Robot: Difference between revisions
GreenC bot (talk | contribs) Rescued 1 archive link; reformat 1 link. Wayback Medic 2.5 per WP:USURPURL and JUDI batch #20 |
|||
Line 1: | Line 1: | ||
{{Short description|Machine capable of carrying out a complex series of actions automatically}} |
|||
{{Disputed|Edited Lead|date=April 2012}} |
|||
{{About|mechanical robots |
{{About|mechanical robots|software agents|Bot (disambiguation){{!}}Bot|other uses of the term|Robot (disambiguation)}} |
||
{{pp-semi-indef|small=yes}} |
|||
[[File:HONDA ASIMO.jpg|200px|thumb|right|[[ASIMO]] (2000) at the [[Expo 2005]], a [[humanoid robot]]]] |
|||
{{Use dmy dates|date=May 2021}} |
|||
[[File:FANUC 6-axis welding robots.jpg|200px|thumb|right|[[Articulated robot|Articulated]] [[welding robot]]s used in a factory]] |
|||
[[File:HONDA ASIMO.jpg|thumb|[[ASIMO]] (2000) at the [[Expo 2005]]]] |
|||
[[File:FANUC 6-axis welding robots.jpg|thumb|[[Articulated robot|Articulated]] [[Robot welding|welding robots]] used in a factory are a type of [[industrial robot]].]] |
|||
[[File:Bio-inspired Big Dog quadruped robot is being developed as a mule that can traverse difficult terrain.tiff|thumb|The [[quadruped]]al [[military robot]] [[Boston Dynamics#Cheetah|Cheetah]], an evolution of [[BigDog]] (pictured), was clocked as the world's fastest legged robot in 2012, beating the record set by an [[Massachusetts Institute of Technology|MIT]] [[biped]]al robot in 1989.<ref name=r07f>{{cite news|url=https://www.huffingtonpost.com/2012/03/06/four-legged-robot-sets-new-speed-record_n_1324701.html|title=Four-legged Robot, 'Cheetah,' Sets New Speed Record|agency=Reuters|date=6 March 2012|access-date=5 October 2013|archive-url=https://web.archive.org/web/20131022173838/http://www.huffingtonpost.com/2012/03/06/four-legged-robot-sets-new-speed-record_n_1324701.html|archive-date=22 October 2013|url-status=live}}</ref>]] |
|||
A '''robot''' is a [[machine]]—especially one [[Computer program|program]]mable by a [[computer]]—capable of carrying out a complex series of actions automatically.<ref>Definition of 'robot'. Oxford English Dictionary. Retrieved 27 November 2016.</ref> A robot can be guided by an external control device, or the [[robot control|control]] may be embedded within. Robots may be constructed to evoke [[Humanoid robot|human form]], but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics. |
|||
A '''robot''' is a mechanical or virtual intelligent agent that can perform tasks automatically or with guidance, typically by remote control. In practice a robot is usually an [[Electromechanics|electro-mechanical machine]] that is guided by computer and electronic programming. Robots can be [[autonomous]], semi-autonomous or remotely controlled. Robots range from humanoids such as [[ASIMO]] and [[TOPIO]] to [[Nanorobotics|Nano robots]], [[Swarm Robotics|Swarm robots]], [[Industrial robot]]s, [[military robot]]s, [[Mobile robot|mobile]] and [[Domestic robot|servicing robots]]. By mimicking a lifelike appearance or automating movements, a robot may convey a sense that it has [[Intention|intent]] or [[Agency (philosophy)|agency]] of its own. The branch of technology that deals with robots is [[robotics]]. |
|||
Robots can be [[autonomous robot|autonomous]] or semi-autonomous and range from humanoids such as [[Honda]]'s ''Advanced Step in Innovative Mobility'' ([[ASIMO]]) and [[TOSY]]'s ''TOSY Ping Pong Playing Robot'' ([[TOPIO]]) to [[industrial robot]]s, [[robot-assisted surgery|medical operating robot]]s, patient assist robots, dog therapy robots, collectively programmed [[Swarm robotics|''swarm'' robots]], [[UAV drones]] such as [[General Atomics MQ-1 Predator]], and even microscopic [[Nanorobotics|nanorobots]]. By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or [[Agency (philosophy)|thought]] of its own. [[Autonomous things]] are expected to proliferate in the future, with home robotics and the [[autonomous car]] as some of the main drivers.<ref>{{cite web|url=https://www.driverless-future.com/?page_id=384|title=Forecasts – Driverless car market watch|website=driverless-future.com|access-date=26 September 2023}}</ref> |
|||
<!-- Basic historical background from mechanical aids to automata --> |
|||
When societies first began developing, nearly all production and effort was the result of human labour, as well as with the aid of semi- and fully domesticated animals. As mechanical means of performing functions were discovered, and mechanics and complex mechanisms were developed, the need for human labour was reduced. Machinery was initially used for repetitive functions, such as lifting water and grinding grain. With technological advances more complex machines were slowly developed, such as those invented by [[Hero of Alexandria]] (in Egypt) in the 1st century AD, and the first half of the second millennium AD, such as the Automata of [[Al-Jazari]] in the 12th century AD (in [[History_of_iraq#Arab_conquest_and_Abbasid_Caliphate|medieval Iraq]]). They were not widely adopted as human labour, particularly slave labour, was still inexpensive compared to the capital-intensive machines. Men such as [[Leonardo Da Vinci]] in 1495 through to [[Jacques de Vaucanson]] in 1739, as well as rediscovering the [[Ancient Greek technology|Greek engineering]] methods, have made plans for and built automata and robots leading to books of designs such as the Japanese ''Karakuri zui'' (''Illustrated Machinery'') in 1796. As mechanical techniques developed through the Industrial age we find more practical applications such as [[Nikola Tesla]] in 1898, who designed a radio-controlled boat, and John Hammond Jr. and Benjamin Miessner who in 1912 created the Electric Dog as a precursor to their self directing torpedo of 1915.<ref>{{cite book|last=Miessner|first=Benjamin|title=Radiodynamics: The Wireless Control of Torpedoes and Other Mechanisms|year=1916}}</ref> We also find a more [[android (robot)|android]] development as designers tried to mimic more human-like features including designs such as those of biologist Makoto Nishimura in 1929 and his creation [[Gakutensoku]], which cried and changed its facial expressions, and the more crude [[Elektro]] from [[Westinghouse Electric Corporation]] in 1938. |
|||
The branch of technology that deals with the design, construction, operation, and application of robots,<ref name=OED>{{cite web|title=robotics|url=http://www.oxforddictionaries.com/view/entry/m_en_gb0714530#m_en_gb0714530|publisher=Oxford Dictionaries|access-date=4 February 2011|archive-url=https://web.archive.org/web/20110518152729/http://www.oxforddictionaries.com/view/entry/m_en_gb0714530#m_en_gb0714530|archive-date=18 May 2011|url-status=dead}}</ref> as well as computer systems for their control, sensory feedback, and [[Data processing|information processing]] is [[robotics]]. These technologies deal with automated machines that can take the place of humans in dangerous environments or [[manufacturing process]]es, or resemble humans in appearance, behavior, or cognition. Many of today's robots are inspired by nature contributing to the field of [[bio-inspired robotics]]. These robots have also created a newer branch of robotics: [[soft robotics]]. |
|||
<!-- Electronic development to present day --> |
|||
