Jump to content

Space Shuttle Challenger disaster: Difference between revisions

Coordinates: 28°38′24″N 80°16′48″W / 28.64000°N 80.28000°W / 28.64000; -80.28000
From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edit by 74.84.112.134 (talk) to last version by Tigerdude9
 
Line 1: Line 1:
{{short description|1986 inflight breakup of U.S. Space Shuttle}}
{{For|more information about the final mission and crew of the ''Challenger''|STS-51-L}}
{{distinguish|Space Shuttle Columbia disaster{{!}}Space Shuttle ''Columbia'' disaster}}
{{Use mdy dates|date=May 2011}}
{{pp-move}}
{{DISPLAYTITLE:Space Shuttle ''Challenger'' disaster}}
{{italic title|string=Challenger}}
{{Infobox news event
{{featured article}}
| title = Space Shuttle ''Challenger'' disaster
{{Use American English|date=January 2014}}
| image = [[Image:Challenger explosion.jpg|250px]]
{{Use mdy dates|date=November 2024}}
| caption = [[Space Shuttle]] [[Space Shuttle Challenger|''Challenger'']]'s smoke plume after its in-flight breakup, resulting in its crash and the deaths of all seven crew members.
{{Infobox event
| date = {{start date|1986|01|28|mf=yes}}
| title = Space Shuttle ''Challenger'' disaster
| time = 11:38 [[North American Eastern Time Zone|EST]] (16:38 [[Coordinated Universal Time|UTC]])
| image = Challenger explosion.jpg
| place = [[Atlantic Ocean]], off the coast of central [[Florida]]
| image_upright = 1.35
|casualties1 = {{nowrap|[[Greg Jarvis]]}}<br>{{nowrap|[[Christa McAuliffe]]}} <br>{{nowrap|[[Ronald McNair]]}} <br>{{nowrap|[[Ellison Onizuka]]}} <br>{{nowrap|[[Judith Resnik]]}} <br>{{nowrap|[[Michael J. Smith (astronaut)|Michael J. Smith]]}} <br>{{nowrap|[[Dick Scobee]]}}
| alt =
|inquiries = [[Rogers Commission]]
| caption = ''Challenger''{{'}}s [[Space Shuttle Solid Rocket Booster|solid rocket boosters]] fly uncontrollably after the breakup of the [[Space Shuttle External Tank|external tank]] separated them from the shuttle stack. The remains of the orbiter and tank leave thin white contrails as they fall toward the Atlantic Ocean.
|outcome = Grounding of the Space Shuttle fleet for nearly three years during which various safety measures, solid rocket booster redesign, and a new policy on management decision-making for future launches were implemented.
| date = {{start date and age|1986|01|28}}
| time = 11:39:13 [[Eastern Time Zone|EST]] (16:39:13 [[Coordinated Universal Time|UTC]])
| place = [[Atlantic Ocean]], off the coast of [[Florida]]
| coordinates = {{coord|28|38|24|N|80|16|48|W|region:US-FL_type:event_scale:1500000|display=title,inline}}
| cause = [[O-ring]] seal failure in right [[Space Shuttle Solid Rocket Booster|SRB]] due to cold weather and wind shear
| reported deaths = {{plainlist|1=
* [[Dick Scobee|F. Richard Scobee]], commander
* [[Michael J. Smith]], pilot
* [[Ronald McNair]], mission specialist
* [[Ellison Onizuka]], mission specialist
* [[Judith Resnik]], mission specialist
* [[Gregory Jarvis]], payload specialist
* [[Christa McAuliffe]], payload specialist, teacher
}}
|inquiries = [[Rogers Commission Report]]
|outcome = {{bulleted list
| Loss of ''Challenger'' and crew
| [[Teacher in Space Project]] and subsequent civilian shuttle spaceflights cancelled
| Shuttle fleet grounded for implementation of safety measures
| Construction of replacement orbiter ''[[Space Shuttle Endeavour|Endeavour]]''.
}}
}}
}}
[[Image:Challenger flight 51-l crew.jpg|thumb|STS-51-L crew: (front row) [[Michael J. Smith (astronaut)|Michael J. Smith]], [[Dick Scobee]], [[Ronald McNair]]; (back row) [[Ellison Onizuka]], [[Christa McAuliffe]], [[Gregory Jarvis]], [[Judith Resnik]].]]


On January 28, 1986, the [[Space Shuttle Challenger|Space Shuttle ''Challenger'']] broke apart 73 seconds into its flight, killing all seven crew members aboard. The spacecraft disintegrated {{convert|46000|ft|km}} above the Atlantic Ocean, off the coast of [[Cape Canaveral]], Florida, at 11:39{{nbsp}}a.m. [[Eastern Time Zone|EST]] (16:39{{spaces}}[[Coordinated Universal Time|UTC]]). It was the first fatal accident involving an [[List of space programs of the United States|American spacecraft]] while in flight.<ref>{{cite web |last=Lotito |first=Jennifer |date=January 27, 2024 |title=3 Leadership Lessons From The Challenger Space Shuttle Disaster |url=https://www.forbes.com/sites/jenniferlotito/2024/01/27/3-leadership-lessons-from-the-challenger-space-shuttle-disaster/ |url-status=live |archive-url=https://web.archive.org/web/20240128103856/https://www.forbes.com/sites/jenniferlotito/2024/01/27/3-leadership-lessons-from-the-challenger-space-shuttle-disaster/ |archive-date=January 28, 2024 |access-date=January 28, 2024 |website=Forbes}}</ref><ref>{{cite web |date=January 28, 2024 |title=Challenger explosion was 38 years ago today; Naples' readers recall event |url=https://www.naplesnews.com/story/life/2024/01/28/naples-residents-recall-challenger-explosion-38-years-ago-on-jan-28/72096453007/ |url-status=live |archive-url=https://web.archive.org/web/20240128104057/https://www.naplesnews.com/story/life/2024/01/28/naples-residents-recall-challenger-explosion-38-years-ago-on-jan-28/72096453007/ |archive-date=January 28, 2024 |access-date=January 28, 2024 |website=Naples Daily News |language=en-US}}</ref>
The '''Space Shuttle ''Challenger'' disaster''' occurred on January 28, 1986, when [[Space Shuttle Challenger|Space Shuttle ''Challenger'']] broke apart 73 seconds into its flight, leading to the deaths of its seven crew members. The [[spacecraft]] disintegrated over the [[Atlantic Ocean]], off the coast of central [[Florida]] at 11:38 [[North American Eastern Time Zone|EST]] (16:38 [[Coordinated Universal Time|UTC]]). Disintegration of the entire vehicle began after an [[O-ring]] seal in its right [[Space Shuttle Solid Rocket Booster|solid rocket booster]] (SRB) failed at liftoff. The O-ring failure caused a breach in the SRB joint it sealed, allowing pressurized hot gas from within the solid rocket motor to reach the outside and impinge upon the adjacent SRB attachment hardware and [[Space Shuttle external tank|external fuel tank]]. This led to the separation of the right-hand SRBs aft attachment and the [[structural failure]] of the external tank. [[aerodynamics|Aerodynamic]] forces promptly broke up the orbiter.


The mission, designated [[STS-51-L]], was the 10th flight for the [[Space Shuttle orbiter|orbiter]] and the 25th flight of the Space Shuttle fleet. The crew was scheduled to deploy a communications satellite and study [[Halley's Comet]] while they were in orbit, in addition to taking schoolteacher [[Christa McAuliffe]] into space under the [[Teacher in Space Project|Teacher In Space]] program. The latter task resulted in a higher-than-usual media interest in and coverage of the mission; the launch and subsequent disaster were seen live in many schools across the United States.
The crew compartment and many other vehicle fragments were eventually recovered from the ocean floor after a lengthy search and recovery operation. Although the exact timing of the death of the crew is unknown, several crew members are known to have survived the initial breakup of the spacecraft. However, the shuttle had no escape system and the astronauts did not survive the impact of the crew compartment with the ocean surface.


The cause of the disaster was the failure of the primary and secondary [[O-ring]] seals in a joint in the shuttle's right [[Space Shuttle Solid Rocket Booster|solid rocket booster]] (SRB). The record-low temperatures on the morning of the launch had stiffened the rubber O-rings, reducing their ability to seal the joints. Shortly after liftoff, the seals were breached, and hot pressurized gas from within the SRB leaked through the joint and burned through the aft attachment strut connecting it to the [[Space Shuttle external tank|external propellant tank]] (ET), then into the tank itself. The [[Structural integrity and failure|collapse]] of the ET's internal structures and the rotation of the SRB that followed threw the shuttle stack, traveling at a speed of [[Mach number|Mach]] 1.92, into a direction that allowed [[aerodynamic force]]s to tear the orbiter apart. Both SRBs detached from the now-destroyed ET and continued to fly uncontrollably until the [[range safety]] officer destroyed them.
The disaster resulted in a 32-month hiatus in the shuttle program and the formation of the [[Rogers Commission]], a special commission appointed by [[President of the United States|United States President]] [[Ronald Reagan]] to investigate the accident. The Rogers Commission found [[NASA]]'s [[organizational culture]] and decision-making processes had been key contributing factors to the accident.<ref>{{cite web | author=Outer Space Universe| title=Remembering the Challenger Shuttle Explosion: A Disaster 25 Years Ago | url=http://www.outerspaceuniverse.org/remembering-challenger-shuttle-explosion-25-years.html | accessdate=January 28, 2011}}</ref> NASA managers had known contractor [[Morton Thiokol]]'s design of the SRBs contained a potentially catastrophic flaw in the O-rings since 1977, but failed to address it properly. They also [[Go fever|disregarded warnings]] from engineers about the dangers of launching posed by the low temperatures of that morning and had failed to adequately report these technical concerns to their superiors.


The crew compartment, human remains, and many other fragments from the shuttle were recovered from the ocean floor after a three-month search-and-recovery operation. The exact timing of the deaths of the crew is unknown, but several crew members are thought to have survived the initial breakup of the spacecraft. The orbiter had no [[Launch escape system|escape system]], and the impact of the crew compartment at [[terminal velocity]] with the ocean surface was too violent to be survivable.
Many viewed the launch live because of the presence on the crew of [[Christa McAuliffe]], the first member of the [[Teacher in Space Project]]. Media coverage of the accident was extensive: one study reported that 85 percent of Americans surveyed had heard the news within an hour of the accident. The ''Challenger'' disaster has been used as a case study in many discussions of engineering safety and workplace ethics.


The disaster resulted in a 32-month hiatus in the [[Space Shuttle program]]. President [[Ronald Reagan]] created the [[Rogers Commission Report|Rogers Commission]] to investigate the accident. The commission criticized [[NASA]]'s organizational culture and decision-making processes that had contributed to the accident. Test data since 1977 demonstrated a potentially catastrophic flaw in the SRBs' O-rings, but neither NASA nor SRB manufacturer [[Morton Thiokol]] had addressed this known defect. NASA managers also disregarded engineers' warnings about the dangers of launching in cold temperatures and did not report these technical concerns to their superiors.
==Pre-launch conditions and delays==
{{ref improve section|date=January 2011}}
{{details|Space Shuttle Challenger launch decision}}
[[File:STS-51-L ice.jpg|thumb|upright|Ice on the launch tower hours before ''Challenger'' launch]]
''Challenger'' was originally set to launch from [[Kennedy Space Center]] (KSC) in Florida at 14:42 Eastern Standard Time (EST) on January 22. However, delays suffered by the previous mission, [[STS-61-C]], caused the launch date to be pushed back to January 23 and then to January 24. Launch was then rescheduled to January 25 due to [[storm|bad weather]] at the [[Space Shuttle abort modes|Transoceanic Abort Landing (TAL)]] site in [[Dakar]], [[Senegal]]. NASA decided to use [[Casablanca]] as the TAL site, but because it was not equipped for night landings, the launch had to be moved to the morning ([[North American Eastern Time Zone|Florida time]]). Predictions of unacceptable weather at [[Kennedy Space Center]] caused the launch to be rescheduled for 09:37 EST on January 27.


As a result of this disaster, NASA established the Office of Safety, Reliability, and Quality Assurance, and arranged for deployment of commercial satellites from [[expendable launch vehicles]] rather than from a crewed orbiter. To replace ''Challenger'', the construction of a new Space Shuttle orbiter,{{OV|105|full=no}}, was approved in 1987, and the new orbiter first flew in 1992. Subsequent missions were launched with redesigned SRBs and their crews wore [[Advanced Crew Escape Suit|pressurized suits]] during ascent and [[Atmospheric entry|reentry]].
The launch was delayed the next day by problems with the [[Space Shuttle orbiter#A Description of the Space Shuttle Orbiter|exterior access hatch]]. First, one of the micro-switch indicators used to verify that the hatch was safely locked malfunctioned.<ref>McConnell, Malcolm. ''Challenger: A Major Malfunction,'' pages 150–153.</ref> Then, a stripped bolt prevented the closeout crew from removing a closing fixture from the orbiter's hatch.<ref>McConnell, Malcolm. ''Challenger: A Major Malfunction,'' page 154.</ref> When the fixture was finally sawn off, crosswinds at the [[Shuttle Landing Facility]] exceeded the limits for a [[Space Shuttle abort modes|Return to Launch Site (RTLS)]] abort.<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 2| year=1986| url=http://history.nasa.gov/rogersrep/v1ch2.htm | accessdate=January 1, 2007}}</ref> The crew waited for the winds to die down until the launch window finally ran out, forcing yet another scrub.


== Background ==
Forecasts for January 28 predicted an unusually cold morning, with temperatures close to {{convert|31|F|C}}, the minimum temperature permitted for launch. The low temperature had prompted concern from engineers at [[Morton Thiokol]], the contractor responsible for the construction and maintenance of the shuttle's SRBs. At a teleconference on the evening of January 27, Thiokol engineers and managers discussed the weather conditions with NASA managers from Kennedy Space Center and [[Marshall Space Flight Center]]. Several engineers—most notably [[Roger Boisjoly]], who had voiced similar concerns previously—expressed their concern about the effect of the temperature on the resilience of the rubber O-rings that sealed the joints of the SRBs. Each SRB was constructed of six sections joined in three factory joints and three "field joints"{{Citation needed|date=May 2010}}. The factory joints had asbestos-silica insulation applied over the joint, while the field joints—assembled in the Vehicle Assembly Building at Kennedy Space Center—depended on two rubber O-rings, a primary and a secondary (backup), to seal them. (Since the accident, SRB field joints now use three O-rings.) The seals of all of the SRB joints were required to contain the hot high-pressure gases produced by the burning solid propellant inside, forcing it out the nozzle at the aft end of each rocket. Thiokol engineers argued that if the O-rings were colder than {{convert|53|F|C}}, they did not have enough data to determine whether the joint would seal properly. This was an important consideration, since the SRB O-rings had been designated as a "Criticality 1" component, meaning that there was no backup if both the primary and secondary O-rings failed, and their failure would destroy the Orbiter and its crew.
=== Space Shuttle ===
{{main|Space Shuttle}}
[[File:STS-51-L - Space Shuttle Challenger on the Crawler-Transporter.jpg|thumb|[[Space Shuttle]] ''[[Space Shuttle Challenger|Challenger]]'' – assembled for launch along with the [[Space Shuttle external tank|ET]] and two [[Space Shuttle Solid Rocket Booster|SRBs]] – atop a [[crawler-transporter]] en route to the launch pad about one month before the disaster]]
The [[Space Shuttle]] was a partially reusable spacecraft operated by the US [[NASA|National Aeronautics and Space Administration]] (NASA).{{r|rogers_com}}{{rp|pages=5, 195}} It [[STS-1|flew for the first time]] in April 1981,{{r|jenkins2016}}{{rp|pages=III–24}} and was used to conduct in-orbit research,{{r|jenkins2016}}{{rp|pages=III–188}} and deploy commercial,{{r|jenkins2016}}{{rp|pages=III–66}} military,{{r|jenkins2016}}{{rp|pages=III–68}} and scientific payloads.{{r|jenkins2016}}{{rp|pages=III–148}} At launch, it consisted of the [[Space Shuttle orbiter|orbiter]], which contained the [[List of Space Shuttle crews|crew]] and payload, the [[Space Shuttle external tank|external tank]] (ET), and the two [[Space Shuttle Solid Rocket Booster|solid rocket boosters]] (SRBs).<ref name=jenkins>{{cite book |last=Jenkins |first=Dennis R. |title=Space Shuttle: The History of the National Space Transportation System |publisher=Voyageur Press |year=2001 |isbn=978-0-9633974-5-4}}</ref>{{rp|page=363}} The orbiter was a reusable, winged vehicle that launched vertically and landed as a glider.{{r|jenkins2016}}{{rp|pages=|page=II-1}} Five orbiters were built during the [[Space Shuttle program]].{{r|rogers_com}}{{rp|5}} ''Challenger'' (OV-099) was the second orbiter constructed after its conversion from a structural [[Test article (aerospace)|test article]].{{r|jenkins2016}}{{rp|page=I-455}} The orbiter contained the crew compartment, where the crew predominantly lived and worked throughout a mission.{{r|jenkins2016}}{{rp|page=II-5}} Three [[Space Shuttle main engines]] (SSMEs) were mounted at the aft end of the orbiter and provided thrust during launch.{{r|jenkins}}{{rp|page=II-170}} Once in space, the crew maneuvered using the two smaller, aft-mounted [[Orbital Maneuvering System]] (OMS) engines.{{r|jenkins}}{{rp|page=II-79}}


When it launched, the orbiter was connected to the [[Space Shuttle external tank|ET]], which held the fuel for the SSMEs.{{r|jenkins}}{{rp|page=II-222}} The ET consisted of a larger tank for liquid hydrogen (LH2) and a smaller tank for liquid oxygen (LOX), both of which were required for the SSMEs to operate.{{r|jenkins}}{{rp|pages=II-222, II-226}} After its fuel had been expended, the ET separated from the orbiter and reentered the atmosphere, where it would break apart during reentry and its pieces would land in the [[Indian Ocean|Indian]] or [[Pacific Ocean]].{{r|jenkins}}{{rp|page=II-238}}
One argument of NASA personnel in contest to Thiokol's concerns was that if the primary O-ring failed the secondary O-ring would still seal. This was unproven, and was in any case an illegitimate argument for a Criticality 1 component. (As astronaut [[Sally Ride]] cited in questioning NASA managers before the [[Rogers Commission Report|Rogers Commission]], it is forbidden to rely on a backup for a Criticality 1 component. The backup is there to provide redundancy in case of unforeseen failure, not to replace the primary device, leaving no backup.) The engineers at Thiokol also argued that the low overnight temperatures ({{convert|18|F|C|abbr=on}} the evening prior to launch) would almost certainly result in SRB temperatures below their redline of {{convert|40|F|C|abbr=on}}. Ice had accumulated all over the launch pad, raising concerns that ice could damage the shuttle upon lift-off.


Two solid rocket boosters (SRBs), built by [[Thiokol|Morton Thiokol]] at the time of the disaster,{{r|mcdonald}}{{rp|pages=9–10}} provided the majority of thrust at liftoff. They were connected to the external tank, and burned for the first two minutes of flight.{{r|jenkins}}{{rp|page=II-222}} The SRBs separated from the orbiter once they had expended their fuel and fell into the [[Atlantic Ocean]] under a parachute.{{r|jenkins}}{{rp|page=II-289}} NASA retrieval teams recovered the SRBs and returned them to the [[Kennedy Space Center]] (KSC), where they were disassembled and their components were reused on future flights.{{r|jenkins}}{{rp|page=II-292}} Each SRB was constructed in four main sections at the factory in Utah and transported to KSC, then assembled in the [[Vehicle Assembly Building]] at KSC with three [[Clevis fastener|tang-and-clevis]] field joints, each joint consisting of a tang from the upper segment fitting into the clevis of the lower segment. Each field joint was sealed with two ~20 foot (6 meter) diameter [[FKM|Viton-rubber]] O-rings around the circumference of the SRB and had a cross-section diameter of {{convert|0.280|in|mm}}.{{r|rogers_com}}{{rp|page=48}} The O-rings were required to contain the hot, high-pressure gases produced by the burning solid propellant and allowed for the SRBs to be rated for crewed missions.{{r|mcdonald}}{{rp|page=24}}<ref name="heppenheimer1998">{{cite book |last=Heppenheimer |first=T.A. |title=The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle |url=https://history.nasa.gov/SP-4221.pdf |url-status=live |publisher=NASA |id=SP-4221 |year=1998 |access-date=July 19, 2021 |archive-url=https://web.archive.org/web/20210812050335/http://history.nasa.gov/SP-4221.pdf |archive-date=August 12, 2021}}</ref>{{rp|page=420}} The two O-rings were configured to create a double bore seal, and the gap between segments was filled with putty. When the motor was running, this configuration was designed to compress air in the gap against the upper O-ring, pressing it against the sealing surfaces of its seat. On the SRB Critical Items List, the O-rings were listed as Criticality 1R, which indicated that an O-ring failure could result in the destruction of the vehicle and loss of life, but it was considered a redundant system due to the secondary O-ring.{{r|rogers_com}}{{rp|page=126}}
However, the engineers were overruled by Morton Thiokol management, who recommended that the launch proceed as scheduled.<ref name="rogers 5">{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 5| year=1986| url=http://history.nasa.gov/rogersrep/v1ch5.htm|accessdate=2011-07-12}}</ref> Despite public perceptions that NASA always maintained a "fail-safe" approach, Thiokol management was influenced by demands from NASA managers that they show it was ''not'' safe to launch rather than prove conditions ''were'' safe. It later emerged in the aftermath of the accident that NASA managers frequently evaded safety regulations to maintain the launch manifest (schedule).{{Citation needed|date=March 2011}}


=== O-ring concerns ===
Due to the low temperature, a significant amount of ice built up on the [[fixed service structure]] that stood beside the shuttle. The Kennedy Ice Team inadvertently pointed an infrared camera at the aft field joint of the right SRB and found the temperature to be only {{convert|8|F|C}}. This was believed to be the result of supercooled air blowing on the joint from the liquid oxygen tank vent. It was much lower than the air temperature and far below the design specifications for the O-rings. However, the {{convert|8|F|C}} reading was later determined to be erroneous, the error caused by not following the temperature probe manufacturer's instructions. Tests and adjusted calculations later confirmed that the temperature of the joint was not substantially different from the ambient temperature.<ref name="feynman 1">{{cite book | last = Feynman| first = Richard| title = What Do You Care What Other People Think| pages = 165–166 }}</ref>
[[File:RogersCommission-v1p57 cropped.jpg|thumb|Cross-sectional diagram of the original SRB field joint. The top end of the lower rocket segment has a deep U-shaped cavity, or [[clevis]], along its circumference. The bottom end of the top segment extends to form a tang that fits snugly into the clevis of the bottom segment. Two parallel grooves near the top of the clevis inner branch hold ~20 foot (6 meter) diameter O-rings that seal the gap between the tang and the clevis, keeping hot gases out of the gap. |alt=Diagram from the Rogers Commission depicting a cross-section of the solid rocket booster field joint]]
Evaluations of the proposed SRB design in the early 1970s and field joint testing showed that the wide tolerances between the mated parts allowed the O-rings to be [[extrusion|extruded]] from their seats rather than compressed. This extrusion was judged to be acceptable by NASA and Morton Thiokol despite concerns of NASA's engineers.{{r|rogers_com}}{{rp|pages=122–123}}<ref name="IEEE1987-39">{{cite journal |title=The history of the flawed joint |journal=IEEE Spectrum |date=1987 |volume=24 |issue=2 |pages=39–44 |doi=10.1109/MSPEC.1987.6448025 |s2cid=26828360 |url=https://ieeexplore.ieee.org/document/6448025 |access-date=August 6, 2021 |archive-date=August 5, 2021 |archive-url=https://web.archive.org/web/20210805191120/https://ieeexplore.ieee.org/document/6448025 |url-status=live |issn = 0018-9235 }}</ref> A 1977 test showed that up to {{convert|0.052|in|mm}} of joint rotation occurred during the simulated internal pressure of a launch. Joint rotation, which occurred when the tang and clevis bent away from each other, reduced the pressure on the O-rings, which weakened their seals and made it possible for combustion gases to erode the O-rings.{{r|rogers_com}}{{rp|pages=123–124}} NASA engineers suggested that the field joints should be redesigned to include [[Shim (spacer)|shims]] around the O-rings, but they received no response.{{r|rogers_com}}{{rp|pages=124–125}} In 1980, the NASA Verification/Certification Committee requested further tests on joint integrity to include testing in the temperature range of {{convert|40|to|90|F|C}} and with only a single O-ring installed. The NASA program managers decided that their current level of testing was sufficient and further testing was not required. In December{{nbsp}}1982, the Critical Items List was updated to indicate that the secondary O-ring could not provide a backup to the primary O-ring, as it would not necessarily form a seal in the event of joint rotation. The O-rings were redesignated as Criticality{{nbsp}}1, removing the "R" to indicate it was no longer considered a redundant system.{{r|rogers_com}}{{rp|pages=125–127}}{{r|mcdonald}}{{rp|page=66}}


The first occurrence of in-flight O-ring erosion occurred on the right SRB on {{nowrap|[[STS-2]]}} in November{{nbsp}}1981.{{r|rogers_com}}{{rp|page=126}} In August{{nbsp}}1984, a post-flight inspection of the left SRB on {{nowrap|[[STS-41-D]]}} revealed that soot had blown past the primary O-ring and was found in between the O-rings. Although there was no damage to the secondary O-ring, this indicated that the primary O-ring was not creating a reliable seal and was allowing hot gas to pass. The amount of O-ring erosion was insufficient to prevent the O-ring from sealing, and investigators concluded that the soot between the O-rings resulted from non-uniform pressure at the time of ignition.{{r|rogers_com}}{{rp|page=130}}{{r|mcdonald}}{{rp|pages=39–42}} The January{{nbsp}}1985 launch of {{nowrap|[[STS-51-C]]}} was the coldest Space Shuttle launch to date. The air temperature was {{convert|62|F|C|sigfig=2}} at the time of launch, and the calculated O-ring temperature was {{convert|53|F|C|sigfig=2}}. Post-flight analysis revealed erosion in primary O-rings in both SRBs. Morton Thiokol engineers determined that the cold temperatures caused a loss of flexibility in the O-rings that decreased their ability to seal the field joints, which allowed hot gas and soot to flow past the primary O-ring.{{r|mcdonald}}{{rp|page=47}} O-ring erosion occurred on all but one ({{nowrap|[[STS-51-J]]}}) of the Space Shuttle flights in 1985, and erosion of both the primary and secondary O-rings occurred on {{nowrap|[[STS-51-B]]}}.{{r|rogers_com}}{{rp|page=131}}{{r|mcdonald}}{{rp|pages=50–52, 63}}
Although the Ice Team had worked through the night removing ice, engineers at [[Rockwell International]], the shuttle's prime contractor, still expressed concern. Rockwell engineers watching the pad from their headquarters in [[Downey, California]], were horrified when they saw the amount of ice. They feared that during launch, ice might be shaken loose and strike the shuttle's thermal protection tiles, possibly due to the aspiration induced by the [[jet (fluid)|jet]] of [[exhaust gas]] from the SRBs. [[Rocco Petrone]], the head of Rockwell's space transportation division, and his colleagues viewed this situation as a launch constraint, and told Rockwell's managers at the Cape that Rockwell could not support a launch. However, Rockwell's managers at the Cape voiced their concerns in a manner that led Houston-based mission manager [[Arnold Aldrich]] to go ahead with the launch. Aldrich decided to postpone the shuttle launch by an hour to give the Ice Team time to perform another inspection. After that last inspection, during which the ice appeared to be melting, ''Challenger'' was finally cleared to launch at 11:38&nbsp;am EST.<ref name="rogers 5"/>


To correct the issues with O-ring erosion, engineers at Morton Thiokol, led by [[Allan J. McDonald|Allan McDonald]] and [[Roger Boisjoly]], proposed a redesigned field joint that introduced a metal lip to limit movement in the joint. They also recommended adding a spacer to provide additional thermal protection and using an O-ring with a larger cross section.{{r|mcdonald}}{{rp|pages=67−69}} In July{{nbsp}}1985, Morton Thiokol ordered redesigned SRB casings, with the intention of using already-manufactured casings for the upcoming launches until the redesigned cases were available the following year.{{r|mcdonald}}{{rp|page=62}}
==Launch Decision==
[[File:Challenger flight 51-l crew.jpg|thumb|[[STS-51-L]] crew: (back) [[Ellison Onizuka|Onizuka]], [[Christa McAuliffe|McAuliffe]], [[Gregory Jarvis|Jarvis]], [[Judith Resnik|Resnik]];
===Background===
As originally designed by Thiokol, the O-ring joints in the Shuttle's SRBs were supposed to close more tightly due to forces generated at ignition. However, a 1977 test showed that when pressurized water was used to simulate the effects of booster combustion, the metal parts bent ''away'' from each other, opening a gap through which gases could leak. This phenomenon, known as "joint rotation," caused a momentary drop in air pressure. This made it possible for combustion gases to erode the O-rings. In the event of widespread erosion, an actual flame path could develop, causing the joint to burst—which would have destroyed the booster and the shuttle.<ref>McConnell, Malcolm. ''Challenger: A Major Malfunction,'' page 118.</ref>


(front) [[Michael J. Smith (astronaut)|Smith]], [[Dick Scobee|Scobee]], [[Ronald McNair|McNair]].<ref>{{Cite web |last=Tonguette |first=Peter |date=January 23, 2024 |title='Ohioans in Space' painting features Neil Armstrong, John Glenn, Jim Lovell, Judith Resnik |url=https://www.dispatch.com/story/entertainment/arts/2024/01/23/ohioans-in-space-painting-features-armstrong-glenn-lovell-and-rkey-ohio-figures-in-the-space-program/72309552007/ |url-status=live |archive-url=https://web.archive.org/web/20240128101726/https://www.dispatch.com/story/entertainment/arts/2024/01/23/ohioans-in-space-painting-features-armstrong-glenn-lovell-and-rkey-ohio-figures-in-the-space-program/72309552007/ |archive-date=January 28, 2024 |access-date=January 28, 2024 |website=The Columbus Dispatch}}</ref>|alt=Picture of the seven crew members in flight suits and holding their helmets]]
Engineers at the [[Marshall Space Flight Center]] wrote to the manager of the Solid Rocket Booster project, George Hardy, on several occasions suggesting that Thiokol's field joint design was unacceptable. For example, one engineer suggested that joint rotation would render the secondary O-ring useless. However, Hardy did not forward these memos to Thiokol, and the field joints were accepted for flight in 1980.<ref name="Rogers_vol6">{{cite web |author=Rogers Commission report |title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 6 |year=1986 |url=http://history.nasa.gov/rogersrep/v1ch6.htm}}</ref>


=== Mission ===
Evidence of serious O-ring erosion was present as early as the second space shuttle mission, [[STS-2]], which was flown by ''Columbia.'' However, contrary to NASA regulations, the Marshall Center did not report this problem to senior management at NASA, but opted to keep the problem within their reporting channels with Thiokol. Even after the O-rings were redesignated as "Criticality 1"—meaning that their failure would result in the destruction of the Orbiter—no one at Marshall suggested that the shuttles be grounded until the flaw could be fixed.<ref name="Rogers_vol6" />
{{main|STS-51-L}}
The Space Shuttle mission, named {{nowrap|STS-51-L}}, was the twenty-fifth Space Shuttle flight and the tenth flight of{{OV|099|full=no}}.<ref name="rogers_com">{{cite web |last1=Rogers |first1=William P. |author1-link=William P. Rogers |last2=Armstrong |first2=Neil A. |author2-link=Neil Armstrong |last3=Acheson |first3=David C. |author3-link=David Campion Acheson |last4=Covert |first4=Eugene E. |author4-link=Eugene E. Covert |last5=Feynman |first5=Richard P. |author5-link=Richard Feynman |last6=Hotz |first6=Robert B. |last7=Kutyna |first7=Donald J. |author7-link=Donald Kutyna |last8=Ride |first8=Sally K. |author8-link=Sally Ride |last9=Rummel |first9=Robert W. |date=June 6, 1986 |title=Report of the Presidential Commission on the Space Shuttle Challenger Accident |url=https://sma.nasa.gov/SignificantIncidents/assets/rogers_commission_report.pdf |url-status=live |archive-url=https://web.archive.org/web/20201018005636/https://sma.nasa.gov/SignificantIncidents/assets/rogers_commission_report.pdf |archive-date=October 18, 2020 |access-date=July 13, 2021 |publisher=NASA |last10=Sutter |first10=Joseph F. |author10-link=Joe Sutter |last11=Walker |first11=Arthur B.C. |author11-link=Arthur B. C. Walker Jr. |last12=Wheelon |first12=Albert D. |last13=Yeager |first13=Charles E. |author13-link=Chuck Yeager |volume=1}}</ref>{{rp|page=6}} The crew was announced on January{{nbsp}}27,{{nbsp}}1985, and was commanded by [[Dick Scobee]]. [[Michael J. Smith (astronaut)|Michael Smith]] was assigned as the pilot, and the [[mission specialist]]s were [[Ellison Onizuka]], [[Judith Resnik]], and [[Ronald McNair]]. The two [[payload specialist]]s were [[Gregory Jarvis]], who was assigned to conduct research for the [[Hughes Aircraft Company]], and [[Christa McAuliffe]], who flew as part of the [[Teacher in Space Project]].<ref name=rogers_com />{{rp|pages=10–13}}


