55 | pages = 5572 | pmid = 21249159 | pmc=3022763}}</ref> Spermidine is plentiful in a [[Mediterranean diet]].<ref name="pmid29371440" /> |
|||
* Spermidine can be used in [[electroporation]] while transferring the DNA into the cell under the electrical impulse. |
|||
For comparison: The spermidine content in human seminal plasma varies between approx. 15 and 50 mg/L (mean 31 mg/L).<ref>{{citation|editor-surname1= Ciba-Geigy|periodical=Wissenschaftliche Tabellen Geigy|title=Sperma|edition=8|volume=Teilband Körperflüssigkeiten|publisher=CIBA-GEIGY Limited|location=Basel|at=pp. 181-189|date=1977|language=de |
|||
}}</ref> |
|||
{| class="wikitable sortable" |
|||
|- |
|||
! Food !! data-sort-type="number"|Spermidine<br />mg/kg !! notes & refs |
|||
|- |
|||
|Wheat germ |
|||
|243 |
|||
|<ref name=":0" /> |
|||
|- |
|||
| Soybean, dried || 207 || Japanese<ref name=Ali2011/> |
|||
|- |
|||
| Cheddar, 1yr old || 199 || <ref name="Ali2011" /> |
|||
|- |
|||
| Soybean, dried || 128 || German<ref name="Ali2011" /> |
|||
|- |
|||
| Mushroom || 89 || Japanese<ref name="Ali2011" /> |
|||
|- |
|||
| Rice bran || 50 || <ref name=Ali2011/> |
|||
|- |
|||
| Chicken liver || 48 || <ref name="Ali2011" /> |
|||
|- |
|||
| Green peas || 46 || <ref name="Ali2011" /> |
|||
|- |
|||
| Mango || 30 || <ref name="Ali2011" /> |
|||
|- |
|||
| Chickpea || 29 || <ref name="Ali2011" /> |
|||
|- |
|||
| Cauliflower (cooked) || 25 || <ref name="Ali2011" /> |
|||
|- |
|||
| Broccoli (cooked) || 25 || <ref name="Ali2011" /> |
|||
|} Note: spermidine content varies by source and age. See ref for details. |
|||
In grains, the [[endosperm]] contains most of the spermidine. One of the best known grain dietary sources is [[wheat germ]], containing as much as 243 mg/kg.<ref name=":0">{{cite web|url=http://www.oryza.co.jp/html/english/pdf/polyamine_vol.2.pdf|title=Brochure on Polyamines, rev. 2|publisher=Oryza Oil & Fat Chemocial Co., Ltd.|location=Japan|date=2011-12-26|access-date=2013-11-06|archive-date=2016-03-03|archive-url=https://web.archive.org/web/20160303233328/http://www.oryza.co.jp/html/english/pdf/polyamine_vol.2.pdf|url-status=dead}}</ref> |
|||
==Uses== |
|||
* Spermidine can be used in [[electroporation]] while transferring the DNA into the cell under the electrical impulse. May be used for purification of DNA-binding proteins. |
|||
* Spermidine is also used, along with calcium chloride, for precipitating DNA onto microprojectiles for bombardment with a [[gene gun]].<ref name="Nature Biotechnology">{{cite journal |title=Factors influencing gene delivery into Zea mays cells by high–velocity microprojectiles|author1=T.M. Klein |author2=T. Gradziel |author3=M.E. Fromm |author4=J.C. Sanford |date=1988|journal=Nature Biotechnology|volume=6|issue=5|doi=10.1038/nbt0588-559 |pages=559–63 |s2cid=32178592 }}</ref> |
|||
* Spermidine has also been reported to protect the heart from aging and prolong the lifespan of mice, while in humans it was correlated with lower blood pressure.<ref>{{cite journal|last1=Eisenberg|first1=Tobias|last2=Abdellatif|first2=Mahmoud|last3=Schroeder|first3=Sabrina|last4=Primessnig|first4=Uwe|last5=Stekovic|first5=Slaven|last6=Pendl|first6=Tobias|last7=Harger|first7=Alexandra|last8=Schipke|first8=Julia|last9=Zimmermann|first9=Andreas|title=Cardioprotection and lifespan extension by the natural polyamine spermidine|journal=Nature Medicine|doi=10.1038/nm.4222|volume=22|issue=12|pages=1428–1438|pmid=27841876|pmc=5806691|year=2016}}</ref> It also was found to reduce the amount of aging in yeast, flies, worms, and human immune cells by inducing [[autophagy]].<ref name="Nature Cell Biology">{{cite journal | vauthors = Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F|display-authors = 6 | title = Induction of autophagy by spermidine promotes longevity | journal = Nat. Cell Biol. | volume = 11 | issue = 11 | pages = 1305–14 | date = November 2009 | pmid = 19801973 | doi = 10.1038/ncb1975 |s2cid = 3126330 |url = https://www.openaccessrepository.it/record/23132 }}</ref> |