Electronics then became the driving force of development instead of mechanics, with the advent of the first electronic [[autonomous robot]]s created by [[William Grey Walter]] in [[Bristol]], [[England]], in 1948. The first digital and programmable robot was invented by [[George Devol]] in 1954 and was ultimately called the [[Unimate]]. Devol sold the first Unimate to [[General Motors]] in 1961 where it was used to lift pieces of hot metal from [[die casting]] machines at the [[Inland Fisher Guide Plant (New Jersey)|Inland Fisher Guide Plant]] in the [[West Trenton, New Jersey|West Trenton]] section of [[Ewing Township, New Jersey]].<ref>Pearce, Jeremy. [http://www.nytimes.com/2011/08/16/business/george-devol-developer-of-robot-arm-dies-at-99.html "George C. Devol, Inventor of Robot Arm, Dies at 99"], ''[[The New York Times]]'', August 15, 2011. Accessed February 7, 2012. "In 1961, General Motors put the first Unimate arm on an assembly line at the company’s plant in Ewing Township, N.J., a suburb of Trenton. The device was used to lift and stack die-cast metal parts taken hot from their molds."</ref> Since then we have seen robots finally reach a more true assimilation of all technologies to produce robots such as [[ASIMO]] which can walk and move like a human. Robots have replaced humans{{Citation needed|reason=Unless a reliable source can be cited that applies to the modern era, this assertion would make more sense in the previous paragraph, where replacement of labour is discussed. Modern robotics is mainly practiced in jurisdictions that abolished slaver well before the era being discussed in this paragraph.|date=November 2011}} in the assistance of performing those repetitive and dangerous tasks which humans prefer not to do, or are unable to do due to size limitations, or even those such as in outer space or at the bottom of the sea where humans could not survive the extreme environments. |
|||
From the time of [[ancient civilization]], there have been many accounts of user-configurable automated devices and even [[automata]], resembling humans and other animals, such as [[animatronics]], designed primarily as entertainment. As mechanical techniques developed through the [[Industrial age]], there appeared more practical applications such as automated machines, remote-control and wireless [[remote-control]]. |
|||
<!-- Social aspects --> |
|||
Man has developed an awareness of the problems associated with autonomous robots and how they may act in society. Fear of robot behaviour, such as [[Mary Shelley|Shelley]]'s [[Frankenstein]] ([[Frankenstein complex]]) and the [[Energetically Autonomous Tactical Robot|EATR]], drive current practice in establishing what autonomy a robot should and should not be capable of. Thinking has developed through discussion of robot control and artificial intelligence (AI) and how its application should benefit society, such as those based around Asimov's three laws. Practicality still drives development forwards and robots are used in an increasingly wide variety of tasks such as vacuuming floors, mowing lawns, cleaning drains, investigating other planets, building cars, in entertainment and in warfare. |
|||
The term comes from a Slavic root, ''robot-'', with meanings associated with labor. The word "robot" was first used to denote a fictional humanoid in a 1920 [[Czech language|Czech-language]] play ''[[R.U.R.]]'' (''Rossumovi Univerzální Roboti'' – ''Rossum's Universal Robots'') by [[Karel Čapek]], though it was Karel's brother [[Josef Čapek]] who was the word's true inventor.<ref>{{cite journal|last=Margolius|first=Ivan|author-link=Ivan Margolius|title=The Robot of Prague|journal=The Friends of Czech Heritage|issue=17|date=Autumn 2017|pages=3–6|url=https://czechfriends.net/images/RobotsMargoliusJul2017.pdf|archive-url=https://web.archive.org/web/20170911115134/https://czechfriends.net/images/RobotsMargoliusJul2017.pdf|archive-date=11 September 2017|url-status=live}}</ref><ref name="KapekWebsite">{{cite web|url=http://capek.misto.cz/english/robot.html |first=Dominik |last=Zunt |title=Who did actually invent the word "robot" and what does it mean? |publisher=The Karel Čapek website |access-date=11 September 2007 |url-status=dead |archive-url=https://web.archive.org/web/20120204135259/http://capek.misto.cz/english/robot.html |archive-date=4 February 2012}}</ref><ref name="auto1">{{cite book|url=https://books.google.com/books?id=stIWUpWvI94C|title=Robotics and Automation Handbook|first=Thomas R.|last=Kurfess|date=1 January 2005|publisher=Taylor & Francis|access-date=5 July 2016|via=Google Books|isbn=978-0-8493-1804-7|archive-url=https://web.archive.org/web/20161204234831/https://books.google.com/books?id=stIWUpWvI94C|archive-date=4 December 2016|url-status=live}}</ref> Electronics evolved into the driving force of development with the advent of the first electronic autonomous robots created by [[William Grey Walter]] in Bristol, England in 1948, as well as [[Computer Numerical Control]] (CNC) machine tools in the late 1940s by [[John T. Parsons]] and [[Frank L. Stulen]]. |
|||
==Overview== |
|||
The word ''robot'' can refer to both physical robots and [[Virtuality|virtual]] [[software agent]]s, but the latter are usually referred to as [[Internet bot|bots]].<ref>{{Cite web|url=http://www.atis.org/tg2k/_bot.html|title=Telecom glossary "bot"|publisher=Alliance for Telecommunications Solutions|date=2001-02-28|accessdate=2007-09-05|archiveurl=http://web.archive.org/web/20070202121608/http://www.atis.org/tg2k/_bot.html|archivedate=2008-07-14}}</ref> There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to do some or all of the following: move around, operate a mechanical limb, sense and manipulate their environment, and exhibit intelligent behavior — especially behavior which mimics humans or other animals. |
|||
The first commercial, digital and [[Computer program|programmable]] robot was built by [[George Devol]] in 1954 and was named the [[Unimate]]. It was sold to [[General Motors]] in 1961 where it was used to lift pieces of hot metal from [[die casting]] machines at the [[Inland Fisher Guide Plant (New Jersey)|Inland Fisher Guide Plant]] in the [[West Trenton, New Jersey|West Trenton]] section of [[Ewing Township, New Jersey]].<ref>{{cite news |last=Pearce |first=Jeremy |url=https://www.nytimes.com/2011/08/16/business/george-devol-developer-of-robot-arm-dies-at-99.html |title=George C. Devol, Inventor of Robot Arm, Dies at 99 |newspaper=[[The New York Times]] |date=15 August 2011 |access-date=7 February 2012 |quote=In 1961, General Motors put the first Unimate arm on an assembly line at the company's plant in Ewing Township, N.J., a suburb of Trenton. The device was used to lift and stack die-cast metal parts taken hot from their molds. |archive-url=https://web.archive.org/web/20161225221153/http://www.nytimes.com/2011/08/16/business/george-devol-developer-of-robot-arm-dies-at-99.html |archive-date=25 December 2016 |url-status=live}}</ref> |
|||
