Jump to content

Icosahedral 120-cell: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
KirbyRider (talk | contribs)
 
(31 intermediate revisions by 17 users not shown)
Line 4: Line 4:
|bgcolor=#ffffff align=center colspan=2|[[Image:Ortho solid 007-uniform polychoron 35p-t0.png|280px]]<BR>[[Orthogonal projection]]
|bgcolor=#ffffff align=center colspan=2|[[Image:Ortho solid 007-uniform polychoron 35p-t0.png|280px]]<BR>[[Orthogonal projection]]
|-
|-
|bgcolor=#e7dcc3|Type||[[Schläfli-Hess polychoron]]
|bgcolor=#e7dcc3|Type||[[Schläfli-Hess polytope]]
|-
|-
|bgcolor=#e7dcc3|Cells||120 [[Icosahedron|{3,5}]]
|bgcolor=#e7dcc3|Cells||120 [[Icosahedron|{3,5}]]
Line 24: Line 24:
|bgcolor=#e7dcc3|Dual|| [[Small stellated 120-cell]]
|bgcolor=#e7dcc3|Dual|| [[Small stellated 120-cell]]
|-
|-
|bgcolor=#e7dcc3|Properties||--
|bgcolor=#e7dcc3|Properties|| Regular
|}
|}
In [[geometry]], the '''icosahedral 120-cell''', '''polyicosahedron''', '''[[faceting|faceted]] 600-cell''' or '''icosaplex''' is a regular [[star 4-polytope]] with [[Schläfli symbol]] {3,5,5/2}. It is one of 10 regular [[Schläfli-Hess polytope]]s.
[[Image:Schläfli-Hess polychoron-wireframe-3.png|280px|thumb|[[Orthogonal projection]] as a wireframe]]
In [[geometry]], the '''icosahedral 120-cell''' is a [[star polychoron]] with [[Schläfli symbol]] {3,5,5/2}. It is one of 10 regular [[Schläfli-Hess polychoron|Schläfli-Hess polychora]].


It is constructed by 5 [[icosahedron|icosahedra]] around each edge in a [[pentagram|pentagrammic]] figure. The [[vertex figure]] is a [[great dodecahedron]].
It is constructed by 5 [[icosahedron|icosahedra]] around each edge in a [[pentagram]]mic figure. The [[vertex figure]] is a [[great dodecahedron]].


== Related polytopes ==
== Related polytopes ==


It has the same [[edge arrangement]] as the [[600-cell]], [[grand 120-cell]] and [[great 120-cell]], and shares its vertices with each other Schlaffi-Hess Polychoron, besides the [[Great grand stellated 120-cell]], another stellation of the [[Hecatonicosachoron]].
It has the same [[edge arrangement]] as the [[600-cell]], [[grand 120-cell]] and [[great 120-cell]], and shares its vertices with all other [[Schläfli–Hess 4-polytope]]s except the [[great grand stellated 120-cell]] (another stellation of the [[120-cell]]).


{| class="wikitable" width=600
== References ==
|+ [[Orthographic projection]]s by [[Coxeter plane]]s
* [[Edmund Hess]], (1883) ''Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder'' [http://www.hti.umich.edu/cgi/b/bib/bibperm?q1=ABN8623.0001.001].
|- align=center
*[[Coxeter|H. S. M. Coxeter]], ''Regular Polytopes'', 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
!H<sub>4</sub>
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404-408)
! -
!F<sub>4</sub>
|- align=center
|[[File:600-cell graph H4.svg|200px]]<BR>[30]
|[[File:600-cell t0 p20.svg|200px]]<BR>[20]
|[[File:600-cell t0 F4.svg|200px]]<BR>[12]
|- align=center
!H<sub>3</sub>
!A<sub>2</sub> / B<sub>3</sub> / D<sub>4</sub>
!A<sub>3</sub> / B<sub>2</sub>
|- align=center
|[[File:600-cell t0 H3.svg|200px]]<BR>[10]
|[[File:600-cell t0 A2.svg|200px]]<BR>[6]
|[[File:600-cell t0.svg|200px]]<BR>[4]
|}

As a faceted 600-cell, replacing the [[tetrahedron|simplicial]] cells of the 600-cell with [[icosahedron|icosahedral]] [[pentagonal polytope]] cells, it could be seen as a four-dimensional analogue of the [[great dodecahedron]], which replaces the triangular faces of the icosahedron with pentagonal faces. Indeed, the icosahedral 120-cell is dual to the [[small stellated 120-cell]], which could be taken as a 4D analogue of the [[small stellated dodecahedron]], dual of the great dodecahedron.