|||
* Spermidine may play a role in male and female fertility.<ref>{{cite web |title=The Ultimate Spermidine Guide: Benefits, Side Effects & How To Take |url=https://pro-hormones.co.uk/blogs/news/the-ultimate-spermidine-supplement-guide-2022 |access-date=2022-07-29 |website=Prohormones |language=en}}</ref> Fertile men have higher spermidine levels than men who are infertile,<ref>{{cite web |title=Polyamines on the Reproductive Landscape |url=https://academic.oup.com/edrv/article/32/5/694/2354766 |access-date=2022-07-29 |website=academic.oup.com}}</ref> and spermidine supplementation has been shown to help maintain a healthy hormone balance and reduce oxidative stress.<ref>{{cite journal |last1=Li |first1=Bo |last2=Hu |first2=Xiaopeng |last3=Yang |first3=Yanzhou |last4=Zhu |first4=Mingyan |last5=Zhang |first5=Jiong |last6=Wang |first6=Yanrong |last7=Pei |first7=Xiuying |last8=Zhou |first8=Huchen |last9=Wu |first9=Ji |date=2019-09-06 |title=GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells In Vitro |journal=Molecular Therapy. Nucleic Acids |volume=17 |pages=436–447 |doi=10.1016/j.omtn.2019.06.012 |issn=2162-2531 |pmc=6637212 |pmid=31319247}}</ref> |
|||
* Spermidine is commonly used for in vitro molecular biology reactions, particularly, in vitro transcription by phage RNA polymerases,<ref name="pmid8052534">{{cite journal | vauthors = Frugier M, Florentz C, Hosseini MW, Lehn JM, Giegé R | title = Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase | journal = Nucleic Acids Res. | volume = 22 | issue = 14 | pages = 2784–90 | date = July 1994 | pmid = 8052534 | pmc = 308248 | doi = 10.1093/nar/22.14.2784 }}</ref> ''in vitro'' transcription by human RNA polymerase II,<ref name="pmid5795512">{{cite journal | vauthors = Mertelsmann R | title = Purification and some properties of a soluble DNA-dependent RNA polymerase from nuclei of human placenta | journal = Eur. J. Biochem. | volume = 9 | issue = 3 | pages = 311–8 | date = June 1969 | pmid = 5795512 | doi = 10.1111/j.1432-1033.1969.tb00610.x | doi-access = free }}</ref> and ''in vitro'' translation. |
|||
*Spermidine increases specificity and reproducibility of Taq-mediated PCR by neutralizing and stabilizing the negative charge on DNA phosphate backbone. |
|||
==See also== |
==See also== |
||
{{Portal|Food}} |
|||
*[[Norspermidine]] |
|||
<!-- alphabetical order please [[WP:SEEALSO]] --> |
|||
*[[Spermine]] |
|||
<!-- please add a short description [[WP:SEEALSO]], via {{subst:AnnotatedListOfLinks}} or {{Annotated link}} --> |
|||
*[[Putrescine]] |
|||
* {{Annotated link |Norspermidine}} |
|||
* {{Annotated link |Putrescine}} |
|||
* {{Annotated link |Spermine}} |
|||
<!-- alphabetical order please [[WP:SEEALSO]] --> |
|||
==References== |
==References== |
||
{{reflist}} |
|||
<references /> |
|||
==External links== |
==External links== |
||
*[https://fscimage.fishersci.com/msds/56814.htm Safety Data Sheet] |
* [https://fscimage.fishersci.com/msds/56814.htm Safety Data Sheet] |
||
{{Ionotropic glutamate receptor modulators}} |
|||
[[Category:Polyamines]] |
|||
[[Category:NMDA receptor agonists]] |
|||
[[de:Spermidin]] |
|||
[[Category:Secondary amines]] |
|||
[[it:Spermidina]] |
|||
[[Category:Polyamines]] |
|||
[[ja:スペルミジン]] |
|||
[[pl:Spermidyna]] |
|||
[[pt:Espermina]] |
Latest revision as of 05:58, 29 October 2024
Names | |
---|---|
Preferred IUPAC name
N1-(3-Aminopropyl)butane-1,4-diamine | |
Identifiers | |
3D model (JSmol)
|
|