There is no one definition of robot which satisfies everyone and many people have their own.<ref>{{Cite web|url=http://www.virtuar.com/click/2005/robonexus/index.htm|first=Igor|last=Polk|title=RoboNexus 2005 robot exhibition virtual tour|publisher=Robonexus Exhibition 2005|date=2005-11-16|accessdate=2007-09-10}}</ref> For example [[Joseph Engelberger]], a pioneer in industrial robotics, once remarked: "I can't define a robot, but I know one when I see one."<ref>{{Cite web|first=Tom|last=Harris|url=http://science.howstuffworks.com/robot.htm|title=How Robots Work|publisher=How Stuff Works|accessdate=2007-09-10}}</ref> According to the [[Encyclopaedia Britannica]] a robot is "any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner." The word "Robot" comes from the Czech word "Robota," which means "slave-like labor "<ref>{{Cite web|url=http://www.britannica.com/EBchecked/topic/505818/robot|title=Robot (technology)|publisher=Encyclopaedia Britannica Online|accessdate=2008-08-04}}</ref> or "forced-work". [[Merriam-Webster]] describes a robot as a "machine that looks like a human being and performs various complex acts (as walking or talking) of a human being", or a "device that automatically performs complicated often repetitive tasks", or a "mechanism guided by automatic controls".<ref>{{Cite web|url=http://www.merriam-webster.com/dictionary/robot|title=Robot |publisher=Merriam-Webster Dictionary|accessdate=2008-08-04}}</ref> |
|||
<div align="center"><gallery widths="280" perrow="4"> |
|||
Image:Simplified robottypes.svg|The various types of robots |
|||
Image:Knight2000 ex107.jpg|[[KITT]] (a fictitious robot) is mentally anthropomorphic |
|||
Image:Asimo look new design.jpg|ASIMO is physically anthropomorphic |
|||
</gallery></div> |
|||
Robots have replaced humans<ref>{{cite web|last=Akins|first=Crystal|title=5 jobs being replaced by robots|url=http://excelle.monster.com/benefits/articles/4983-5-jobs-being-replaced-by-robots?page=1|work=Excelle|publisher=Monster|access-date=15 April 2013|archive-url=https://web.archive.org/web/20130424145057/http://excelle.monster.com/benefits/articles/4983-5-jobs-being-replaced-by-robots?page=1|archive-date=24 April 2013|url-status=dead}}</ref> in performing repetitive and dangerous tasks which humans prefer not to do, or are unable to do because of size limitations, or which take place in extreme environments such as outer space or the bottom of the sea. There are concerns about the increasing use of robots and their role in society. Robots are blamed for rising [[technological unemployment]] as they replace workers in increasing numbers of functions.<ref name="ABCau-2014-05">{{cite news| last = Hoy| first = Greg| title = Robots could cost Australian economy 5 million jobs, experts warn, as companies look to cut costs| work = ABC News| publisher = [[Australian Broadcasting Corporation]]| date = 28 May 2014| url = http://www.abc.net.au/news/2014-05-28/robots-could-cost-australian-economy-5-million-jobs-expert-says/5484740| access-date = 29 May 2014| archive-url = https://web.archive.org/web/20140529095011/http://www.abc.net.au/news/2014-05-28/robots-could-cost-australian-economy-5-million-jobs-expert-says/5484740| archive-date = 29 May 2014| url-status = live| df = dmy-all}}</ref> The use of robots in military combat raises ethical concerns. The possibilities of robot autonomy and potential repercussions have been addressed in fiction and may be a realistic concern in the future. |
|||
===Defining characteristics=== |
|||
{{TOC limit|3}} |
|||
While there is no single correct definition of "robot,"<ref>{{Cite news| url=http://www.cbc.ca/technology/technology-blog/2007/07/your_view_how_would_you_define.html|title=Your View: How would you define a robot?| publisher=CBC News|date=2007-07-16| accessdate=2007-09-05}}</ref> a typical robot will have several, or possibly all, of the following characteristics. |
|||
== Summary == |
|||
It is an electric machine which has some ability to interact with physical objects and to be given electronic programming to do a specific task or to do a whole range of tasks or actions. It may also have some ability to perceive and absorb data on physical objects, or on its local physical environment, or to process data, or to respond to various stimuli. This is in contrast to a simple mechanical device such as a [[gear]] or a [[hydraulic press]] or any other item which has no processing ability and which does tasks through purely [[mechanics|mechanical]] processes and motion.{{Citation needed|date=September 2011}} |
|||
[[File:ICub sciencefestival 1.jpg|thumb|[[iCub]] is physically anthropomorphic; it looks like a human.]] |
|||
There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to possess some or all of the following abilities and functions: accept electronic programming, process data or [[machine perception|physical perceptions]] electronically, operate autonomously to some degree, move around, operate physical parts of itself or physical processes, sense and manipulate their environment, and exhibit intelligent behavior, especially behavior which mimics humans or other animals.<ref>{{cite web|url=http://www.virtuar.com/click/2005/robonexus/index.htm|first=Igor|last=Polk|title=RoboNexus 2005 robot exhibition virtual tour|publisher=Robonexus Exhibition 2005|date=16 November 2005|access-date=10 September 2007|archive-url=https://web.archive.org/web/20070812071030/http://www.virtuar.com/click/2005/robonexus/index.htm|archive-date=12 August 2007|url-status=live}}</ref><ref>{{cite web|first=Tom|last=Harris|url=http://science.howstuffworks.com/robot.htm|title=How Robots Work|publisher=How Stuff Works|access-date=10 September 2007|date=16 April 2002|archive-url=https://web.archive.org/web/20070826213640/http://science.howstuffworks.com/robot.htm|archive-date=26 August 2007|url-status=live}}</ref> |
|||
;Mental agency |
|||
For robotic engineers, the physical appearance of a machine is less important than the way its actions are [[control system|controlled]]. The more the control system seems to have [[agency (philosophy)|agency]] of its own, the more likely the machine is to be called a robot. An important feature of agency is the ability to make choices. Higher-level cognitive functions, though, are not necessary, as shown by [[ant robotics|ant robots]].{{Citation needed|date=September 2011}} |
|||
The word ''robot'' can refer to both physical robots and [[Virtual assistant|virtual]] [[software agent]]s, but the latter are usually referred to as [[Internet bot|bots]].<ref>{{cite web|url=https://glossary.atis.org/search-results/?search=bot|title=Telecom glossary "bot"|publisher=Alliance for Telecommunications Solutions|date=26 September 2023}}</ref> Related to the concept of a ''robot'' is the field of [[synthetic biology]], which studies entities whose nature is more comparable to [[Life|living things]] than to machines. |
|||
* A [[clockwork]] car is never considered a robot.{{Citation needed|date=September 2011}} |
|||
* A mechanical device able to perform some preset motions but with no ability to adapt (an [[automaton]]) is rarely considered a robot.{{Citation needed|date=September 2011}} |
|||
* A remotely operated vehicle is sometimes considered a robot (or [[telerobotics|telerobot]]).<ref>{{Cite web|url=http://ranier.hq.nasa.gov/telerobotics_page/realrobots.html|title=Real Robots on the Web|publisher=NASA Space Telerobotics Program|date=1999-10-15|accessdate=2007-09-06}}</ref> |
|||
* A car with an onboard computer, like [[Bigtrak]], which could drive in a programmable sequence, might be called a robot.{{Citation needed|date=September 2011}} |
|||
* A [[smart car|self-controlled car]] which could sense its environment and make driving decisions based on this information, such as the 1990s [[driverless car]]s of [[Ernst Dickmanns]] or the entries in the [[DARPA Grand Challenge]], would quite likely be called a robot.{{Citation needed|date=September 2011}} |
|||
* A [[sentience|sentient]] car, like the fictional [[KITT]], which can make decisions, navigate freely and converse fluently with a human, is usually considered a robot.{{Citation needed|date=September 2011}} |