== See also ==
== See also ==
* [[List of regular polytopes]]
* [[List of regular polytopes]]
* [[Convex regular 4-polytope]] - Set of convex regular polychoron
* [[Convex regular 4-polytope]]
* [[Kepler-Poinsot solid]]s - regular [[star polyhedron]]
* [[Kepler-Poinsot solid]]s - regular [[star polyhedron]]
* [[Star polygon]] - regular star polygons
* [[Star polygon]] - regular star polygons

== References ==
* [[Edmund Hess]], (1883) ''Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder'' [http://www.hti.umich.edu/cgi/b/bib/bibperm?q1=ABN8623.0001.001].
*[[Coxeter|H. S. M. Coxeter]], ''Regular Polytopes'', 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}.
* [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, {{ISBN|978-1-56881-220-5}} (Chapter 26, Regular Star-polytopes, pp.&nbsp;404–408)
* {{KlitzingPolytopes|polychora.htm|4D uniform polytopes (polychora)|x3o5o5/2o - fix}}

== External links ==
== External links ==
* [http://hometown.aol.com/hedrondude/regulars.html Regular polychora]
* [http://hometown.aol.com/hedrondude/regulars.html Regular polychora] {{Webarchive|url=https://web.archive.org/web/20030906012615/http://hometown.aol.com/hedrondude/regulars.html |date=2003-09-06 }}
* [http://mathforum.org/library/drmath/view/54786.html Discussion on names]
* [http://mathforum.org/library/drmath/view/54786.html Discussion on names]
* [http://www.mathematik.uni-regensburg.de/Goette/sterne Reguläre Polytope]
* [https://web.archive.org/web/20061107052613/http://www.mathematik.uni-regensburg.de/Goette/sterne/ Reguläre Polytope]
* [http://davidf.faricy.net/polyhedra/Star_Polychora.html The Regular Star Polychora]
* [https://web.archive.org/web/20070704012333/http://davidf.faricy.net/polyhedra/Star_Polychora.html The Regular Star Polychora]


{{polychora-stub}}
{{Regular 4-polytopes}}


[[Category:polychora]]
[[Category:Regular 4-polytopes]]
{{polychora-stub}}
[[Category:4-dimensional geometry]]

[[eo:Dudekedra 120-ĉelo]]
[[fr:Hécatonicosachore icosaédral]]

Latest revision as of 03:37, 24 July 2024

Icosahedral 120-cell

Orthogonal projection
Type Schläfli-Hess polytope
Cells 120 {3,5}
Faces 1200 {3}
Edges 720
Vertices 120
Vertex figure {5,5/2}
Schläfli symbol {3,5,5/2}
Symmetry group H4, [3,3,5]
Coxeter-Dynkin diagram
Dual Small stellated 120-cell
Properties Regular

In geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes.

It is constructed by 5 icosahedra around each edge in a pentagrammic figure. The vertex figure is a great dodecahedron.

[edit]

It has the same edge arrangement as the 600-cell, grand 120-cell and great 120-cell, and shares its vertices with all other Schläfli–Hess 4-polytopes except the great grand stellated 120-cell (another stellation of the 120-cell).

Orthographic projections by Coxeter planes
H4 - F4

[30]

[20]

[12]
H3 A2 / B3 / D4 A3 / B2

[10]

[6]

[4]

As a faceted 600-cell, replacing the simplicial cells of the 600-cell with icosahedral pentagonal polytope cells, it could be seen as a four-dimensional analogue of the great dodecahedron, which replaces the triangular faces of the icosahedron with pentagonal faces. Indeed, the icosahedral 120-cell is dual to the small stellated 120-cell, which could be taken as a 4D analogue of the small stellated dodecahedron, dual of the great dodecahedron.

See also

[edit]

References

[edit]
  • Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder [1].
  • H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
  • Klitzing, Richard. "4D uniform polytopes (polychora) x3o5o5/2o - fix".
[edit]