1698591 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.004.264 |
EC Number |
|
454510 | |
KEGG | |
MeSH | Spermidine |
PubChem CID
|
|
RTECS number |
|
UNII |
|
UN number | 2735 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C7H19N3 | |
Molar mass | 145.250 g·mol−1 |
Appearance | Colourless liquid |
Odor | Fishy, ammoniacal |
Density | 925 mg mL−1 |
Melting point | 22 to 25 °C (72 to 77 °F; 295 to 298 K) |
145 g L−1 (at 20 °C) | |
log P | −0.504 |
UV-vis (λmax) | 260 nm |
Absorbance | 0.1 |
Refractive index (nD)
|
1.479 |
Hazards | |
GHS labelling: | |
Danger | |
H314 | |
P280, P305+P351+P338, P310 | |
Flash point | 112 °C (234 °F; 385 K) |
Related compounds | |
Related amines
|
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Spermidine is a polyamine compound (C
7H
19N
3) found in ribosomes and living tissues and having various metabolic functions within organisms.
Function
[edit]Spermidine is an aliphatic polyamine. Spermidine synthase (SPDS) catalyzes its formation from putrescine. It is a precursor to other polyamines, such as spermine and its structural isomer thermospermine.
Spermidine synchronizes an array of biological processes, (such as Ca2+, Na+, K+ -ATPase) thus maintaining membrane potential and controlling intracellular pH and volume. Spermidine regulates biological processes, such as Ca2+ influx by glutamatergic N-methyl-D-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na+,K+-ATPase activity in cerebral cortex synaptosomes.
Spermidine is a longevity agent in mammals due to various mechanisms of action, which are just beginning to be understood. Autophagy is the main mechanism at the molecular level, but evidence has been found for other mechanisms, including inflammation reduction, lipid metabolism, and regulation of cell growth, proliferation, and death.[1][2] Spermidine has been theorized to promote autophagy via the MAPK pathway by inhibiting phosphorylation of raf,[1] or possibly by inhibiting cytosolic autophagy-related protein acetylation by EP300 and thereby increasing acetylation of tubulin.[2]
Spermidine is known to regulate plant growth, assisting the in vitro process of transcribing RNA, and inhibition of NOS. Also, spermidine is a precursor to other polyamines, such as spermine and thermospermine, some of which contribute to tolerance against drought and salinity in plants.
Spermidine has been tested and discovered to encourage hair shaft elongation and lengthen hair growth. Spermidine has also been found to “upregulate expression of the epithelial stem cell-associated keratins K15 and K19, and dose-dependently modulated K15 promoter activity in situ and the colony forming efficiency, proliferation and K15 expression of isolated human K15-GFP+ cells in vitro.”[3]
Biochemical actions
[edit]Spermidine's known actions include:
- Inhibits neuronal nitric oxide synthase (nNOS)[4]
- Binds and precipitates DNA[5]
- Polyamine plant growth regulator[6][7][8][9][10][11][12]
Sources
[edit]Good dietary sources of spermidine are aged cheese, mushrooms, soy products, legumes, corn, and whole grains.[13] Spermidine is plentiful in a Mediterranean diet.[2] For comparison: The spermidine content in human seminal plasma varies between approx. 15 and 50 mg/L (mean 31 mg/L).[14]
Food | Spermidine mg/kg |
notes & refs |
---|---|---|
Wheat germ | 243 | [15] |
Soybean, dried | 207 | Japanese[13] |
Cheddar, 1yr old | 199 | [13] |
Soybean, dried | 128 | German[13] |
Mushroom | 89 | Japanese[13] |
Rice bran | 50 | [13] |
Chicken liver | 48 | [13] |
Green peas | 46 | [13] |
Mango | 30 | [13] |
Chickpea | 29 | [13] |
Cauliflower (cooked) | 25 | [13] |
Broccoli (cooked) | 25 | [13] |
Note: spermidine content varies by source and age. See ref for details.