The primary mission of the ''Challenger'' crew was to use an [[Inertial Upper Stage]] (IUS) to deploy a [[Tracking and Data Relay Satellite]] (TDRS), named [[TDRS-B]], that would have been part of a constellation to enable constant communication with orbiting spacecraft. The crew also planned to study [[Halley's Comet]] as it passed near the Sun,{{r|jenkins2016}}{{rp|page=III-76}} and deploy and retrieve a SPARTAN satellite.<ref name="sts51l_profile">{{cite web
By 1985, Marshall and Thiokol realized that they had a potentially catastrophic problem on their hands. They began the process of redesigning the joint with three inches (76&nbsp;mm) of additional steel around the tang. This tang would grip the inner face of the joint and prevent it from rotating. However, they did not call for a halt to shuttle flights until the joints could be redesigned. Rather, they treated the problem as an acceptable flight risk. For example, Lawrence Mulloy, Marshall's manager for the SRB project since 1982, issued and waived launch constraints for six consecutive flights. Thiokol even went as far as to persuade NASA to declare the O-ring problem "closed".<ref name="Rogers_vol6" /> [[Donald Kutyna]], a member of the [[Rogers Commission]], later likened this situation to an airline permitting one of its planes to continue to fly despite evidence that one of its wings was about to fall off.
| last = Dunbar
| first = Brian
| title = STS-51L Mission Profile
| publisher = NASA
| date = August 7, 2017
| url = https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/archives/sts-51L.html
| access-date = November 3, 2021
| archive-date = May 5, 2017
| archive-url = https://web.archive.org/web/20170505145220/https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/archives/sts-51L.html
| url-status = live
}}</ref>


The mission was originally scheduled for July{{nbsp}}1985, but was delayed to November and then to January{{nbsp}}1986.{{r|rogers_com}}{{rp|page=10}} The mission was scheduled to launch on January{{nbsp}}22, but was delayed until January 28.<ref name=launch_delay_NYT>{{cite news |last=Broad |first=William J. |title=24-Hour Delay Called for Shuttle Flight As Wind And Balky Bolt Bar Launching |url=https://www.nytimes.com/1986/01/28/science/24-hour-delay-called-for-shuttle-flight-as-wind-and-balky-bolt-bar-launching.html |url-status=live |work=[[The New York Times]] |date=January 28, 1986 |access-date=July 13, 2021 |archive-url=https://web.archive.org/web/20210716103656/https://www.nytimes.com/1986/01/28/science/24-hour-delay-called-for-shuttle-flight-as-wind-and-balky-bolt-bar-launching.html |archive-date=July 16, 2021}}</ref>
===Launch day===
The temperature on the day of the launch was far lower than had been the case with previous launches: below freezing at 28 or 29 [[°F|Fahrenheit]] (&minus;2.2 to &minus;1.6 [[Celsius|°C]]); previously, the coldest launch had been at 53 °F (12 °C). NASA managers did not know of Thiokol's initial concerns about the effects of the cold on the O-rings, and did not understand that [[Rockwell International|Rockwell]] viewed the large amount of ice present on the pad as a constraint to launch.<ref name="rogers 5">{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 5| year=1986| url=http://history.nasa.gov/rogersrep/v1ch5.htm | accessdate=2011-09-22}}</ref>


== Decision to launch ==
==January 28 launch and failure==
The air temperature on January 28 was predicted to be a record low for a Space Shuttle launch.{{r|mcdonald}}{{rp|pages=47, 101}} The air temperature was forecast to drop to {{convert|18|F|C|}} overnight before rising to {{convert|22|F|C|}} at 6:00{{spaces}}a.m. and {{convert|26|F|C|}} at the scheduled launch time of 9:38{{spaces}}a.m.{{r|rogers_com}}{{rp|page=87}}{{r|mcdonald}}{{rp|page=96}} Based upon O-ring erosion that had occurred in warmer launches, Morton Thiokol engineers were concerned over the effect the record-cold temperatures would have on the seal provided by the SRB O-rings for the launch.{{r|mcdonald}}{{rp|pages=101–103}} Cecil Houston, the manager of the KSC office of the Marshall Space Flight Center, set up a conference call on the evening of January 27 to discuss the safety of the launch. Morton Thiokol engineers expressed their concerns about the effect of low temperatures on the resilience of the rubber O-rings. As the colder temperatures lowered the elasticity of the rubber O-rings, the engineers feared that the O-rings would not be extruded to form a seal at the time of launch.{{r|mcdonald}}{{rp|pages=97–99}}<ref name="berkes20120206">{{cite news | url=https://www.npr.org/blogs/thetwo-way/2012/02/06/146490064/remembering-roger-boisjoly-he-tried-to-stop-shuttle-challenger-launch | title=Remembering Roger Boisjoly: He Tried To Stop Shuttle Challenger Launch | work=All Things Considered | date=February 6, 2012 | access-date=July 27, 2021 | last=Berkes | first=Howard | publisher=NPR | archive-date=April 30, 2015 | archive-url=https://web.archive.org/web/20150430062751/http://www.npr.org/blogs/thetwo-way/2012/02/06/146490064/remembering-roger-boisjoly-he-tried-to-stop-shuttle-challenger-launch | url-status=live }}</ref> The engineers argued that they did not have enough data to determine whether the O-rings would seal at temperatures colder than {{convert|53|F|C}}, the coldest launch of the Space Shuttle to date.{{r|mcdonald}}{{rp|pages=105–106}} Morton Thiokol employees Robert Lund, the Vice President of Engineering, and Joe Kilminster, the Vice President of the Space Booster Programs, recommended against launching until the temperature was above {{convert|53|F|C}}.{{r|rogers_com}}{{rp|pages=107–108}}
{{Further|[[STS-51-L Mission timeline]]}}


[[File:Icicles on the Launch Tower - GPN-2000-001348.jpg|thumb|Ice on the launch tower hours before ''Challenger'' launch|alt=The underside of the orbiter wing and the SRB behind the structure of the service tower. The service tower has numerous icicles.]]
===Liftoff and initial ascent===
The teleconference held a recess to allow for private discussion amongst Morton Thiokol management. When it resumed, Morton Thiokol leadership had changed their opinion and stated that the evidence presented on the failure of the O-rings was inconclusive and that there was a substantial margin in the event of a failure or erosion. They stated that their decision was to proceed with the launch. Morton Thiokol leadership submitted a recommendation for launch, and the teleconference ended.{{r|rogers_com}}{{rp|pages=97, 109}} Lawrence Mulloy, the NASA SRB project manager,{{r|mcdonald}}{{rp|page=3}} called Arnold Aldrich, the NASA Mission Management Team Leader, to discuss the launch decision and weather concerns, but did not mention the O-ring discussion; the two agreed to proceed with the launch.{{r|rogers_com}}{{rp|page=99}}{{r|mcdonald}}{{rp|page=116}}
{{ref improve section|date=January 2011}}
[[Image:STS-51-L grey smoke on SRB.jpg|thumb|left|Gray smoke escaping from the right side [[Space Shuttle Solid Rocket Booster|SRB]]]] <!-- This entire section reads like an official NASA report which I've read. I suspect most of this is plagiarized, though being a work of the US government it is in the public domain, so there is no copyright infringement. (Plagiarism and copyright are two separate issues.) -->
The following account of the accident is derived from real time [[telemetry]] data and photographic analysis, as well as from transcripts of air-to-ground and [[Mission Control Center|mission control]] voice communications.<ref name="timeline">A major source for information about the ''Challenger'' accident is the STS 51-L Incident Integrated Events Timeline developed by the NASA Photo and TV Support Team as part of the Rogers Report ([http://history.nasa.gov/rogersrep/v3appn.htm Appendix N]). Numerous other timelines have been written based on this information. A detailed transcript of air-to-ground and mission control voice communications was put together by Rob Navias and William Harwood for [[CBS News]], and integrates a timeline of events:{{cite web |year=1986|url =http://web.archive.org/web/www.cbsnews.com/network/news/space/51Lchap13timeline.html |title = Voyage Into History Chapter 13: The Timeline |publisher=[[CBS News]]| accessdate =August 22, 2007 | last=By William Harwood }}</ref> All times are given in seconds after launch and correspond to the telemetry time-codes from the closest instrumented event to each described event.<ref name="rogers n">{{cite web| author=Rogers Commission report| title=NASA Photo and TV Support Team Report, Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 3, Appendix N| year=1986| url=http://history.nasa.gov/rogersrep/v3appn.htm | accessdate =January 1, 2007}}</ref>


An overnight measurement taken by the KSC Ice Team recorded the left SRB was {{convert|25|F|C|}} and the right SRB was {{convert|8|F|C|}}.{{r|rogers_com}}{{rp|page=111}} These measurements were recorded for engineering data and not reported, because the temperature of the SRBs was not part of the [[Launch commit criteria|Launch Commit Criteria]].{{r|mcdonald}}{{rp|page=118}} In addition to its effect on the O-rings, the cold temperatures caused ice to form on the [[fixed service structure]]. To keep pipes from freezing, water was slowly run from the system; it could not be entirely drained because of the upcoming launch. As a result, ice formed from {{convert|240|ft|m}} down in the freezing temperatures. Engineers at [[Rockwell International]], which manufactured the orbiter, were concerned that ice would be violently thrown during launch and could potentially damage the orbiter's [[Space Shuttle thermal protection system|thermal protection system]] or be aspirated into one of the engines. [[Rocco Petrone]], the head of Rockwell's space transportation division, and his team determined that the potential damage from ice made the mission unsafe to fly. Arnold Aldrich consulted with engineers at KSC and the [[Johnson Space Center]] (JSC) who advised him that ice did not threaten the safety of the orbiter, and he decided to proceed with the launch.{{r|rogers_com}}{{rp|pages=115–118}} The launch was delayed for an additional hour to allow more ice to melt. The ice team performed an inspection at T–20 minutes which indicated that the ice was melting, and ''Challenger'' was cleared to launch at 11:38&nbsp;a.m. EST, with an air temperature of {{convert|36|F|C|}}.{{r|rogers_com}}{{rp|page=17}}
Until liftoff actually occurs, the [[Space Shuttle main engines]] (SSMEs) can be safely shut down and the launch aborted if necessary. At liftoff time (T=0, which was at 11:38:00.010 EST), the three SSMEs were at 100% of their original rated performance, and began throttling up to [[Space Shuttle Main Engine#Upgrades|104%]] under computer control. At this moment, the two SRBs were ignited and [[Space Shuttle Solid Rocket Booster#Hold-down posts|hold-down bolts]] were released with explosives, freeing the vehicle from the pad. With the first vertical motion of the vehicle, the gaseous hydrogen vent arm retracted from the [[Space Shuttle external tank|External Tank (ET)]] but failed to latch back. Review of film shot by pad cameras showed that the arm did not re-contact the vehicle, and thus it was ruled out as a contributing factor in the accident.<ref name="rogers n"/> The post-launch inspection of the pad also revealed that kick springs on four of the hold-down bolts were missing, but they were similarly ruled out as a possible cause.<ref name="tv team">{{cite video | people= Photo and TV Analysis Team Report| title =Space Shuttle Challenger Accident Investigation | url =http://www.archive.org/details/ChallengerAccidentandInvestigation| publisher=STS-51L Data and Analysis Task Force |date = 1986 | accessdate =January 1, 2007}}</ref>
[[File:Challenger (STS-51-L) Liftoff.ogg|thumb|Challenger lifting off (253 [[Kilobyte|kB]], [[ogg]]/[[Theora]] format)]]
Later review of launch film showed that at T+0.678, strong puffs of dark gray smoke were emitted from the right-hand SRB near the [[aft]] strut that attaches the booster to the ET. The last smoke puff occurred at about T+2.733. The last view of smoke around the strut was at T+3.375. It was later determined that these smoke puffs were caused by the opening and closing of the aft field joint of the right-hand SRB. The booster's casing had ballooned under the stress of ignition. As a result of this ballooning, the metal parts of the casing bent away from each other, opening a gap through which hot gases—above {{convert|5000|F|C}}—leaked. This had occurred in previous launches, but each time the primary O-ring had shifted out of its groove and formed a seal. Although the SRB was not designed to function this way, it appeared to work well enough, and Morton-Thiokol changed the design specs to accommodate this process, known as [[extrusion]].


== Launch and failure ==
While extrusion was taking place, hot gases leaked past (a process called "blow-by"), damaging the O-rings until a seal was made. Investigations into the matter by Morton-Thiokol engineers determined that the amount of damage to the O-rings was directly related to the time it took for extrusion to occur, and that cold weather, by causing the O-rings to harden, lengthened the time of extrusion. (The redesigned SRB field joint used subsequent to the ''Challenger'' accident uses an additional interlocking mortise and tang with a third O-ring, mitigating blow-by.)
{{Further|Timeline of the STS-51-L mission}}


=== Liftoff and initial ascent ===
On the morning of the disaster, the primary O-ring had become so hard due to the cold that it could not seal in time. The secondary O-ring was not in its seated position due to the metal bending. There was now no barrier to the gases, and both O-rings were vaporized across 70 degrees of arc. However, [[aluminum oxide]]s from the burned solid propellant sealed the damaged joint, temporarily replacing the O-ring seal before actual flame rushed through the joint.
[[File:STS-51-L grey smoke on SRB.jpg|thumb|Gray smoke escaping from the right-side [[Space Shuttle Solid Rocket Booster|solid rocket booster]]|alt=The Space Shuttle immediately following liftoff, from the viewpoint near the right SRB. Gray smoke is apparent around the SRB.]]
At T+0, ''Challenger'' launched from the [[Kennedy Space Center Launch Complex 39B]] (LC-39B) at 11:38:00{{nbsp}}a.m.{{r|rogers_com}}{{rp|page=17}}<ref name="jenkins2016">{{cite book |last= Jenkins |first= Dennis R. |title= Space Shuttle: Developing an Icon – 1972–2013|isbn=978-1-58007-249-6 |publisher= Specialty Press |date= 2016}}</ref>{{rp|pages=III–76}} Beginning at T+0.678 until T+3.375 seconds, nine puffs of dark gray smoke were recorded escaping from the right-hand SRB near the [[aft]] strut that attached the booster to the [[Space Shuttle external tank|ET]].{{r|rogers_com}}{{rp|page=19}}{{r|jenkins2016}}{{rp|page=III-93}} It was later determined that these smoke puffs were caused by joint rotation in the aft field joint of the right-hand SRB at ignition.{{r|mcdonald}}{{rp|page=136}}


The cold temperature in the joint had prevented the O-rings from creating a seal. Rainfall from the preceding time on the launchpad had likely accumulated within the field joint, further compromising the sealing capability of the O-rings. As a result, hot gas was able to travel past the O-rings and erode them. Molten [[Aluminium oxide|aluminum oxides]] from the burned propellant resealed the joint and created a temporary barrier against further hot gas and flame escaping through the field joint.{{r|mcdonald}}{{rp|page=142}} The [[Space Shuttle main engines]] (SSMEs) were throttled down as scheduled for [[max q|maximum dynamic pressure (max q)]].<ref name=jenkins2016 />{{rp|pages=III–8–9}}{{r|timeline}} During its ascent, the Space Shuttle encountered [[wind shear]] conditions beginning at {{nowrap|T+37}}, but they were within design limits of the vehicle and were countered by the guidance system.{{r|rogers_com}}{{rp|page=20}}
As the vehicle cleared the tower, the SSMEs were operating at [[Space Shuttle Main Engine#Thrust_specifications|104% of their rated maximum thrust]], and control switched from the [[Launch Control Center]] (LCC) at Kennedy to the Mission Control Center (MCC) at [[Johnson Space Center]] in [[Houston, Texas]]. To prevent [[aerodynamics|aerodynamic]] forces from structurally overloading the orbiter, at T+28 the SSMEs began throttling down to limit the velocity of the shuttle in the dense [[troposphere|lower atmosphere]], as per normal operating procedure. At T+35.379, the SSMEs throttled back further to the planned 65%. Five seconds later, at about {{convert|5800|m}}, ''Challenger'' passed through [[Mach number|Mach 1]]. At T+51.860, the SSMEs began throttling back up to 104% as the vehicle passed beyond [[Max Q]], the period of maximum aerodynamic pressure on the vehicle.


===Plume===
=== Plume ===
[[File:Booster Rocket Breach - GPN-2000-001425.jpg|thumb|upright|Plume on right SRB at T+ 58.778 seconds]]
[[File:Booster Rocket Breach - GPN-2000-001425.jpg|thumb|Plume on right SRB at {{nowrap|T+58.788}} seconds|alt=Space Shuttle challenger in-flight with an anomalous plume of fire from the side of its right solid rocket booster]]
At {{nowrap|T+58.788}}, a tracking film camera captured the beginnings of a [[plume (hydrodynamics)|plume]] near the aft attach strut on the right SRB, right before the vehicle passed through max q at {{nowrap|T+59.000}}.<ref name="timeline">{{cite web|url=https://www.cbsnews.com/network/news/space/home/memorial/51l.html|title=STS-51L|publisher=CBS News|date=2015|last=Harwood|first=William|access-date=July 29, 2021|archive-date=June 11, 2021|archive-url=https://web.archive.org/web/20210611125941/http://www.cbsnews.com/network/news/space/home/memorial/51l.html|url-status=live}}</ref> The high aerodynamic forces and wind shear likely broke the aluminum oxide seal that had replaced eroded O-rings, allowing the flame to burn through the joint.{{r|mcdonald}}{{rp|page=142}} Within one second from when it was first recorded, the plume became well-defined, and the enlarging hole caused a drop in internal pressure in the right SRB. A leak had begun in the [[liquid hydrogen]] (LH2) tank of the ET at {{nowrap|T+64.660}}, as indicated by the changing shape of the plume.
Beginning at about T+37, the shuttle experienced a series of [[Wind shear#Impact on passenger aircraft|wind shear]] events over the next 27 seconds that were the strongest recorded to date in the shuttle program.<ref>{{cite web| author=NASA Mission Archives| title=STS-51L | url=http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/archives/sts-51L.html | accessdate=January 31, 2010}}</ref>


The SSMEs pivoted to compensate for the booster burn-through, which was creating an unexpected thrust on the vehicle. The pressure in the external LH2 tank began to drop at {{nowrap|T+66.764}} indicating that the flame had burned from the SRB into the tank. The crew and flight controllers made no indication they were aware of the vehicle and flight anomalies. At {{nowrap|T+68}}, the [[Capsule communicator|CAPCOM]], [[Richard O. Covey]], told the crew, "''Challenger'', go at throttle up," indicating that the SSMEs had throttled up to 104% thrust.{{refn|group=note|The RS-25 engines had several improvements to enhance reliability and power. During the development program, [[Rocketdyne]] determined that the engine was capable of safe, reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept the originally specified thrust at 100%, but had the RS-25 operate at higher thrust.<ref name="shuttle_manual">{{cite book |last=Baker |first=David |author-link=David Baker (author) |title=NASA Space Shuttle: Owners' Workshop Manual |publisher=[[Haynes Manual]] |year= 2011 |location=Somerset, UK |isbn=978-1-84425-866-6}}</ref>{{rp|106–107}}}} In response to Covey, Scobee said, "Roger, go at throttle up"; this was the last communication from ''Challenger'' on the air-to-ground loop.{{r|timeline}}
At T+58.788, a tracking film camera captured the beginnings of a [[plume (hydrodynamics)|plume]] near the aft attach strut on the right SRB. Unknown to those on ''Challenger'' or in Houston, hot gas had begun to leak through a growing hole in one of the right-hand SRBs joints. The force of the wind shear shattered the temporary oxide seal that had taken the place of the damaged O-rings, removing the last barrier to flame rushing through the joint. Had it not been for the wind shear, the fortuitous oxide seal might have held through booster burnout.


=== Vehicle breakup ===
Within a second, the plume became well defined and intense. Internal pressure in the right SRB began to drop because of the rapidly enlarging hole in the failed joint, and at T+60.238 there was visual evidence of flame coming through the joint and impinging on the external tank.<ref name="timeline"/>
[[File:NASA STS 51L Challenger.gif|thumb|The explosion of Space Shuttle Challenger, taken from the TV-3 camera]]


At {{nowrap|T+72.284}}, the right SRB pulled away from the aft strut that attached it to the ET, causing lateral acceleration that was felt by the crew. At the same time, pressure in the LH2 tank began dropping. Pilot Mike Smith said "Uh-oh," which was the last crew comment recorded. At {{nowrap|T+73.124}}, white vapor was seen flowing away from the ET, after which the aft dome of the LH2 tank fell off. The resulting release of all liquid hydrogen in the tank pushed the LH2 tank forward into the [[liquid oxygen]] (LOX) tank with a force equating to roughly {{Convert|3000000|lbf|MN|abbr=off}}, while the right SRB collided with the intertank structure.
At T+64.660, the plume suddenly changed shape, indicating that a leak had begun in the [[liquid hydrogen]] tank, located in the aft portion of the external tank. The nozzles of the main engines pivoted under computer control to compensate for the unbalanced thrust produced by the booster burn-through. The pressure in the shuttle's external liquid hydrogen tank began to drop at T+66.764, indicating the effect of the leak.<ref name="timeline"/>


These events resulted in an abrupt change to the shuttle stack's attitude and direction,<ref name="Breakup" /> which was shrouded from view by the vaporized contents of the now-destroyed ET. As it traveled at [[Mach number|Mach]] 1.92, ''Challenger'' took aerodynamic forces it was not designed to withstand and broke into several large pieces: a wing, the (still firing) main engines, the crew cabin and hypergolic fuel leaking from the ruptured [[reaction control system]] were among the parts identified exiting the vapor cloud. The disaster unfolded at an altitude of {{convert|46000|ft|km}}.{{r|timeline}}{{r|rogers_com}}{{rp|page=21}} Both SRBs survived the breakup of the shuttle stack and continued flying, now unguided by the attitude and trajectory control of their mothership, until their [[Range safety#Flight termination system|flight termination systems]] were activated at {{nowrap|T+110}}.{{r|rogers_com}}{{rp|page=30}}
At this stage the situation still seemed normal both to the astronauts and to flight controllers. At T+68, the [[Capsule communicator|CAPCOM]] Richard Covey informed the crew that they were "go at throttle up", and Commander [[Dick Scobee]] confirmed the call. His response, "Roger, go at throttle up," was the last communication from ''Challenger'' on the air-to-ground loop.


===Vehicle breakup===
=== Post-breakup flight controller dialogue ===
[[File:STS-51L riadiace stredisko.jpg|thumb|[[Jay Greene]] after ''Challenger''{{'}}s breakup|alt=View along the computers banks in the mission control center and a flight controller sitting in front of a terminal]]
[[File:Challenger - STS-51-L Explosion.ogg|thumb|Challenger breakup (346 [[Kilobyte|kB]], [[ogg]]/[[Theora]] format]]
At {{nowrap|T+73.191}}, there was a burst of static on the air-to-ground loop as the vehicle broke up, which was later attributed to ground-based radios searching for a signal from the destroyed spacecraft. NASA Public Affairs Officer Steve Nesbitt was initially unaware of the explosion and continued to read out flight information. At {{nowrap|T+89}}, after video of the explosion was seen in [[Christopher C. Kraft Jr. Mission Control Center|Mission Control]], the [[Flight controller#Ground controller (GC)|Ground Control Officer]] reported "negative contact (and) loss of [[Telecommunications link#Downlink|downlink]]" as they were no longer receiving transmissions from ''Challenger''.{{r|timeline}}
[[Image:Sts33-e204.jpg|image|thumb|''Challenger'' begins to disintegrate.]]
Nesbitt stated, "Flight controllers here are looking very carefully at the situation. Obviously a major malfunction. We have no downlink." Soon afterwards, he said, "We have a report from the Flight Dynamics Officer that the vehicle has exploded. The flight director confirms that. We are looking at checking with the recovery forces to see what can be done at this point."{{r|timeline}}
At T+72.284, the right SRB apparently pulled away from the aft strut attaching it to the external tank. Later analysis of telemetry data showed a sudden lateral acceleration to the right at T+72.525, which may have been felt by the crew. The last statement captured by the crew cabin recorder came just half a second after this acceleration, when Pilot [[Michael J. Smith (astronaut)|Michael J. Smith]] said "[[Uh-oh (expression)|Uh oh]]."<ref name="lewis">{{cite book|last=Lewis|first=Richard S.|title=Challenger: The Final Voyage|publisher=Columbia University Press|year=1988|page=16|isbn=023106490X}}</ref> Smith may also have been responding to onboard indications of main engine performance, or to falling pressures in the external fuel tank.


In Mission Control, flight director [[Jay Greene]] ordered that contingency procedures be put into effect,{{r|timeline}} which included locking the doors, shutting down telephone communications, and freezing computer terminals to collect data from them.{{r|mcdonald}}{{rp|page=122}}
At T+73.124, the aft dome of the liquid hydrogen tank failed, producing a propulsive force that pushed the hydrogen tank into the liquid oxygen tank in the forward part of the ET. At the same time, the right SRB rotated about the forward attach strut, and struck the [[Space Shuttle external tank#Intertank|intertank]] structure.
=== Cause and time of death ===
[[File:Challenger breakup cabin.jpg|thumb|The forward section of the fuselage after breakup, indicated by the arrow|alt=A trapezoidal gray section of the shuttle among several plumes of smoke and vapor against the blue sky]]
The crew cabin, which was made of reinforced aluminum, separated in one piece from the rest of the orbiter.<ref name="Breakup">{{cite web |last=Barbree |first=Jay |author-link=Jay Barbree |date=January 1997 |title=Chapter 5: An eternity of descent |url=https://www.nbcnews.com/id/wbna3078062 |url-status=live |archive-url=https://web.archive.org/web/20200923225813/http://www.nbcnews.com/id/3078062 |archive-date=September 23, 2020 |access-date=October 31, 2020 |publisher=[[NBC News]]}}</ref> It then traveled in a [[External ballistics|ballistic arc]], reaching the [[apogee]] of {{convert|65000|ft|km}} approximately 25 seconds after the explosion. At the time of separation, the maximum acceleration is estimated to have been between 12 and 20 times that of gravity ([[g-force|g]]). Within two seconds it had dropped below 4{{nbsp}}g, and within ten seconds the cabin was in [[free fall]]. The forces involved at this stage were probably insufficient to cause major injury to the crew.<ref name=kerwin />


At least some of the crew were alive and conscious after the breakup, as [[Personal Egress Air Pack]]s (PEAPs) were activated for Smith{{r|Mullane}}{{rp|page=246}} and two unidentified crewmembers, but not for Scobee.<ref name=kerwin /> The PEAPs were not intended for in-flight use, and the astronauts never trained with them for an in-flight emergency. The location of Smith's activation switch, on the back side of his seat, indicated that either Resnik or Onizuka likely activated it for him. Investigators found their remaining unused air supply consistent with the expected consumption during the post-breakup trajectory.{{r|Mullane}}{{rp|pages=245–247}}
The breakup of the vehicle began at T+73.162 seconds and at an altitude of {{convert|48000|ft|km}}.<ref name="kerwin">{{cite web| author=Kerwin, Joseph P.| title=''Challenger'' crew cause and time of death| year=1986| url=http://history.nasa.gov/kerwin.html| accessdate=July 4, 2006}}</ref> With the external tank disintegrating (and with the semi-detached right SRB contributing its thrust on an anomalous vector), ''Challenger'' veered from its correct attitude with respect to the local air flow and was quickly torn apart by abnormal aerodynamic forces, resulting in a [[Load factor (aeronautics)|load factor]] of up to 20 (or 20 g), well over its design limit of 5 g. The two SRBs, which can withstand greater aerodynamic loads, separated from the ET and continued in uncontrolled powered flight for another 37&nbsp;seconds. The SRB casings were made of half-inch (12.7&nbsp;mm) thick steel and were much stronger than the orbiter and ET; thus, both SRBs survived the breakup of the space shuttle stack, even though the right SRB was still suffering the effects of the joint burn-through that had set the destruction of ''Challenger'' in motion.<ref name="tv team" />


While analyzing the wreckage, investigators discovered that several electrical system switches on Smith's right-hand panel had been moved from their usual launch positions. The switches had lever locks on top of them that must be pulled out before the switch could be moved. Later tests established that neither the force of the explosion nor the impact with the ocean could have moved them, indicating that Smith made the switch changes, presumably in a futile attempt to restore electrical power to the cockpit after the crew cabin detached from the rest of the orbiter.<ref name=Mullane>{{cite book |last=Mullane |first=Mike |author-link=Mike Mullane |title=Riding Rockets: The Outrageous Tales of a Space Shuttle Astronaut |url=https://books.google.com/books?id=8X7ceB3QEWkC&pg=PA245 |url-status=live |publisher=Simon and Schuster |year=2006 |access-date=December 31, 2018 |archive-url=https://web.archive.org/web/20200612234655/https://books.google.com/books?id=8X7ceB3QEWkC&pg=PA245 |archive-date=June 12, 2020 |isbn=978-0-7432-7682-5}}</ref>{{rp|page=245}}
The more robustly constructed crew cabin and SRBs survived the breakup of the launch vehicle; while the SRBs were subsequently detonated remotely by the [[Range Safety Officer|RSO]], the detached cabin continued along a [[ballistics|ballistic]] trajectory, and was observed exiting the cloud of gases at T+75.237.<ref name="tv team"/> Twenty-five seconds after the breakup of the vehicle the trajectory of the crew compartment peaked at a height of {{convert|65000|ft|km}}.<ref name="kerwin"/>


On July 28, 1986, NASA's Associate Administrator for Space Flight, former astronaut [[Richard H. Truly]], released a report on the deaths of the crew from physician and [[Skylab 2]] astronaut [[Joseph P. Kerwin]]:<ref name="kerwin"/>
===Post-breakup flight controller dialog===
{{blockquote|The findings are inconclusive. The impact of the crew compartment with the ocean surface was so violent that evidence of damage occurring in the seconds which followed the disintegration was masked. Our final conclusions are:
[[Image:STS-51L riadiace stredisko.jpg|thumb|left|[[Jay Greene]] at his console after the breakup of ''Challenger'']]
In Mission Control, there was a burst of static on the air-to-ground loop as ''Challenger'' disintegrated. Television screens showed a cloud of smoke and water vapor (the product of hydrogen combustion) where ''Challenger'' had been, with pieces of debris falling toward the ocean. At about T+89, flight director [[Jay Greene]] prompted his [[Flight controller#Flight Dynamics Officer (FDO or FIDO)|flight dynamics officer]] (FIDO) for information. FIDO responded that "...the ([[radar]]) filter has discreting sources", a further indication that ''Challenger'' had broken into multiple pieces. A minute later, the [[Ground Controller|ground controller]] reported "negative contact (and) loss of downlink" of radio and telemetry data from ''Challenger''. Greene ordered his team to "watch your data carefully" and look for any sign that the Orbiter had escaped.

At T+110.250, the [[Range Safety Officer]] (RSO) at the [[Cape Canaveral Air Force Station]] sent radio signals that activated the [[Space Shuttle Solid Rocket Booster#Range safety system|range safety system's]] "destruct" packages on board both solid rocket boosters. This was a normal contingency procedure, undertaken because the RSO judged the free-flying SRBs a possible threat to land or sea. The same destruct signal would have destroyed the External Tank had it not already disintegrated.<ref>{{cite web| author=Rogers Commission report| title=Rogers Commission report, Volume I, chapter 9, Range Safety Activities, January 28, 1986| year=1986| url=http://history.nasa.gov/rogersrep/v1ch9.htm| accessdate=2011-07-12}}</ref>

"Flight controllers here looking very carefully at the situation," reported public affairs officer Steve Nesbitt. "Obviously a major malfunction. We have no downlink." After a pause, Nesbitt said, "We have a report from the Flight Dynamics Officer that the vehicle has exploded."<ref>{{cite news| title=The Shuttle Explodes| year=2011| url=http://www.nytimes.com/learning/general/onthisday/big/0128.html| accessdate=January 28, 2011| work=The New York Times}}</ref>

Greene ordered that contingency procedures be put into effect at Mission Control; these procedures included locking the doors of the control center, shutting down telephone communications with the outside world, and following checklists that ensured that the relevant data were correctly recorded and preserved.

===Cause and time of death===
{{multiple image
| direction = vertical
| width = 225
| footer =
| image1 = Challenger breakup.jpg
| alt1 =
| caption1 = The intact crew cabin was seen exiting the cloud by a tracking camera after its trajectory carried it across an adjacent contrail.
| image2 = Challenger breakup cabin.jpg
| alt2 =
| caption2 = Enlarged detail of the previous picture, the arrow indicating the crew cabin. The nose cone containing the [[Reaction control system|RCS thrusters]] is missing.
| image3 = PEAP.jpg
| alt3 =
| caption3 =Astronauts from a later Shuttle flight ([[STS-34]]) stand next to their [[Personal Egress Air Packs|PEAPs]]
}}

The crew cabin, made of reinforced aluminum, was a particularly robust section of the shuttle.<ref name=Breakup>{{cite web | url=http://www.msnbc.msn.com/id/3078062/ns/technology_and_science-space | title=Chapter 5: An eternity of descent|publisher=MSNBC | last=Barbree | first=Jay | date=January, 1997 | accessdate=July 29, 2009}}</ref> During vehicle breakup, it detached in one piece and slowly tumbled into a [[External ballistics|ballistic arc]]. NASA estimated the load factor at separation to be between 12 and 20 g; however, within two seconds it had already dropped to below 4 g and within ten seconds the cabin was in [[free fall]]. The forces involved at this stage were likely insufficient to cause major injury.

At least some of the astronauts were likely alive and briefly conscious after the breakup, as three of the four [[Personal Egress Air Packs]] (PEAPs) on the flight deck were found to have been activated. Investigators found their remaining unused air supply roughly consistent with the expected consumption during the 2 minute 45 second post-breakup trajectory.