|||
Simpler automated machines are called [[automaton]]s, like [[animatronic]]s, often made to resemble humans or animals. [[Humanoid robot]]s that resemble humans esthetically, possibly even organically, are called [[Android (robot)|android]]s, while android can be shortened to ''droid'', referring to robots with a broader likeness. On the other hand a human that is augmented with artificial machines is called a [[cyborg]], which is a particular type of [[transhuman]]. |
|||
;Physical agency |
|||
However, for many [[layman|laymen]], if a machine appears able to control its arms or limbs, and especially if it appears [[wikt:anthropomorphic|anthropomorphic]] or [[wikt:zoomorphic|zoomorphic]] (e.g. [[ASIMO]] or [[Aibo]]), it would be called a robot.{{Citation needed|date=September 2011}} |
|||
* A [[player piano]] is rarely characterized as a robot.<ref>{{Cite web|url=http://www.wyastone.co.uk/nrl/gp_robot.html|title=The Grand Piano Series: The History of The Robot|publisher=Nimbus Records|accessdate=2007-09-08}}</ref> |
|||
* A [[CNC]] milling machine is very occasionally characterized as a robot.{{Citation needed|date=September 2011}} |
|||
* A [[factory robot|factory automation arm]] is almost always characterized as an industrial robot.{{Citation needed|date=September 2011}} |
|||
* An autonomous wheeled or tracked device, such as a self-guided rover or self-guided vehicle, is almost always characterized as a mobile robot or service robot.{{Citation needed|date=September 2011}} |
|||
* A [[zoomorphic]] mechanical toy, like [[Roboraptor]], is usually characterized as a robot.<ref>{{Cite web|url=http://www.engadget.com/2005/07/29/roboraptor-review-this-one-has-teeth/|title=Roboraptor review - this one has teeth - in the discussion below, several people talk about RoboRaptor as being a real robot|author=Marc Perton|date=2005-07-29|publisher=Engadget|accessdate=2008-08-07}}</ref> |
|||
* A mechanical humanoid, like [[ASIMO]], is almost always characterized as a robot, usually as a service robot.{{Citation needed|date=September 2011}} |
|||
== History == |
|||
Even for a 3-axis CNC milling machine using the same control system as a robot arm, it is the arm which is almost always called a robot, while the CNC machine is usually just a machine. Having eyes can also make a difference in whether a machine is called a robot, since humans instinctively connect eyes with sentience. However, simply being anthropomorphic is not a sufficient criterion for something to be called a robot. A robot must do something; an inanimate object shaped like ASIMO would not be considered a robot.{{Citation needed|date=September 2011}} |
|||
==History== |
|||
{{Main|History of robots}} |
{{Main|History of robots}} |
||
=== Early beginnings === |
|||
The idea of automata originates in the mythologies of many cultures around the world. Engineers and inventors from ancient civilizations, including [[Ancient China]],<ref name="needham volume 2 53">{{cite book|last=Needham|first=Joseph|authorlink=Joseph Needham|year=1991|title=Science and Civilisation in China: Volume 2, History of Scientific Thought|publisher=Cambridge University Press|isbn=0-521-05800-7}}</ref> [[Ancient Greece]], and [[Ptolemaic Egypt]],<ref name="RoboticHistory1">{{cite web|url=http://www.faculty.ucr.edu/~currie/roboadam.htm|title=The History of Robotics|first=Adam|last=Currie|year=1999|accessdate=2007-09-10}}</ref> attempted to build self-operating machines, some resembling animals and humans. Early descriptions of automata include the artificial doves of [[Archytas]],<ref>''Noct. Att. L.'' 10</ref> the artificial birds of [[Mozi]] and [[Lu Ban]],<ref name="needham volume 2 54">Needham, Volume 2, 54.</ref> a "speaking" automaton by [[Hero of Alexandria]], a washstand automaton by [[Philo of Byzantium]], and a human automaton described in the ''Lie Zi''.<ref name="needham volume 2 53"/> |
|||
Many ancient mythologies, and most modern religions include artificial people, such as the mechanical servants built by the Greek god [[Hephaestus]]<ref>{{cite book|url=https://books.google.com/books?id=h5tKJvApybsC&q=hephaestus+handmaidens&pg=PA114|title=Ancient Greek Ideas on Speech, Language, and Civilization|author=Deborah Levine Gera|publisher=Oxford University Press|year=2003|isbn=978-0-19-925616-7|access-date=25 September 2016|archive-url=https://web.archive.org/web/20161205062218/https://books.google.com/books?id=h5tKJvApybsC&pg=PA114&lpg=PA114&dq=hephaestus+handmaidens|archive-date=5 December 2016|url-status=live}}</ref> ([[Vulcan (mythology)|Vulcan]] to the Romans), the clay [[golem]]s of Jewish legend and clay giants of Norse legend, and [[Galatea (mythology)|Galatea]], the mythical statue of [[Pygmalion (mythology)|Pygmalion]] that came to life. Since circa 400 BC, myths of [[Crete]] include [[Talos]], a man of bronze who guarded the island from pirates. |
|||
In the 4th century BC, the [[Greek mathematics|Greek]] mathematician [[Archytas]] of Tarentum postulated a mechanical steam-operated bird he called "The Pigeon".<ref>''Noct. Att. L.'' 10</ref> The Greek engineer [[Ctesibius]] (c. 270 BC) "applied a knowledge of pneumatics and hydraulics to produce the first organ and water clocks with moving figures."<ref name="robot-evolution">{{cite book|first=Mark E.|last=Rosheim|date=1994|url=https://books.google.com/books?id=IxtL54iiDPUC&pg=2|title=Robot evolution: the development of anthrobotics|publisher=Wiley-IEEE|isbn=0-471-02622-0}}</ref>{{rp|page=2}}<ref>"{{cite news|url=http://news.bbc.co.uk/cbbcnews/hi/find_out/guides/tech/robots/newsid_3914000/3914569.stm|title=Robots then and now|archive-url=https://web.archive.org/web/20101220114656/http://news.bbc.co.uk/cbbcnews/hi/find_out/guides/tech/robots/newsid_3914000/3914569.stm|archive-date=2010-12-20|url-status=live|website=BBC|date=22 July 2004 }}</ref> [[Philo of Byzantium]] described a washstand automaton. [[Hero of Alexandria]] {{nowrap|(10–70 AD)}}, a Greek mathematician and inventor, created numerous user-configurable automated devices, and described machines powered by air pressure, steam and water, including a "speaking" automaton.<ref>{{cite web | url=https://mathshistory.st-andrews.ac.uk/Biographies/Heron/ | author=O'Connor, J.J. and E.F. Robertson | title=Heron biography | access-date=26 September 2023 | work=The MacTutor History of Mathematics archive}}</ref> |
|||
{{hidden begin|title = Timeline of robot and automata development |
|||
|titlestyle =background:lightgrey; text-align:center;}} |
|||
{| class="wikitable" |
|||
! Date |
|||
! Significance |
|||
! Robot name |
|||
! Inventor |
|||
|-| |
|||
| 1st century AD and earlier |
|||
| Descriptions of over a hundred machines and [[automaton|automata]], including a fire engine, wind organ, coin-operated machine, and steam-powered [[aeliopile]], in ''Pneumatica'' and ''Automata'' by [[Hero of Alexandria|Heron]] |
|||
| |
|||
| [[Ctesibius of Alexandria|Ctesibius]], [[Philo of Byzantium|Philo]], [[Hero of Alexandria|Heron]], and others |
|||
|- |
|||
| 1206 |
|||
| Early programmable automata |
|||
| Robot band<ref name=Fowler>{{Cite journal|title=The Museum of Music: A History of Mechanical Instruments|first=Charles B.|last=Fowler|journal=Music Educators Journal|volume=54|issue=2|date=October 1967|pages=45–49|doi=10.2307/3391092|publisher=MENC_ The National Association for Music Education|jstor=3391092}}</ref> |