In grains, the endosperm contains most of the spermidine. One of the best known grain dietary sources is wheat germ, containing as much as 243 mg/kg.[15]
Uses
[edit]- Spermidine can be used in electroporation while transferring the DNA into the cell under the electrical impulse. May be used for purification of DNA-binding proteins.
- Spermidine is also used, along with calcium chloride, for precipitating DNA onto microprojectiles for bombardment with a gene gun.[16]
- Spermidine has also been reported to protect the heart from aging and prolong the lifespan of mice, while in humans it was correlated with lower blood pressure.[17] It also was found to reduce the amount of aging in yeast, flies, worms, and human immune cells by inducing autophagy.[18]
- Spermidine may play a role in male and female fertility.[19] Fertile men have higher spermidine levels than men who are infertile,[20] and spermidine supplementation has been shown to help maintain a healthy hormone balance and reduce oxidative stress.[21]
- Spermidine is commonly used for in vitro molecular biology reactions, particularly, in vitro transcription by phage RNA polymerases,[22] in vitro transcription by human RNA polymerase II,[23] and in vitro translation.
- Spermidine increases specificity and reproducibility of Taq-mediated PCR by neutralizing and stabilizing the negative charge on DNA phosphate backbone.
See also
[edit]- Norspermidine – chemical compound
- Putrescine – Foul-smelling organic chemical compound
- Spermine – Polyamine involved in cellular metabolism
References
[edit]- ^ a b Minois N (28 January 2014). "Molecular Basis of the "Anti-Aging" Effect of Spermidine and Other Natural Polyamines – A Mini-Review". Gerontology. 60 (4): 319–326. doi:10.1159/000356748. PMID 24481223.
- ^ a b c Madeo F, Eisenberg T, Pietrocola F, Kroemer G (2018). "Spermidine in health and disease". Science. 359 (6374): eaan2788. doi:10.1126/science.aan2788. PMID 29371440.
- ^ Ramot Y, Tiede S, Bíró T, Abu Bakar MH, Sugawara K, Philpott MP, Harrison W, Pietilä M, Paus R (27 July 2011). "Spermidine Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem Cell Functions". PLOS ONE. 6 (7): e22564. Bibcode:2011PLoSO...622564R. doi:10.1371/journal.pone.0022564. ISSN 1932-6203. PMC 3144892. PMID 21818338.
- ^ Hu J, Mahmoud MI, El-Fakahany EE (1994). "Polyamines inhibit nitric oxide synthase in rat cerebellum". Neuroscience Letters. 175 (1–2): 41–5. doi:10.1016/0304-3940(94)91073-1. PMID 7526294. S2CID 37856308.
- ^ Wan CY, Wilkins TA (1993). "Spermidine facilitates PCR amplification of target DNA". PCR Methods and Applications. 3 (3): 208–10. doi:10.1101/gr.3.3.208. PMID 8118404.
- ^ Cull M, McHenry CS (1990). "Preparation of extracts from prokaryotes". Guide to Protein Purification. Methods in Enzymology. Vol. 182. pp. 147–53. doi:10.1016/0076-6879(90)82014-S. ISBN 978-0-12-182083-1. PMID 2107372.
- ^ Blethen SL, Boeker EA, Snell EE (1968). "Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme". The Journal of Biological Chemistry. 243 (8): 1671–7. doi:10.1016/S0021-9258(18)93498-8. PMID 4870599.