While analyzing the wreckage, investigators discovered that several electrical system switches on Pilot Mike Smith's right-hand panel had been moved from their usual launch positions. Fellow Astronaut [[Richard Mullane]] wrote, "These switches were protected with lever locks that required them to be pulled outward against a spring force before they could be moved to a new position." Later tests established that neither force of the explosion nor the impact with the ocean could have moved them, indicating that Smith made the switch changes, presumably in a futile attempt to restore electrical power to the cockpit after the crew cabin detached from the rest of the orbiter.<ref name=Mullane>{{Cite book | last = Mullane | first = Mike | authorlink = Mike Mullane | title = Riding Rockets: The Outrageous Tales of a Space Shuttle Astronaut | publisher=Simon and Schuster | year = 2006 | page = 245 | url = http://books.google.com/?id=8X7ceB3QEWkC&lpg=PP1&pg=PA245#v=onepage&q= | isbn = 9780743276825 | accessdate = 2011-07-12 }}</ref>

Whether the astronauts remained conscious long after the breakup is unknown, and largely depends on whether the detached crew cabin maintained pressure integrity. If it did not, the time of useful consciousness at that altitude is just a few seconds; the PEAPs supplied only unpressurized air, and hence would not have helped the crew to retain consciousness. The cabin hit the ocean surface at roughly {{convert|207|mph|km/h|abbr=on}}, with an estimated deceleration at impact of well over 200 [[Earth's gravity|g]], far beyond the structural limits of the crew compartment or crew survivability levels.<ref name="kerwin"/>

On July 28, 1986, Rear Admiral [[Richard H. Truly]], NASA's Associate Administrator for Space Flight and a former astronaut, released a report from [[Joseph P. Kerwin]], biomedical specialist from the [[Lyndon B. Johnson Space Center|Johnson Space Center]] in Houston, relating to the deaths of the astronauts in the accident. Kerwin, a veteran of the [[Skylab 2]] mission, had been commissioned to undertake the study soon after the accident. According to the Kerwin Report:

{{quote|The findings are inconclusive. The impact of the crew compartment with the ocean surface was so violent that evidence of damage occurring in the seconds which followed the disintegration was masked. Our final conclusions are:
* the cause of death of the ''Challenger'' astronauts cannot be positively determined;
* the cause of death of the ''Challenger'' astronauts cannot be positively determined;
* the forces to which the crew were exposed during Orbiter breakup were probably not sufficient to cause death or serious injury; and
* the forces to which the crew were exposed during Orbiter breakup were probably not sufficient to cause death or serious injury; and
* the crew possibly, but not certainly, lost consciousness in the seconds following Orbiter breakup due to in-flight loss of crew module pressure.<ref name="kerwin"/>}} <!-- What exactly happened to the bodies? Its gory, but it should be included. -->
* the crew possibly, but not certainly, lost consciousness in the seconds following Orbiter breakup due to in-flight loss of crew module pressure.<ref name="kerwin"/>}}


Pressurization could have enabled consciousness for the entire fall until impact. The crew cabin hit the ocean surface at {{convert|207|mph|km/h|abbr=on}} approximately two minutes and 45 seconds after breakup. The estimated deceleration was {{val|200|u=g}}, far exceeding structural limits of the crew compartment or crew survivability levels. The mid-deck floor had not suffered buckling or tearing, as would result from a rapid decompression, but stowed equipment showed damage consistent with decompression, and debris was embedded between the two forward windows that may have caused a loss of pressure. Impact damage to the crew cabin was severe enough that it could not be determined whether the crew cabin had previously been damaged enough to lose pressurization.<ref name="kerwin">{{cite web |last=Kerwin |first=Joseph P. |author-link=Joseph P. Kerwin |title=Joseph P. Kerwin to Richard H. Truly |date=July 28, 1986 |url=https://history.nasa.gov/kerwin.html|publisher=NASA |access-date=August 2, 2021 |archive-date=January 3, 2013 |archive-url=https://web.archive.org/web/20130103015825/https://history.nasa.gov/kerwin.html |url-status=live }}</ref>
Some experts, including one of NASA's lead investigators, [[Robert Overmyer]], believed most if not all of the crew were alive and possibly conscious during the entire descent until impact with the ocean.<ref name="Breakup"/>


=== Prospect of crew escape ===
{{quote|text=Scob fought for any and every edge to survive. He flew that ship without wings all the way down....they were alive.|sign=Robert Overmyer, NASA Lead Investigator<ref name="Breakup" />}}
{{further-text|[[Space Shuttle abort modes#Ejection escape systems|Shuttle ejection escape systems]], [[Space Shuttle abort modes#Post-Challenger abort enhancements|Post-''Challenger'' abort enhancements]]}}
Unlike other spacecraft, the Space Shuttle did not allow for crew escape during powered flight. Launch escape systems had been considered during development, but NASA's conclusion was that the Space Shuttle's expected high reliability would preclude the need for one.{{r|rogers_com}}{{rp|page=181}} Modified [[Lockheed SR-71 Blackbird|SR-71 Blackbird]] ejection seats and full [[pressure suit]]s were used for the two-person crews on the first four Space Shuttle orbital test flights, but they were disabled and later removed for the operational flights.{{r|jenkins2016}}{{rp|page=II-7}} Escape options for the operational flights were considered but not implemented due to their complexity, high cost, and heavy weight.{{r|rogers_com}}{{rp|page=181}} After the disaster, a system was implemented to allow the crew to escape in [[gliding flight]], but this system would not have been usable to escape an explosion during ascent.<ref name=recommendation_7>{{cite web |title=Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VII |date=June 1987 |url=https://history.nasa.gov/rogersrep/v6ch6.htm |publisher=NASA |access-date=August 3, 2021 |archive-date=February 24, 2021 |archive-url=https://web.archive.org/web/20210224162050/https://history.nasa.gov/rogersrep/v6ch6.htm |url-status=live}}</ref>


== Recovery of debris and crew ==
===Crew escape was not possible===
Immediately after the disaster, the NASA Launch Recovery Director launched the two SRB recovery ships, [[MV Freedom Star|MV ''Freedom Star'']] and [[MV Liberty Star|MV ''Liberty Star'']], to proceed to the impact area to recover debris, and requested the support of US military aircraft and ships. Owing to falling debris from the explosion, the RSO kept recovery forces from the impact area until 12:37{{nbsp}}p.m. The size of the recovery operations increased to 12 aircraft and 8 ships by 7:00{{nbsp}}p.m. Surface operations recovered debris from the orbiter and external tank. The surface recovery operations ended on February{{nbsp}}7.<ref name="rogers o">{{cite book| last=O'Connor, Jr. |first = Edward A.| title=Report of the Presidential Commission on the Space Shuttle Challenger Accident.| chapter=Volume 3, Appendix O: NASA Search, Recovery and Reconstruction Task Force Team Report| date=June 6, 1986| chapter-url=https://history.nasa.gov/rogersrep/v3appo.htm| access-date=August 5, 2021| archive-date=March 1, 2021| archive-url=https://web.archive.org/web/20210301132927/https://history.nasa.gov/rogersrep/v3appo.htm| url-status=live}}</ref>
{{Further|[[Space Shuttle abort modes#Ejection escape systems|Shuttle ejection escape systems]], [[Space Shuttle abort modes#Post-Challenger abort enhancements|Post-''Challenger'' abort enhancements]]}}


On January{{nbsp}}31, the [[United States Navy|US Navy]] was tasked with submarine recovery operations.{{r|usn_salvage_report}}{{rp|page=5}} The search efforts prioritized the recovery of the right SRB, followed by the crew compartment, and then the remaining payload, orbiter pieces, and ET.{{r|usn_salvage_report}}{{rp|page=16}} The search for debris formally began on February{{nbsp}}8 with the [[rescue and salvage ship]] {{USS|Preserver|ARS-8|6}}, and eventually grew to sixteen ships, of which three were managed by NASA, four by the [[United States Navy|US Navy]], one by the [[United States Air Force|US Air Force]] and eight by independent contractors.{{r|usn_salvage_report}}{{rp|pages=4–5}} The surface ships used [[side-scan sonar]] to make the initial search for debris and covered {{convert|486|sqnmi|km2}} at water depths between {{convert|70|ft|sp=us}} and {{convert|1200|ft|sp=us}}.<ref name=usn_salvage_report>{{cite web | url=http://www.navsea.navy.mil/Portals/103/Documents/SUPSALV/SalvageReports/Space%20Shuttle%20Challenger.pdf | title=Space Shuttle Challenger Salvage Report | date=April 29, 1988 | department=Department of the Navy | publisher=Direction of Commander, Naval Sea Systems Command | access-date=July 19, 2021 | archive-date=September 1, 2021 | archive-url=https://web.archive.org/web/20210901092830/https://www.navsea.navy.mil/Portals/103/Documents/SUPSALV/SalvageReports/Space%20Shuttle%20Challenger.pdf | url-status=live }}</ref>{{rp|page=24}} The sonar operations discovered 881 potential locations for debris, of which 187 pieces were later confirmed to be from the orbiter.{{r|usn_salvage_report}}{{rp|page=24}}
During powered flight of the space shuttle, crew escape was not possible. While launch escape systems were considered several times during shuttle development, NASA's conclusion was that the shuttle's expected high reliability would preclude the need for one. Modified [[SR-71 Blackbird]] [[ejection seat]]s and full [[pressure suit]]s were used on the first four shuttle orbital missions, which were considered test flights, but they were removed for the "operational" missions that followed. (The CAIB later declared, after the 2003 [[Space Shuttle Columbia disaster|''Columbia'' re-entry disaster]], that the space shuttle system should never have been declared operational because it is experimental by nature due to the limited number of flights as compared to certified commercial aircraft.) Providing a launch escape system for larger crews was considered undesirable due to "limited utility, technical complexity and excessive cost in dollars, weight or schedule delays."<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 9, page 180| year=1986| url=http://history.nasa.gov/rogersrep/v1ch9.htm| accessdate=2011-07-12}}</ref>


[[File:STS-51-L Recovered Debris (Burn Marks on the SRM) - GPN-2004-00004.jpg|thumb|Right SRB debris showing the hole caused by the plume|alt=The field joint of a solid rocket booster on the deck of a ship with a large hole in it]]
After the loss of ''Challenger'' the question was re-opened, and NASA considered several different options, including ejector seats, tractor rockets and bailing out through the bottom of the orbiter. However, NASA once again concluded that all of the launch escape systems considered would be impractical due to the sweeping vehicle modifications that would have been necessary and the resultant limitations on crew size. A system was designed to give the crew the option to leave the shuttle during [[gliding (flight)|gliding flight]]; however, this system would not have been usable in the ''Challenger'' situation.<ref>{{cite web| author=Rogers Commission report| title=Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VI| year=1987| url=http://history.nasa.gov/rogersrep/v6ch6.htm| accessdate=2011-07-12}}</ref>
The debris from the SRBs was widely distributed due to the detonation of their linear shaped charges. The identification of SRB material was primarily conducted by crewed submarines and submersibles. The vehicles were dispatched to investigate potential debris located during the search phase.{{r|usn_salvage_report}}{{rp|page=32}} Surface ships lifted the SRB debris with the help of [[Technical diving|technical divers]] and underwater remotely operated vehicles to attach the necessary slings to raise the debris with cranes.{{r|usn_salvage_report}}{{rp|pages=37, 42}} The solid propellant in the SRBs posed a risk, as it became more volatile after being submerged. Recovered portions of the SRBs were kept wet during recovery, and their unused propellant was ignited once they were brought ashore. The failed joint on the right SRB was first located on sonar on March{{nbsp}}1. Subsequent dives to {{convert|560|ft|m|abbr=on}} by the {{ship|American submarine|NR-1||2}} submarine on April{{nbsp}}5 and the SEA-LINK I submersible on April{{nbsp}}12 confirmed that it was the damaged field joint,{{r|usn_salvage_report}}{{rp|page=42}} and it was successfully recovered on April{{nbsp}}13. Of the {{convert|196726|lbs|kg|abbr=on}} of both SRB shells, {{convert|102500|lbs|kg|abbr=on}} was recovered, another {{convert|54000|lbs|kg|abbr=on}} was found but not recovered, and {{convert|40226|lbs|kg|abbr=on}} was never found.{{r|usn_salvage_report}}{{rp|page=44}}


On March 7, Air Force divers identified potential crew compartment debris, which was confirmed the next day by divers from the USS ''Preserver''.{{r|usn_salvage_report}}{{rp|page=51}}<ref name=msnbc_remains>{{cite web |url=https://www.nbcnews.com/id/wbna3078060 |title=Chapter 6: Raising heroes from the sea |publisher=NBC News |last=Barbree |first=Jay |date=January 25, 2004 |access-date=August 9, 2021 |archive-date=June 5, 2019 |archive-url=https://web.archive.org/web/20190605131432/http://www.nbcnews.com/id/3078060/ns/technology_and_science-space/t/chapter-raising-heroes-sea/ |url-status=live}}</ref> The damage to the crew compartment indicated that it had remained largely intact during the initial explosion but was extensively damaged when it impacted the ocean.{{r|rogers o}} The remains of the crew were badly damaged from impact and submersion, and were not intact bodies.<ref name=wp_remains>{{cite news |url=https://www.washingtonpost.com/wp-dyn/content/article/2006/01/25/AR2006012501455.html |title=Remains of Crew Of Shuttle Found |newspaper=The Washington Post |last=Isikoff |first=Michael |date=March 10, 1986 |access-date=August 9, 2021 |archive-date=February 11, 2021 |archive-url=https://web.archive.org/web/20210211023548/https://www.washingtonpost.com/wp-dyn/content/article/2006/01/25/AR2006012501455.html |url-status=live}}</ref> The USS ''Preserver'' made multiple trips to return debris and remains to port, and continued crew compartment recovery until April{{nbsp}}4.{{r|usn_salvage_report}}{{rp|page=51}} During the recovery of the remains of the crew, [[Gregory Jarvis|Jarvis's]] body floated away and was not located until April{{nbsp}}15, several weeks after the other remains had been positively identified.{{r|msnbc_remains}}<ref name="schmidt_recovery">{{cite web |last=Schmidt |first=William E. |title=All Shuttle Crew Remains Recovered, NASA Says |url=https://www.nytimes.com/1986/04/20/us/all-shuttle-crew-remains-recovered-nasa-says.html |url-status=live |work=The New York Times |date=April 20, 1986 |access-date=August 9, 2021 |archive-url=https://web.archive.org/web/20210715084809/https://www.nytimes.com/1986/04/20/us/all-shuttle-crew-remains-recovered-nasa-says.html |archive-date=July 15, 2021}}</ref> Once remains were brought to port, [[pathologists]] from the [[Armed Forces Institute of Pathology]] worked to identify the human remains, but could not determine the exact cause of death for any of them.{{r|wp_remains}}{{r|kerwin}} [[Medical examiner]]s in [[Brevard County, Florida|Brevard County]] disputed the legality of transferring human remains to US military officials to conduct autopsies, and refused to issue the [[death certificates]]; NASA officials ultimately released the death certificates of the crew members.<ref name="wp_autopsy">{{cite news |title=Shuttle Crew Said to Have Survived Blast |url=https://www.washingtonpost.com/archive/politics/1988/11/13/shuttle-crew-said-to-have-survived-blast/bd5281d0-1e05-417e-89bc-7ec64fa9477e/ |url-status=live |newspaper=The Washington Post |date=November 12, 1988 |access-date=August 11, 2021 |archive-url=https://web.archive.org/web/20200818031739/https://www.washingtonpost.com/archive/politics/1988/11/13/shuttle-crew-said-to-have-survived-blast/bd5281d0-1e05-417e-89bc-7ec64fa9477e/ |archive-date=August 18, 2020}}</ref>
==Aftermath==
{{wikisource|Ronald Reagan Announces the Challenger Disaster}}
[[Image:Reagan Challenger.jpg|thumb|left|upright|[[President of the United States|U.S. President]] [[Ronald Reagan]]'s [[Oval Office]] address to the nation after the shuttle disaster.]]


The IUS that would have been used to boost the orbit of the TDRS-B satellite was one of the first pieces of debris recovered.{{r|usn_salvage_report}}{{rp|page=51}} There was no indication that there had been premature ignition of the IUS, which had been one of the suspected causes for the disaster.{{r|rogers_com}}{{rp|page=50}} Debris from the three SSMEs was recovered from February{{nbsp}}14 to{{nbsp}}28,{{r|usn_salvage_report}}{{rp|page=51}} and post-recovery analysis produced results consistent with functional engines suddenly losing their LH2 fuel supply.{{r|rogers o}} Deepwater recovery operations continued until April{{nbsp}}29, with smaller scale, shallow recovery operations continuing until August{{nbsp}}29.{{r|usn_salvage_report}}{{rp|page=51}} On December 17, 1996, two pieces of the orbiter were found at [[Cocoa Beach, Florida|Cocoa Beach]].<ref name="cnn_debris">{{cite news |date=December 17, 1996 |title=Shuttle Challenger debris washes up on shore |url=http://www.cnn.com/TECH/9612/17/challenger.debris/index.html |url-status=live |archive-url=https://web.archive.org/web/20160806053827/http://www.cnn.com/TECH/9612/17/challenger.debris/index.html |archive-date=August 6, 2016 |access-date=July 15, 2021 |work=[[CNN]]}}</ref> On November 10, 2022, NASA announced that a {{convert|20|ft|m|adj=on|0}} piece of the shuttle had been found near the site of a destroyed World War II-era aircraft off the coast of Florida.<ref>{{cite news |title=Divers discover Challenger space shuttle debris |language=en-GB |publisher=[[BBC News]] |url=https://www.bbc.com/news/av/world-us-canada-63597343 |access-date=November 11, 2022 |archive-date=November 11, 2022 |archive-url=https://web.archive.org/web/20221111105450/https://www.bbc.com/news/av/world-us-canada-63597343 |url-status=live}}</ref><ref>{{cite web |last=Dunn |first=Marcia |title=Section of destroyed shuttle Challenger found on ocean floor |url=https://apnews.com/article/challenger-space-shuttle-found-in-ocean-064e47171452894d6494f142fea26126 |publisher=[[AP News]] |access-date=November 10, 2022 |date=November 10, 2022 |archive-date=November 10, 2022 |archive-url=https://web.archive.org/web/20221110170420/https://apnews.com/article/challenger-space-shuttle-found-in-ocean-064e47171452894d6494f142fea26126 |url-status=live}}</ref><ref>{{cite web |last=Bardan |first=Roxana |date=November 10, 2022 |title=NASA Views Images, Confirms Discovery of Shuttle Challenger Artifact |url=http://www.nasa.gov/feature/nasa-views-images-confirms-discovery-of-shuttle-challenger-artifact |access-date=November 11, 2022 |website=NASA |archive-date=November 11, 2022 |archive-url=https://web.archive.org/web/20221111005227/https://www.nasa.gov/feature/nasa-views-images-confirms-discovery-of-shuttle-challenger-artifact/ |url-status=live}}</ref><ref>{{cite news |last=Diaz |first=Jaclyn |title=A piece of the wrecked 1986 Challenger space shuttle was found off Florida's coast |url=https://www.npr.org/2022/11/11/1135806581/challenger-space-shuttle-piece-history-channel |access-date=November 13, 2022 |publisher=[[NPR]] |date=November 11, 2022 |archive-date=November 13, 2022 |archive-url=https://web.archive.org/web/20221113051344/https://www.npr.org/2022/11/11/1135806581/challenger-space-shuttle-piece-history-channel |url-status=live}}</ref><ref>{{cite news |last1=Evans |first1=Greg |title=Long-Missing Space Shuttle Challenger Wreckage Found On Ocean Floor By History Channel Filmmakers, Nasa Confirms |url=https://deadline.com/2022/11/space-shuttle-challenger-wreckage-nasa-history-channel-discovery-1235169282/ |access-date=November 13, 2022 |agency=[[Deadline Hollywood]] |date=November 10, 2022 |archive-date=November 13, 2022 |archive-url=https://web.archive.org/web/20221113145014/https://deadline.com/2022/11/space-shuttle-challenger-wreckage-nasa-history-channel-discovery-1235169282/ |url-status=live }}</ref> The discovery was aired on the [[History Channel]] on November 22, 2022.<ref>{{cite news |last1=Television |first1=Hearst |title=Artifact from Space Shuttle Challenger found on ocean floor, NASA confirms |url=https://www.chron.com/news/article/Artifact-from-Space-Shuttle-Challenger-found-on-17577508.php |access-date=November 13, 2022 |agency=[[Houston Chronicle]] |date=November 11, 2022 |archive-date=November 13, 2022 |archive-url=https://web.archive.org/web/20221113145010/https://www.chron.com/news/article/Artifact-from-Space-Shuttle-Challenger-found-on-17577508.php |url-status=live }}</ref> Almost all recovered non-organic debris from ''Challenger'' is buried in [[Cape Canaveral Space Force Station]] [[missile silo]]s at [[Cape Canaveral Launch Complex 31|LC-31]] and [[Cape Canaveral Launch Complex 32|LC-32]].<ref name="challenger_burial">{{cite web
===Tributes===
| last = Peralman
On the night of the disaster, [[President of the United States|President]] [[Ronald Reagan]] had been scheduled to give his annual [[State of the Union address]]. He initially announced that the address would go on as scheduled, but then postponed the State of the Union address for a week and instead gave a national address on the ''Challenger'' disaster from the [[Oval Office]] of the [[White House]]. It was written by [[Peggy Noonan]], and finished with the following statement, which quoted from the poem "High Flight" by [[John Gillespie Magee, Jr.]]:
| first = Robert Z.
| title = NASA Exhibits Space Shuttles ''Challenger'', ''Columbia'' Debris for First Time
| publisher = Space.com
| date = June 29, 2015
| url = https://www.space.com/29794-space-shuttles-challenger-columbia-debris-exhibit.html
| access-date = August 13, 2021
| archive-date = August 13, 2021
| archive-url = https://web.archive.org/web/20210813072633/https://www.space.com/29794-space-shuttles-challenger-columbia-debris-exhibit.html
| url-status = live
}}</ref>


=== Funeral ceremonies ===
{{Cquote|We will never forget them, nor the last time we saw them, this morning, as they prepared for their journey and waved goodbye and 'slipped the surly bonds of Earth' to 'touch the face of God.'<ref>Ronald Reagan Presidential Library, [http://www.reagan.utexas.edu/archives/speeches/1986/12886b.htm Address to the nation on the ''Challenger'' disaster.] Retrieved on July&nbsp;4,&nbsp;2006.</ref>}}
On April 29, 1986, the astronauts' remains were transferred on a [[Lockheed C-141 Starlifter|C-141 Starlifter]] aircraft from Kennedy Space Center to the military mortuary at [[Dover Air Force Base]] in [[Delaware]]. Their caskets were each draped with an American flag and carried past an [[Guard of honour|honor guard]] and followed by an astronaut escort.<ref name="nyt_remains_transfer">{{cite web
| last = Schmidt
| first = William E.
| title = Bodies of Astronauts Flown to Delaware
| work = The New York Times
| date = April 30, 1986
| url = https://www.nytimes.com/1986/04/30/us/bodies-of-astronauts-flown-to-delaware.html
| access-date = July 15, 2021
| archive-date = June 28, 2021
| archive-url = https://web.archive.org/web/20210628113529/https://www.nytimes.com/1986/04/30/us/bodies-of-astronauts-flown-to-delaware.html
| url-status = live
}}</ref> After the remains arrived at Dover Air Force Base, they were transferred to the families of the crew members.{{r|nyt_remains_transfer}} Scobee and Smith were buried at [[Arlington National Cemetery]].{{r|arlington_challenger}} Onizuka was buried at the [[National Memorial Cemetery of the Pacific]] in [[Honolulu]], Hawaii.<ref name=onizuka_burial>{{cite web
| title = National Memorial Cemetery of the Pacific
| work = National Cemetery Administration
| publisher = U.S. Department of Veterans Affairs
| date = April 23, 2021
| url = https://www.cem.va.gov/cems/nchp/nmcp.asp#np
| access-date = July 15, 2021
| archive-date = January 26, 2021
| archive-url = https://web.archive.org/web/20210126093940/https://www.cem.va.gov/cems/nchp/nmcp.asp#np
| url-status = live
}}</ref> McNair was buried in Rest Lawn Memorial Park in Lake City, South Carolina,<ref name="rest_lawn_nyt">{{cite web
| last = Clendinen
| first = Dudley
| title = Astronaut Buried in Caroline; 35-Year 'Mission' is Complete
| work = The New York Times
| date = May 18, 1986
| url = https://www.nytimes.com/1986/05/18/obituaries/astronaut-buried-in-carolina-35-year-mission-is-complete.html
| access-date = July 15, 2021
| archive-date = August 29, 2021
| archive-url = https://web.archive.org/web/20210829185236/https://www.nytimes.com/1986/05/18/obituaries/astronaut-buried-in-carolina-35-year-mission-is-complete.html
| url-status = live
}}</ref> but his remains were later moved within the town to the Dr. Ronald E. McNair Memorial Park.<ref name=discover_south_caroline>{{cite web
| title = Dr. Ronald E. McNair Memorial
| publisher = SC Department of Parks, Recreation and Tourism
| date = 2021
| url = https://discoversouthcarolina.com/products/26303
| access-date = July 15, 2021
| archive-date = July 1, 2021
| archive-url = https://web.archive.org/web/20210701054714/https://discoversouthcarolina.com/products/26303
| url-status = live
}}</ref><ref name=sc_picture_project>{{cite web
| title = Ronald E. McNair Memorial Park
| publisher = South Carolina Picture Project
| date = 2021
| url = https://www.scpictureproject.org/florence-county/ronald-e-mcnair-memorial-park.html
| access-date = July 15, 2021
| archive-date = July 1, 2021
| archive-url = https://web.archive.org/web/20210701205304/https://www.scpictureproject.org/florence-county/ronald-e-mcnair-memorial-park.html
| url-status = live
}}</ref> Resnik was cremated and her ashes were scattered over the water.<ref>{{cite web |title= Some Fear Learning How Loved Ones Died : Crew Discovery Upsets Shuttle Kin |work=Los Angeles Times|date=March 16, 1986 |url=https://www.latimes.com/archives/la-xpm-1986-03-16-mn-26573-story.html|access-date=February 11, 2024
}}</ref> McAuliffe was buried at Calvary Cemetery in [[Concord, New Hampshire]].<ref name=mcauliffe_burial>{{cite web
| title = McAuliffe's Grave on a Hillside Overlooks City Where She Taught
| work = The Los Angeles Times
| date = May 2, 1986
| url = https://www.latimes.com/archives/la-xpm-1986-05-02-mn-3074-story.html
| access-date = July 15, 2021
| url-access = subscription
| archive-date = July 15, 2021
| archive-url = https://web.archive.org/web/20210715080307/https://www.latimes.com/archives/la-xpm-1986-05-02-mn-3074-story.html
| url-status = live
}}</ref> Jarvis was cremated, and his ashes were scattered in the [[Pacific Ocean]].<ref name=jarvis_ashes>{{cite web
| title = Looking back: Greg Jarvis' dream remembered
| publisher = [[Daily Breeze]]
| date = January 28, 2011
| url = https://www.dailybreeze.com/2011/01/28/looking-back-greg-jarvis-dream-remembered/
| access-date = July 15, 2021
| archive-date = July 15, 2021
| archive-url = https://web.archive.org/web/20210715114956/https://www.dailybreeze.com/2011/01/28/looking-back-greg-jarvis-dream-remembered/
| url-status = live
}}</ref> Unidentified crew remains were buried at the Space Shuttle ''Challenger'' Memorial in Arlington on May 20, 1986.<ref name="arlington_challenger">{{cite web
| title = Space Shuttle Challenger Memorial
| publisher = Arlington National Cemetery
| date = 2021
| url = https://www.arlingtoncemetery.mil/Explore/Monuments-and-Memorials/Space-Shuttle-Challenger
| access-date = July 15, 2021
| archive-date = June 28, 2021
| archive-url = https://web.archive.org/web/20210628205941/https://www.arlingtoncemetery.mil/Explore/Monuments-and-Memorials/Space-Shuttle-Challenger
| url-status = live
}}</ref>


== Public response ==
[[Image:Reagans attend Challenger memorial service.jpg|thumb|right|January 31, 1986, [[Houston, Texas]], memorial service attended by [[Ronald Reagan]] and First Lady [[Nancy Reagan]] (left).]]


=== White House response ===
Three days later, Reagan and his wife [[Nancy Reagan|Nancy]] traveled to the [[Johnson Space Center]] to speak at a memorial service honoring the astronauts where he stated:{{Cquote|Sometimes, when we reach for the stars, we fall short. But we must pick ourselves up again and press on despite the pain.<ref>[http://www.chron.com/content/interactive/special/challenger/docs/eulogy.html A president's eulogy] Ronald Reagan, January&nbsp;31,&nbsp;1986</ref>}}
[[File:President Ronald Reagan's Speech on Space Shuttle Challenger, January 28, 1986.webm|thumb|President Ronald Reagan's Speech on Space Shuttle Challenger, January 28, 1986]]
It was attended by 6,000 NASA employees and 4,000 guests,<ref name="CWeeps">
[[President of the United States|President]] [[Ronald Reagan]] had been scheduled to give the [[1986 State of the Union Address]] on January{{nbsp}}28,{{nbsp}}1986, the evening of the ''Challenger'' disaster. After a discussion with his aides, Reagan postponed the State of the Union, and instead addressed the nation about the disaster from the [[Oval Office]].<ref>{{cite book|title=Words of a Century: The Top 100 American Speeches, 1900–1999 |first1=Stephen E. |last1=Lucas |first2=Martin J. |last2=Medhurst |isbn=978-0-19-516805-1 |year= 2008 |publisher=[[Oxford University Press]]}}</ref><ref>{{cite web | publisher=Ronald Reagan Presidential Library | url=https://www.reaganlibrary.gov/archives/speech/address-nation-explosion-space-shuttle-challenger | title= Address to the Nation on the Explosion of the Space Shuttle Challenger | date=January 28, 1986 | access-date=July 29, 2021 | archive-date=March 22, 2021 | archive-url=https://web.archive.org/web/20210322210340/https://www.reaganlibrary.gov/archives/speech/address-nation-explosion-space-shuttle-challenger | url-status=live }}</ref> On January{{nbsp}}31, Ronald and [[Nancy Reagan]] traveled to the Johnson Space Center to speak at a memorial service honoring the crew members. During the ceremony, an Air Force band sang "[[God Bless America]]" as NASA [[Northrop T-38 Talon|T-38 Talon]] jets flew directly over the scene in the traditional [[missing man formation|missing-man formation]].<ref name="BWeintraub">{{cite news |author=Weintraub |first=Bernard |date=February 1, 1986 |title=Reagan Pays Tribute to 'Our 7 Challenger Heroes' |url=https://www.nytimes.com/1986/02/01/us/reagan-pays-tribute-to-our-challenger-heroes.html |url-status=live |archive-url=https://web.archive.org/web/20170201045658/http://www.nytimes.com/1986/02/01/us/reagan-pays-tribute-to-our-challenger-heroes.html |archive-date=February 1, 2017 |access-date=February 12, 2017 |work=The New York Times |page=A1}}</ref>
"When a Community Weeps: Case Studies in Group Survivorship—Google Books Result" (page 29 of book), by Ellen Zinner,
Mary Beth Williams, 1999, Psychology Press, p.29, webpage:
[http://books.google.com/books?id=8DuhIv8U11oC&pg=PA29&lpg=PA29&dq=challenger+1986+%22missing+man+formation%22+%22god+bless+america%22&source=web&ots=L-aC6lrn5M&sig=XiS_yzne8-9VKbQU269tZlG0jTs Books-Google-ID-id=8DuhIv8U11oC&pg=PA29].
</ref><ref name="BWeintraub">
Bernard Weintraub, "Reagan Pays Tribute to 'Our 7 Challenger
Heroes'" (article), ''The New York Times'', 1-February-1986, page AI.
</ref>
as well as by the families of the crew.<ref>Jensen, Claus, ''No Downlink'', p. 17.</ref> During the ceremony, an Air Force band led the singing of "[[God Bless America]]" as NASA [[T-38 Talon]] jets flew directly over the scene, in the traditional [[missing man formation|missing-man formation]].<ref name=CWeeps/><ref name=BWeintraub/> All activities were broadcast live by the national television networks.<ref name=CWeeps/>


[[File:President Ronald Reagan and Nancy Reagan and families of the "Challenger" victims at the memorial service for the space shuttle crew in Houston Texas.jpg|thumb|President Reagan and [[First Lady of the United States|First Lady]] Nancy Reagan (left) at the memorial service on January 31, 1986|alt=A group of spectators at a funeral]]
===Recovery of debris===
<!-- "Urban Search and Rescue Ohio Task Force 1" links here -->