|||
| [[Al-Jazari]] |
|||
|- |
|||
| c. 1495 |
|||
| Designs for a humanoid robot |
|||
| [[Leonardo's robot|Mechanical knight]] |
|||
| [[Leonardo da Vinci]] |
|||
|- |
|||
| 1738 |
|||
| Mechanical duck that was able to eat, flap its wings, and excrete |
|||
| [[Digesting Duck]] |
|||
| [[Jacques de Vaucanson]] |
|||
|- |
|||
| 19th century |
|||
| Japanese mechanical toys that served tea, fired arrows, and painted |
|||
| ''Karakuri'' toys |
|||
| [[Hisashige Tanaka]] |
|||
|- |
|||
| (c. 1860) |
|||
| Remotely (mechanical) steered clockwork [[fire ship]] |
|||
| (''Coastal fireship'') |
|||
| Unknown/[[Giovanni Luppis]] |
|||
|- |
|||
| Early 1870s |
|||
| Remotely controlled [[torpedo]]s by [[John Ericsson]] ([[Pneumatics|pneumatic]]), [[John Louis Lay]] (electric wire guided), and [[Victor von Scheliha]] (electric wire guided)<ref name="EdwynGray">Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18</ref> |
|||
| (''torpedo'') |
|||
| [[John Ericsson]], [[John Louis Lay]], [[Victor von Scheliha]] |
|||
|- |
|||
| 1898 |
|||
| Tesla demonstrates the first radio controlled (wireless) vessel (''torpedo'') |
|||
| (''torpedo'') |
|||
| [[Nikola Tesla]] |
|||
|- |
|||
| 1921 |
|||
| First fictional automata called "robots" appear in the play ''R.U.R.'' |
|||
| Rossum's Universal Robots |
|||
| [[Karel Čapek]] |
|||
|- |
|||
| 1928 |
|||
| Humanoid robot, based on a suit of armor with electrical actuators, exhibited at the annual exhibition of the Model Engineers Society in London |
|||
| Eric |
|||
| W. H. Richards |
|||
|- |
|||
| 1930s |
|||
| Remotely controlled humanoid robot exhibited at the 1939 and 1940 [[World's Fair]]s |
|||
| [[Elektro]] |
|||
| [[Westinghouse Electric Corporation]] |
|||
|- |
|||
| 1948 |
|||
| Simple robots exhibiting biological behaviors<ref>{{Cite web|url=http://www.cerebromente.org.br/n09/historia/turtles_i.htm |accessdate=2008-09-25 |title=Imitation of Life: A History of the First Robots}}</ref> |
|||
| Elsie and Elmer |
|||
| [[William Grey Walter]] |
|||
|- |
|||
| 1956 |
|||
| First commercial robot, from the Unimation company founded by [[George Devol]] and [[Joseph Engelberger]], based on Devol's patents<ref>{{Cite journal|accessdate=2008-09-25|last=Waurzyniak|first=Patrick|title=Masters of Manufacturing: Joseph F. Engelberger|journal=Society of Manufacturing Engineers|volume=137|issue=1|date=2006-07|url=http://www.sme.org/cgi-bin/find-articles.pl?&ME06ART39&ME&20060709#article}}</ref> |
|||
| [[Unimate]] |
|||
| [[George Devol]] |
|||
|- |
|||
| 1961 |
|||
| First installed industrial robot |
|||
| [[Unimate]] |
|||
| [[George Devol]] |
|||
|- |
|||
| 1963 |
|||
| First palletizing robot<ref>{{Cite web|url=http://www.fujiyusoki.com/English/rekishi.htm|title=Company History|publisher=Fuji Yusoki Kogyo Co.|accessdate=2008-09-12}}</ref> |
|||
| Palletizer |
|||
| Fuji Yusoki Kogyo |
|||
|- |
|||
| 1973 |
|||
| First robot with six electromechanically drived axes<ref>{{Cite web|url=http://www.kuka-robotics.com/group/milestones/1973.htm |title=KUKA Industrial Robot FAMULUS|accessdate=2008-01-10 |work=}}</ref> |
|||
| Famulus |
|||
| [[KUKA|KUKA Robotics]] |
|||
|- |
|||
| 1976 |
|||
| Programmable universal manipulation arm, a Unimation product |
|||
| [[Programmable Universal Machine for Assembly|PUMA]] |
|||
| [[Victor Scheinman]] |
|||
|} |
|||
{{hidden end}} |
|||
In ancient China, the 3rd-century text of the ''Lie Zi'' describes an account of humanoid automata, involving a much earlier encounter between Chinese emperor [[King Mu of Zhou]] and a mechanical engineer known as Yan Shi, an 'artificer'.<ref name="needham volume 2 53" /> Yan Shi proudly presented the king with a life-size, human-shaped figure of his mechanical 'handiwork' made of leather, wood, and artificial organs.<ref name="needham volume 2 53">{{cite book|last=Needham|first=Joseph|author-link=Joseph Needham|year=1991|title=Science and Civilisation in China: Volume 2, History of Scientific Thought|publisher=Cambridge University Press|isbn=978-0-521-05800-1}}</ref> There are also accounts of flying automata in the ''Han Fei Zi'' and other texts, which attributes the 5th century BC [[Mohism|Mohist]] philosopher [[Mozi]] and his contemporary [[Lu Ban]] with the invention of artificial wooden birds (''ma yuan'') that could successfully fly.<ref name="needham volume 2 54">Needham, Volume 2, 54.</ref> |
|||
===Ancient beginnings=== |
|||
Many ancient mythologies include artificial people, such as the mechanical servants built by the Greek god [[Hephaestus]]<ref>{{Cite book|url=http://books.google.com/?id=h5tKJvApybsC&pg=PA114&lpg=PA114&dq=hephaestus+handmaidens|title=Ancient Greek Ideas on Speech, Language, and Civilization|author=Deborah Levine Gera|publisher=Oxford University Press|year=2003|isbn=978-0-19-925616-7}}</ref> ([[Vulcan (mythology)|Vulcan]] to the Romans), the clay [[golem]]s of Jewish legend and clay giants of Norse legend, and [[Galatea (mythology)|Galatea]], the mythical statue of [[Pygmalion (mythology)|Pygmalion]] that came to life. |
|||
[[File:Bulletin - United States National Museum (1959) (20481431946).jpg|thumb|upright|[[Su Song]]'s astronomical clock tower showing the mechanical figurines which chimed the hours]] |
|||
Since circa 400 BCE, myths of Crete that were incorporated into Greek mythology include [[Talos]], a man of bronze who guarded the Cretan island of Europa from pirates. |
|||
In 1066, the Chinese inventor [[Su Song]] built a [[water clock]] in the form of a tower which featured mechanical figurines which chimed the hours.<ref name=Fowler>{{cite journal|title=The Museum of Music: A History of Mechanical Instruments|first=Charles B.|last=Fowler|journal=Music Educators Journal|volume=54|issue=2|date=October 1967|pages=45–49|doi=10.2307/3391092|jstor=3391092|s2cid=190524140 | issn=0027-4321 }}</ref><ref>{{cite web|url=https://www.nist.gov/pml/time-and-frequency-division/popular-links/walk-through-time/walk-through-time-early-clocks |title=Early Clocks |work=A Walk Through Time |date=12 August 2009 |access-date=13 October 2022 |publisher=NIST Physics Laboratory}}</ref><ref name=NSAJAutomata>{{cite journal|date=6 July 2007 |title=The programmable robot of ancient Greece |journal=New Scientist|pages=32–35|url=https://www.newscientist.com/article/mg19526111-600-the-programmable-robot-of-ancient-greece/}}</ref> His mechanism had a programmable drum machine with pegs ([[Cam (mechanism)|cam]]s) that bumped into little [[lever]]s that operated percussion instruments. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.<ref name=NSAJAutomata /> |
|||
In ancient Greece, the Greek engineer [[Ctesibius]] (c. 270 BC) "applied a knowledge of pneumatics and hydraulics to produce the first organ and water clocks with moving figures."<ref>Mark E. Rosheim (1994). "''[http://books.google.com/books?id=IxtL54iiDPUC&pg=&dq&hl=en#v=onepage&q=&f=false Robot evolution: the development of anthrobotics]''". p.2. Wiley-IEEE. ISBN 0-471-02622-0</ref><ref>"[http://news.bbc.co.uk/cbbcnews/hi/find_out/guides/tech/robots/newsid_3914000/3914569.stm Robots then and now]". BBC.</ref> In the 4th century BC, the [[Greek mathematics|Greek]] mathematician [[Archytas]] of Tarentum postulated a mechanical steam-operated bird he called "The Pigeon". [[Hero of Alexandria]] {{nowrap|(10–70 AD)}}, a Greek mathematician and inventor, created numerous user-configurable automated devices, and described machines powered by air pressure, steam and water.<ref>{{Cite web|url=http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Heron.html | author=O'Connor, J.J. and E.F. Robertson | title=Heron biography | accessdate=2008-09-05 | work=The MacTutor History of Mathematics archive}}</ref> |