- ^ Wu WH, Morris DR (1973). "Biosynthetic arginine decarboxylase from Escherichia coli. Subunit interactions and the role of magnesium ion". The Journal of Biological Chemistry. 248 (5): 1696–9. doi:10.1016/S0021-9258(19)44246-4. PMID 4571774.
- ^ Tabor CW, Tabor H (1984). "Polyamines". Annual Review of Biochemistry. 53: 749–90. doi:10.1146/annurev.bi.53.070184.003533. PMID 6206782.
- ^ Krug MS, Berger SL (1987). "First-strand cDNA synthesis primed with oligo(dT)". Guide to Molecular Cloning Techniques. Methods in Enzymology. Vol. 152. pp. 316–25. doi:10.1016/0076-6879(87)52036-5. ISBN 978-0-12-182053-4. PMID 2443800.
- ^ Karkas JD, Margulies L, Chargaff E (1975). "A DNA polymerase from embryos of Drosophila melanogaster. Purification and properties". The Journal of Biological Chemistry. 250 (22): 8657–63. doi:10.1016/S0021-9258(19)40721-7. PMID 241752.
- ^ Bouché JP (1981). "The effect of spermidine on endonuclease inhibition by agarose contaminants". Analytical Biochemistry. 115 (1): 42–5. doi:10.1016/0003-2697(81)90519-4. PMID 6272602.
- ^ a b c d e f g h i j k l Ali MA, Poortvliet E, Strömberg R, Yngve A (2011). "Polyamines in foods: development of a food database". Food Nutr Res. 55: 5572. doi:10.3402/fnr.v55i0.5572. PMC 3022763. PMID 21249159.
- ^ Ciba-Geigy, ed. (1977), "Sperma", Wissenschaftliche Tabellen Geigy (in German), vol. Teilband Körperflüssigkeiten (8 ed.), Basel: CIBA-GEIGY Limited, pp. 181-189
- ^ a b "Brochure on Polyamines, rev. 2" (PDF). Japan: Oryza Oil & Fat Chemocial Co., Ltd. 2011-12-26. Archived from the original (PDF) on 2016-03-03. Retrieved 2013-11-06.
- ^ T.M. Klein, T. Gradziel, M.E. Fromm, J.C. Sanford (1988). "Factors influencing gene delivery into Zea mays cells by high–velocity microprojectiles". Nature Biotechnology. 6 (5): 559–63. doi:10.1038/nbt0588-559. S2CID 32178592.
- ^ Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A (2016). "Cardioprotection and lifespan extension by the natural polyamine spermidine". Nature Medicine. 22 (12): 1428–1438. doi:10.1038/nm.4222. PMC 5806691. PMID 27841876.
- ^ Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. (November 2009). "Induction of autophagy by spermidine promotes longevity". Nat. Cell Biol. 11 (11): 1305–14. doi:10.1038/ncb1975. PMID 19801973. S2CID 3126330.
- ^ "The Ultimate Spermidine Guide: Benefits, Side Effects & How To Take". Prohormones. Retrieved 2022-07-29.
- ^ "Polyamines on the Reproductive Landscape". academic.oup.com. Retrieved 2022-07-29.
- ^ Li B, Hu X, Yang Y, Zhu M, Zhang J, Wang Y, Pei X, Zhou H, Wu J (2019-09-06). "GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells In Vitro". Molecular Therapy. Nucleic Acids. 17: 436–447. doi:10.1016/j.omtn.2019.06.012. ISSN 2162-2531. PMC 6637212. PMID 31319247.
- ^ Frugier M, Florentz C, Hosseini MW, Lehn JM, Giegé R (July 1994). "Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase". Nucleic Acids Res. 22 (14): 2784–90. doi:10.1093/nar/22.14.2784. PMC 308248. PMID 8052534.
- ^ Mertelsmann R (June 1969). "Purification and some properties of a soluble DNA-dependent RNA polymerase from nuclei of human placenta". Eur. J. Biochem. 9 (3): 311–8. doi:10.1111/j.1432-1033.1969.tb00610.x. PMID 5795512.