Soon after the disaster, US politicians expressed concern that White House officials, including [[White House Chief of Staff|Chief of Staff]] [[Donald Regan]] and [[White House Communications Director|Communications Director]] [[Pat Buchanan]], had pressured NASA to launch ''Challenger'' before the scheduled January 28 State of the Union address, because Reagan had planned to mention the launch in his remarks.<ref name="nyt_sotu">{{cite web |last=Boyd |first=Gerald M. |title=White House Finds no Pressure to Launch |url=https://www.nytimes.com/1986/04/04/us/white-house-finds-no-pressure-to-launch.html |url-status=live |work=The New York Times |date=April 4, 1986 |access-date=August 11, 2021 |archive-url=https://web.archive.org/web/20210811120627/https://www.nytimes.com/1986/04/04/us/white-house-finds-no-pressure-to-launch.html |archive-date=August 11, 2021}}</ref><ref name=":1">{{cite web |last=Hunt |first=Terence |title=NASA Suggested Reagan Hail Challenger Mission in State of Union |url=https://apnews.com/00a395472559b3afcd22de473da2e65f |url-status=live |publisher=Associated Press |date=March 13, 1986 |access-date=August 24, 2021 |archive-url=https://web.archive.org/web/20210830132858/https://apnews.com/00a395472559b3afcd22de473da2e65f |archive-date=August 30, 2021}}</ref> In March 1986, the White House released a copy of the original State of the Union speech. In that speech, Reagan had intended to mention an [[X-ray]] experiment launched on ''Challenger'' and designed by a guest he had invited to the address, but he did not further discuss the ''Challenger'' launch.<ref name=":1" /><ref>{{cite book|url=https://books.google.com/books?id=Ith7DwAAQBAJ&pg=PA283|title=Ronald Reagan and the Space Frontier|last=Logsdon|first=John M.|year=2018 |publisher=Springer|isbn=978-3-319-98962-4|pages=283|access-date=November 21, 2020|archive-date=February 4, 2021|archive-url=https://web.archive.org/web/20210204125449/https://books.google.com/books?id=Ith7DwAAQBAJ&pg=PA283|url-status=live}}</ref> In the rescheduled State of the Union address on February 4, Reagan mentioned the deceased ''Challenger'' crew members and modified his remarks about the X-ray experiment as "launched and lost".<ref name="1986_sotu_transcript">{{cite web|url=https://www.reaganlibrary.gov/archives/speech/address-joint-session-congress-state-union-1986|title=Address Before a Joint Session of Congress on the State of the Union – 1986|access-date=July 19, 2021|date=February 4, 1986|last=Reagan|first=Ronald|author-link=Ronald Reagan|publisher=Ronald Reagan Presidential Library & Museum|archive-date=July 19, 2021|archive-url=https://web.archive.org/web/20210719065002/https://www.reaganlibrary.gov/archives/speech/address-joint-session-congress-state-union-1986|url-status=live}}</ref> In April{{nbsp}}1986, the White House released a report that concluded there had been no pressure from the White House for NASA to launch ''Challenger'' prior to the State of the Union.{{r|nyt_sotu}}
[[File:STS-51-L Recovered Debris (Burn Marks on the SRM) - GPN-2004-00004.jpg|thumb|right|Recovered right solid rocket booster showing the hole caused by the plume.]]
In the first minutes after the accident, recovery efforts were begun by NASA's Launch Recovery Director, who ordered the ships used by NASA for recovery of the solid rocket boosters to be sent to the location of the water impact. [[Search and rescue]] aircraft were also dispatched. At this stage, however, debris was still falling, and the [[Range Safety Officer]] (RSO) held both aircraft and ships out of the impact area until it was considered safe for them to enter. It was about an hour until the RSO allowed the recovery forces to begin their work.<ref name="rogers o">{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 3, Appendix O: NASA Search, Recovery and Reconstruction Task Force Team Report| year=1986| url=http://history.nasa.gov/rogersrep/v3appo.htm | accessdate =October 11, 2007}}</ref>


=== Media coverage ===
The search and rescue operations that took place in the first week after the ''Challenger'' accident were managed by the [[United States Department of Defense|Department of Defense]] on behalf of NASA, with assistance from the [[United States Coast Guard]], and mostly involved surface searches. According to the Coast Guard, "the operation was the largest surface search in which they had participated."<ref name="rogers o"/> This phase of operations lasted until February 7. Thereafter, recovery efforts were managed by a Search, Recovery, and Reconstruction team; its aim was to [[marine salvage|salvage]] debris that would help in determining the cause of the accident. [[Sonar]], divers, remotely operated [[submersible]]s and manned submersibles were all used during the search, which covered an area of {{convert|480|nmi|km}}, and took place at depths of up to {{convert|370|m|ft}}. On March 7, divers from the [[USS Preserver (ARS-8)|USS ''Preserver'']] identified what might be the crew compartment on the ocean floor.<ref name=wp_remains>{{cite news | url=http://www.washingtonpost.com/wp-dyn/content/article/2006/01/25/AR2006012501455.html | title=Remains of Crew Of Shuttle Found |work=The Washington Post | last=Isikoff | first=Michael | date=March 10, 1986 | accessdate=March 5, 2009}}</ref><ref name=msnbc_remains>{{cite web | url=http://www.msnbc.msn.com/id/3078060/ns/technology_and_science-space | title=Chapter 6: Raising heroes from the sea|publisher=MSNBC | last=Barbree
Nationally televised live coverage of the launch and explosion was provided by [[CNN]].<ref name="cnn_coverage">{{cite web
| first=Jay | date=January, 1997 | accessdate=July 29, 2009}}</ref> The finding, along with discovery of the remains of all seven crew members, was confirmed the next day and on March 9, NASA announced the finding to the press.<ref name=finding>{{cite web|url=http://dailyperspective.newspaperarchive.com/history/2008-12-31/divers-locate-crew-compartment-challenger | title=Divers locate crew compartment of the Challenger | work=The Chronicle-Telegram | date=March 10, 1986 |accessdate=March 5, 2009}}</ref>
| last = Escobedo
| first = Tricia
| title = When a national disaster unfolded live in 1986
| publisher = CNN
| date = March 31, 2016
| url = https://edition.cnn.com/2016/03/31/us/80s-cnn-challenger-coverage/index.html
| access-date = August 27, 2021
| archive-date = August 27, 2021
| archive-url = https://web.archive.org/web/20210827110908/https://edition.cnn.com/2016/03/31/us/80s-cnn-challenger-coverage/index.html
| url-status = live
}}</ref> To promote the Teacher in Space program with McAuliffe as a crewmember, NASA had arranged for many students in the US to view the launch live at school with their teachers.{{r|cnn_coverage}}<ref name="children">{{cite journal |last=Wright |first=John C. |author2=Kunkel |first2=Dale |author3=Pinon |first3=Marites |author4=Huston |first4=Aletha C. |date=Spring 1989 |title=How Children Reacted to Televised Coverage of the Space Shuttle Disaster |journal=Journal of Communication |publisher=International Communication Association |volume=39 |issue=2 |page=27 |doi=10.1111/j.1460-2466.1989.tb01027.x}}</ref> Other networks, such as [[CBS News|CBS]], soon cut in to their affiliate feeds to broadcast continuous coverage of the disaster and its aftermath.<ref name="SpaceflightNowHarwood">{{cite web |last1=Harwood |first1=William |title=Reporters remember Challenger coverage |url=https://spaceflightnow.com/2016/01/27/reporters-remember-challenger-coverage/ |website=Spaceflight Now |access-date=July 22, 2024 |date=January 27, 2016 |archive-url=https://web.archive.org/web/20240303093434/https://spaceflightnow.com/2016/01/27/reporters-remember-challenger-coverage/ |archive-date=March 3, 2024 |url-status=live}}</ref> Press interest in the disaster increased in the following days; the number of reporters at KSC increased from 535 on the day of the launch to 1,467 reporters three days later.<ref name="harwood 6" /> In the aftermath of the accident, NASA was criticized for not making key personnel available to the press.<ref>{{cite news| last = Reinhold| first = Robert| title = The Shuttle Explosion; At Mission Control, Silence and Grief Fill a Day Of Horror Long Dreaded| work = The New York Times| access-date = July 19, 2021| date = January 29, 1986| url = https://www.nytimes.com/1986/01/29/us/shuttle-explosion-mission-control-silence-grief-fill-day-horror-long-dreaded.html| archive-date = June 9, 2021| archive-url = https://web.archive.org/web/20210609232134/https://www.nytimes.com/1986/01/29/us/shuttle-explosion-mission-control-silence-grief-fill-day-horror-long-dreaded.html| url-status = live}}</ref> In the absence of information, the press published articles suggesting the external tank was the cause of the explosion.<ref name="harwood 6">{{cite news | last = Harwood | first = William | title = Voyage into History; Chapter Six: The Reaction | year = 1986 | url = http://www.cbsnews.com/network/news/space/51Lchap6reaction.html |archive-url = https://web.archive.org/web/20060504192714/http://www.cbsnews.com/network/news/space/51Lchap6reaction.html |archive-date=May 4, 2006}} Archived by the Internet Archive on May 4, 2006.</ref><ref name="nytimes_et">{{cite web
| last = Browne
| first = Malcolm W.
| title = How could it happen? Fuel Tank Leak Feared
| work = The New York Times
| date = January 29, 1986
| url = https://www.nytimes.com/1986/01/29/us/how-could-it-happen-fuel-tank-leak-feared.html
| access-date = August 30, 2021
| archive-date = August 30, 2021
| archive-url = https://web.archive.org/web/20210830092242/https://www.nytimes.com/1986/01/29/us/how-could-it-happen-fuel-tank-leak-feared.html
| url-status = live
}}</ref> Until 2010, CNN's live broadcast of the launch and disaster was the only known on-location video footage from within range of the launch site. Additional amateur and professional recordings have since become publicly available.<ref>{{cite web |url = http://www.huffingtonpost.com/2014/01/28/space-shuttle-challenger-home-video_n_4677745.html |title = Challenger Disaster Home Video Surfaces After 28 Years |date = January 28, 2014 |first = Timothy |last = Stevonec |work = The Huffington Post |access-date = September 12, 2021 |archive-date = February 1, 2017 |archive-url = https://web.archive.org/web/20170201011159/http://www.huffingtonpost.com/2014/01/28/space-shuttle-challenger-home-video_n_4677745.html |url-status = live }}</ref><ref>{{cite web |url = http://www.huffingtonpost.com/2012/05/01/new-challenger-video-space-shuttle-footage_n_1463495.html |title = New Challenger Video: Rare Footage Of 1986 Disaster Uncovered |date = May 1, 2012 |first = Timothy |last = Stevonec |work = The Huffington Post |access-date = September 12, 2021 |archive-date = December 23, 2018 |archive-url = https://web.archive.org/web/20181223085259/https://www.huffingtonpost.com/2012/05/01/new-challenger-video-space-shuttle-footage_n_1463495.html |url-status = live }}</ref><ref>{{cite web|url = https://www.theguardian.com/science/2010/feb/04/challenger-space-shuttle-video-discovered|title = Challenger space shuttle disaster amateur video discovered|first = Richard|last = Luscombe|date = February 4, 2010|work = The Guardian|access-date = September 12, 2021|archive-date = July 12, 2021|archive-url = https://web.archive.org/web/20210712074115/https://www.theguardian.com/science/2010/feb/04/challenger-space-shuttle-video-discovered|url-status = live}}</ref>


=== Engineering case study ===
The ''Challenger'' accident has been used as a case study for subjects such as [[safety engineering|engineering safety]], the ethics of [[Whistleblower|whistleblowing]], communications and group decision-making, and the dangers of [[groupthink]].<ref name="boisjoly_ethics_paper">{{cite journal
| last1 = Boisjoly
| first1 = Russell P.
| last2 = Curtis
| first2 = Ellen Foster
| last3 = Mellican
| first3 = Eugene
| title = Roger Boisjoly and the Challenger Disaster: The Ethical Dimensions
| date = April 1989
| url = https://www.jstor.org/stable/25071892
| journal = Journal of Business Ethics
| publisher = Springer
| volume = 8
| issue = 4
| pages = 217–230
| doi = 10.1007/BF00383335
| jstor = 25071892
| s2cid = 144135586
| access-date = August 27, 2021
| archive-date = August 27, 2021
| archive-url = https://web.archive.org/web/20210827103035/https://www.jstor.org/stable/25071892
| url-status = live
}}</ref> Roger Boisjoly and Allan McDonald became speakers who advocated for responsible workplace decision making and engineering ethics.{{r|berkes20120206}}<ref name="mcdonald_npr_obit">{{cite web
| last = Berkes
| first = Howard
| title = Remembering Allan McDonald: He Refused To Approve Challenger Launch, Exposed Cover-Up
| work = Obituaries
| publisher = National Public Radio
| date = March 7, 2021
| url = https://www.npr.org/2021/03/07/974534021/remembering-allan-mcdonald-he-refused-to-approve-challenger-launch-exposed-cover
| access-date = August 27, 2021
| archive-date = August 2, 2021
| archive-url = https://web.archive.org/web/20210802223416/https://www.npr.org/2021/03/07/974534021/remembering-allan-mcdonald-he-refused-to-approve-challenger-launch-exposed-cover
| url-status = live
}}</ref> Information designer [[Edward Tufte]] has argued that the ''Challenger'' accident was the result of poor communications and overly complicated explanations on the part of engineers, and stated that showing the correlation of ambient air temperature and O-ring erosion amounts would have been sufficient to communicate the potential dangers of the cold-weather launch. Boisjoly contested this assertion and stated that the data presented by Tufte were not as simple or available as Tufte stated.<ref name=WadeNAE96>{{cite journal |last1=Robison |first1=Wade |last2=Boisjoly |first2=Roger |last3=Hoeker |first3=David |last4=Young |first4=Stefan |name-list-style=amp |year=2002 |title=Representation and Misrepresentation: Tufte and the Morton Thiokol Engineers on the Challenger |journal=Science and Engineering Ethics |volume=8 |issue=1 |pages=59–81 |url=https://people.rit.edu/wlrgsh/FINRobison.pdf |access-date=July 12, 2021 |doi=10.1007/s11948-002-0033-2 |pmid=11840958 |s2cid=19219936 |archive-date=August 23, 2021 |archive-url=https://web.archive.org/web/20210823015842/https://people.rit.edu/wlrgsh/FINRobison.pdf |url-status=live }}</ref>


== Reports ==
By 1 May, enough of the right solid rocket booster had been recovered to determine the original cause of the accident, and the major salvage operations were concluded. While some shallow-water recovery efforts continued, this was unconnected with the accident investigation; it aimed to recover debris for use in NASA's studies of the properties of materials used in spacecraft and launch vehicles.<ref name="rogers o"/> The recovery operation was able to pull {{convert|15|ST}} of debris from the ocean; 55% of ''Challenger'', 5% of the crew cabin and 65% of the satellite cargo is still missing.<ref name="FamousPictures">{{cite web | year = 2007 | url = http://www.famouspictures.org/mag/index.php?title=Challenger| title = Famous Pictures Magazine—Challenger| publisher=Famous Pictures Magazine| accessdate =July 19, 2007 | last= Lucas, Dean}}</ref> Some of the missing debris still washes up on Florida shores, such as on December 17, 1996, nearly 11 years after the incident, when two large pieces of the shuttle were found at [[Cocoa Beach, Florida|Cocoa Beach]].<ref>CNN.com (1996), [http://www.cnn.com/TECH/9612/17/challenger.debris/index.html Shuttle ''Challenger'' debris washes up on shore.] Retrieved on July 4, 2006.</ref> Under {{USC|18|641}} it is against the law to be in possession of ''Challenger'' debris, and any newly discovered pieces must be turned in to NASA.<ref name="collectSpace">{{cite web | year = 2007 | url = http://www.collectspace.com/news/news-070501a.html| title = Seller admits to ''Challenger'' debris fraud| publisher=collectSpace.com| accessdate =July 19, 2007 | last=collectSpace.com }}</ref> All debris is currently maintained in a sealed former underground missile silo at [[Cape Canaveral Air Force Station Launch Complex 31]].
=== Rogers Commission Report ===
{{Main|Rogers Commission Report}}
The Presidential Commission on the Space Shuttle ''Challenger'' Accident, also known as the Rogers Commission after its chairman, was formed on February{{nbsp}}6.{{r|rogers_com}}{{rp|page=206}} Its members were Chairman [[William P. Rogers]], Vice Chairman [[Neil Armstrong]], [[David Campion Acheson|David Acheson]], [[Eugene E. Covert|Eugene Covert]], [[Richard Feynman]], Robert Hotz, [[Donald J. Kutyna|Donald Kutyna]], [[Sally Ride]], Robert Rummel, [[Joe Sutter|Joseph Sutter]], [[Arthur B. C. Walker Jr.|Arthur Walker]], Albert Wheelon, and [[Chuck Yeager]].{{r|rogers_com}}{{rp|pages=iii-iv}}


The commission held hearings that discussed the NASA accident investigation, the Space Shuttle program, and the Morton Thiokol recommendation to launch despite O-ring safety issues. On February{{nbsp}}15, Rogers released a statement that established the commission's changing role to investigate the accident independent of NASA due to concerns of the failures of the internal processes at NASA. The commission created four investigative panels to research the different aspects of the mission. The Accident Analysis Panel, chaired by Kutyna, used data from salvage operations and testing to determine the exact cause behind the accident. The Development and Production Panel, chaired by Sutter, investigated the hardware contractors and how they interacted with NASA. The Pre-Launch Activities Panel, chaired by Acheson, focused on the final assembly processes and pre-launch activities conducted at KSC. The Mission Planning and Operations Panel, chaired by Ride, investigated the planning that went into mission development, along with potential concerns over crew safety and pressure to adhere to a schedule. Over a period of four months, the commission interviewed over 160 individuals, held at least 35 investigative sessions, and involved more than 6,000 NASA employees, contractors, and support personnel.{{r|rogers_com}}{{rp|pages=206−208}} The commission published its report on June 6, 1986.{{r|rogers_com}}{{rp|pages=iii-iv}}
On board ''Challenger'' was an American flag, dubbed the [[Challenger flag]], that was sponsored by [[Scouting in Colorado|Boy Scout]] Troop 514 of [[Monument, Colorado]]. It was recovered intact, still sealed in its plastic container.<ref>{{cite web|url=http://www.techrepublic.com/article/geek-trivia-rising-from-the-ashes/6030167 |title=Rising from the ashes|last=Garmon|first=Jay |date=January 24, 2006|publisher=Tech Republic}}</ref>
[[File:Rogers Commission members arrive at Kennedy Space Center.jpg|thumb|Members of the [[Rogers Commission]] arrive at [[Kennedy Space Center]]|alt=Black-and-white photo of a group of individuals at the Kennedy Space Center with the rocket garden behind them]]


The commission determined that the cause of the accident was hot gas blowing past the O-rings in the field joint on the right SRB, and found no other potential causes for the disaster.{{r|rogers_com}}{{rp|page=71}} It attributed the accident to a faulty design of the field joint that was unacceptably sensitive to changes in temperature, dynamic loading, and the character of its materials.{{r|rogers_com}}{{rp|page=71}} The report was critical of NASA and Morton Thiokol, and emphasized that both organizations had overlooked evidence that indicated the potential danger with the SRB field joints. It noted that NASA accepted the risk of O-ring erosion without evaluating how it could potentially affect the safety of a mission.{{r|rogers_com}}{{rp|page=149}} The commission concluded that the safety culture and management structure at NASA were insufficient to properly report, analyze, and prevent flight issues.{{r|rogers_com}}{{rp|page=162}} It stated that the pressure to increase the rate of flights negatively affected the amount of training, quality control, and repair work that was available for each mission.{{r|rogers_com}}{{rp|page=177}}
===Funeral ceremonies===
[[Image:Challenger crew hearses.jpg|thumb|left|The remains of the ''Challenger'' crew are transferred to a [[C-141]] at the NASA KSC [[Shuttle Landing Facility]], bound for [[Dover Air Force Base]], Delaware.]]


The commission published a series of recommendations to improve the safety of the Space Shuttle program. It proposed a redesign of the joints in the SRB that would prevent gas from blowing past the O-rings. It also recommended that the program's management be restructured to keep project managers from being pressured to adhere to unsafe organizational deadlines, and should include astronauts to address crew safety concerns better. It proposed that an office for safety be established reporting directly to the NASA administrator to oversee all safety, reliability, and quality assurance functions in NASA programs. Additionally, the commission addressed issues with overall safety and maintenance for the orbiter, and it recommended the addition of the means for the crew to escape during controlled gliding flight.{{r|rogers_com}}{{rp|pages=198–200}}
The remains of the crew that were identifiable were returned to their families on April 29, 1986. Two of the crew members, [[Dick Scobee]] and posthumously promoted Capt. [[Michael J. Smith (astronaut)|Michael J. Smith]], were buried by their families at [[Arlington National Cemetery]] at individual grave sites. Mission Specialist Lt Col [[Ellison Onizuka]] was buried at the [[National Memorial Cemetery of the Pacific]] in [[Honolulu]], Hawaii. Unidentified crew remains were buried communally at the Space Shuttle ''Challenger'' Memorial in Arlington on 20 May 1986.<ref>{{cite web|url=http://www.arlingtoncemetery.net/challengr.htm|title=The Shuttle Challenger Memorial, Arlington National Cemetery.|accessdate=September 18, 2006}}</ref>


During a televised hearing on February{{nbsp}}11, Feynman demonstrated the loss of rubber's elasticity in cold temperatures using a glass of cold water and a piece of rubber, for which he received media attention. Feynman, a [[Nobel Prize]]-winning physicist, advocated for harsher criticism towards NASA in the report and repeatedly disagreed with Rogers. He threatened to remove his name from the report unless it included his personal observations on reliability, which appeared as Appendix F.<ref name="feynman_nyt">{{cite web
===NASA crisis===
| last = Boffrey
{{Double image|right|GOES G Spac0244.jpg|100|GOES G ends Spac0243.jpg|124|The launch attempt of the Delta 3914 carrying the GOES-G, ends in failure 71 seconds later, May 3, 1986}}
| first = Philip M.
NASA began facing troubles with their own Titan rocket and Delta rocket programs, due to other unexpected rocket failures occurring, before and after the Challenger disaster. On August 28, 1985 a [[Titan 34D]] carrying a [[KH-11 KENNAN]] satellite exploded after liftoff over [[Vandenberg Air Force Base]], when the first stage propellant motor failed, it was the first failure of a Titan missile since 1978. On April 8, 1986 another Titan 34D carrying a [[KH-9 Hexagon|Big Bird spy satellite]] exploded after liftoff over Vandenberg AFB, when a burnthrough occurred on one of the rocket boosters.Then on May 3 a [[Delta 3000|Delta 3914]] carrying the [[GOES-G|GOES-G weather satellite]] exploded 71 seconds after liftoff over [[Cape Canaveral Air Force Station]] when an electrical malfunction on the Delta's first stage caused controllers on the ground deciding to destroy the rocket, just as a few of the rocket's boosters were jettisoned. as a result of these three failures NASA decided to cancel all Titan and Delta launches from Cape Canaveral and Vandenberg for a four months, until the problem in the rockets' design were solved.
| title = Amid Disputes, Shuttle Panel Finally Forged an Agreement
| work = The New York Times
| date = June 7, 1986
| url = https://www.nytimes.com/1986/06/07/us/amid-disputes-shuttle-panel-finally-forged-an-agreement.html
| access-date = August 24, 2021
| archive-date = August 24, 2021
| archive-url = https://web.archive.org/web/20210824111359/https://www.nytimes.com/1986/06/07/us/amid-disputes-shuttle-panel-finally-forged-an-agreement.html
| url-status = live
}}</ref><ref name="appendixF">{{cite book|url=https://history.nasa.gov/rogersrep/v2appf.htm|title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident|publisher=[[NASA]]|volume=2|location=Appendix F|date=June 6, 1986|chapter=Personal Observations on Reliability of Shuttle|last=Feynman|first=R.P.|access-date=August 26, 2021|archive-date=May 5, 2019|archive-url=https://web.archive.org/web/20190505212635/https://history.nasa.gov/rogersrep/v2appf.htm|url-status=live}}</ref> In the appendix, he lauded the engineering and software accomplishments in the program's development, but he argued that multiple components, including the avionics and SSMEs in addition to the SRBs, were more dangerous and accident-prone than original NASA estimates had indicated.{{r|appendixF}}<ref name="feynman_physics_today">{{cite web
| last = Feynman
| first = Richard P.
| author-link = Richard Feynman
| title = An Outsider's Inside View of the Challenger Inquiry
| publisher = Physics Today
| date = February 1988
| url = https://authors.library.caltech.edu/51304/1/challenger.pdf
| access-date = August 26, 2021
| archive-date = August 17, 2021
| archive-url = https://web.archive.org/web/20210817022920/https://authors.library.caltech.edu/51304/1/challenger.pdf
| url-status = live
}}</ref>


=== US House Committee report ===
==Investigation==
The [[United States House Committee on Science|US House Committee on Science and Technology]] conducted an investigation of the ''Challenger'' disaster and released a report on October{{nbsp}}29, 1986.<ref name="House Committee">{{cite web |author= |date=October 29, 1986 |title=Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives |url=https://www.govinfo.gov/content/pkg/GPO-CRPT-99hrpt1016/pdf/GPO-CRPT-99hrpt1016.pdf |url-status=live |archive-url=https://web.archive.org/web/20210813110313/https://www.govinfo.gov/content/pkg/GPO-CRPT-99hrpt1016/pdf/GPO-CRPT-99hrpt1016.pdf |archive-date=August 13, 2021 |access-date=August 26, 2021 |publisher=US House Committee on Science and Technology |publication-place=US Government Printing Office}}</ref>{{rp|page=i}} The committee, which had authorized the funding for the Space Shuttle program, reviewed the findings of the Rogers Commission as part of its investigation. The committee agreed with the Rogers Commission that the failed SRB field joint was the cause of the accident, and that NASA and Morton Thiokol failed to act despite numerous warnings of the potential dangers of the SRB. The committee's report further emphasized safety considerations of other components and recommended a risk management review for all critical systems.{{r|House Committee}}{{rp|pages=2–5}}
In the aftermath of the accident, NASA was criticized for its lack of openness with the press. ''The New York Times'' noted on the day after the accident that "neither Jay Greene, flight director for the ascent, nor any other person in the control room, was made available to the press by the space agency".<ref>{{cite news | last = Reinhold| first = Robert| title = At Mission Control, Silence and Grief Fill a Day Long Dreaded|work=The New York Times | pages = A8| date = January 29, 1986 }}</ref> In the absence of reliable sources, the press turned to speculation; both ''[[The New York Times]]'' and [[United Press International]] ran stories suggesting that a fault with the [[space shuttle external tank]] had caused the accident, despite the fact that NASA's internal investigation had quickly focused in on the solid rocket boosters.<ref name="harwood 6">{{cite news | last = Harwood | first = William | title = Voyage Into History; Chapter Six: The Reaction | year = 1986 | url = http://www.cbsnews.com/network/news/space/51Lchap6reaction.html |archiveurl = http://web.archive.org/web/20060504192714/http://www.cbsnews.com/network/news/space/51Lchap6reaction.html |archivedate = May 4, 2006}} Archived by the Internet Archive on May 4, 2006.</ref><ref>See, for example, ''New Orleans Times-Picayune'', January 29, 1986, p. 1.</ref> "The space agency," wrote space reporter William Harwood, "stuck to its policy of strict secrecy about the details of the investigation, an uncharacteristic stance for an agency that long prided itself on openness."<ref name="harwood 6"/>


== NASA response ==
===Rogers Commission===
=== SRB redesign ===
{{main|Rogers Commission Report}}
In response to the commission's recommendation, NASA initiated a redesign of the SRB, later named the redesigned solid rocket motor (RSRM), which was supervised by an independent oversight group.{{r|rogers_com}}{{rp|page=198}}{{r|jenkins2016}}{{rp|page=III-101}}<ref name="implementation report">{{cite web|title = Report to the President: Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident|publisher = NASA|date = July 14, 1986|url = https://history.nasa.gov/rogersrep/actions.pdf|access-date = July 19, 2021|archive-date = February 24, 2021|archive-url = https://web.archive.org/web/20210224225122/https://history.nasa.gov/rogersrep/actions.pdf|url-status = live}}</ref> The redesigned joint included a capture feature on the tang around the interior wall of the clevis to prevent joint rotation. The space between the capture feature and the clevis was sealed with another O-ring. The capture feature reduced the potential of joint rotation to 15% of that which had occurred during the disaster. Should joint rotation occur, any rotation that reduced the O-ring seal on one side of the clevis wall would increase it on the other side. Additionally, heaters were installed to maintain consistent, higher temperatures of the O-rings.{{r|mcdonald}}{{rp|pages=429–430}} The RSRM was first tested on August 30, 1987. In April and August 1988, the RSRM was tested with intentional flaws that allowed hot gas to penetrate the field joint. These tests permitted the engineers to evaluate whether the improved field joint prevented joint rotation. Following the successful tests, the RSRM was certified to fly on the Space Shuttle.{{r|jenkins2016}}{{rp|page=III-101}}
[[File:Zlacze miedzysegmentowe rakiety SRB promu kosmicznego.jpg|right|thumb|Simplified cross section of the joints between rocket segments [[Solid rocket booster|SRB]]. Legend:<br> A - steel wall thickness 12.7 mm,<br> B - base O-ring gasket,<br> C - backup O-ring gasket,<br> D - Strengthening-Cover band,<br> E - insulation,<br> F - insulation,<br> G - carpeting,<br> H - sealing paste,<br> I - fixed propellant]]
The '''Presidential Commission on the Space Shuttle ''Challenger'' Accident''', also known as the Rogers Commission (after its chairman), was formed to investigate the disaster. The commission members were Chairman [[William P. Rogers]], Vice Chairman [[Neil Armstrong]], [[David Acheson]], [[Eugene Covert]], [[Richard Feynman]], Robert Hotz, [[Donald Kutyna]], [[Sally Ride]], Robert Rummel, [[Joe Sutter|Joseph Sutter]], [[Arthur B. C. Walker, Jr.|Arthur Walker]], Albert Wheelon, and [[Chuck Yeager]]. The commission worked for several months and published a report of its findings. It found that the ''Challenger'' accident was caused by a failure in the O-rings sealing a joint on the right solid rocket booster, which allowed pressurized hot gases and eventually flame to "blow by" the O-ring and make contact with the adjacent [[Space Shuttle external tank|external tank]], causing structural failure. The failure of the O-rings was attributed to a faulty design, whose performance could be too easily compromised by factors including the low temperature on the day of launch.<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 4, page 72| year=1986| url=http://history.nasa.gov/rogersrep/v1ch4.htm| accessdate=2011-07-12}}</ref>
[[File:Members of the Rogers Commission arrive at KSC - GPN-2004-00032.jpg|thumb|left|Members of the [[Rogers Commission]] arrive at [[Kennedy Space Center]].]]