|||
''[[Samarangana Sutradhara]]'', a [[Sanskrit]] treatise by [[Bhoja]] (11th century), includes a chapter about the construction of mechanical contrivances ([[automata]]), including mechanical bees and birds, fountains shaped like humans and animals, and male and female dolls that refilled oil lamps, danced, played instruments, and re-enacted scenes from Hindu mythology.<ref>{{cite book|last=Varadpande|first=Manohar Laxman|year=1987|title=History of Indian Theatre, Volume 1|page=68|publisher=Abhinav Publications |url=https://books.google.com/books?id=SyxOHOCVcVkC&pg=PA68|isbn=978-81-7017-221-5}}</ref><ref>{{cite book|last= Wujastyk|first=Dominik|year=2003|title=The Roots of Ayurveda: Selections from Sanskrit Medical Writings|page=222|publisher=Penguin |url=https://books.google.com/books?id=TaZCwjtmzZYC&q=automata&pg=PA222|isbn=978-0-14-044824-5}}</ref><ref>{{cite book|last=Needham|first=Joseph|year=1965|title=Science and Civilisation in China: Volume 4, Physics and Physical Technology Part 2, Mechanical Engineering|page=164|publisher=Cambridge University Press |url=https://books.google.com/books?id=SeGyrCfYs2AC&q=bhoja+automata&pg=PA164|isbn=978-0-521-05803-2}}</ref> The 11th century [[Lokapannatti]] tells of how the Buddha's relics were protected by mechanical robots (bhuta vahana yanta), from the kingdom of Roma visaya (Rome); until they were disarmed by King [[Ashoka]].<ref>{{Cite book |title=Relics of the Buddha|first=J.S. |last=Strong|author-link=John S. Strong |year=2007 |url=https://books.google.com/books?id=_KLAxmR8PZAC |publisher=[[Princeton University Press]]|isbn=978-0-691-11764-5 |pages=133–134, 143}}</ref> |
|||
In ancient China, the 3rd century BC text of the ''Lie Zi'' describes an account of humanoid automata, involving a much earlier encounter between [[King Mu of Zhou]] (Chinese emperor 10th century BC) and a mechanical engineer known as Yan Shi, an 'artificer'. The latter proudly presented the king with a life-size, human-shaped figure of his mechanical 'handiwork' made of leather, wood, and artificial organs.<ref name="needham volume 2 53">Needham, Volume 2, 53.</ref> There are also accounts of flying automata in the ''Han Fei Zi'' and other texts, which attributes the 5th century BC [[Mohism|Mohist]] philosopher [[Mozi]] and his contemporary [[Lu Ban]] with the invention of artificial wooden birds (''ma yuan'') that could successfully fly.<ref name="needham volume 2 54" /> In 1066, the Chinese inventor [[Su Song]] built a [[Water Clock|water clock]] in the form of a tower which featured mechanical figurines which chimed the hours. The beginning of automata is associated with the invention of early [[Su Song|Su Song's astronomical clock tower]] featured mechanical figurines that chimed the hours.<ref>{{Cite web|url=http://physics.nist.gov/GenInt/Time/early.html |title=Earliest Clocks |work=A Walk Through Time |accessdate=2008-08-11 |publisher=NIST Physics Laboratory |archiveurl = http://web.archive.org/web/20080531063139/http://physics.nist.gov/GenInt/Time/early.html <!-- Bot retrieved archive --> |archivedate = 2008-05-31}}</ref> |
|||
[[File:Al-Jazari - A Musical Toy.jpg|thumb|Al-Jazari – a musical toy]] |
|||
In the medieval Islamic world, [[Al-Jazari]] (1136–1206), a [[Muslim inventions|Muslim inventor]] during the [[Artuqid dynasty]], designed and constructed a number of automated machines, including kitchen appliances, musical automata powered by water, and programmable automata.<ref name=Fowler/><ref name=NSAJAutomata>{{cite journal|date=July 6, 2007|publisher=IPC Magazines|work=New Scientist|pages=32–35|url=http://www.mspnews.com/news/2007/07/06/2766138.htm|title=I ropebot|volume=195 |issue=2611-2623|accessdate=27 January 2012|quote="He created a veritable boatload of programmable robot musicians."}}</ref> The autmomata appeared as four musicians on a boat in a lake, entertaining guests at royal drinking parties. His mechanism had a programmable drum machine with pegs ([[cam]]s) that bumped into little [[lever]]s that operated percussion instruments. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.<ref name=NSAJAutomata/> |
|||
13th century [[List of Muslim scientists|Muslim scientist]] [[Ismail al-Jazari]] created several automated devices. He built automated moving peacocks driven by hydropower.<ref name=":0">{{Cite web|url=https://www.britannica.com/biography/al-Jazari|title=Al-Jazarī {{!}} Arab inventor|website=Encyclopædia Britannica|access-date=15 June 2019}}</ref> He also invented the earliest known automatic gates, which were driven by hydropower,<ref name=Turner>{{cite book|author=Howard R. Turner |date=1997|title=Science in Medieval Islam: An Illustrated Introduction|page=81|publisher=[[University of Texas Press]]|isbn=0-292-78149-0}}</ref> created automatic doors as part of one of his elaborate [[water clock]]s.<ref name=Hill2>{{cite magazine|first=Donald|last=Hill|author-link=Donald Hill|title=Mechanical Engineering in the Medieval Near East|magazine=[[Scientific American]]|date=May 1991|pages=64–69}} ([[cf.]] {{cite web|first=Donald|last=Hill|author-link=Donald Hill|url=http://home.swipnet.se/islam/articles/HistoryofSciences.htm#IX.%20Mechanical%20Engineering|title=History of Sciences in the Islamic World|at=IX. Mechanical Engineering|archive-url=https://web.archive.org/web/20071225091836/http://home.swipnet.se/islam/articles/HistoryofSciences.htm#IX.%20Mechanical%20Engineering|archive-date=25 December 2007|url-status=dead}})</ref> One of al-Jazari's [[Humanoid robot|humanoid automata]] was a waitress that could serve water, tea or drinks. The drink was stored in a tank with a reservoir from where the drink drips into a bucket and, after seven minutes, into a cup, after which the waitress appears out of an automatic door serving the drink.<ref>{{cite AV media|title=Ancient Discoveries Islamic Science Part1|url=https://www.youtube.com/watch?v=v2HcjanNWFM |archive-url=https://ghostarchive.org/varchive/youtube/20211211/v2HcjanNWFM| archive-date=2021-12-11 |url-status=live|access-date=15 June 2019}}{{cbignore}}</ref> Al-Jazari invented a hand washing [[automaton]] incorporating a flush mechanism now used in modern [[flush toilet]]s. It features a female [[Humanoid robot|humanoid automaton]] standing by a basin filled with water. When the user pulls the lever, the water drains and the female automaton refills the basin.<ref name="robot-evolution" /> |
|||
<div align="center"> |
|||
<gallery perrow=4 widths="200"> |
|||
Image:Washstand by Philo of Byzantium.png|Washstand [[automaton]] reconstruction, as described by [[Philo of Byzantium]] (Greece, 3rd century BC). |
|||
Image:Al-Jazari_-_A_Musical_Toy.jpg|[[Al-Jazari|Al-Jazari's]] toy boat, musical automata |
|||
Image:KarakuriBritishMuseum.jpg|Tea-serving [[Karakuri ningyō|karakuri]] with mechanism. ([[Tokyo National Science Museum]]). |
|||
Image:Clock Tower from Su Song's Book.JPG|[[Su Song|Su Song's astronomical clock tower]] showing the mechanical figurines which chimed the hours. |
|||
</gallery></div> |
|||