=== Space Shuttle modifications ===
More broadly, the report also considered the contributing causes of the accident. Most salient was the failure of both NASA and Morton Thiokol to respond adequately to the danger posed by the deficient joint design. Rather than redesigning the joint, they came to define the problem as an acceptable flight risk. The report found that managers at Marshall had known about the flawed design since 1977, but never discussed the problem outside their reporting channels with Thiokol—a flagrant violation of NASA regulations. Even when it became more apparent how serious the flaw was, no one at Marshall considered grounding the shuttles until a fix could be implemented. On the contrary, Marshall managers went as far as to issue and waive six launch constraints related to the O-rings.<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 6, page 148| year=1986| url=http://history.nasa.gov/rogersrep/v1ch6.htm| accessdate=2011-07-12}}</ref> The report also strongly criticized the decision making process that led to the launch of ''Challenger'', saying that it was seriously flawed.<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 5, page 104| year=1986| url=http://history.nasa.gov/rogersrep/v1ch5.htm|accessdate=2011-07-12}}</ref>
In addition to the SRBs, NASA increased the safety standards on other Space Shuttle program components. The critical items lists and failure modes for the SSMEs were updated, along with 18 hardware changes. The maximum thrust of the SSMEs was limited to 104%, with 109% only allowed in an abort scenario.{{r|jenkins2016}}{{rp|page=II-172}} The landing gear was updated to improve its steering and handling abilities while the Space Shuttle was landing.{{r|jenkins2016}}{{rp|page=III-101}} NASA implemented an escape option in which the astronauts would jettison the side hatch and extend a pole out of the orbiter; they would slide down the pole to avoid hitting the orbiter as bailed out before they activated their [[parachutes]]. The orbiter's software was modified to maintain stable flight while all of the flight crew left the controls to escape.{{r|jenkins2016}}{{rp|page=III-103}} This escape method would not have saved the crew in the ''Challenger'' disaster, but was added in the event of another emergency.{{r|jenkins2016}}{{rp|page=III-102}}


=== Safety office ===
{{Cquote|...failures in communication... resulted in a decision to launch 51-L based on incomplete and sometimes misleading information, a conflict between engineering data and management judgments, and a NASA management structure that permitted internal flight safety problems to bypass key Shuttle managers.<ref>{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident, Volume 1, chapter 5, page 82| year=1986| url=http://history.nasa.gov/rogersrep/v1ch5.htm|accessdate=2011-07-12}}</ref>}}
In 1986 NASA created a new Office of Safety, Reliability, and Quality Assurance, headed by a NASA associate administrator who reported directly to the NASA administrator, as the commission had specified.{{r|rogers_com}}{{rp|page=199}}{{r|recommendation_7}}<ref name="nasa_implementation">{{cite web
| title = NASA's Actions to Implement the Rogers Commission Recommendations after the Challenger Accident
| publisher = NASA
| date = July 18, 2000
| url = https://www.hq.nasa.gov/office/pao/History/actions.html
| access-date = September 2, 2021
| archive-date = March 5, 2021
| archive-url = https://web.archive.org/web/20210305171248/https://www.hq.nasa.gov/office/pao/History/actions.html
| url-status = live
}}</ref><ref>{{Cite web |last=Harwood |first=William |date=July 8, 1986 |title=NASA safety office established |url=https://www.upi.com/Archives/1986/07/08/NASA-safety-office-established/5007521179200/ |access-date=March 18, 2024 |website=UPI}}</ref> Former ''Challenger'' flight director Greene became chief of the Safety Division of the directorate.<ref name="jh-greene-bio">{{cite web
| title = Jay H. Greene
| work = Oral History Project
| publisher = NASA
| date = July 12, 2004
| url = https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/oral_histories/GreeneJH/GreeneJH_Bio.pdf
| access-date = September 2, 2021
| archive-date = June 24, 2021
| archive-url = https://web.archive.org/web/20210624211302/https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/oral_histories/GreeneJH/GreeneJH_Bio.pdf
| url-status = live
}}</ref> After the [[Space Shuttle Columbia disaster|Space Shuttle ''Columbia'' disaster]] in 2003, the [[Columbia Accident Investigation Board|''Columbia'' Accident Investigation Board]] (CAIB) concluded that NASA had not set up a "truly independent" office for safety oversight.<ref name="caib_report">{{cite web |last1=Gehman |first1=Harold |author-link1=Harold W. Gehman Jr. |last2=Barry |first2=John |last3=Deal |first3=Duane |last4=Hallock |first4=James |author-link4=James N. Hallock |last5=Hess |first5=Kenneth |last6=Hubbard |first6=G. Scott |author-link6=G. Scott Hubbard |last7=Logsdon |first7=John |author-link7=John Logsdon |last8=Logsdon |first8=John |author-link8=Douglas Osheroff |last9=Ride |first9=Sally |author-link9=Sally Ride |last10=Tetrault |first10=Roger |last11=Turcotte |first11=Stephen |author-link11=Stephen A. Turcotte |last12=Wallace |first12=Steven |last13=Widnall |first13=Sheila |author-link13=Sheila Widnall |date=August 26, 2003 |title=Report of Columbia Accident Investigation Board |url=http://s3.amazonaws.com/akamai.netstorage/anon.nasa-global/CAIB/CAIB_lowres_full.pdf |url-status=live |archive-url=https://web.archive.org/web/20210413062647/http://s3.amazonaws.com/akamai.netstorage/anon.nasa-global/CAIB/CAIB_lowres_full.pdf |archive-date=April 13, 2021 |access-date=January 11, 2022 |publisher=NASA |volume=1}}</ref>{{rp|pages=178–180}} The CAIB concluded that the ineffective safety culture that had resulted in the ''Challenger'' accident was also responsible for the subsequent disaster.{{r|caib_report}}{{rp|page=195}}


=== Teacher in Space ===
One of the commission's most well-known members was theoretical physicist [[Richard Feynman]]. During a televised hearing, he famously demonstrated how the O-rings became less resilient and subject to seal failures at ice-cold temperatures by immersing a sample of the material in a glass of ice water. He was so critical of flaws in NASA's "safety culture" that he threatened to remove his name from the report unless it included his personal observations on the reliability of the shuttle, which appeared as Appendix F.<ref>Feynman, Richard P.. ''What Do You Care What Other People Think?''</ref> In the appendix, he argued that the estimates of reliability offered by NASA management were wildly unrealistic, differing as much as a thousandfold from the estimates of working engineers. "For a successful technology," he concluded, "reality must take precedence over public relations, for nature cannot be fooled."<ref>Feynman, Richard P. (1986) [http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/Appendix-F.txt Appendix F- Personal Observations on the reliability of the Shuttle.]</ref>
The Teacher in Space program, which McAuliffe had been selected for, was canceled in 1990 as a result of the ''Challenger'' disaster. In 1998, NASA replaced Teacher in Space with the Educator Astronaut Project, which differed in that it required the teachers to become professional astronauts trained as mission specialists, rather than short-term payload specialists who would return to their classrooms following their spaceflight. [[Barbara Morgan]], who had been the backup teacher for McAuliffe, was selected to be part of [[NASA Astronaut Group 17]] and flew on [[STS-118]].{{r|jenkins2016}}{{rp|page=III-116}}


===U.S. House Committee hearings===
=== Return to flight ===
{{Further-text| [[Space Shuttle program]] | [[STS-26]] }}
The [[United States House Committee on Science|U.S. House Committee on Science and Technology]] also conducted hearings, and on October 29, 1986 released its own report on the ''Challenger'' accident.<ref>{{cite web| last=U.S House Committee on Science and Technology | title = Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives. | publisher=US Government Printing Office| date = October 29, 1986.| url = http://www.gpoaccess.gov/challenger/64_420.pdf | format = PDF }}</ref> The committee reviewed the findings of the Rogers Commission as part of its investigation, and agreed with the Rogers Commission as to the technical causes of the accident. However, it differed from the committee in its assessment of the accident's contributing causes.
The projected launch schedule of 24 per year was criticized by the Rogers Commission as an unrealistic goal that created unnecessary pressure on NASA to launch missions.{{r|rogers_com}}{{rp|page=165}} In August 1986, President Reagan approved the construction of an orbiter, which would later be named {{OV|105|full=no}}, to replace ''Challenger''. Construction of ''Endeavour'' began in 1987 and was completed in 1990, and it first flew on [[STS-49]] in May 1992.<ref name="endeavour_nasa">{{cite web
| last = Ryba
| first = Jeanne
| title = Space Shuttle Overview: Endeavour (OV-105)
| publisher = NASA
| date = April 12, 2013
| url = https://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/endeavour-info.html
| access-date = October 5, 2021
| archive-date = May 20, 2017
| archive-url = https://web.archive.org/web/20170520114900/https://www.nasa.gov/centers/kennedy/shuttleoperations/orbiters/endeavour-info.html
| url-status = live
}}</ref> He also announced that the program would no longer carry commercial [[satellite]] payloads, and that these would be launched using commercial [[expendable launch vehicle]]s.<ref name="reagan_latimes">{{cite web
| last = Abramson
| first = Rudy
| title = Reagan Orders Shuttle, Limits NASA Mission
| work = [[The Los Angeles Times]]
| date = August 16, 1986
| url = https://www.latimes.com/archives/la-xpm-1986-08-16-mn-7268-story.html
| access-date = September 2, 2021
| archive-date = September 2, 2021
| archive-url = https://web.archive.org/web/20210902120558/https://www.latimes.com/archives/la-xpm-1986-08-16-mn-7268-story.html
| url-status = live
}}</ref> These commercial payloads were reallocated from the Space Shuttle program to end the dependence on a single launch vehicle and limit the pressure on NASA to launch crewed missions to satisfy its customers.<ref name="wilford_shuttle">{{cite web
| last = Wilford
| first = John Noble
| authorlink =
| title = Reagan is reported near decision to approve a new Space Shuttle
| work = The New York times
| date = May 25, 1986
| url = https://www.nytimes.com/1986/05/25/us/reagan-is-reported-near-decision-to-approve-a-new-space-shuttle.html
| access-date = November 10, 2021
| archive-date = November 10, 2021
| archive-url = https://web.archive.org/web/20211110125348/https://www.nytimes.com/1986/05/25/us/reagan-is-reported-near-decision-to-approve-a-new-space-shuttle.html
| url-status = live
}}</ref>


The Space Shuttle fleet was grounded for two years and eight months while the program underwent investigation, redesign, and restructuring. On September 29, 1988, ''Discovery'' launched on [[STS-26]] mission from LC-39B with a crew of five veteran astronauts.<ref>{{cite web |first=John A. |last=Logsdon |url=https://history.nasa.gov/SP-4219/Chapter15.html |publisher=NASA |title=Return to Flight: Richard H. Truly and the Recovery from the Challenger Accident |access-date=July 27, 2021 |date=1998 |archive-date=February 24, 2021 |archive-url=https://web.archive.org/web/20210224180805/https://history.nasa.gov/SP-4219/Chapter15.html |url-status=live }}</ref> Its payload was [[TDRS-3]], which was a substitute for the satellite lost with ''Challenger''. The launch tested the redesigned boosters, and the crew wore [[Launch Entry Suit|pressure suits]] during the ascent and reentry. The mission was a success, and the program resumed flying.<ref name="sts26">{{cite web
{{Cquote|...the Committee feels that the underlying problem which led to the Challenger accident was not poor communication or underlying procedures as implied by the Rogers Commission conclusion. Rather, the fundamental problem was poor technical decision-making over a period of several years by top NASA and contractor personnel, who failed to act decisively to solve the increasingly serious anomalies in the Solid Rocket Booster joints.<ref>{{cite web| last=U.S House Committee on Science and Technology | title = Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives. | publisher=US Government Printing Office| date = October&nbsp;29,&nbsp;1986.| url = http://www.gpoaccess.gov/challenger/64_420.pdf | format = PDF}}, pp. 4–5.</ref>}}
| last = Mars
| first = Kelli
| title = 30 Years Ago: STS-26 Returns Shuttle to Flight
| publisher = NASA
| date = September 28, 2018
| url = https://www.nasa.gov/feature/30-years-ago-sts-26-returns-shuttle-to-flight
| access-date = September 2, 2021
| archive-date = May 26, 2021
| archive-url = https://web.archive.org/web/20210526152213/https://www.nasa.gov/feature/30-years-ago-sts-26-returns-shuttle-to-flight/
| url-status = live
}}</ref>


==NASA response==
== Legacy ==
<!-- Please don't list every memorial, naming, or popular culture reference for the Challenger disaster. This is not meant to be a comprehensive list! -->
[[File:Charles Bolden at STS 51-L Memorial service - 1986.jpg|thumb|right|Astronaut Charles F. Bolden reads a passage from the Bible during memorial services for the seven crewmemebers of 51-L who lost their lives aboard the Space Shuttle Challenger in a Florida accident (NASA)]]
[[File:Challenger Disaster Memorial KSC-9.jpg|thumb|Fragment of ''Challenger''{{'}}s fuselage on display at the Kennedy Space Center Visitor Complex|alt=A portion of the Challenger's fuselage hanging vertically, displaying the American flag.]]
After the ''Challenger'' accident, further shuttle flights were suspended, pending the results of the Rogers Commission investigation. Whereas NASA had held an internal inquiry into the [[Apollo 1]] fire in 1967, its actions after ''Challenger'' were more constrained by the judgment of outside bodies. The Rogers Commission offered nine recommendations on improving safety in the space shuttle program, and NASA was directed by President Reagan to report back within thirty days as to how it planned to implement those recommendations.<ref name="implementation report">{{cite web| title = Report to the President: Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident|publisher=NASA| date = July 14, 1986| url = http://history.nasa.gov/rogersrep/actions.pdf | format = PDF}}</ref>
In 2004, President [[George W. Bush]] conferred posthumous [[Congressional Space Medal of Honor|Congressional Space Medals of Honor]] to all 14 crew members killed in the ''Challenger'' and ''Columbia'' accidents.<ref>{{cite web|url=https://history.nasa.gov/spacemedal.htm|title=Congressional Space Medal of Honor|publisher=NASA|date=April 28, 2006|access-date=July 19, 2021|archive-date=February 20, 2011|archive-url=https://web.archive.org/web/20110220213828/http://history.nasa.gov/spacemedal.htm|url-status=live}}</ref> An unpainted decorative oval in the [[Brumidi Corridors]] of the [[United States Capitol]] was finished with a portrait depicting the crew by Charles Schmidt in 1987. The scene was painted on canvas and then applied to the wall.<ref name="aoc1">{{cite web|title=Brumidi Corridors Murals|date=2021|url=https://www.aoc.gov/explore-capitol-campus/art/brumidi-corridors-murals|publisher=[[Architect of the Capitol]]|access-date=July 19, 2021|archive-date=August 31, 2021|archive-url=https://web.archive.org/web/20210831014536/https://www.aoc.gov/explore-capitol-campus/art/brumidi-corridors-murals|url-status=live}}</ref> The "Forever Remembered" exhibit at the Kennedy Space Center Visitor Complex opened in July 2015 and includes a display of a {{convert|12|ft|m|adj=on}} section of ''Challenger''{{'}}s recovered fuselage. The exhibit was opened by NASA Administrator Charles Bolden along with family members of the crew.{{r|jenkins2016}}{{rp|III-97}} A tree for each astronaut was planted in NASA's Astronaut Memorial Grove at the Johnson Space Center, along with trees for each astronaut from the [[Apollo 1]] and ''Columbia'' disasters.<ref name="memorial_grove">{{cite news
| last = Mikati
| first = Massarah
| title = Memorial Grove at Johnson Space Center offers tribute to late astronauts
| newspaper = [[Houston Chronicle]]
| date = May 7, 2019
| url = https://www.houstonchronicle.com/local/space/mission-moon/article/Where-NASA-honors-its-fallen-Memorial-grove-at-13818043.php
| access-date = July 19, 2021
| archive-date = July 19, 2021
| archive-url = https://web.archive.org/web/20210719083636/https://www.houstonchronicle.com/local/space/mission-moon/article/Where-NASA-honors-its-fallen-Memorial-grove-at-13818043.php
| url-status = live
}}</ref>
Seven [[asteroids]] were named after the crew members: {{MoMP|3350|3350 Scobee}}, {{MoMP|3351|3351 Smith}}, {{MoMP|3352|3352 McAuliffe}}, {{MoMP|3353|3353 Jarvis}}, {{MoMP|3354|3354 McNair}}, {{MoMP|3355|3355 Onizuka}}, and {{MoMP|3356|3356 Resnik}}. The approved naming citation was published by the [[Minor Planet Center]] on March 26, 1986 ({{small|[[Minor Planet Circulars|M.P.C.]] 10550}}).<ref name="MPC-Circulars-Archive">{{cite web
|title = Minor Planet Circulars/Minor Planets and Comets
|pages = MPC 10457–10586
|publisher = Minor Planet Center – Smithsonian Astrophysical Observatory
|url = https://minorplanetcenter.net/iau/ECS/MPCArchive/1986/MPC_19860326.pdf
|access-date = July 30, 2021
|date = March 26, 1986
|archive-date = July 27, 2021
|archive-url = https://web.archive.org/web/20210727220035/https://minorplanetcenter.net/iau/ECS/MPCArchive/1986/MPC_19860326.pdf
|url-status = live
}}</ref> In 1988, seven craters on the far side of the [[Moon]], within the [[Apollo (crater)|Apollo Basin]], were named after the astronauts by the [[International Astronomical Union|IAU]].<ref>{{Cite book |last=Byrne |first=Charles |url=http://worldcat.org/oclc/1244446759 |title=The Far Side of the Moon A Photographic Guide |year=2014 |publisher=[[Springer Science]] |isbn=978-1-4899-8806-5 |oclc=1244446759 |access-date=June 27, 2022 |archive-date=January 28, 2024 |archive-url=https://web.archive.org/web/20240128081153/https://search.worldcat.org/title/1244446759 |url-status=live }}</ref> The [[Soviet Union]] named two craters on [[Venus]] after McAuliffe and Resnik.<ref name="nyt_venus_craters">{{cite web
| last = Schmemann
| first = Serge
| title = Soviet Union to name 2 Venus craters for Shuttle's women
| work = The New York Times
| date = February 2, 1986
| url = https://www.nytimes.com/1986/02/02/us/soviet-union-to-name-2-venus-craters-for-shuttle-s-women.html
| access-date = October 25, 2021
| archive-date = October 25, 2021
| archive-url = https://web.archive.org/web/20211025160902/https://www.nytimes.com/1986/02/02/us/soviet-union-to-name-2-venus-craters-for-shuttle-s-women.html
| url-status = live
}}</ref> The landing site of the [[Mars Exploration Rover|''Opportunity'' Mars rover]] was named [[Challenger memorial station|''Challenger'' Memorial Station]].<ref>{{Cite web |last= |date=January 28, 2004 |title=Space Shuttle Challenger Crew Memorialized on Mars |url=https://www.jpl.nasa.gov/news/space-shuttle-challenger-crew-memorialized-on-mars |url-status=live |archive-url=https://web.archive.org/web/20220903225527/https://www.jpl.nasa.gov/news/space-shuttle-challenger-crew-memorialized-on-mars |archive-date=September 3, 2022 |access-date=November 8, 2023 |website=NASA Jet Propulsion Laboratory (JPL)}}</ref>


[[File:ChallengerPlaque-20231125.jpg|thumb|Plaque at TRW's [[Space Park]] honoring the ''Challenger'' crew. Its maiden flight and this final one had carried their TDRS satellites.]]
In response to the commission's recommendation, NASA initiated a total redesign of the space shuttle's solid rocket boosters, which was watched over by an independent oversight group as stipulated by the commission.<ref name="implementation report"/> NASA's contract with [[Morton Thiokol]], the contractor responsible for the solid rocket boosters, included a clause stating that in the event of a failure leading to "loss of life or mission," Thiokol would forfeit $10&nbsp;million of its incentive fee and formally accept legal liability for the failure. After the ''Challenger'' accident, Thiokol agreed to "voluntarily accept" the monetary penalty in exchange for not being forced to accept liability.<ref name="Downlink">Jensen, Claus. ''No Downlink'', p. 355.</ref>


Several memorials have been established in honor of the ''Challenger'' disaster. The public Peers Park in [[Palo Alto, California]], features the ''Challenger'' Memorial Grove including redwood trees grown from seeds carried aboard [[STS-51-F|''Challenger'' in 1985]].<ref name=peers_park>{{cite web |url=https://www.cityofpaloalto.org/Departments/Community-Services/Open-Space-and-Parks-Home/Neighborhood-Parks/Peers-Park |date=January 14, 2021 |publisher=City of Palo Alto, California |title=Peers Park |access-date=July 19, 2021 |archive-date=July 19, 2021 |archive-url=https://web.archive.org/web/20210719085745/https://www.cityofpaloalto.org/Departments/Community-Services/Open-Space-and-Parks-Home/Neighborhood-Parks/Peers-Park |url-status=live }}</ref> Schools and streets have been renamed to include the names of the crew or ''Challenger''.<ref name="street_rename">{{cite web
NASA also created a new Office of Safety, Reliability and Quality Assurance, headed as the commission had specified by a NASA associate administrator who reported directly to the NASA administrator. George Martin, formerly of [[Martin Marietta]], was appointed to this position.<ref>{{cite web| author=Rogers Commission report| title=Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation IV| year=1987| url=http://history.nasa.gov/rogersrep/v6ch4.htm| accessdate=2011-07-12}}</ref> Former ''Challenger'' flight director [[Jay Greene]] became chief of the Safety Division of the directorate.<ref>{{cite web
| last = Levine
| url = http://www.jsc.nasa.gov/history/oral_histories/GreeneJH/GreeneJH_Bio.pdf
| first = Jay
| title = NASA Johnson Space Center Oral History Project Biographical Data Sheet
| title = Challenger Crew Recognized With Monument
| author=J.H. Greene | publisher=NASA | accessdate = }}</ref>
| publisher = NASA
| date = June 27, 2018
| url = https://www.nasa.gov/centers/armstrong/feature/challenger_crew_monument.html
| access-date = July 25, 2021
| archive-date = July 25, 2021
| archive-url = https://web.archive.org/web/20210725174804/https://www.nasa.gov/centers/armstrong/feature/challenger_crew_monument.html
| url-status = live
}}</ref><ref name="scobee_school">{{cite web
| last = McCarthy
| first = Kathy
| title = Challenger Astronaut Remembered in Hometown
| publisher = Associated Press
| date = April 28, 1986
| url = https://apnews.com/article/3c6c77cdb85da83ff1041d3f0d9245f0
| access-date = July 25, 2021
| archive-date = November 7, 2022
| archive-url = https://web.archive.org/web/20221107132106/https://apnews.com/article/3c6c77cdb85da83ff1041d3f0d9245f0
| url-status = live
}}</ref><ref name="mcauliffe_school">{{cite web
| last = Dodson
| first = Andrew
| title = School named after astronaut Christa McAuliffe remembers Challenger explosion
| publisher = MLive
| date = January 19, 2019
| url = https://www.mlive.com/news/bay-city/2016/01/school_named_after_christa_mca.html
| access-date = July 25, 2021
| archive-date = July 25, 2021
| archive-url = https://web.archive.org/web/20210725174804/https://www.mlive.com/news/bay-city/2016/01/school_named_after_christa_mca.html
| url-status = live
}}</ref> In 1990, a 1/10 scale replica of ''Challenger'' in liftoff position was erected in [[Little Tokyo, Los Angeles|Little Tokyo]] district of [[Los Angeles, California]].<ref name="little_tokyo_memorial">{{cite web
| title = Space Shuttle Challenger Monument (Los Angeles, California)
| publisher = Astronaut Ellison S. Onizuka Memorial
| date = 2021
| url = https://onizukamemorial.org/space-shuttle-challenger-and-monument
| access-date = April 27, 2021
| archive-date = April 27, 2021
| archive-url = https://web.archive.org/web/20210427084153/https://onizukamemorial.org/space-shuttle-challenger-and-monument
| url-status = live
}}</ref> [[Challenger Point]] is a mountain peak of the [[Sangre de Cristo Range]].<ref name=GNIS>{{cite gnis|id=196427|name=Challenger Point|entry-date=August 31, 1992|access-date=July 15, 2021}}</ref> The [[McAuliffe-Shepard Discovery Center]], a science museum and planetarium in [[Concord, New Hampshire]], is named in honor of McAuliffe, a Concord High School teacher, and [[Alan Shepard]], who was from [[Derry, New Hampshire]].<ref name=mcauliffe-shepard>{{cite web
| title = About
| publisher = [[McAuliffe-Shepard Discovery Center]]
| date = 2021
| url = https://www.starhop.com/about
| access-date = April 27, 2021
| archive-date = April 27, 2021
| archive-url = https://web.archive.org/web/20210427085847/https://www.starhop.com/about
| url-status = live
}}</ref>
The crew's families established the [[Challenger Center for Space Science Education]] as an educational [[non-profit]] organization.<ref name="challenger_center">{{cite web
| title = About Us
| publisher = Challenger Center for Space Science Education
| date = 2019
| url = https://www.challenger.org/who-we-are/#about_us
| access-date = November 3, 2021
| archive-date = October 6, 2021
| archive-url = https://web.archive.org/web/20211006203754/https://www.challenger.org/who-we-are/#about_us
| url-status = live
}}</ref>


An American flag, later named the [[Challenger flag|''Challenger'' flag]], was carried aboard the ''Challenger''. It was sponsored by [[Scouting in Colorado|Boy Scout]] Troop 514 of [[Monument, Colorado]], and was recovered intact, still sealed in its plastic container.<ref>{{cite web|url=http://www.techrepublic.com/article/geek-trivia-rising-from-the-ashes/6030167|title=Rising from the ashes|last=Garmon|first=Jay|date=January 24, 2006|publisher=Tech Republic|access-date=July 19, 2021|archive-date=July 12, 2021|archive-url=https://web.archive.org/web/20210712074114/https://www.techrepublic.com/article/geek-trivia-rising-from-the-ashes/|url-status=live}}</ref> Onizuka had included a [[Ball (association football)|soccer ball]] with his personal effects that was recovered and later flown to the [[International Space Station]] aboard Soyuz [[Expedition 49]] by American astronaut [[Shane Kimbrough]]. It is on display at [[Clear Lake High School (Texas)|Clear Lake High School]] in Houston, which was attended by Onizuka's children.<ref>{{cite web |last1=Malinowski |first1=Tonya |date=June 29, 2018 |title=NASA astronaut Ellison Onizuka's soccer ball that survived the Challenger explosion |url=http://www.espn.com/espn/feature/story/_/id/23902766/nasa-astronaut-ellison-onizuka-soccer-ball-survived-challenger-explosion |publisher=[[ESPN]] |access-date=July 19, 2021 |archive-date=August 20, 2021 |archive-url=https://web.archive.org/web/20210820134511/https://www.espn.com/espn/feature/story/_/id/23902766/nasa-astronaut-ellison-onizuka-soccer-ball-survived-challenger-explosion |url-status=live }}</ref>
The unrealistically optimistic launch schedule pursued by NASA had been criticized by the Rogers Commission as a possible contributing cause to the accident. After the accident, NASA attempted to aim at a more realistic shuttle flight rate: it added another orbiter, [[Space Shuttle Endeavour|''Endeavour'']], to the space shuttle fleet to replace ''Challenger'', and it worked with the Department of Defense to put more satellites in orbit using [[expendable launch vehicle]]s rather than the shuttle.<ref>{{cite web| author=Rogers Commission report| title=Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VII| year=1987| url=http://history.nasa.gov/rogersrep/v6ch7.htm| accessdate=2011-07-12}}</ref> In August 1986, President Reagan also announced that the shuttle would no longer carry commercial [[satellite]] payloads. After a 32-month hiatus, the next shuttle mission, [[STS-26]], was launched on September 29, 1988.


The 1986 motion picture ''[[Star Trek IV: The Voyage Home]]'' was dedicated to the crew of the ''Challenger'' with an opening message which stated "The cast and crew of ''Star Trek'' wish to dedicate this film to the men and women of the spaceship ''Challenger'' whose courageous spirit shall live to the 23rd century and beyond..."<ref>{{cite web
Although changes were made by NASA after the ''Challenger'' accident, many commentators have argued that the changes in its management structure and organizational culture were neither deep nor long-lasting.
|url=https://musingsfromus.com/star-trek-iv-voyage-home-1986-2670/
|title=Star Trek IV The Voyage Home (1986)
|website=Musings From Us
|date=January 25, 2011
|access-date=January 28, 2022
|archive-date=February 2, 2022
|archive-url=https://web.archive.org/web/20220202022723/https://musingsfromus.com/star-trek-iv-voyage-home-1986-2670/
|url-status=live
}}</ref>


==In media==
After the [[Space Shuttle Columbia disaster]] in 2003, attention once again focused on the attitude of NASA management towards safety issues. The [[Columbia Accident Investigation Board]] (CAIB) concluded that NASA had failed to learn many of the lessons of ''Challenger''. In particular, the agency had not set up a truly independent office for safety oversight; the CAIB felt that in this area, "NASA's response to the Rogers Commission did not meet the Commission's intent".<ref>{{cite web| author=Columbia Accident Investigation Board| title=Report of Columbia Accident Investigation Board, Volume I, chapter 7, page 178 (PDF)|year=2003| url=http://anon.nasa-global.speedera.net/anon.nasa-global/CAIB/CAIB_lowres_chapter7.pdf|format=PDF|accessdate=2011-07-12}}</ref> The CAIB believed that "the causes of the institutional failure responsible for ''Challenger'' have not been fixed," saying that the same "flawed decision making process" that had resulted in the ''Challenger'' accident was responsible for [[Space Shuttle Columbia|''Columbia'''s]] destruction seventeen years later.<ref>{{cite web| author=Columbia Accident Investigation Board| title=Report of Columbia Accident Investigation Board, Volume I, chapter 8, page 195 (PDF)|year=2003| url=http://anon.nasa-global.speedera.net/anon.nasa-global/CAIB/CAIB_lowres_chapter8.pdf|format=PDF|accessdate=2011-07-12}}</ref>
=== Books ===
[[File:Space Shuttle Challenger tribute poster.jpg|thumb|The tribute poster of Challenger]]
In the years immediately after the ''Challenger'' disaster, several books were published describing the factors and causes of the accident and the subsequent investigation and changes. In 1987, Malcolm McConnell, a journalist and a witness of the disaster, published ''Challenger–A Major Malfunction: A True Story of Politics, Greed, and the Wrong Stuff''. McConnell's book was criticized for arguing for a conspiracy involving NASA Administrator Fletcher awarding the contract to Morton Thiokol because it was from his home state of Utah.{{r|mcdonald}}{{rp|588}}<ref name=tomayko>{{cite journal |last1=Tomayko |first1=James E. |date=June 1987 |title=Challenger: A Major Malfunction |url=https://www.jstor.org/stable/44524264 |journal=Aerospace Historian |volume=34 |issue=2 |pages=139 |access-date=October 5, 2021 |publisher=Air Force Historical Foundation |jstor=44524264 |archive-date=October 5, 2021 |archive-url=https://web.archive.org/web/20211005090201/https://www.jstor.org/stable/44524264 |url-status=live }}</ref> The book ''Prescription for Disaster: From the Glory of Apollo to the Betrayal of the Shuttle'' by Joseph Trento was also published in 1987, arguing that the Space Shuttle program had been a flawed and politicized program from its inception.{{r|mcdonald}}{{rp|588–589}}<ref name=hallion>{{cite journal |last1=Hallion |first1=Richard P. |date=June 1987 |title=Prescription for Disaster: From the Flory of Apollo to the Betrayal of the Shuttle |url=https://www.jstor.org/stable/44525431 |journal=Aerospace Historian |volume=345 |issue=2 |pages=151 |access-date=October 5, 2021 |publisher=Air Force Historical Foundation |jstor=44525431 |archive-date=October 5, 2021 |archive-url=https://web.archive.org/web/20211005091613/https://www.jstor.org/stable/44525431 |url-status=live }}</ref> In 1988, Feynman's memoir, [[What Do You Care What Other People Think?|''"What Do You Care What Other People Think?": Further Adventures of a Curious Character'']], was published. The latter half of the book discusses his involvement in the Rogers Commission and his relationship with Kutyna.{{r|mcdonald}}{{rp|594}}<ref name=shair_review>{{cite journal |last1=Shair |first1=Frederick H. |date=June 1989 |title=What Do You Care What Other People Think? Further Adventures of a Curious Character |url=https://www.jstor.org/stable/27855729 |journal=American Scientist |volume=77 |issue=3 |pages=267–268 |access-date=October 5, 2021 |publisher=Sigma Xi |jstor=27855729 |archive-date=October 5, 2021 |archive-url=https://web.archive.org/web/20211005120725/https://www.jstor.org/stable/27855729 |url-status=live }}</ref>


Books were published long after the disaster. In 1996, Diane Vaughan published ''The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA'', which argues that NASA's structure and mission, rather than just Space Shuttle program management, created a climate of risk acceptance that resulted in the disaster.{{r|mcdonald}}{{rp|pages=591–592}}<ref name=vaughan_review>{{cite journal |last1=Weick |first1=Karl E. |date=June 1997 |title=The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA |url=https://www.jstor.org/stable/2393925 |journal=Administrative Science Quarterly |volume=42 |issue=2 |pages=395–401 |access-date=October 5, 2021 |publisher=Sage Publications |doi=10.2307/2393925 |jstor=2393925 |archive-date=October 5, 2021 |archive-url=https://web.archive.org/web/20211005111914/https://www.jstor.org/stable/2393925 |url-status=live }}</ref> Also in 1996, Claus Jensen published ''No Downlink: A Dramatic Narrative About the Challenger Accident and Our Time'' that primarily discusses the development of rocketry prior to the disaster, and was criticized for its reliance on secondary sources with little original research conducted for the book.{{r|mcdonald}}{{rp|page=592}}<ref name=jensen_review>{{cite web
===Media coverage===
| last = Roland
While the presence of [[New Hampshire]] schoolteacher [[Christa McAuliffe]] on the ''Challenger'' crew had provoked some media interest, there was little live broadcast coverage of the launch. The only live national TV coverage available publicly was provided by [[CNN]]; although several radio networks were also live. Due to McAuliffe's presence on the mission, NASA arranged for many U.S. public schools to view the launch live on [[NASA TV]].<ref name=myths>{{cite web
| first = Alex
| url = http://www.msnbc.msn.com/id/11031097/
| title = 7 myths about the Challenger shuttle disaster
| title = Large Craft Warnings
| work = The New York Times
| author=James Oberg
| date = January 28, 1996
|publisher=MSNBC | date = January 25, 2011 }}</ref> As a result, many who were schoolchildren in the US in 1986 did in fact have the opportunity to view the launch live. After the accident, however, 17% of respondents in one study reported that they had seen the shuttle launch, while 85% said that they had learned of the accident within an hour. As the authors of the paper reported, "only two studies have revealed more rapid dissemination [of news]." (One of those studies was of the spread of news in [[Dallas, Texas|Dallas]] after [[John F. Kennedy|President John F. Kennedy]]'s [[John F. Kennedy assassination|assassination]], while the other was the spread of news among students at [[Kent State University|Kent State]] regarding [[Franklin D. Roosevelt|President Franklin D. Roosevelt's]] death.)<ref name="diffusion">{{cite journal | last = Riffe | first = Daniel | coauthors = James Glen Stoval| title = Diffusion of News of Shuttle Disaster: What Role for Emotional Response? | journal=Journalism Quarterly | page = 552 | publisher=Association for education in journalism and mass communication | date = Autumn 1989}}</ref> Another study noted that "even those who were not watching television at the time of the disaster were almost certain to see the graphic pictures of the accident replayed as the television networks reported the story almost continuously for the rest of the day."<ref name="children">{{cite journal | last = Wright| first = John C. | coauthors = Dale Kunkel; Marites Pinon; Aletha C. Huston | title = How Children Reacted to Televised Coverage of the Space Shuttle Disaster | journal=Journal of Communication | volume = 39 | issue = 2 | page = 27 | date = Spring 1989 | doi = 10.1111/j.1460-2466.1989.tb01027.x}}</ref> Children were even more likely than adults to have seen the accident live, since many children &mdash; 48 percent of nine to thirteen-year-olds, according to a ''[[The New York Times|New York Times]]'' poll &mdash; watched the launch at school.<ref name="children"/>
| url = https://www.nytimes.com/1996/01/28/books/large-craft-warnings.html
| access-date = October 5, 2021
| archive-date = October 5, 2021
| archive-url = https://web.archive.org/web/20211005113744/https://www.nytimes.com/1996/01/28/books/large-craft-warnings.html
| url-status = live
}}</ref><ref name="No Downlink">{{cite book |last=Jensen |first=Claus |url=https://archive.org/details/nodownlinkdramat00jens |title=No Downlink: A Dramatic Narrative about the Challenger Accident and Our Time |date=1996 |publisher=Farrar, Straus, Giroux |isbn=978-0-374-12036-8 |location=New York |oclc=33078775}}</ref> In 2009, Allan McDonald published his memoir written with space historian James Hansen, ''Truth, Lies, and O-Rings: Inside the Space Shuttle Challenger Disaster'', which focuses on his personal involvement in the launch, disaster, investigation, and return to flight, and is critical of NASA and Morton Thiokol leadership for agreeing to launch ''Challenger'' despite engineers' warnings about the O-rings.<ref name=mcondald_publish>{{Cite web|url=https://www.nasa.gov/centers/langley/news/researchernews/rn_Colloquium1012.html|title=Engineer Who Opposed Challenger Launch Offers Personal Look at Tragedy|last=Atkinson|first=Joe|publisher=NASA|date=October 9, 2012|access-date=September 1, 2021|archive-date=August 2, 2021|archive-url=https://web.archive.org/web/20210802222204/https://www.nasa.gov/centers/langley/news/researchernews/rn_Colloquium1012.html|url-status=live}}</ref><ref name="mcdonald">{{cite book
| last1 = McDonald
| first1 = Allan J.
| author-link1 = Allan J. McDonald
| last2 = Hansen
| first2 = James R.
| author-link2 = James R. Hansen
| title = Truth, Lies, and O-rings: Inside the Space Shuttle Challenger Disaster
| publisher = University Press of Florida
| date = 2009
| location =
| url = https://books.google.com/books?id=8pFovgEACAAJ
| isbn = 978-0-8130-4193-3
| access-date = July 19, 2021
| archive-date = October 2, 2021
| archive-url = https://web.archive.org/web/20211002105354/https://www.google.com/books/edition/Truth_Lies_and_O_Rings/8pFovgEACAAJ?hl=en
| url-status = live
}}</ref><ref name=pomeroy_review>{{cite journal |last1=Pomeroy |first1=Steven |date=October 2010 |title=Truth, Lies, and O-Rings: Inside the Space Shuttle Challenger Disaster |journal=Technology and Culture |volume=51 |issue=4 |pages=1038–1040 |publisher=The Johns Hopkins University Press |doi=10.1353/tech.2010.0077 |jstor=40928051 |s2cid=109441993 |doi-access=free }}</ref><ref name=rubinson_review>{{cite journal |last1=Rubinson |first1=Paul |date=2010 |title=Truth, Lies, and O-rings: Inside the Space Shuttle Challenger Disaster |url=https://www.jstor.org/stable/29765138 |journal=The Florida Historical Quarterly |volume=88 |issue=4 |pages=574–577 |access-date=October 6, 2021 |publisher=Florida Historical Society |jstor=29765138 |archive-date=October 6, 2021 |archive-url=https://web.archive.org/web/20211006054700/https://www.jstor.org/stable/29765138 |url-status=live }}</ref>


=== Film and television ===
Following the day of the accident, press interest remained high. While only 535 reporters were accredited to cover the launch, three days later there were 1467 reporters at Kennedy Space Center and another 1040 at Johnson Space Center. The event made headlines in newspapers worldwide.<ref name="harwood 6"/>
The [[American Broadcasting Company|ABC]] [[Television film|television movie]] titled ''[[Challenger (1990 film)|Challenger]]'' was broadcast on February 25, 1990.<ref name="nytimes_abc">{{cite web
| last = O'Connor
| first = John J.
| title = To View; Arrogance in the Name of Liftoff?
| work = The New York Times
| date = February 25, 1990
| url = https://www.nytimes.com/1990/02/25/arts/to-view-arrogance-in-the-name-of-liftoff.html
| access-date = September 7, 2021
| archive-date = September 7, 2021
| archive-url = https://web.archive.org/web/20210907150803/https://www.nytimes.com/1990/02/25/arts/to-view-arrogance-in-the-name-of-liftoff.html
| url-status = live
}}</ref> It stars [[Barry Bostwick]] as Scobee and [[Karen Allen]] as McAuliffe. The movie is critical of NASA and positively portrays the engineers who argued against launching. The movie was criticized by the widows of Smith, McNair, and Onizuka as an inaccurate portrayal of events.<ref name="abc_tulsaworld">{{cite web
| last = Zurawik
| first = David
| title = Turning Tragedy into Entertainment, 'Challenger' Invades Survivors' Private Grief
| publisher = [[Tulsa World]]
| date = February 25, 1990
| url = https://tulsaworld.com/archive/turning-tragedy-into-entertainment-challenger-invades-survivors-private-grief/article_7321f1ea-501a-5b9e-ba08-ec066046c92f.html
| access-date = September 7, 2021
| archive-date = June 2, 2021
| archive-url = https://web.archive.org/web/20210602212205/https://tulsaworld.com/archive/turning-tragedy-into-entertainment-challenger-invades-survivors-private-grief/article_7321f1ea-501a-5b9e-ba08-ec066046c92f.html
| url-status = live
}}</ref> A [[BBC]] [[docudrama]] titled ''[[The Challenger Disaster]]'' was broadcast on March 18, 2013. It starred [[William Hurt]] as Feynman and portrayed the investigation into the causes of the disaster.<ref name=bbc_two_challenger>{{cite web|url=https://www.bbc.co.uk/programmes/p00zstkn|title=The Challenger|publisher=[[British Broadcasting Corporation]]|access-date=October 5, 2021|date=2021|archive-date=April 18, 2019|archive-url=https://web.archive.org/web/20190418181131/https://www.bbc.co.uk/programmes/p00zstkn|url-status=live}}</ref> A film directed by Nathan VonMinden, ''The Challenger Disaster'', was released on January 25, 2019, depicts fictional characters participating in the decision process to launch.<ref name="forbes_disaster_review">{{cite web
| last = Baldoni
| first = John
| title = The Challenger Disaster: A Dramatic Lesson In The Failure To Communicate
| work = Forbes
| date = January 28, 2019
| url = https://www.forbes.com/sites/johnbaldoni/2019/01/28/the-challenger-disaster-a-dramatic-lesson-in-the-failure-to-communicate
| access-date = September 13, 2021
| archive-date = September 13, 2021
| archive-url = https://web.archive.org/web/20210913131129/https://www.forbes.com/sites/johnbaldoni/2019/01/28/the-challenger-disaster-a-dramatic-lesson-in-the-failure-to-communicate/
| url-status = live
}}</ref>


The four-part docuseries ''[[Challenger: The Final Flight]]'', created by Steven Leckart and Glen Zipper, was released by [[Netflix]] on September 16, 2020. It uses interviews with NASA and Morton Thiokol personnel to argue against their flawed decision-making which produced a preventable disaster.<ref name="vulture_docuseries">{{cite web
===Use as case study===
| last = Chaney
The ''Challenger'' accident has frequently been used as a case study in the study of subjects such as engineering safety, the ethics of [[whistle-blowing]], communications, group decision-making, and the dangers of [[groupthink]]. It is part of the required readings for engineers seeking a professional license in Canada<ref>{{cite book
| last = Andrews
| first = Jen
| title = Challenger: The Final Flight Unpacks a Moment of American Hope and Heartbreak
| first = Gordon C.
| publisher = [[New York (magazine)#Vulture|Vulture]]
| coauthors = & John D. Kemper
| date = September 16, 2020
| title = Canadian Professional Engineering Practice and Ethics
| url = https://www.vulture.com/article/challenger-the-final-flight-netflix-docuseries-review.html
| publisher=Harcourt Canada
| access-date = September 2, 2021
| year = 1999
| archive-date = September 2, 2021
| location = Toronto
| archive-url = https://web.archive.org/web/20210902094116/https://www.vulture.com/article/challenger-the-final-flight-netflix-docuseries-review.html
| edition = 2nd editions
| url-status = live
| pages = 255–259
}}</ref>
| isbn = 0-7747-3501-5 }}</ref> and other countries. [[Roger Boisjoly]], the engineer who had warned about the effect of cold weather on the O-rings, left his job at Morton Thiokol and became a speaker on workplace ethics.<ref>{{cite web | title = Roger Boisjoly and the ''Challenger'' disaster | publisher=onlineethics.org | url = http://www.onlineethics.org/CMS/profpractice/exempindex/RB-intro.aspx | accessdate = 2011-07-12}}</ref> He argues that the [[caucus]] called by Morton Thiokol managers, which resulted in a recommendation to launch, "constituted the unethical decision-making forum resulting from intense customer intimidation."<ref>{{cite web | last = Boisjoly | first = Roger | authorlink = Roger Boisjoly| title = Ethical Decisions—Morton Thiokol and the Space Shuttle ''Challenger'' Disaster: Telecon Meeting| publisher=onlineethics.org|url = http://www.onlineethics.org/CMS/profpractice/ppessays/thiokolshuttle/shuttle_telecon.aspx| accessdate =December 15, 2006 }}</ref> For his honesty and integrity leading up to and directly following the shuttle disaster, Roger Boisjoly was awarded the Prize for Scientific Freedom and Responsibility from the American Association for the Advancement of Science. Many colleges and universities have also used the accident in classes on the [[engineering ethics|ethics of engineering]].<ref>{{cite web | title = Engineering Ethics:The Space Shuttle Challenger Disaster | publisher=Department of Philosophy and Department of Mechanical Engineering, Texas A&M University | url = http://ethics.tamu.edu/ethics/shuttle/shuttle1.htm | accessdate =November 20, 2006 }}</ref><ref>{{cite web| last = Hoover | first = Kurt | coauthors = Wallace T. Fowler| title = Studies in Ethics, Safety, and Liability for Engineers: Space Shuttle Challenger| publisher=The University of Texas at Austin and Texas Space Grant Consortium | url = http://www.tsgc.utexas.edu/archive/general/ethics/shuttle.html | archiveurl = http://web.archive.org/web/20080405111406/http://www.tsgc.utexas.edu/archive/general/ethics/shuttle.html | archivedate = April 5, 2008 | accessdate =November 20, 2006 }}</ref>


The [[The Newsreader#ep1|first episode]] of the Australian television drama ''[[The Newsreader]]'', broadcast on August 15, 2021, depicts the disaster from the perspective of the television industry, specifically the journalists and crew within, and of, an Australian television newsroom at the time; a co-lead character's hosting of a newsflash weaving in with an overarching background storyline about the shift in news presentation from serious to that of allowing emotion into its delivery.<ref>{{Cite episode |title=Three, Two, One... |title-link=The Newsreader#ep1 |series=[[The Newsreader]] |first=Michael |last=Lucas |network= [[ABC (Australian TV network)|ABC Television]] |date= August 15, 2021 |series-no=1 |number=1}}</ref>
Information designer [[Edward Tufte]] has used the ''Challenger'' accident as an example of the problems that can occur from the lack of clarity in the presentation of information. He argues that if [[Morton Thiokol]] engineers had more clearly presented the data that they had on the relationship between low temperatures and burn-through in the solid rocket booster joints, they might have succeeded in persuading NASA managers to cancel the launch; to demonstrate, he took all of the Thiokol data given during the briefing and placed it on a single graph of O-ring damage versus external launch temperature, clearly showing the effects of cold on the degree of O-Ring damage, then placed the proposed launch of ''Challenger'' on the graph according to its predicted temperature at launch. The launch of ''Challenger'' was so far away from the coldest launch with the worst damage ever seen to date that even a casual observer could have determined the danger level was severe.<ref>[[Edward Tufte]]. (1997) ''Visual Explanations'', ISBN 0-9613921-2-6, Chapter 2.</ref> Tufte has also argued that poor presentation of information may have affected NASA decisions during the last flight of ''Columbia''.<ref>{{cite web |url= http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001yB&topic_id=1|title= PowerPoint Does Rocket Science—and Better Techniques for Technical Reports |accessdate=January 28, 2007 |author=Tufte, Edward}}</ref>


The first episode of [[This Is Us (season 6)|Season 6]] of the television drama series ''[[This Is Us]]'', titled "The Challenger"<ref>{{Cite episode |title=The Challenger |title-link=This Is Us#ep89 |series=[[This Is Us]] |network=[[NBC]] |date=January 4, 2022 |series-no=6 |number=1}}</ref> features the incident of the explosion in 1986 in the flashback scenes.
===Continuation of the Shuttle Program===
After the accident, NASA's Space Shuttle fleet was grounded for almost three years while the investigation, hearings, engineering redesign of the SRBs, and other behind-the-scenes technical and management reviews, changes, and preparations were taking place. At 11:37 on September 29, 1988, Space Shuttle ''Discovery'' lifted off with a crew of five<ref>{{cite web|author=John A. Logsdon |url=http://history.nasa.gov/SP-4219/Chapter15.html |title=Return to Flight...Challenger Accident |publisher=History.nasa.gov |accessdate=July 17, 2009}}</ref> from Kennedy Space Center pad 39-B. It carried a Tracking and Data Relay Satellite, TDRS-C (named TDRS-3 after deployment), which replaced TDRS-B, the satellite that was launched and lost on Challenger. The "Return to Flight" launch of Discovery also represented a test of the redesigned boosters, a shift to a more conservative stance on safety (e.g., it was the first time the crew had launched in pressure suits since STS-4, the last of the four initial Shuttle test flights), and a chance to restore national pride in the American space program, especially manned space flight. The mission, [[STS-26]], was a success (with only two minor system failures, one of a cabin cooling system and one of a Ku-band antenna), and a regular schedule of STS flights followed, continuing without extended interruption until the 2003 ''Columbia'' disaster.


== See also ==
[[Barbara Morgan]], the backup astronaut for McAuliffe who trained with her in the Teacher in Space program and was at KSC watching her launch on January 28, 1986, flew on [[STS-118]] as a Mission Specialist in August 2007.
{{Portal|Spaceflight|United States|Florida|1980s}}
* [[Criticism of the Space Shuttle program]]
* [[Normalization of deviance]]
* [[Engineering disasters]]
* [[List of spaceflight-related accidents and incidents]]
* [[PEPCON disaster]]
<!-- The Columbia disaster is linked in the article body and not here, per WP:SEEALSO.-->


==Legacy==
== Notes ==
{{reflist|group=note}}
The families of the ''Challenger'' crew organized the [[Challenger Center for Space Science Education]] as a permanent memorial to the crew. Fifty-two learning centers have been established by this non-profit organization.
[[Image:Challenger Memorial1.JPG|thumb|right|upright|The Space Shuttle ''Challenger'' Memorial in Arlington National Cemetery, where some remains were buried]]


== References ==
In [[Huntsville, Alabama]], a city known for its strong association with NASA, the next-opened public middle school in the Huntsville City Schools system was named Challenger Middle School.<ref>{{cite web | url=http://www.challengerms.org/history.jsp | title=Challenger Middle School History | accessdate=February 24, 2011 | publisher=Huntsville City Schools}}</ref> The City of [[Palmdale, California|Palmdale]], the birthplace of the entire shuttle fleet, and its neighbor City of [[Lancaster, California]], both renamed ''10th Street East'', from Avenue M to [[Edwards Air Force Base]], to ''Challenger Way'' in honor of the lost shuttle and its crew. This was the road that the ''Challenger'', ''Enterprise'', and ''Columbia'' all were towed along in their initial move from [[Plant 42|U.S. Air Force Plant 42]] to Edwards AFB after completion since Palmdale airport had not yet installed the shuttle crane for placement of an orbiter on the [[Shuttle Carrier Aircraft|747 Shuttle Carrier Aircraft]]. In addition, the City of Lancaster has built Challenger Middle School, and Challenger Memorial Hall at the former site of the Antelope Valley Fairgrounds, all in tribute to the ''Challenger'' shuttle and crew.
{{Reflist}}


== External links ==
In Cocoa, Brevard County, Florida (the county where Cape Canaveral and KSC are located), Challenger 7 Elementary School is named in memory of the seven astronauts who lost their lives.<ref>{{cite web|url=http://www.challenger.brevard.k12.fl.us/|title= Challenger 7 Elementary School|accessdate=2011-07-12|publisher=challenger.brevard.k12.fl.us}}</ref> There is also a middle school in neighboring Rockledge, McNair Magnet School, named after astronaut Ronald McNair.<ref>{{cite web|url=http://mcnair.ms.brevard.k12.fl.us/ |title=Ronald McNair Magnet Middle School |publisher=Mcnair.ms.brevard.k12.fl.us |date= |accessdate=2011-07-12}}</ref> A middle school in Boynton Beach, Florida is named after deceased teacher/astronaut, Christa McAuliffe. There is also a school in Lowell, Massachusetts and Lenexa, Kansas named in honor of Christa McAuliffe. The McAuliffe-Shepard Discovery Center, a science museum and planetarium in [[Concord, New Hampshire]], is also partly named in her honor. There is also an elementary school in Germantown, MD named after Christa McAuliffe.
{{Commons category|Space Shuttle Challenger disaster}}
* [https://history.nasa.gov/rogersrep/genindex.htm Rogers Commission Report NASA webpage (crew tribute, five report volumes and appendices)]
* {{librivox book | title=Report to the President by the Presidential Commission on the Space Shuttle Challenger Accident}}
* [https://www.americanrhetoric.com/speeches/ronaldreaganchallenger.htm Complete text and audio and video of Ronald Reagan's Shuttle ''Challenger'' Address to the Nation]
* {{YouTube|id=oEifG9H8eWs|title=Space Shuttle ''Challenger'' Tragedy}} – video of shuttle launch and Reagan's address
* {{YouTube|id=2FehGJQlOf0|title=''Challenger: A Rush to Launch''}}, an Emmy Award-winning documentary about flight STS-51-L and what caused the ''Challenger'' explosion
* [https://web.archive.org/web/20060127122917/http://www.msnbc.msn.com/id/11031097/ 7 myths about the Challenger shuttle disaster: It didn't explode, the crew didn't die instantly and it wasn't inevitable] [[MSNBC.com]]
* CBS Radio news bulletin of the ''Challenger'' disaster anchored by Christopher Glenn from January 28, 1986: [http://donswaim.com/wcbs-challenger-1.mp3 Part 1], [http://donswaim.com/wcbs-challenger-2.mp3 Part 2], [http://donswaim.com/wcbs-challenger-3.mp3 Part 3], and [http://donswaim.com/wcbs-challenger-4.mp3 Part 4]
* Videos of the disaster
** {{YouTube|id=peT-j9wE5gs|title=NASA video recording showing the breakup}}
** {{YouTube|id=WIMsolc3wvY|title=video from Winter Haven, Florida}}
** {{YouTube|id=8rkox1-c6JQ|title=from a plane leaving from Orlando International Airport}}
** {{YouTube|id=m2nFZzLlZwU|title=8 film recorded at the Kennedy Space Center}}
** {{YouTube|id=0ABi1YjD4CM|title=at the Kennedy Space Center}}


In 2004, President [[George W. Bush]] conferred posthumous [[Congressional Space Medal of Honor|Congressional Space Medals of Honor]] to all 14 astronauts lost in the ''Challenger'' and ''Columbia'' accidents.

==See also==
*[[Space Shuttle Columbia disaster|Space Shuttle ''Columbia'' disaster]]

==Notes==
{{Reflist|30em}}

==References==
{{refbegin|colwidth=30em}}
* {{cite web | last = Boisjoly | first = Roger | authorlink = Roger Boisjoly| title = Ethical Decisions—Morton Thiokol and the Space Shuttle ''Challenger'' Disaster: Telecon Meeting| publisher=onlineethics.org | url = http://www.onlineethics.org/CMS/profpractice/ppessays/thiokolshuttle.aspx| accessdate =April 24, 2007 }}
* CNN.com (1996), [http://www.cnn.com/TECH/9612/17/challenger.debris/index.html Shuttle ''Challenger'' debris washes up on shore.] Retrieved on July 4, 2006.
* {{cite web| author=Columbia Accident Investigation Board| title=Report of Columbia Accident Investigation Board|year=2003| url= http://www.nasa.gov/columbia/caib/html/start.html| accessdate= 2011-07-12}}
* {{cite web | title = Engineering Ethics:The Space Shuttle Challenger Disaster | publisher=Department of Philosophy and Department of Mechanical Engineering, Texas A&M University | url = http://ethics.tamu.edu/ethics/shuttle/shuttle1.htm | accessdate =November 20, 2006 }}
* Feynman, Richard P. (1986) [http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/Appendix-F.txt Appendix F- Personal Observations on Reliability of Shuttle.] (plain text)
* Feynman, Richard P. (1986) [http://history.nasa.gov/rogersrep/v2appf.htm Rogers Commission Report, Volume 2 Appendix F- Personal Observations on Reliability of Shuttle.] (html)
* [[Richard Feynman|Feynman, Richard P.]] with Ralph Leighton, ''What Do You Care What Other People Think? Further Adventures of a Curious Character'', hardcover 256 pages, Publisher: W W Norton & Co Ltd (7-December-1988), ISBN 0393026590, ISBN 978-0393026597, or paperback 256 pages, Publisher: Bantam (October 1, 1989), ISBN 0553347845, ISBN 978-0553347845, or paperback 256 pages, Publisher: W. W. Norton & Company (January 2001), ISBN 0393320928, ISBN 978-0393320923.
* [http://www.jsc.nasa.gov/history/oral_histories/GreeneJH/GreeneJH_Bio.pdf Greene, J.H.], NASA Johnson Space Center Oral History Project Biographical Data Sheet.
* {{cite web | last = Harwood | first = William | title = Voyage Into History; Chapter Six: The Reaction | year = 1986 | url = http://web.archive.org/web/www.cbsnews.com/network/news/space/51Lchap6reaction.html | accessdate = 2011-07-12}} Archived by the Internet Archive on 2006-05-04.
* Jensen, Claus. (1996) ''No Downlink: A Dramatic Narrative about the Challenger Accident and Our Time.'' New York: Farrar, Straus, Giroux. ISBN 0-374-12036-6.
* {{cite web| author=Kerwin, Joseph P.| title=''Challenger'' crew cause and time of death| year=1986| url=http://history.nasa.gov/kerwin.html| accessdate=July 4, 2006}}
* McConnell, Malcolm. (1987) ''Challenger: A Major Malfunction.'' Garden City, NY: Doubleday. ISBN 0-385-23877-0.
* {{cite web | last=M8 Entertainment Inc.|title = Media 8 To Produce "Challenger" Directed by Philip Kaufman|publisher=spaceref.com | date = May 24, 2006| url = http://www.spaceref.com/news/viewpr.html?pid=19931| accessdate =September 21, 2006 }}
* {{cite web|last=NASA| title = Report to the President: Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident | publisher=NASA| date = July 14, 1986| url = http://history.nasa.gov/rogersrep/actions.pdf | format = PDF}}
* {{cite video
| people= Photo and TV Analysis Team Report
| title =Space Shuttle Challenger Accident Investigation
| url =http://www.archive.org/details/ChallengerAccidentandInvestigation
| publisher=STS-51L Data and Analysis Task Force
|date = 1986 | accessdate =January 1, 2007}}
* {{cite news | last = Reinhold| first = Robert| title = At Mission Control, Silence and Grief Fill a Day Long Dreaded|work=The New York Times | pages = A8| date = January 29, 1986 }}
* {{cite web | title = Rendez-Vous Houston|publisher=jarreuk.com |url = http://www.questbbs.fsnet.co.uk/rvhouston.htm| accessdate =November 19, 2006 }}
* {{cite journal | last = Riffe | first = Daniel | coauthors = James Glen Stoval| title = Diffusion of News of Shuttle Disaster: What Role for Emotional Response? | journal=Journalism Quarterly | publisher=Association for education in journalism and mass communication | date = Autumn 1989 }}
* {{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident| year=1986| url=http://history.nasa.gov/rogersrep/genindex.htm | accessdate =2011-07-12}}
* {{cite web| author=Rogers Commission report| title=Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident| year=1987| url=http://history.nasa.gov/rogersrep/v6index.htm | accessdate =January 1, 2007}}
* {{cite web
| url = http://www.arlingtoncemetery.net/challengr.htm
| title = Shuttle Challenger Memorial, Arlington National Cemetery
| publisher=arlingtoncemetery.net
| accessdate =September 18, 2006}}
* [[Edward Tufte|Tufte, Edward]]. (1997) ''Visual Explanations'', ISBN 0-9613921-2-6.
* {{cite web| last=U.S House Committee on Science and Technology | title = Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives. | publisher=US Government Printing Office| date = October 29, 1986| url = http://www.gpoaccess.gov/challenger/64_420.pdf | format = PDF }}
* Vaughan, Diane. (1996) ''The Challenger Launch Decision: Risky Technology, Culture and Deviance at NASA''. Chicago: University of Chicago Press. ISBN 0-226-85176-1.
* Wallace, Brendan & Ross, Alastair (2006) ''Beyond Human Error''. Florida: CRC Press. ISBN 978-0849327186
* {{cite journal | last = Wright| first = John C. | coauthors = Dale Kunkel; Marites Pinon; Aletha C. Huston | title = How Children Reacted to Televised Coverage of the Space Shuttle Disaster | journal=Journal of Communication | volume = 39 | issue = 2 | date = Spring 1989}}
*{{cite web | last = Boisjoly | first = Roger | authorlink = Roger Boisjoly| title = Ethical Decisions - Morton Thiokol and the Challenger Disaster: Telecon Meeting| publisher = onlineethics.org | url = http://www.onlineethics.org/Topics/ProfPractice/PPEssays/thiokolshuttle/shuttle_telecon.aspx | accessdate = 2010-05-18 }}
*McConnell, Malcolm. (1987) ''Challenger: A Major Malfunction.'' Garden City, NY: Doubleday. ISBN 0-385-23877-0.
*{{cite web| author=Rogers Commission report| title=Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident| year=1986| url=http://history.nasa.gov/rogersrep/genindex.htm}}
*[[Edward Tufte|Tufte, Edward]]. (1997) ''Visual Explanations'', ISBN 0-9613921-2-6.
*{{cite web| last=U.S House Committee on Science and Technology | title = Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives. | publisher = US Government Printing Office| date = October 29, 1986| url = http://www.gpoaccess.gov/challenger/64_420.pdf | format = PDF }}
*Vaughan, Diane. (1996) ''The Challenger Launch Decision: Risky Technology, Culture and Deviance at NASA''. Chicago: University of Chicago Press. ISBN 0-226-85176-1.
{{refend}}

==Further reading==
{{refbegin}}
*{{Cite book|last=Evans|first=Ben|year=2007|title=Space shuttle challenger: ten journeys into the unknown |url =http://books.google.ca/books?id=MQjCF8Cc7HoC&lpg=PR1&dq=Space%20Shuttle%20Challenger%20disaster&pg=PR1#v=onepage&q&f=true |publisher=Published in association with Praxis Pub |isbn= 9780387463551 |accessdate= 2011-07-12|postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}} }}
{{refend}}
*{{Cite book|last=Pinkus |first=Rosa Lynn |year=1997 |title=Engineering Ethics: Balancing Cost, Schedule, and Risk |publisher=Cambridge University Press |isbn=0521431719}}

==External links==
{{Portal|Spaceflight}}
{{Commons category|Space Shuttle Challenger disaster}}
{{Spoken Wikipedia-4|2007-01-28|En-Space Shuttle Challenger Disaster-article.ogg|En-Space Shuttle Challenger Disaster (part 2)-article.ogg|En-Space Shuttle Challenger Disaster (part 3)-article.ogg|En-Space Shuttle Challenger Disaster (part 4)-article.ogg|2007-01-28}}
* [http://www.boston.com/bigpicture/2011/01/challenger_disaster_25_years_l.html Challenger disaster: remembered]. ''The Boston Globe''. January 28, 2011.
*[http://www.americanrhetoric.com/speeches/ronaldreaganchallenger.htm Complete text and audio and video of Ronald Reagan's Shuttle Challenger Address to the Nation] AmericanRhetoric.com
*[http://www.youtube.com/watch?v=oEifG9H8eWs Space Shuttle Challenger Tragedy] - video of shuttle launch and Reagan's address - YouTube
*[http://news.google.com/newspapers?nid=dBzKUGQurMsC&dat=19860129&printsec=frontpage January 28, 1986 newspaper]
* {{cite web
| author=NASA History Office
| title = Challenger STS 51-L Accident
| publisher=NASA
| url = http://history.nasa.gov/sts51l.html
| accessdate =November 20, 2006 }}
* {{cite web
| author=NASA Kennedy Space Center
| title = Sequence of Major Events of the Challenger Accident
| publisher=NASA
| url = http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/events.txt
| accessdate = 2011-07-12 }}
* {{cite web
| author=Rogers Commission
| title = Report of the Presidential Commission on the Space Shuttle ''Challenger'' Accident
| year = 1986
| url = http://history.nasa.gov/rogersrep/genindex.htm
| accessdate = 2011-07-12}}
* {{cite web
| last = Harwood
| first = William
| coauthors = Rob Navias
| title = Challenger timeline
| publisher=Spaceflight Now
| url = http://spaceflightnow.com/challenger/timeline/
| accessdate =November 20, 2006 }}
* {{cite video
| people= Photo and TV Analysis Team Report
| title = Space Shuttle Challenger Accident Investigation
| publisher=STS-51L Data and Analysis Task Force
| url = http://www.archive.org/details/ChallengerAccidentandInvestigation
|date = 1986}} (Video)
* CBS Radio news Bulletin of the Challenger Disaster Anchored by Christopher Glenn from January 28, 1986 [http://donswaim.com/wcbs-challenger-1.mp3 Part 1], [http://donswaim.com/wcbs-challenger-2.mp3 Part 2], [http://donswaim.com/wcbs-challenger-3.mp3 Part 3], [http://donswaim.com/wcbs-challenger-4.mp3 Part 4].
{{Coord|28|38|24|N|80|16|48|W|region:US-FL_type:landmark_scale:1500000|display=title}}
{{STS-51L}}
{{STS-51L}}
{{Space Shuttle Challenger}}
{{Space Shuttle Challenger}}
{{Space Shuttle}}
{{Space Shuttle}}
{{Space Shuttles}}
{{Authority control}}
{{Aviation incidents and accidents in 1986}}


{{DEFAULTSORT:Space Shuttle Challenger Disaster}}
[[Category:Space Shuttle Challenger disaster| ]]
[[Category:1986 disasters]]
[[Category:1986 disasters in the United States]]
[[Category:1986 in Florida]]
[[Category:1986 in spaceflight]]
[[Category:1986 in spaceflight]]
[[Category:1986 in the United States]]
[[Category:1986 industrial disasters]]
[[Category:Aviation accidents and incidents in 1986]]
[[Category:Accidental deaths in Florida]]
[[Category:Aviation accidents and incidents in the United States]]
[[Category:Articles containing video clips]]
[[Category:Aviation accidents and incidents in the United States in 1986]]
[[Category:Destroyed spacecraft]]
[[Category:Disasters in Florida]]
[[Category:Disasters in Florida]]
[[Category:Accidental explosion disasters in the United States]]
[[Category:Explosions in 1986]]
[[Category:Filmed accidental deaths|Challenger]]
[[Category:Gas explosions in the United States]]
[[Category:History of the United States (1980–1991)]]
[[Category:Space accidents and incidents in the United States|C]]
[[Category:Marine salvage operations]]
[[Category:Marine salvage operations]]
[[Category:Media coverage and representation]]
[[Category:History of Brevard County, Florida]]
[[Category:Space accidents and incidents]]
[[Category:January 1986 events in the United States]]
[[Category:Space program fatalities|Challenger]]
[[Category:Presidency of Ronald Reagan]]
[[Category:Space Shuttle Challenger disaster| ]]
[[Category:Space Shuttle program]]
[[Category:Space Shuttle missions]]
[[Category:Transportation disasters in the United States]]

{{Link FA|pl}}
{{Link FA|zh}}
{{Link FA|ca}}
[[ca:Accident del transbordador espacial Challenger]]
[[de:STS-51-L]]
[[es:Accidente del Transbordador espacial Challenger]]
[[fr:Accident de la navette spatiale Challenger]]
[[ko:챌린저 우주왕복선 참사]]
[[id:Musibah Challenger]]
[[it:Disastro dello Space Shuttle Challenger]]
[[he:אסון מעבורת החלל צ'לנג'ר]]
[[hu:Challenger-katasztrófa]]
[[ja:チャレンジャー号爆発事故]]
[[pl:Katastrofa promu Challenger]]
[[ro:Dezastrul navetei spaţiale Challenger]]
[[ru:Катастрофа шаттла Челленджер]]
[[simple:Space Shuttle Challenger Disaster]]
[[sl:Nesreča raketoplana Challenger]]
[[sv:STS-51-L]]
[[th:โศกนาฏกรรมกระสวยอวกาศแชลเลนเจอร์]]
[[zh:挑战者号航天飞机灾难]]

Latest revision as of 21:00, 9 December 2024

Space Shuttle Challenger disaster
Challenger's solid rocket boosters fly uncontrollably after the breakup of the external tank separated them from the shuttle stack. The remains of the orbiter and tank leave thin white contrails as they fall toward the Atlantic Ocean.
DateJanuary 28, 1986; 38 years ago (1986-01-28)
Time11:39:13 EST (16:39:13 UTC)
LocationAtlantic Ocean, off the coast of Florida
Coordinates28°38′24″N 80°16′48″W / 28.64000°N 80.28000°W / 28.64000; -80.28000
CauseO-ring seal failure in right SRB due to cold weather and wind shear
Outcome
  • Loss of Challenger and crew
  • Teacher in Space Project and subsequent civilian shuttle spaceflights cancelled
  • Shuttle fleet grounded for implementation of safety measures
  • Construction of replacement orbiter Endeavour.
Deaths
InquiriesRogers Commission Report

On January 28, 1986, the Space Shuttle Challenger broke apart 73 seconds into its flight, killing all seven crew members aboard. The spacecraft disintegrated 46,000 feet (14 km) above the Atlantic Ocean, off the coast of Cape Canaveral, Florida, at 11:39 a.m. EST (16:39 UTC). It was the first fatal accident involving an American spacecraft while in flight.[1][2]

The mission, designated STS-51-L, was the 10th flight for the orbiter and the 25th flight of the Space Shuttle fleet. The crew was scheduled to deploy a communications satellite and study Halley's Comet while they were in orbit, in addition to taking schoolteacher Christa McAuliffe into space under the Teacher In Space program. The latter task resulted in a higher-than-usual media interest in and coverage of the mission; the launch and subsequent disaster were seen live in many schools across the United States.

The cause of the disaster was the failure of the primary and secondary O-ring seals in a joint in the shuttle's right solid rocket booster (SRB). The record-low temperatures on the morning of the launch had stiffened the rubber O-rings, reducing their ability to seal the joints. Shortly after liftoff, the seals were breached, and hot pressurized gas from within the SRB leaked through the joint and burned through the aft attachment strut connecting it to the external propellant tank (ET), then into the tank itself. The collapse of the ET's internal structures and the rotation of the SRB that followed threw the shuttle stack, traveling at a speed of Mach 1.92, into a direction that allowed aerodynamic forces to tear the orbiter apart. Both SRBs detached from the now-destroyed ET and continued to fly uncontrollably until the range safety officer destroyed them.