Mark E. Rosheim summarizes the advances in [[robotics]] made by Muslim engineers, especially al-Jazari, as follows:<blockquote>Unlike the Greek designs, these Arab examples reveal an interest, not only in dramatic illusion, but in manipulating the environment for human comfort. Thus, the greatest contribution the Arabs made, besides preserving, disseminating and building on the work of the Greeks, was the concept of practical application. This was the key element that was missing in Greek robotic science.<ref name="robot-evolution" />{{rp|page=9}}</blockquote> |
|||
===Early modern developments=== |
|||
[[File:Leonardo-Robot3.jpg|thumb|upright|Model of [[Leonardo's robot]] with inner workings. Possibly constructed by [[Leonardo da Vinci]] around 1495.<ref name=nih>{{cite journal |title=The da Vinci robot | journal = J. Endourol.| volume = 20| issue = 12| pages = 986–90|quote=... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight. | pmid=17206888 | doi=10.1089/end.2006.20.986 | date=December 2006| last1 = Moran| first1 = M. E.}}</ref>]] In the 14th century, the coronation of [[Richard II of England]] featured an automata angel.<ref name="Truitt 2015 p. 136">{{cite book | last=Truitt | first=E.R. | title=Medieval Robots: Mechanism, Magic, Nature, and Art | publisher=University of Pennsylvania Press, Incorporated | series=The Middle Ages Series | year=2015 | isbn=978-0-8122-9140-7 | url=https://books.google.com/books?id=scd0CAAAQBAJ&pg=PA136 | access-date=2023-01-21 | page=136}}</ref> |
|||
In [[Renaissance]] Italy, [[Leonardo da Vinci]] (1452–1519) sketched plans for a humanoid robot around 1495. Da Vinci's notebooks, rediscovered in the 1950s, contained detailed drawings of a mechanical knight now known as [[Leonardo's robot]], able to sit up, wave its arms and move its head and jaw.<ref>{{Cite web|url=http://www.leonardo3.net/leonardo/books%20I%20robot%20di%20Leonardo%20-%20Taddei%20Mario%20-%20english%20Leonardo%20robots%201.html|title=Leonardo da Vinci's Robots|publisher=Leonardo3.net|accessdate=2008-09-25}}</ref> The design was probably based on anatomical research recorded in his ''[[Vitruvian Man]]''. It is not known whether he attempted to build it. |
|||
In [[Renaissance]] Italy, [[Leonardo da Vinci]] (1452–1519) sketched plans for a humanoid robot around 1495. Da Vinci's notebooks, rediscovered in the 1950s, contained detailed drawings of a mechanical knight now known as [[Leonardo's robot]], able to sit up, wave its arms and move its head and jaw.<ref>{{cite web|url=http://www.leonardo3.net/leonardo/books%20I%20robot%20di%20Leonardo%20-%20Taddei%20Mario%20-%20english%20Leonardo%20robots%201.html|title=Leonardo da Vinci's Robots|publisher=Leonardo3.net|access-date=25 September 2008|archive-url=https://web.archive.org/web/20080924162924/http://www.leonardo3.net/leonardo/books%20I%20robot%20di%20Leonardo%20-%20Taddei%20Mario%20-%20english%20Leonardo%20robots%201.html|archive-date=24 September 2008|url-status=dead}}</ref> The design was probably based on anatomical research recorded in his ''[[Vitruvian Man]]''. It is not known whether he attempted to build it. According to ''[[Encyclopædia Britannica]]'', [[Leonardo da Vinci]] may have been influenced by the classic automata of al-Jazari.<ref name=":0" /> |
|||
In Japan, complex animal and human automata were built between the 17th to 19th centuries, with many described in the 18th century ''Karakuri zui'' (''Illustrated Machinery'', 1796). One such automaton was the [[karakuri ningyō]], a mechanized [[puppet]].<ref>Jane Marie Law, ''Puppets of Nostalgia – The Life, Death and Rebirth of the Japanese [[Awaji]] Ningyo Tradition'', 1997, Princeton University Press, ISBN 978-0-691-02894-1</ref> Different variations of the karakuri existed: the ''Butai karakuri'', which were used in [[theatre]], the ''Zashiki karakuri'', which were small and used in homes, and the ''Dashi karakuri'' which were used in religious festivals, where the puppets were used to perform reenactments of traditional [[mythology|myth]]s and [[legend]]s. |
|||
In Japan, complex animal and human automata were built between the 17th to 19th centuries, with many described in the 18th century ''Karakuri zui'' (''Illustrated Machinery'', 1796). One such automaton was the [[karakuri ningyō]], a mechanized [[puppet]].<ref>{{cite book|first=Jane Marie|last=Law|title=Puppets of Nostalgia – The Life, Death and Rebirth of the Japanese Awaji Ningyo Tradition|date=1997|publisher=[[Princeton University Press]]|isbn=978-0-691-02894-1}}</ref> Different variations of the karakuri existed: the ''Butai karakuri'', which were used in theatre, the ''Zashiki karakuri'', which were small and used in homes, and the ''Dashi karakuri'' which were used in religious festivals, where the puppets were used to perform reenactments of traditional [[mythology|myths]] and [[legend]]s. |
|||
In France, between 1738 and 1739, [[Jacques de Vaucanson]] exhibited several life-sized automatons: a flute player, a pipe player and a duck. The mechanical duck could flap its wings, crane its neck, and swallow food from the exhibitor's hand, and it gave the illusion of digesting its food by excreting matter stored in a hidden compartment.<ref>Wood, Gabby. [http://www.guardian.co.uk/books/2002/feb/16/extract.gabywood "Living Dolls: A Magical History Of The Quest For Mechanical Life"], ''[[The Guardian]]'', 2002-02-16.</ref> |
|||
In France, between 1738 and 1739, [[Jacques de Vaucanson]] exhibited several life-sized automatons: a flute player, a pipe player and a duck. The mechanical duck could flap its wings, crane its neck, and swallow food from the exhibitor's hand, and it gave the illusion of digesting its food by excreting matter stored in a hidden compartment.<ref>{{cite web|last=Wood|first=Gabby|url=https://www.theguardian.com/books/2002/feb/16/extract.gabywood|title=Living Dolls: A Magical History Of The Quest For Mechanical Life|archive-url=https://web.archive.org/web/20161220154456/https://www.theguardian.com/books/2002/feb/16/extract.gabywood|archive-date=20 December 2016|url-status=live|website=[[The Guardian]]|date=16 February 2002}}</ref> About 30 years later in Switzerland the clockmaker [[Pierre Jaquet-Droz]] made several complex mechanical figures that could write and play music. Several of these devices still exist and work.<ref>{{cite web|url=https://www.messynessychic.com/2018/02/21/the-boy-robot-of-1774/?__s=zht5pogfqikwkrfgcene|title=The Boy Robot of 1774|date=21 February 2018}}</ref> |
|||
===Modern developments=== |
|||
<!-- Deleted image removed: [[File:TOPIO 3.0.jpg|200px|thumb|[[TOPIO]], a [[humanoid robot]], played [[ping pong]] at Tokyo [[International Robot Exhibition]] (IREX) 2009.<ref>{{Cite news|url = http://www.popsci.com/technology/article/2010-02/ping-pong-playing-terminator|title=A Ping-Pong-Playing Terminator|publisher=Popular Science}}</ref><ref>{{Cite news|url = http://www.gadgetrivia.com/8164-best_robot_international_robot_exhibition|title=Best robot 2009|publisher=www.gadgetrivia.com}}</ref>]] --> |
|||
The Japanese craftsman [[Hisashige Tanaka]] (1799–1881), known as "Japan's Edison" or "Karakuri Giemon", created an array of extremely complex mechanical toys, some of which served tea, fired arrows drawn from a quiver, and even painted a Japanese ''kanji'' character.<ref>{{Cite book| author=N. Hornyak, Timothy | authorlink= | coauthors= | title=Loving the Machine: The Art and Science of Japanese Robots | year=2006 | publisher=Kodansha International | location=New York | isbn=4-7700-3012-6 | pages=}}</ref> |
|||
=== Remote-controlled systems === |
|||