The crew compartment, human remains, and many other fragments from the shuttle were recovered from the ocean floor after a three-month search-and-recovery operation. The exact timing of the deaths of the crew is unknown, but several crew members are thought to have survived the initial breakup of the spacecraft. The orbiter had no escape system, and the impact of the crew compartment at terminal velocity with the ocean surface was too violent to be survivable.

The disaster resulted in a 32-month hiatus in the Space Shuttle program. President Ronald Reagan created the Rogers Commission to investigate the accident. The commission criticized NASA's organizational culture and decision-making processes that had contributed to the accident. Test data since 1977 demonstrated a potentially catastrophic flaw in the SRBs' O-rings, but neither NASA nor SRB manufacturer Morton Thiokol had addressed this known defect. NASA managers also disregarded engineers' warnings about the dangers of launching in cold temperatures and did not report these technical concerns to their superiors.

As a result of this disaster, NASA established the Office of Safety, Reliability, and Quality Assurance, and arranged for deployment of commercial satellites from expendable launch vehicles rather than from a crewed orbiter. To replace Challenger, the construction of a new Space Shuttle orbiter, Endeavour, was approved in 1987, and the new orbiter first flew in 1992. Subsequent missions were launched with redesigned SRBs and their crews wore pressurized suits during ascent and reentry.

Background

[edit]

Space Shuttle

[edit]
Space Shuttle Challenger – assembled for launch along with the ET and two SRBs – atop a crawler-transporter en route to the launch pad about one month before the disaster

The Space Shuttle was a partially reusable spacecraft operated by the US National Aeronautics and Space Administration (NASA).[3]: 5, 195  It flew for the first time in April 1981,[4]: III–24  and was used to conduct in-orbit research,[4]: III–188  and deploy commercial,[4]: III–66  military,[4]: III–68  and scientific payloads.[4]: III–148  At launch, it consisted of the orbiter, which contained the crew and payload, the external tank (ET), and the two solid rocket boosters (SRBs).[5]: 363  The orbiter was a reusable, winged vehicle that launched vertically and landed as a glider.[4]: II-1  Five orbiters were built during the Space Shuttle program.[3]: 5  Challenger (OV-099) was the second orbiter constructed after its conversion from a structural test article.[4]: I-455  The orbiter contained the crew compartment, where the crew predominantly lived and worked throughout a mission.[4]: II-5  Three Space Shuttle main engines (SSMEs) were mounted at the aft end of the orbiter and provided thrust during launch.[5]: II-170  Once in space, the crew maneuvered using the two smaller, aft-mounted Orbital Maneuvering System (OMS) engines.[5]: II-79 

When it launched, the orbiter was connected to the ET, which held the fuel for the SSMEs.[5]: II-222  The ET consisted of a larger tank for liquid hydrogen (LH2) and a smaller tank for liquid oxygen (LOX), both of which were required for the SSMEs to operate.[5]: II-222, II-226  After its fuel had been expended, the ET separated from the orbiter and reentered the atmosphere, where it would break apart during reentry and its pieces would land in the Indian or Pacific Ocean.[5]: II-238 

Two solid rocket boosters (SRBs), built by Morton Thiokol at the time of the disaster,[6]: 9–10  provided the majority of thrust at liftoff. They were connected to the external tank, and burned for the first two minutes of flight.[5]: II-222  The SRBs separated from the orbiter once they had expended their fuel and fell into the Atlantic Ocean under a parachute.[5]: II-289  NASA retrieval teams recovered the SRBs and returned them to the Kennedy Space Center (KSC), where they were disassembled and their components were reused on future flights.[5]: II-292  Each SRB was constructed in four main sections at the factory in Utah and transported to KSC, then assembled in the Vehicle Assembly Building at KSC with three tang-and-clevis field joints, each joint consisting of a tang from the upper segment fitting into the clevis of the lower segment. Each field joint was sealed with two ~20 foot (6 meter) diameter Viton-rubber O-rings around the circumference of the SRB and had a cross-section diameter of 0.280 inches (7.1 mm).[3]: 48  The O-rings were required to contain the hot, high-pressure gases produced by the burning solid propellant and allowed for the SRBs to be rated for crewed missions.[6]: 24 [7]: 420  The two O-rings were configured to create a double bore seal, and the gap between segments was filled with putty. When the motor was running, this configuration was designed to compress air in the gap against the upper O-ring, pressing it against the sealing surfaces of its seat. On the SRB Critical Items List, the O-rings were listed as Criticality 1R, which indicated that an O-ring failure could result in the destruction of the vehicle and loss of life, but it was considered a redundant system due to the secondary O-ring.[3]: 126 

O-ring concerns

[edit]
Diagram from the Rogers Commission depicting a cross-section of the solid rocket booster field joint
Cross-sectional diagram of the original SRB field joint. The top end of the lower rocket segment has a deep U-shaped cavity, or clevis, along its circumference. The bottom end of the top segment extends to form a tang that fits snugly into the clevis of the bottom segment. Two parallel grooves near the top of the clevis inner branch hold ~20 foot (6 meter) diameter O-rings that seal the gap between the tang and the clevis, keeping hot gases out of the gap.

Evaluations of the proposed SRB design in the early 1970s and field joint testing showed that the wide tolerances between the mated parts allowed the O-rings to be extruded from their seats rather than compressed. This extrusion was judged to be acceptable by NASA and Morton Thiokol despite concerns of NASA's engineers.[3]: 122–123 [8] A 1977 test showed that up to 0.052 inches (1.3 mm) of joint rotation occurred during the simulated internal pressure of a launch. Joint rotation, which occurred when the tang and clevis bent away from each other, reduced the pressure on the O-rings, which weakened their seals and made it possible for combustion gases to erode the O-rings.[3]: 123–124  NASA engineers suggested that the field joints should be redesigned to include shims around the O-rings, but they received no response.[3]: 124–125  In 1980, the NASA Verification/Certification Committee requested further tests on joint integrity to include testing in the temperature range of 40 to 90 °F (4 to 32 °C) and with only a single O-ring installed. The NASA program managers decided that their current level of testing was sufficient and further testing was not required. In December 1982, the Critical Items List was updated to indicate that the secondary O-ring could not provide a backup to the primary O-ring, as it would not necessarily form a seal in the event of joint rotation. The O-rings were redesignated as Criticality 1, removing the "R" to indicate it was no longer considered a redundant system.[3]: 125–127 [6]: 66 

The first occurrence of in-flight O-ring erosion occurred on the right SRB on STS-2 in November 1981.[3]: 126  In August 1984, a post-flight inspection of the left SRB on STS-41-D revealed that soot had blown past the primary O-ring and was found in between the O-rings. Although there was no damage to the secondary O-ring, this indicated that the primary O-ring was not creating a reliable seal and was allowing hot gas to pass. The amount of O-ring erosion was insufficient to prevent the O-ring from sealing, and investigators concluded that the soot between the O-rings resulted from non-uniform pressure at the time of ignition.[3]: 130 [6]: 39–42  The January 1985 launch of STS-51-C was the coldest Space Shuttle launch to date. The air temperature was 62 °F (17 °C) at the time of launch, and the calculated O-ring temperature was 53 °F (12 °C). Post-flight analysis revealed erosion in primary O-rings in both SRBs. Morton Thiokol engineers determined that the cold temperatures caused a loss of flexibility in the O-rings that decreased their ability to seal the field joints, which allowed hot gas and soot to flow past the primary O-ring.[6]: 47  O-ring erosion occurred on all but one (STS-51-J) of the Space Shuttle flights in 1985, and erosion of both the primary and secondary O-rings occurred on STS-51-B.[3]: 131 [6]: 50–52, 63 

To correct the issues with O-ring erosion, engineers at Morton Thiokol, led by Allan McDonald and Roger Boisjoly, proposed a redesigned field joint that introduced a metal lip to limit movement in the joint. They also recommended adding a spacer to provide additional thermal protection and using an O-ring with a larger cross section.[6]: 67−69  In July 1985, Morton Thiokol ordered redesigned SRB casings, with the intention of using already-manufactured casings for the upcoming launches until the redesigned cases were available the following year.[6]: 62 

Picture of the seven crew members in flight suits and holding their helmets
STS-51-L crew: (back) Onizuka, McAuliffe, Jarvis, Resnik; (front) Smith, Scobee, McNair.[9]

Mission

[edit]

The Space Shuttle mission, named STS-51-L, was the twenty-fifth Space Shuttle flight and the tenth flight of Challenger.[3]: 6  The crew was announced on January 27, 1985, and was commanded by Dick Scobee. Michael Smith was assigned as the pilot, and the mission specialists were Ellison Onizuka, Judith Resnik, and Ronald McNair. The two payload specialists were Gregory Jarvis, who was assigned to conduct research for the Hughes Aircraft Company, and Christa McAuliffe, who flew as part of the Teacher in Space Project.[3]: 10–13 

The primary mission of the Challenger crew was to use an Inertial Upper Stage (IUS) to deploy a Tracking and Data Relay Satellite (TDRS), named TDRS-B, that would have been part of a constellation to enable constant communication with orbiting spacecraft. The crew also planned to study Halley's Comet as it passed near the Sun,[4]: III-76  and deploy and retrieve a SPARTAN satellite.[10]

The mission was originally scheduled for July 1985, but was delayed to November and then to January 1986.[3]: 10  The mission was scheduled to launch on January 22, but was delayed until January 28.[11]

Decision to launch

[edit]

The air temperature on January 28 was predicted to be a record low for a Space Shuttle launch.[6]: 47, 101  The air temperature was forecast to drop to 18 °F (−8 °C) overnight before rising to 22 °F (−6 °C) at 6:00 a.m. and 26 °F (−3 °C) at the scheduled launch time of 9:38 a.m.[3]: 87 [6]: 96  Based upon O-ring erosion that had occurred in warmer launches, Morton Thiokol engineers were concerned over the effect the record-cold temperatures would have on the seal provided by the SRB O-rings for the launch.[6]: 101–103  Cecil Houston, the manager of the KSC office of the Marshall Space Flight Center, set up a conference call on the evening of January 27 to discuss the safety of the launch. Morton Thiokol engineers expressed their concerns about the effect of low temperatures on the resilience of the rubber O-rings. As the colder temperatures lowered the elasticity of the rubber O-rings, the engineers feared that the O-rings would not be extruded to form a seal at the time of launch.[6]: 97–99 [12] The engineers argued that they did not have enough data to determine whether the O-rings would seal at temperatures colder than 53 °F (12 °C), the coldest launch of the Space Shuttle to date.[6]: 105–106  Morton Thiokol employees Robert Lund, the Vice President of Engineering, and Joe Kilminster, the Vice President of the Space Booster Programs, recommended against launching until the temperature was above 53 °F (12 °C).[3]: 107–108 

The underside of the orbiter wing and the SRB behind the structure of the service tower. The service tower has numerous icicles.
Ice on the launch tower hours before Challenger launch

The teleconference held a recess to allow for private discussion amongst Morton Thiokol management. When it resumed, Morton Thiokol leadership had changed their opinion and stated that the evidence presented on the failure of the O-rings was inconclusive and that there was a substantial margin in the event of a failure or erosion. They stated that their decision was to proceed with the launch. Morton Thiokol leadership submitted a recommendation for launch, and the teleconference ended.[3]: 97, 109  Lawrence Mulloy, the NASA SRB project manager,[6]: 3  called Arnold Aldrich, the NASA Mission Management Team Leader, to discuss the launch decision and weather concerns, but did not mention the O-ring discussion; the two agreed to proceed with the launch.[3]: 99 [6]: 116 

An overnight measurement taken by the KSC Ice Team recorded the left SRB was 25 °F (−4 °C) and the right SRB was 8 °F (−13 °C).[3]: 111  These measurements were recorded for engineering data and not reported, because the temperature of the SRBs was not part of the Launch Commit Criteria.[6]: 118  In addition to its effect on the O-rings, the cold temperatures caused ice to form on the fixed service structure. To keep pipes from freezing, water was slowly run from the system; it could not be entirely drained because of the upcoming launch. As a result, ice formed from 240 feet (73 m) down in the freezing temperatures. Engineers at Rockwell International, which manufactured the orbiter, were concerned that ice would be violently thrown during launch and could potentially damage the orbiter's thermal protection system or be aspirated into one of the engines. Rocco Petrone, the head of Rockwell's space transportation division, and his team determined that the potential damage from ice made the mission unsafe to fly. Arnold Aldrich consulted with engineers at KSC and the Johnson Space Center (JSC) who advised him that ice did not threaten the safety of the orbiter, and he decided to proceed with the launch.[3]: 115–118  The launch was delayed for an additional hour to allow more ice to melt. The ice team performed an inspection at T–20 minutes which indicated that the ice was melting, and Challenger was cleared to launch at 11:38 a.m. EST, with an air temperature of 36 °F (2 °C).[3]: 17 

Launch and failure

[edit]

Liftoff and initial ascent

[edit]
The Space Shuttle immediately following liftoff, from the viewpoint near the right SRB. Gray smoke is apparent around the SRB.
Gray smoke escaping from the right-side solid rocket booster

At T+0, Challenger launched from the Kennedy Space Center Launch Complex 39B (LC-39B) at 11:38:00 a.m.[3]: 17 [4]: III–76  Beginning at T+0.678 until T+3.375 seconds, nine puffs of dark gray smoke were recorded escaping from the right-hand SRB near the aft strut that attached the booster to the ET.[3]: 19 [4]: III-93  It was later determined that these smoke puffs were caused by joint rotation in the aft field joint of the right-hand SRB at ignition.[6]: 136 

The cold temperature in the joint had prevented the O-rings from creating a seal. Rainfall from the preceding time on the launchpad had likely accumulated within the field joint, further compromising the sealing capability of the O-rings. As a result, hot gas was able to travel past the O-rings and erode them. Molten aluminum oxides from the burned propellant resealed the joint and created a temporary barrier against further hot gas and flame escaping through the field joint.[6]: 142  The Space Shuttle main engines (SSMEs) were throttled down as scheduled for maximum dynamic pressure (max q).[4]: III–8–9 [13] During its ascent, the Space Shuttle encountered wind shear conditions beginning at T+37, but they were within design limits of the vehicle and were countered by the guidance system.[3]: 20 

Plume

[edit]
Space Shuttle challenger in-flight with an anomalous plume of fire from the side of its right solid rocket booster
Plume on right SRB at T+58.788 seconds

At T+58.788, a tracking film camera captured the beginnings of a plume near the aft attach strut on the right SRB, right before the vehicle passed through max q at T+59.000.[13] The high aerodynamic forces and wind shear likely broke the aluminum oxide seal that had replaced eroded O-rings, allowing the flame to burn through the joint.[6]: 142  Within one second from when it was first recorded, the plume became well-defined, and the enlarging hole caused a drop in internal pressure in the right SRB. A leak had begun in the liquid hydrogen (LH2) tank of the ET at T+64.660, as indicated by the changing shape of the plume.

The SSMEs pivoted to compensate for the booster burn-through, which was creating an unexpected thrust on the vehicle. The pressure in the external LH2 tank began to drop at T+66.764 indicating that the flame had burned from the SRB into the tank. The crew and flight controllers made no indication they were aware of the vehicle and flight anomalies. At T+68, the CAPCOM, Richard O. Covey, told the crew, "Challenger, go at throttle up," indicating that the SSMEs had throttled up to 104% thrust.[note 1] In response to Covey, Scobee said, "Roger, go at throttle up"; this was the last communication from Challenger on the air-to-ground loop.[13]

Vehicle breakup

[edit]
The explosion of Space Shuttle Challenger, taken from the TV-3 camera

At T+72.284, the right SRB pulled away from the aft strut that attached it to the ET, causing lateral acceleration that was felt by the crew. At the same time, pressure in the LH2 tank began dropping. Pilot Mike Smith said "Uh-oh," which was the last crew comment recorded. At T+73.124, white vapor was seen flowing away from the ET, after which the aft dome of the LH2 tank fell off. The resulting release of all liquid hydrogen in the tank pushed the LH2 tank forward into the liquid oxygen (LOX) tank with a force equating to roughly 3,000,000 pounds-force (13 meganewtons), while the right SRB collided with the intertank structure.

These events resulted in an abrupt change to the shuttle stack's attitude and direction,[15] which was shrouded from view by the vaporized contents of the now-destroyed ET. As it traveled at Mach 1.92, Challenger took aerodynamic forces it was not designed to withstand and broke into several large pieces: a wing, the (still firing) main engines, the crew cabin and hypergolic fuel leaking from the ruptured reaction control system were among the parts identified exiting the vapor cloud. The disaster unfolded at an altitude of 46,000 feet (14 km).[13][3]: 21  Both SRBs survived the breakup of the shuttle stack and continued flying, now unguided by the attitude and trajectory control of their mothership, until their flight termination systems were activated at T+110.[3]: 30 

Post-breakup flight controller dialogue

[edit]
View along the computers banks in the mission control center and a flight controller sitting in front of a terminal
Jay Greene after Challenger's breakup

At T+73.191, there was a burst of static on the air-to-ground loop as the vehicle broke up, which was later attributed to ground-based radios searching for a signal from the destroyed spacecraft. NASA Public Affairs Officer Steve Nesbitt was initially unaware of the explosion and continued to read out flight information. At T+89, after video of the explosion was seen in Mission Control, the Ground Control Officer reported "negative contact (and) loss of downlink" as they were no longer receiving transmissions from Challenger.[13] Nesbitt stated, "Flight controllers here are looking very carefully at the situation. Obviously a major malfunction. We have no downlink." Soon afterwards, he said, "We have a report from the Flight Dynamics Officer that the vehicle has exploded. The flight director confirms that. We are looking at checking with the recovery forces to see what can be done at this point."[13]

In Mission Control, flight director Jay Greene ordered that contingency procedures be put into effect,[13] which included locking the doors, shutting down telephone communications, and freezing computer terminals to collect data from them.[6]: 122 

Cause and time of death

[edit]
A trapezoidal gray section of the shuttle among several plumes of smoke and vapor against the blue sky
The forward section of the fuselage after breakup, indicated by the arrow

The crew cabin, which was made of reinforced aluminum, separated in one piece from the rest of the orbiter.[15] It then traveled in a ballistic arc, reaching the apogee of 65,000 feet (20 km) approximately 25 seconds after the explosion. At the time of separation, the maximum acceleration is estimated to have been between 12 and 20 times that of gravity (g). Within two seconds it had dropped below 4 g, and within ten seconds the cabin was in free fall. The forces involved at this stage were probably insufficient to cause major injury to the crew.[16]

At least some of the crew were alive and conscious after the breakup, as Personal Egress Air Packs (PEAPs) were activated for Smith[17]: 246  and two unidentified crewmembers, but not for Scobee.[16] The PEAPs were not intended for in-flight use, and the astronauts never trained with them for an in-flight emergency. The location of Smith's activation switch, on the back side of his seat, indicated that either Resnik or Onizuka likely activated it for him. Investigators found their remaining unused air supply consistent with the expected consumption during the post-breakup trajectory.[17]: 245–247 

While analyzing the wreckage, investigators discovered that several electrical system switches on Smith's right-hand panel had been moved from their usual launch positions. The switches had lever locks on top of them that must be pulled out before the switch could be moved. Later tests established that neither the force of the explosion nor the impact with the ocean could have moved them, indicating that Smith made the switch changes, presumably in a futile attempt to restore electrical power to the cockpit after the crew cabin detached from the rest of the orbiter.[17]: 245 

On July 28, 1986, NASA's Associate Administrator for Space Flight, former astronaut Richard H. Truly, released a report on the deaths of the crew from physician and Skylab 2 astronaut Joseph P. Kerwin:[16]

The findings are inconclusive. The impact of the crew compartment with the ocean surface was so violent that evidence of damage occurring in the seconds which followed the disintegration was masked. Our final conclusions are:

  • the cause of death of the Challenger astronauts cannot be positively determined;
  • the forces to which the crew were exposed during Orbiter breakup were probably not sufficient to cause death or serious injury; and
  • the crew possibly, but not certainly, lost consciousness in the seconds following Orbiter breakup due to in-flight loss of crew module pressure.[16]

Pressurization could have enabled consciousness for the entire fall until impact. The crew cabin hit the ocean surface at 207 mph (333 km/h) approximately two minutes and 45 seconds after breakup. The estimated deceleration was 200 g, far exceeding structural limits of the crew compartment or crew survivability levels. The mid-deck floor had not suffered buckling or tearing, as would result from a rapid decompression, but stowed equipment showed damage consistent with decompression, and debris was embedded between the two forward windows that may have caused a loss of pressure. Impact damage to the crew cabin was severe enough that it could not be determined whether the crew cabin had previously been damaged enough to lose pressurization.[16]

Prospect of crew escape

[edit]

Unlike other spacecraft, the Space Shuttle did not allow for crew escape during powered flight. Launch escape systems had been considered during development, but NASA's conclusion was that the Space Shuttle's expected high reliability would preclude the need for one.[3]: 181  Modified SR-71 Blackbird ejection seats and full pressure suits were used for the two-person crews on the first four Space Shuttle orbital test flights, but they were disabled and later removed for the operational flights.[4]: II-7  Escape options for the operational flights were considered but not implemented due to their complexity, high cost, and heavy weight.[3]: 181  After the disaster, a system was implemented to allow the crew to escape in gliding flight, but this system would not have been usable to escape an explosion during ascent.[18]

Recovery of debris and crew

[edit]

Immediately after the disaster, the NASA Launch Recovery Director launched the two SRB recovery ships, MV Freedom Star and MV Liberty Star, to proceed to the impact area to recover debris, and requested the support of US military aircraft and ships. Owing to falling debris from the explosion, the RSO kept recovery forces from the impact area until 12:37 p.m. The size of the recovery operations increased to 12 aircraft and 8 ships by 7:00 p.m. Surface operations recovered debris from the orbiter and external tank. The surface recovery operations ended on February 7.[19]

On January 31, the US Navy was tasked with submarine recovery operations.[20]: 5  The search efforts prioritized the recovery of the right SRB, followed by the crew compartment, and then the remaining payload, orbiter pieces, and ET.[20]: 16  The search for debris formally began on February 8 with the rescue and salvage ship USS Preserver, and eventually grew to sixteen ships, of which three were managed by NASA, four by the US Navy, one by the US Air Force and eight by independent contractors.[20]: 4–5  The surface ships used side-scan sonar to make the initial search for debris and covered 486 square nautical miles (1,670 km2) at water depths between 70 feet (21 m) and 1,200 feet (370 m).[20]: 24  The sonar operations discovered 881 potential locations for debris, of which 187 pieces were later confirmed to be from the orbiter.[20]: 24 

The field joint of a solid rocket booster on the deck of a ship with a large hole in it
Right SRB debris showing the hole caused by the plume

The debris from the SRBs was widely distributed due to the detonation of their linear shaped charges. The identification of SRB material was primarily conducted by crewed submarines and submersibles. The vehicles were dispatched to investigate potential debris located during the search phase.[20]: 32  Surface ships lifted the SRB debris with the help of technical divers and underwater remotely operated vehicles to attach the necessary slings to raise the debris with cranes.[20]: 37, 42  The solid propellant in the SRBs posed a risk, as it became more volatile after being submerged. Recovered portions of the SRBs were kept wet during recovery, and their unused propellant was ignited once they were brought ashore. The failed joint on the right SRB was first located on sonar on March 1. Subsequent dives to 560 ft (170 m) by the NR-1 submarine on April 5 and the SEA-LINK I submersible on April 12 confirmed that it was the damaged field joint,[20]: 42  and it was successfully recovered on April 13. Of the 196,726 lb (89,233 kg) of both SRB shells, 102,500 lb (46,500 kg) was recovered, another 54,000 lb (24,000 kg) was found but not recovered, and 40,226 lb (18,246 kg) was never found.[20]: 44 

On March 7, Air Force divers identified potential crew compartment debris, which was confirmed the next day by divers from the USS Preserver.[20]: 51 [21] The damage to the crew compartment indicated that it had remained largely intact during the initial explosion but was extensively damaged when it impacted the ocean.[19] The remains of the crew were badly damaged from impact and submersion, and were not intact bodies.[22] The USS Preserver made multiple trips to return debris and remains to port, and continued crew compartment recovery until April 4.[20]: 51  During the recovery of the remains of the crew, Jarvis's body floated away and was not located until April 15, several weeks after the other remains had been positively identified.[21][23] Once remains were brought to port, pathologists from the Armed Forces Institute of Pathology worked to identify the human remains, but could not determine the exact cause of death for any of them.[22][16] Medical examiners in Brevard County disputed the legality of transferring human remains to US military officials to conduct autopsies, and refused to issue the death certificates; NASA officials ultimately released the death certificates of the crew members.[24]

The IUS that would have been used to boost the orbit of the TDRS-B satellite was one of the first pieces of debris recovered.[20]: 51  There was no indication that there had been premature ignition of the IUS, which had been one of the suspected causes for the disaster.[3]: 50  Debris from the three SSMEs was recovered from February 14 to 28,[20]: 51  and post-recovery analysis produced results consistent with functional engines suddenly losing their LH2 fuel supply.[19] Deepwater recovery operations continued until April 29, with smaller scale, shallow recovery operations continuing until August 29.[20]: 51  On December 17, 1996, two pieces of the orbiter were found at Cocoa Beach.[25] On November 10, 2022, NASA announced that a 20-foot (6 m) piece of the shuttle had been found near the site of a destroyed World War II-era aircraft off the coast of Florida.[26][27][28][29][30] The discovery was aired on the History Channel on November 22, 2022.[31] Almost all recovered non-organic debris from Challenger is buried in Cape Canaveral Space Force Station missile silos at LC-31 and LC-32.[32]

Funeral ceremonies

[edit]

On April 29, 1986, the astronauts' remains were transferred on a C-141 Starlifter aircraft from Kennedy Space Center to the military mortuary at Dover Air Force Base in Delaware. Their caskets were each draped with an American flag and carried past an honor guard and followed by an astronaut escort.[33] After the remains arrived at Dover Air Force Base, they were transferred to the families of the crew members.[33] Scobee and Smith were buried at Arlington National Cemetery.[34] Onizuka was buried at the National Memorial Cemetery of the Pacific in Honolulu, Hawaii.[35] McNair was buried in Rest Lawn Memorial Park in Lake City, South Carolina,[36] but his remains were later moved within the town to the Dr. Ronald E. McNair Memorial Park.[37][38] Resnik was cremated and her ashes were scattered over the water.[39] McAuliffe was buried at Calvary Cemetery in Concord, New Hampshire.[40] Jarvis was cremated, and his ashes were scattered in the Pacific Ocean.[41] Unidentified crew remains were buried at the Space Shuttle Challenger Memorial in Arlington on May 20, 1986.[34]

Public response

[edit]

White House response

[edit]
President Ronald Reagan's Speech on Space Shuttle Challenger, January 28, 1986

President Ronald Reagan had been scheduled to give the 1986 State of the Union Address on January 28, 1986, the evening of the Challenger disaster. After a discussion with his aides, Reagan postponed the State of the Union, and instead addressed the nation about the disaster from the Oval Office.[42][43] On January 31, Ronald and Nancy Reagan traveled to the Johnson Space Center to speak at a memorial service honoring the crew members. During the ceremony, an Air Force band sang "God Bless America" as NASA T-38 Talon jets flew directly over the scene in the traditional missing-man formation.[44]

A group of spectators at a funeral
President Reagan and First Lady Nancy Reagan (left) at the memorial service on January 31, 1986

Soon after the disaster, US politicians expressed concern that White House officials, including Chief of Staff Donald Regan and Communications Director Pat Buchanan, had pressured NASA to launch Challenger before the scheduled January 28 State of the Union address, because Reagan had planned to mention the launch in his remarks.[45][46] In March 1986, the White House released a copy of the original State of the Union speech. In that speech, Reagan had intended to mention an X-ray experiment launched on Challenger and designed by a guest he had invited to the address, but he did not further discuss the Challenger launch.[46][47] In the rescheduled State of the Union address on February 4, Reagan mentioned the deceased Challenger crew members and modified his remarks about the X-ray experiment as "launched and lost".[48] In April 1986, the White House released a report that concluded there had been no pressure from the White House for NASA to launch Challenger prior to the State of the Union.[45]

Media coverage

[edit]

Nationally televised live coverage of the launch and explosion was provided by CNN.[49] To promote the Teacher in Space program with McAuliffe as a crewmember, NASA had arranged for many students in the US to view the launch live at school with their teachers.[49][50] Other networks, such as CBS, soon cut in to their affiliate feeds to broadcast continuous coverage of the disaster and its aftermath.[51] Press interest in the disaster increased in the following days; the number of reporters at KSC increased from 535 on the day of the launch to 1,467 reporters three days later.[52] In the aftermath of the accident, NASA was criticized for not making key personnel available to the press.[53] In the absence of information, the press published articles suggesting the external tank was the cause of the explosion.[52][54] Until 2010, CNN's live broadcast of the launch and disaster was the only known on-location video footage from within range of the launch site. Additional amateur and professional recordings have since become publicly available.[55][56][57]

Engineering case study

[edit]

The Challenger accident has been used as a case study for subjects such as engineering safety, the ethics of whistleblowing, communications and group decision-making, and the dangers of groupthink.[58] Roger Boisjoly and Allan McDonald became speakers who advocated for responsible workplace decision making and engineering ethics.[12][59] Information designer Edward Tufte has argued that the Challenger accident was the result of poor communications and overly complicated explanations on the part of engineers, and stated that showing the correlation of ambient air temperature and O-ring erosion amounts would have been sufficient to communicate the potential dangers of the cold-weather launch. Boisjoly contested this assertion and stated that the data presented by Tufte were not as simple or available as Tufte stated.[60]

Reports

[edit]

Rogers Commission Report

[edit]

The Presidential Commission on the Space Shuttle Challenger Accident, also known as the Rogers Commission after its chairman, was formed on February 6.[3]: 206  Its members were Chairman William P. Rogers, Vice Chairman Neil Armstrong, David Acheson, Eugene Covert, Richard Feynman, Robert Hotz, Donald Kutyna, Sally Ride, Robert Rummel, Joseph Sutter, Arthur Walker, Albert Wheelon, and Chuck Yeager.[3]: iii–iv 

The commission held hearings that discussed the NASA accident investigation, the Space Shuttle program, and the Morton Thiokol recommendation to launch despite O-ring safety issues. On February 15, Rogers released a statement that established the commission's changing role to investigate the accident independent of NASA due to concerns of the failures of the internal processes at NASA. The commission created four investigative panels to research the different aspects of the mission. The Accident Analysis Panel, chaired by Kutyna, used data from salvage operations and testing to determine the exact cause behind the accident. The Development and Production Panel, chaired by Sutter, investigated the hardware contractors and how they interacted with NASA. The Pre-Launch Activities Panel, chaired by Acheson, focused on the final assembly processes and pre-launch activities conducted at KSC. The Mission Planning and Operations Panel, chaired by Ride, investigated the planning that went into mission development, along with potential concerns over crew safety and pressure to adhere to a schedule. Over a period of four months, the commission interviewed over 160 individuals, held at least 35 investigative sessions, and involved more than 6,000 NASA employees, contractors, and support personnel.[3]: 206−208  The commission published its report on June 6, 1986.[3]: iii–iv 

Black-and-white photo of a group of individuals at the Kennedy Space Center with the rocket garden behind them
Members of the Rogers Commission arrive at Kennedy Space Center

The commission determined that the cause of the accident was hot gas blowing past the O-rings in the field joint on the right SRB, and found no other potential causes for the disaster.[3]: 71  It attributed the accident to a faulty design of the field joint that was unacceptably sensitive to changes in temperature, dynamic loading, and the character of its materials.[3]: 71  The report was critical of NASA and Morton Thiokol, and emphasized that both organizations had overlooked evidence that indicated the potential danger with the SRB field joints. It noted that NASA accepted the risk of O-ring erosion without evaluating how it could potentially affect the safety of a mission.[3]: 149  The commission concluded that the safety culture and management structure at NASA were insufficient to properly report, analyze, and prevent flight issues.[3]: 162  It stated that the pressure to increase the rate of flights negatively affected the amount of training, quality control, and repair work that was available for each mission.[3]: 177 

The commission published a series of recommendations to improve the safety of the Space Shuttle program. It proposed a redesign of the joints in the SRB that would prevent gas from blowing past the O-rings. It also recommended that the program's management be restructured to keep project managers from being pressured to adhere to unsafe organizational deadlines, and should include astronauts to address crew safety concerns better. It proposed that an office for safety be established reporting directly to the NASA administrator to oversee all safety, reliability, and quality assurance functions in NASA programs. Additionally, the commission addressed issues with overall safety and maintenance for the orbiter, and it recommended the addition of the means for the crew to escape during controlled gliding flight.[3]: 198–200 

During a televised hearing on February 11, Feynman demonstrated the loss of rubber's elasticity in cold temperatures using a glass of cold water and a piece of rubber, for which he received media attention. Feynman, a Nobel Prize-winning physicist, advocated for harsher criticism towards NASA in the report and repeatedly disagreed with Rogers. He threatened to remove his name from the report unless it included his personal observations on reliability, which appeared as Appendix F.[61][62] In the appendix, he lauded the engineering and software accomplishments in the program's development, but he argued that multiple components, including the avionics and SSMEs in addition to the SRBs, were more dangerous and accident-prone than original NASA estimates had indicated.[62][63]

US House Committee report

[edit]

The US House Committee on Science and Technology conducted an investigation of the Challenger disaster and released a report on October 29, 1986.[64]: i  The committee, which had authorized the funding for the Space Shuttle program, reviewed the findings of the Rogers Commission as part of its investigation. The committee agreed with the Rogers Commission that the failed SRB field joint was the cause of the accident, and that NASA and Morton Thiokol failed to act despite numerous warnings of the potential dangers of the SRB. The committee's report further emphasized safety considerations of other components and recommended a risk management review for all critical systems.[64]: 2–5 

NASA response

[edit]

SRB redesign

[edit]

In response to the commission's recommendation, NASA initiated a redesign of the SRB, later named the redesigned solid rocket motor (RSRM), which was supervised by an independent oversight group.[3]: 198 [4]: III-101 [65] The redesigned joint included a capture feature on the tang around the interior wall of the clevis to prevent joint rotation. The space between the capture feature and the clevis was sealed with another O-ring. The capture feature reduced the potential of joint rotation to 15% of that which had occurred during the disaster. Should joint rotation occur, any rotation that reduced the O-ring seal on one side of the clevis wall would increase it on the other side. Additionally, heaters were installed to maintain consistent, higher temperatures of the O-rings.[6]: 429–430  The RSRM was first tested on August 30, 1987. In April and August 1988, the RSRM was tested with intentional flaws that allowed hot gas to penetrate the field joint. These tests permitted the engineers to evaluate whether the improved field joint prevented joint rotation. Following the successful tests, the RSRM was certified to fly on the Space Shuttle.[4]: III-101 

Space Shuttle modifications

[edit]

In addition to the SRBs, NASA increased the safety standards on other Space Shuttle program components. The critical items lists and failure modes for the SSMEs were updated, along with 18 hardware changes. The maximum thrust of the SSMEs was limited to 104%, with 109% only allowed in an abort scenario.[4]: II-172  The landing gear was updated to improve its steering and handling abilities while the Space Shuttle was landing.[4]: III-101  NASA implemented an escape option in which the astronauts would jettison the side hatch and extend a pole out of the orbiter; they would slide down the pole to avoid hitting the orbiter as bailed out before they activated their parachutes. The orbiter's software was modified to maintain stable flight while all of the flight crew left the controls to escape.[4]: III-103  This escape method would not have saved the crew in the Challenger disaster, but was added in the event of another emergency.[4]: III-102 

Safety office

[edit]

In 1986 NASA created a new Office of Safety, Reliability, and Quality Assurance, headed by a NASA associate administrator who reported directly to the NASA administrator, as the commission had specified.[3]: 199 [18][66][67] Former Challenger flight director Greene became chief of the Safety Division of the directorate.[68] After the Space Shuttle Columbia disaster in 2003, the Columbia Accident Investigation Board (CAIB) concluded that NASA had not set up a "truly independent" office for safety oversight.[69]: 178–180  The CAIB concluded that the ineffective safety culture that had resulted in the Challenger accident was also responsible for the subsequent disaster.[69]: 195 

Teacher in Space

[edit]

The Teacher in Space program, which McAuliffe had been selected for, was canceled in 1990 as a result of the Challenger disaster. In 1998, NASA replaced Teacher in Space with the Educator Astronaut Project, which differed in that it required the teachers to become professional astronauts trained as mission specialists, rather than short-term payload specialists who would return to their classrooms following their spaceflight. Barbara Morgan, who had been the backup teacher for McAuliffe, was selected to be part of NASA Astronaut Group 17 and flew on STS-118.[4]: III-116 

Return to flight

[edit]

The projected launch schedule of 24 per year was criticized by the Rogers Commission as an unrealistic goal that created unnecessary pressure on NASA to launch missions.[3]: 165  In August 1986, President Reagan approved the construction of an orbiter, which would later be named Endeavour, to replace Challenger. Construction of Endeavour began in 1987 and was completed in 1990, and it first flew on STS-49 in May 1992.[70] He also announced that the program would no longer carry commercial satellite payloads, and that these would be launched using commercial expendable launch vehicles.[71] These commercial payloads were reallocated from the Space Shuttle program to end the dependence on a single launch vehicle and limit the pressure on NASA to launch crewed missions to satisfy its customers.[72]

The Space Shuttle fleet was grounded for two years and eight months while the program underwent investigation, redesign, and restructuring. On September 29, 1988, Discovery launched on STS-26 mission from LC-39B with a crew of five veteran astronauts.[73] Its payload was TDRS-3, which was a substitute for the satellite lost with Challenger. The launch tested the redesigned boosters, and the crew wore pressure suits during the ascent and reentry. The mission was a success, and the program resumed flying.[74]

Legacy

[edit]
A portion of the Challenger's fuselage hanging vertically, displaying the American flag.
Fragment of Challenger's fuselage on display at the Kennedy Space Center Visitor Complex

In 2004, President George W. Bush conferred posthumous Congressional Space Medals of Honor to all 14 crew members killed in the Challenger and Columbia accidents.[75] An unpainted decorative oval in the Brumidi Corridors of the United States Capitol was finished with a portrait depicting the crew by Charles Schmidt in 1987. The scene was painted on canvas and then applied to the wall.[76] The "Forever Remembered" exhibit at the Kennedy Space Center Visitor Complex opened in July 2015 and includes a display of a 12-foot (3.7 m) section of Challenger's recovered fuselage. The exhibit was opened by NASA Administrator Charles Bolden along with family members of the crew.[4]: III-97  A tree for each astronaut was planted in NASA's Astronaut Memorial Grove at the Johnson Space Center, along with trees for each astronaut from the Apollo 1 and Columbia disasters.[77] Seven asteroids were named after the crew members: 3350 Scobee, 3351 Smith, 3352 McAuliffe, 3353 Jarvis, 3354 McNair, 3355 Onizuka, and 3356 Resnik. The approved naming citation was published by the Minor Planet Center on March 26, 1986 (M.P.C. 10550).[78] In 1988, seven craters on the far side of the Moon, within the Apollo Basin, were named after the astronauts by the IAU.[79] The Soviet Union named two craters on Venus after McAuliffe and Resnik.[80] The landing site of the Opportunity Mars rover was named Challenger Memorial Station.[81]

Plaque at TRW's Space Park honoring the Challenger crew. Its maiden flight and this final one had carried their TDRS satellites.

Several memorials have been established in honor of the Challenger disaster. The public Peers Park in Palo Alto, California, features the Challenger Memorial Grove including redwood trees grown from seeds carried aboard Challenger in 1985.[82] Schools and streets have been renamed to include the names of the crew or Challenger.[83][84][85] In 1990, a 1/10 scale replica of Challenger in liftoff position was erected in Little Tokyo district of Los Angeles, California.[86] Challenger Point is a mountain peak of the Sangre de Cristo Range.[87] The McAuliffe-Shepard Discovery Center, a science museum and planetarium in Concord, New Hampshire, is named in honor of McAuliffe, a Concord High School teacher, and Alan Shepard, who was from Derry, New Hampshire.[88] The crew's families established the Challenger Center for Space Science Education as an educational non-profit organization.[89]

An American flag, later named the Challenger flag, was carried aboard the Challenger. It was sponsored by Boy Scout Troop 514 of Monument, Colorado, and was recovered intact, still sealed in its plastic container.[90] Onizuka had included a soccer ball with his personal effects that was recovered and later flown to the International Space Station aboard Soyuz Expedition 49 by American astronaut Shane Kimbrough. It is on display at Clear Lake High School in Houston, which was attended by Onizuka's children.[91]

The 1986 motion picture Star Trek IV: The Voyage Home was dedicated to the crew of the Challenger with an opening message which stated "The cast and crew of Star Trek wish to dedicate this film to the men and women of the spaceship Challenger whose courageous spirit shall live to the 23rd century and beyond..."[92]

In media

[edit]

Books

[edit]
The tribute poster of Challenger

In the years immediately after the Challenger disaster, several books were published describing the factors and causes of the accident and the subsequent investigation and changes. In 1987, Malcolm McConnell, a journalist and a witness of the disaster, published Challenger–A Major Malfunction: A True Story of Politics, Greed, and the Wrong Stuff. McConnell's book was criticized for arguing for a conspiracy involving NASA Administrator Fletcher awarding the contract to Morton Thiokol because it was from his home state of Utah.[6]: 588 [93] The book Prescription for Disaster: From the Glory of Apollo to the Betrayal of the Shuttle by Joseph Trento was also published in 1987, arguing that the Space Shuttle program had been a flawed and politicized program from its inception.[6]: 588–589 [94] In 1988, Feynman's memoir, "What Do You Care What Other People Think?": Further Adventures of a Curious Character, was published. The latter half of the book discusses his involvement in the Rogers Commission and his relationship with Kutyna.[6]: 594 [95]

Books were published long after the disaster. In 1996, Diane Vaughan published The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA, which argues that NASA's structure and mission, rather than just Space Shuttle program management, created a climate of risk acceptance that resulted in the disaster.[6]: 591–592 [96] Also in 1996, Claus Jensen published No Downlink: A Dramatic Narrative About the Challenger Accident and Our Time that primarily discusses the development of rocketry prior to the disaster, and was criticized for its reliance on secondary sources with little original research conducted for the book.[6]: 592 [97][98] In 2009, Allan McDonald published his memoir written with space historian James Hansen, Truth, Lies, and O-Rings: Inside the Space Shuttle Challenger Disaster, which focuses on his personal involvement in the launch, disaster, investigation, and return to flight, and is critical of NASA and Morton Thiokol leadership for agreeing to launch Challenger despite engineers' warnings about the O-rings.[99][6][100][101]

Film and television

[edit]

The ABC television movie titled Challenger was broadcast on February 25, 1990.[102] It stars Barry Bostwick as Scobee and Karen Allen as McAuliffe. The movie is critical of NASA and positively portrays the engineers who argued against launching. The movie was criticized by the widows of Smith, McNair, and Onizuka as an inaccurate portrayal of events.[103] A BBC docudrama titled The Challenger Disaster was broadcast on March 18, 2013. It starred William Hurt as Feynman and portrayed the investigation into the causes of the disaster.[104] A film directed by Nathan VonMinden, The Challenger Disaster, was released on January 25, 2019, depicts fictional characters participating in the decision process to launch.[105]

The four-part docuseries Challenger: The Final Flight, created by Steven Leckart and Glen Zipper, was released by Netflix on September 16, 2020. It uses interviews with NASA and Morton Thiokol personnel to argue against their flawed decision-making which produced a preventable disaster.[106]

The first episode of the Australian television drama The Newsreader, broadcast on August 15, 2021, depicts the disaster from the perspective of the television industry, specifically the journalists and crew within, and of, an Australian television newsroom at the time; a co-lead character's hosting of a newsflash weaving in with an overarching background storyline about the shift in news presentation from serious to that of allowing emotion into its delivery.[107]

The first episode of Season 6 of the television drama series This Is Us, titled "The Challenger"[108] features the incident of the explosion in 1986 in the flashback scenes.

See also

[edit]

Notes

[edit]
  1. ^ The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe, reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept the originally specified thrust at 100%, but had the RS-25 operate at higher thrust.[14]: 106–107 

References

[edit]
  1. ^ Lotito, Jennifer (January 27, 2024). "3 Leadership Lessons From The Challenger Space Shuttle Disaster". Forbes. Archived from the original on January 28, 2024. Retrieved January 28, 2024.
  2. ^ "Challenger explosion was 38 years ago today; Naples' readers recall event". Naples Daily News. January 28, 2024. Archived from the original on January 28, 2024. Retrieved January 28, 2024.
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap Rogers, William P.; Armstrong, Neil A.; Acheson, David C.; Covert, Eugene E.; Feynman, Richard P.; Hotz, Robert B.; Kutyna, Donald J.; Ride, Sally K.; Rummel, Robert W.; Sutter, Joseph F.; Walker, Arthur B.C.; Wheelon, Albert D.; Yeager, Charles E. (June 6, 1986). "Report of the Presidential Commission on the Space Shuttle Challenger Accident" (PDF). NASA. Archived (PDF) from the original on October 18, 2020. Retrieved July 13, 2021.
  4. ^ a b c d e f g h i j k l m n o p q r s t u Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon – 1972–2013. Specialty Press. ISBN 978-1-58007-249-6.
  5. ^ a b c d e f g h i Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System. Voyageur Press. ISBN 978-0-9633974-5-4.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa McDonald, Allan J.; Hansen, James R. (2009). Truth, Lies, and O-rings: Inside the Space Shuttle Challenger Disaster. University Press of Florida. ISBN 978-0-8130-4193-3. Archived from the original on October 2, 2021. Retrieved July 19, 2021.
  7. ^ Heppenheimer, T.A. (1998). The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle (PDF). NASA. SP-4221. Archived (PDF) from the original on August 12, 2021. Retrieved July 19, 2021.
  8. ^ "The history of the flawed joint". IEEE Spectrum. 24 (2): 39–44. 1987. doi:10.1109/MSPEC.1987.6448025. ISSN 0018-9235. S2CID 26828360. Archived from the original on August 5, 2021. Retrieved August 6, 2021.
  9. ^ Tonguette, Peter (January 23, 2024). "'Ohioans in Space' painting features Neil Armstrong, John Glenn, Jim Lovell, Judith Resnik". The Columbus Dispatch. Archived from the original on January 28, 2024. Retrieved January 28, 2024.
  10. ^ Dunbar, Brian (August 7, 2017). "STS-51L Mission Profile". NASA. Archived from the original on May 5, 2017. Retrieved November 3, 2021.
  11. ^ Broad, William J. (January 28, 1986). "24-Hour Delay Called for Shuttle Flight As Wind And Balky Bolt Bar Launching". The New York Times. Archived from the original on July 16, 2021. Retrieved July 13, 2021.
  12. ^ a b Berkes, Howard (February 6, 2012). "Remembering Roger Boisjoly: He Tried To Stop Shuttle Challenger Launch". All Things Considered. NPR. Archived from the original on April 30, 2015. Retrieved July 27, 2021.
  13. ^ a b c d e f g Harwood, William (2015). "STS-51L". CBS News. Archived from the original on June 11, 2021. Retrieved July 29, 2021.
  14. ^ Baker, David (2011). NASA Space Shuttle: Owners' Workshop Manual. Somerset, UK: Haynes Manual. ISBN 978-1-84425-866-6.
  15. ^ a b Barbree, Jay (January 1997). "Chapter 5: An eternity of descent". NBC News. Archived from the original on September 23, 2020. Retrieved October 31, 2020.
  16. ^ a b c d e f Kerwin, Joseph P. (July 28, 1986). "Joseph P. Kerwin to Richard H. Truly". NASA. Archived from the original on January 3, 2013. Retrieved August 2, 2021.
  17. ^ a b c Mullane, Mike (2006). Riding Rockets: The Outrageous Tales of a Space Shuttle Astronaut. Simon and Schuster. ISBN 978-0-7432-7682-5. Archived from the original on June 12, 2020. Retrieved December 31, 2018.
  18. ^ a b "Implementation of the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident, Recommendation VII". NASA. June 1987. Archived from the original on February 24, 2021. Retrieved August 3, 2021.
  19. ^ a b c O'Connor, Jr., Edward A. (June 6, 1986). "Volume 3, Appendix O: NASA Search, Recovery and Reconstruction Task Force Team Report". Report of the Presidential Commission on the Space Shuttle Challenger Accident. Archived from the original on March 1, 2021. Retrieved August 5, 2021.
  20. ^ a b c d e f g h i j k l m n "Space Shuttle Challenger Salvage Report" (PDF). Department of the Navy. Direction of Commander, Naval Sea Systems Command. April 29, 1988. Archived (PDF) from the original on September 1, 2021. Retrieved July 19, 2021.
  21. ^ a b Barbree, Jay (January 25, 2004). "Chapter 6: Raising heroes from the sea". NBC News. Archived from the original on June 5, 2019. Retrieved August 9, 2021.
  22. ^ a b Isikoff, Michael (March 10, 1986). "Remains of Crew Of Shuttle Found". The Washington Post. Archived from the original on February 11, 2021. Retrieved August 9, 2021.
  23. ^ Schmidt, William E. (April 20, 1986). "All Shuttle Crew Remains Recovered, NASA Says". The New York Times. Archived from the original on July 15, 2021. Retrieved August 9, 2021.
  24. ^ "Shuttle Crew Said to Have Survived Blast". The Washington Post. November 12, 1988. Archived from the original on August 18, 2020. Retrieved August 11, 2021.
  25. ^ "Shuttle Challenger debris washes up on shore". CNN. December 17, 1996. Archived from the original on August 6, 2016. Retrieved July 15, 2021.
  26. ^ "Divers discover Challenger space shuttle debris". BBC News. Archived from the original on November 11, 2022. Retrieved November 11, 2022.
  27. ^ Dunn, Marcia (November 10, 2022). "Section of destroyed shuttle Challenger found on ocean floor". AP News. Archived from the original on November 10, 2022. Retrieved November 10, 2022.
  28. ^ Bardan, Roxana (November 10, 2022). "NASA Views Images, Confirms Discovery of Shuttle Challenger Artifact". NASA. Archived from the original on November 11, 2022. Retrieved November 11, 2022.
  29. ^ Diaz, Jaclyn (November 11, 2022). "A piece of the wrecked 1986 Challenger space shuttle was found off Florida's coast". NPR. Archived from the original on November 13, 2022. Retrieved November 13, 2022.
  30. ^ Evans, Greg (November 10, 2022). "Long-Missing Space Shuttle Challenger Wreckage Found On Ocean Floor By History Channel Filmmakers, Nasa Confirms". Deadline Hollywood. Archived from the original on November 13, 2022. Retrieved November 13, 2022.
  31. ^ Television, Hearst (November 11, 2022). "Artifact from Space Shuttle Challenger found on ocean floor, NASA confirms". Houston Chronicle. Archived from the original on November 13, 2022. Retrieved November 13, 2022.
  32. ^ Peralman, Robert Z. (June 29, 2015). "NASA Exhibits Space Shuttles Challenger, Columbia Debris for First Time". Space.com. Archived from the original on August 13, 2021. Retrieved August 13, 2021.
  33. ^ a b Schmidt, William E. (April 30, 1986). "Bodies of Astronauts Flown to Delaware". The New York Times. Archived from the original on June 28, 2021. Retrieved July 15, 2021.
  34. ^ a b "Space Shuttle Challenger Memorial". Arlington National Cemetery. 2021. Archived from the original on June 28, 2021. Retrieved July 15, 2021.
  35. ^ "National Memorial Cemetery of the Pacific". National Cemetery Administration. U.S. Department of Veterans Affairs. April 23, 2021. Archived from the original on January 26, 2021. Retrieved July 15, 2021.
  36. ^ Clendinen, Dudley (May 18, 1986). "Astronaut Buried in Caroline; 35-Year 'Mission' is Complete". The New York Times. Archived from the original on August 29, 2021. Retrieved July 15, 2021.
  37. ^ "Dr. Ronald E. McNair Memorial". SC Department of Parks, Recreation and Tourism. 2021. Archived from the original on July 1, 2021. Retrieved July 15, 2021.
  38. ^ "Ronald E. McNair Memorial Park". South Carolina Picture Project. 2021. Archived from the original on July 1, 2021. Retrieved July 15, 2021.
  39. ^ "Some Fear Learning How Loved Ones Died : Crew Discovery Upsets Shuttle Kin". Los Angeles Times. March 16, 1986. Retrieved February 11, 2024.
  40. ^ "McAuliffe's Grave on a Hillside Overlooks City Where She Taught". The Los Angeles Times. May 2, 1986. Archived from the original on July 15, 2021. Retrieved July 15, 2021.
  41. ^ "Looking back: Greg Jarvis' dream remembered". Daily Breeze. January 28, 2011. Archived from the original on July 15, 2021. Retrieved July 15, 2021.
  42. ^ Lucas, Stephen E.; Medhurst, Martin J. (2008). Words of a Century: The Top 100 American Speeches, 1900–1999. Oxford University Press. ISBN 978-0-19-516805-1.
  43. ^ "Address to the Nation on the Explosion of the Space Shuttle Challenger". Ronald Reagan Presidential Library. January 28, 1986. Archived from the original on March 22, 2021. Retrieved July 29, 2021.
  44. ^ Weintraub, Bernard (February 1, 1986). "Reagan Pays Tribute to 'Our 7 Challenger Heroes'". The New York Times. p. A1. Archived from the original on February 1, 2017. Retrieved February 12, 2017.
  45. ^ a b Boyd, Gerald M. (April 4, 1986). "White House Finds no Pressure to Launch". The New York Times. Archived from the original on August 11, 2021. Retrieved August 11, 2021.
  46. ^ a b Hunt, Terence (March 13, 1986). "NASA Suggested Reagan Hail Challenger Mission in State of Union". Associated Press. Archived from the original on August 30, 2021. Retrieved August 24, 2021.
  47. ^ Logsdon, John M. (2018). Ronald Reagan and the Space Frontier. Springer. p. 283. ISBN 978-3-319-98962-4. Archived from the original on February 4, 2021. Retrieved November 21, 2020.
  48. ^ Reagan, Ronald (February 4, 1986). "Address Before a Joint Session of Congress on the State of the Union – 1986". Ronald Reagan Presidential Library & Museum. Archived from the original on July 19, 2021. Retrieved July 19, 2021.
  49. ^ a b Escobedo, Tricia (March 31, 2016). "When a national disaster unfolded live in 1986". CNN. Archived from the original on August 27, 2021. Retrieved August 27, 2021.
  50. ^ Wright, John C.; Kunkel, Dale; Pinon, Marites; Huston, Aletha C. (Spring 1989). "How Children Reacted to Televised Coverage of the Space Shuttle Disaster". Journal of Communication. 39 (2). International Communication Association: 27. doi:10.1111/j.1460-2466.1989.tb01027.x.
  51. ^ Harwood, William (January 27, 2016). "Reporters remember Challenger coverage". Spaceflight Now. Archived from the original on March 3, 2024. Retrieved July 22, 2024.
  52. ^ a b Harwood, William (1986). "Voyage into History; Chapter Six: The Reaction". Archived from the original on May 4, 2006. Archived by the Internet Archive on May 4, 2006.
  53. ^ Reinhold, Robert (January 29, 1986). "The Shuttle Explosion; At Mission Control, Silence and Grief Fill a Day Of Horror Long Dreaded". The New York Times. Archived from the original on June 9, 2021. Retrieved July 19, 2021.
  54. ^ Browne, Malcolm W. (January 29, 1986). "How could it happen? Fuel Tank Leak Feared". The New York Times. Archived from the original on August 30, 2021. Retrieved August 30, 2021.
  55. ^ Stevonec, Timothy (January 28, 2014). "Challenger Disaster Home Video Surfaces After 28 Years". The Huffington Post. Archived from the original on February 1, 2017. Retrieved September 12, 2021.
  56. ^ Stevonec, Timothy (May 1, 2012). "New Challenger Video: Rare Footage Of 1986 Disaster Uncovered". The Huffington Post. Archived from the original on December 23, 2018. Retrieved September 12, 2021.
  57. ^ Luscombe, Richard (February 4, 2010). "Challenger space shuttle disaster amateur video discovered". The Guardian. Archived from the original on July 12, 2021. Retrieved September 12, 2021.
  58. ^ Boisjoly, Russell P.; Curtis, Ellen Foster; Mellican, Eugene (April 1989). "Roger Boisjoly and the Challenger Disaster: The Ethical Dimensions". Journal of Business Ethics. 8 (4). Springer: 217–230. doi:10.1007/BF00383335. JSTOR 25071892. S2CID 144135586. Archived from the original on August 27, 2021. Retrieved August 27, 2021.
  59. ^ Berkes, Howard (March 7, 2021). "Remembering Allan McDonald: He Refused To Approve Challenger Launch, Exposed Cover-Up". Obituaries. National Public Radio. Archived from the original on August 2, 2021. Retrieved August 27, 2021.
  60. ^ Robison, Wade; Boisjoly, Roger; Hoeker, David & Young, Stefan (2002). "Representation and Misrepresentation: Tufte and the Morton Thiokol Engineers on the Challenger" (PDF). Science and Engineering Ethics. 8 (1): 59–81. doi:10.1007/s11948-002-0033-2. PMID 11840958. S2CID 19219936. Archived (PDF) from the original on August 23, 2021. Retrieved July 12, 2021.
  61. ^ Boffrey, Philip M. (June 7, 1986). "Amid Disputes, Shuttle Panel Finally Forged an Agreement". The New York Times. Archived from the original on August 24, 2021. Retrieved August 24, 2021.
  62. ^ a b Feynman, R.P. (June 6, 1986). "Personal Observations on Reliability of Shuttle". Report of the Presidential Commission on the Space Shuttle Challenger Accident. Vol. 2. Appendix F: NASA. Archived from the original on May 5, 2019. Retrieved August 26, 2021.
  63. ^ Feynman, Richard P. (February 1988). "An Outsider's Inside View of the Challenger Inquiry" (PDF). Physics Today. Archived (PDF) from the original on August 17, 2021. Retrieved August 26, 2021.
  64. ^ a b "Investigation of the Challenger Accident; Report of the Committee on Science and Technology, House of Representatives" (PDF). US Government Printing Office: US House Committee on Science and Technology. October 29, 1986. Archived (PDF) from the original on August 13, 2021. Retrieved August 26, 2021.
  65. ^ "Report to the President: Actions to Implement the Recommendations of the Presidential Commission on the Space Shuttle Challenger Accident" (PDF). NASA. July 14, 1986. Archived (PDF) from the original on February 24, 2021. Retrieved July 19, 2021.
  66. ^ "NASA's Actions to Implement the Rogers Commission Recommendations after the Challenger Accident". NASA. July 18, 2000. Archived from the original on March 5, 2021. Retrieved September 2, 2021.
  67. ^ Harwood, William (July 8, 1986). "NASA safety office established". UPI. Retrieved March 18, 2024.
  68. ^ "Jay H. Greene" (PDF). Oral History Project. NASA. July 12, 2004. Archived (PDF) from the original on June 24, 2021. Retrieved September 2, 2021.
  69. ^ a b Gehman, Harold; Barry, John; Deal, Duane; Hallock, James; Hess, Kenneth; Hubbard, G. Scott; Logsdon, John; Logsdon, John; Ride, Sally; Tetrault, Roger; Turcotte, Stephen; Wallace, Steven; Widnall, Sheila (August 26, 2003). "Report of Columbia Accident Investigation Board" (PDF). NASA. Archived (PDF) from the original on April 13, 2021. Retrieved January 11, 2022.
  70. ^ Ryba, Jeanne (April 12, 2013). "Space Shuttle Overview: Endeavour (OV-105)". NASA. Archived from the original on May 20, 2017. Retrieved October 5, 2021.
  71. ^ Abramson, Rudy (August 16, 1986). "Reagan Orders Shuttle, Limits NASA Mission". The Los Angeles Times. Archived from the original on September 2, 2021. Retrieved September 2, 2021.
  72. ^ Wilford, John Noble (May 25, 1986). "Reagan is reported near decision to approve a new Space Shuttle". The New York times. Archived from the original on November 10, 2021. Retrieved November 10, 2021.
  73. ^ Logsdon, John A. (1998). "Return to Flight: Richard H. Truly and the Recovery from the Challenger Accident". NASA. Archived from the original on February 24, 2021. Retrieved July 27, 2021.
  74. ^ Mars, Kelli (September 28, 2018). "30 Years Ago: STS-26 Returns Shuttle to Flight". NASA. Archived from the original on May 26, 2021. Retrieved September 2, 2021.
  75. ^ "Congressional Space Medal of Honor". NASA. April 28, 2006. Archived from the original on February 20, 2011. Retrieved July 19, 2021.
  76. ^ "Brumidi Corridors Murals". Architect of the Capitol. 2021. Archived from the original on August 31, 2021. Retrieved July 19, 2021.
  77. ^ Mikati, Massarah (May 7, 2019). "Memorial Grove at Johnson Space Center offers tribute to late astronauts". Houston Chronicle. Archived from the original on July 19, 2021. Retrieved July 19, 2021.
  78. ^ "Minor Planet Circulars/Minor Planets and Comets" (PDF). Minor Planet Center – Smithsonian Astrophysical Observatory. March 26, 1986. pp. MPC 10457–10586. Archived (PDF) from the original on July 27, 2021. Retrieved July 30, 2021.
  79. ^ Byrne, Charles (2014). The Far Side of the Moon A Photographic Guide. Springer Science. ISBN 978-1-4899-8806-5. OCLC 1244446759. Archived from the original on January 28, 2024. Retrieved June 27, 2022.
  80. ^ Schmemann, Serge (February 2, 1986). "Soviet Union to name 2 Venus craters for Shuttle's women". The New York Times. Archived from the original on October 25, 2021. Retrieved October 25, 2021.
  81. ^ "Space Shuttle Challenger Crew Memorialized on Mars". NASA Jet Propulsion Laboratory (JPL). January 28, 2004. Archived from the original on September 3, 2022. Retrieved November 8, 2023.
  82. ^ "Peers Park". City of Palo Alto, California. January 14, 2021. Archived from the original on July 19, 2021. Retrieved July 19, 2021.
  83. ^ Levine, Jay (June 27, 2018). "Challenger Crew Recognized With Monument". NASA. Archived from the original on July 25, 2021. Retrieved July 25, 2021.
  84. ^ McCarthy, Kathy (April 28, 1986). "Challenger Astronaut Remembered in Hometown". Associated Press. Archived from the original on November 7, 2022. Retrieved July 25, 2021.
  85. ^ Dodson, Andrew (January 19, 2019). "School named after astronaut Christa McAuliffe remembers Challenger explosion". MLive. Archived from the original on July 25, 2021. Retrieved July 25, 2021.
  86. ^ "Space Shuttle Challenger Monument (Los Angeles, California)". Astronaut Ellison S. Onizuka Memorial. 2021. Archived from the original on April 27, 2021. Retrieved April 27, 2021.
  87. ^ "Challenger Point". Geographic Names Information System. United States Geological Survey, United States Department of the Interior. August 31, 1992. Retrieved July 15, 2021.
  88. ^ "About". McAuliffe-Shepard Discovery Center. 2021. Archived from the original on April 27, 2021. Retrieved April 27, 2021.
  89. ^ "About Us". Challenger Center for Space Science Education. 2019. Archived from the original on October 6, 2021. Retrieved November 3, 2021.
  90. ^ Garmon, Jay (January 24, 2006). "Rising from the ashes". Tech Republic. Archived from the original on July 12, 2021. Retrieved July 19, 2021.
  91. ^ Malinowski, Tonya (June 29, 2018). "NASA astronaut Ellison Onizuka's soccer ball that survived the Challenger explosion". ESPN. Archived from the original on August 20, 2021. Retrieved July 19, 2021.
  92. ^ "Star Trek IV The Voyage Home (1986)". Musings From Us. January 25, 2011. Archived from the original on February 2, 2022. Retrieved January 28, 2022.
  93. ^ Tomayko, James E. (June 1987). "Challenger: A Major Malfunction". Aerospace Historian. 34 (2). Air Force Historical Foundation: 139. JSTOR 44524264. Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  94. ^ Hallion, Richard P. (June 1987). "Prescription for Disaster: From the Flory of Apollo to the Betrayal of the Shuttle". Aerospace Historian. 345 (2). Air Force Historical Foundation: 151. JSTOR 44525431. Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  95. ^ Shair, Frederick H. (June 1989). "What Do You Care What Other People Think? Further Adventures of a Curious Character". American Scientist. 77 (3). Sigma Xi: 267–268. JSTOR 27855729. Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  96. ^ Weick, Karl E. (June 1997). "The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA". Administrative Science Quarterly. 42 (2). Sage Publications: 395–401. doi:10.2307/2393925. JSTOR 2393925. Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  97. ^ Roland, Alex (January 28, 1996). "Large Craft Warnings". The New York Times. Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  98. ^ Atkinson, Joe (October 9, 2012). "Engineer Who Opposed Challenger Launch Offers Personal Look at Tragedy". NASA. Archived from the original on August 2, 2021. Retrieved September 1, 2021.
  99. ^ Pomeroy, Steven (October 2010). "Truth, Lies, and O-Rings: Inside the Space Shuttle Challenger Disaster". Technology and Culture. 51 (4). The Johns Hopkins University Press: 1038–1040. doi:10.1353/tech.2010.0077. JSTOR 40928051. S2CID 109441993.
  100. ^ Rubinson, Paul (2010). "Truth, Lies, and O-rings: Inside the Space Shuttle Challenger Disaster". The Florida Historical Quarterly. 88 (4). Florida Historical Society: 574–577. JSTOR 29765138. Archived from the original on October 6, 2021. Retrieved October 6, 2021.
  101. ^ O'Connor, John J. (February 25, 1990). "To View; Arrogance in the Name of Liftoff?". The New York Times. Archived from the original on September 7, 2021. Retrieved September 7, 2021.
  102. ^ Zurawik, David (February 25, 1990). "Turning Tragedy into Entertainment, 'Challenger' Invades Survivors' Private Grief". Tulsa World. Archived from the original on June 2, 2021. Retrieved September 7, 2021.
  103. ^ "The Challenger". British Broadcasting Corporation. 2021. Archived from the original on April 18, 2019. Retrieved October 5, 2021.
  104. ^ Baldoni, John (January 28, 2019). "The Challenger Disaster: A Dramatic Lesson In The Failure To Communicate". Forbes. Archived from the original on September 13, 2021. Retrieved September 13, 2021.
  105. ^ Chaney, Jen (September 16, 2020). "Challenger: The Final Flight Unpacks a Moment of American Hope and Heartbreak". Vulture. Archived from the original on September 2, 2021. Retrieved September 2, 2021.
  106. ^ Lucas, Michael (August 15, 2021). "Three, Two, One...". The Newsreader. Series 1. Episode 1. ABC Television.
  107. ^ "The Challenger". This Is Us. Series 6. Episode 1. January 4, 2022. NBC.
[edit]