A remotely operated vehicles were demonstrated in the late 19th in the form of several types of remotely controlled [[torpedo]]s. The early 1870s saw remotely controlled [[torpedo]]s by [[John Ericsson]] ([[Pneumatics|pneumatic]]), [[John Louis Lay]] (electric wire guided), and [[Victor von Scheliha]] (electric wire guided).<ref name="EdwynGray" /> In 1898 [[Nikola Tesla]] publicly demonstrated a "wireless" radio-controlled [[torpedo]] that he hoped sell to the [[US Navy]].<ref>{{cite patent|US|613809}}</ref><ref>{{Cite web|publisher=PBS.org |url=http://www.pbs.org/tesla |title=Tesla - Master of Lightning |accessdate=2008-09-24}}</ref> |
|||
[[File:Brennan torpedo launching.jpg|thumb|left|The [[Brennan torpedo]], one of the earliest 'guided missiles']] |
|||
Remotely operated vehicles were demonstrated in the late 19th century in the form of several types of remotely controlled [[torpedo]]es. The early 1870s saw remotely controlled [[torpedo]]es by [[John Ericsson]] ([[Pneumatics|pneumatic]]), [[John Louis Lay]] (electric wire guided), and [[Victor von Scheliha]] (electric wire guided).<ref name="EdwynGray">Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18</ref> |
|||
The [[Brennan torpedo]], invented by [[Louis Brennan]] in 1877, was powered by two contra-rotating propellers that were spun by rapidly pulling out wires from drums wound inside the [[torpedo]]. Differential speed on the wires connected to the shore station allowed the torpedo to be guided to its target, making it "the world's first ''practical'' [[guided missile]]".<ref name=gray>{{cite book | last = Gray | first = Edwyn | title = Nineteenth-Century Torpedoes and Their Inventors | publisher = Naval Institute Press | year = 2004 | isbn = 978-1-59114-341-3}}</ref> In 1897 the British inventor Ernest Wilson was granted a patent for a torpedo remotely controlled by "Hertzian" (radio) waves<ref>{{cite book |first=Marc |last=Seifer |title=Life and Times of Nikola Tesla |date=24 October 2011 |url=https://books.google.com/books?id=DzMR8x_rbPgC&q=torpedo |page=1893 |publisher=Citadel |isbn=978-0-8065-3556-2 |archive-url=https://web.archive.org/web/20161205023226/https://books.google.com/books?id=DzMR8x_rbPgC&printsec=frontcover&dq=tesla+torpedo+controlled+wireless+conduction&hl=en&sa=X&ei=-669Uv3NO46-sQSysYGgDQ&ved=0CEIQ6AEwAjgK#v=onepage&q=torpedo&f=false |archive-date=5 December 2016 |url-status=live}}</ref><ref>{{cite book|author-link=Benjamin Miessner|first=Benjamin Franklin|last=Miessner|title=Radiodynamics: The Wireless Control of Torpedoes and Other Mechanisms|publisher=D. Van Nostrand Company|date=1916|page=83}}</ref> and in 1898 [[Nikola Tesla]] publicly demonstrated a wireless-controlled [[torpedo]] that he hoped to sell to the [[US Navy]].<ref>{{cite patent|country=US|number=613809|pubdate=1898-11-08|title=Method of and apparatus for controlling mechanism of moving vessels or vehicles|inventor1-last=Tesla|inventor1-first=Nikola}}</ref><ref>{{cite web |publisher=PBS |url=https://www.pbs.org/tesla |title=Tesla – Master of Lightning |access-date=24 September 2008 |archive-url=https://web.archive.org/web/20080928061709/http://www.pbs.org/tesla |archive-date=28 September 2008 |url-status=live }}</ref> |
|||
In 1926, [[Westinghouse Electric Corporation]] created Televox, the first robot put to useful work. They followed Televox with a number of other simple robots, including one called Rastus, made in the crude image of a black man. In the 1930s, they created a humanoid robot known as Elektro for exhibition purposes, including the 1939 and 1940 [[World's Fair]]s.<ref>{{Cite web|url=http://www.freetimes.com/stories/13/35/robot-dreams-the-strange-tale-of-a-mans-quest-to-rebuild-his-mechanical-childhood-friend |publisher=The Cleveland Free Times |title=Robot Dreams : The Strange Tale Of A Man's Quest To Rebuild His Mechanical Childhood Friend |accessdate=2008-09-25}} {{Dead link|date=September 2010|bot=H3llBot}}</ref><ref>{{Cite book|title=Robots of Westinghouse: 1924-Today |author=Scott Schaut |publisher=Mansfield Memorial Museum |year=2006 |isbn=0-9785844-1-4}}</ref> In 1928, Japan's first robot, [[Gakutensoku]], was designed and constructed by biologist Makoto Nishimura. |
|||
In 1903, the Spanish engineer [[Leonardo Torres Quevedo]] demonstrated a radio control system called ''[[Leonardo Torres Quevedo#Radio control: the Telekino|Telekino]]'' at the [[French Academy of Sciences|Paris Academy of Sciences]],<ref>Sarkar 2006, page 97</ref> which he wanted to use to control an [[Astra-Torres airship|airship]] of his own design. He obtained several patents for the system in other countries.<ref>Torres, Leonardo, "[https://worldwide.espacenet.com/patent/search/family/001377220/publication/FR327218A?q=pn%3DFR327218A FR327218A Système dit telekine pour commander à distance un mouvement mécanique.]", ''Espacenet'', 10 December 1902.</ref><ref>Torres, Leonardo, "[https://worldwide.espacenet.com//publicationDetails/originalDocument?CC=GB&NR=190327073a&FT=D GB190327073 (A) ― Means or Method for Directing Mechanical Movements at or from a Distance.]{{Dead link|date=December 2024 |bot=InternetArchiveBot |fix-attempted=yes }}", ''Espacenet'', 10 December 1903.</ref> Unlike previous 'on/off' techniques, Torres established a method for controlling any mechanical or electrical device with different states of operation.<ref name="Yuste2008">{{cite journal |author=A. P. Yuste |title=Early Developments of Wireless Remote Control: The Telekino of Torres-Quevedo |volume=96 |issue=1 |date=January 2008 |journal=[[Proceedings of the IEEE]]|pages=186–190 |doi=10.1109/JPROC.2007.909931 |s2cid=111010868 |url=http://oa.upm.es/1968/ }}</ref> The ''Telekino'' remotely controlled a [[tricycle]] in 1904, considered the first case of an [[unmanned ground vehicle]], and an electric [[boat]] with a crew in 1906, which was controlled at a distance over 2 km.<ref>{{cite book |author=H. R. Everett |title=Unmanned Systems of World Wars I and II |publisher=[[MIT Press]] |date=2015 |pages=91–95 |isbn=978-0-262-02922-3}}</ref> |
|||
The first electronic autonomous robots with complex behaviour were created by [[William Grey Walter]] of the Burden Neurological Institute at Bristol, England in 1948 and 1949. They were named ''Elmer'' and ''Elsie''. These robots could sense light and contact with external objects, and use these stimuli to navigate.<ref name="gwonline">{{Cite web|url=http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html |title=The Grey Walter Online Archive |accessdate=2008-09-25 |author=Owen Holland}}</ref> |
|||
[[Archibald Low]], known as the "father of radio guidance systems" for his pioneering work on guided rockets and planes during the [[First World War]]. In 1917, he demonstrated a remote controlled aircraft to the [[Royal Flying Corps]] and in the same year built the first wire-guided rocket. |
|||
The first truly modern robot, digitally operated and programmable, was invented by George Devol in 1954 and was ultimately called the [[Unimate]]. Devol sold the first Unimate to [[General Motors]] in 1960, and it was installed in 1961 in a plant in [[Trenton, New Jersey]] to lift hot pieces of metal from a [[die casting]] machine and stack them.<ref>{{Cite web|url=http://www.robothalloffame.org/unimate.html|title=Robot Hall of Fame - Unimate|publisher=Carnegie Mellon University|accessdate=2008-08-28}}</ref> Devol’s patent for the first digitally operated programmable robotic arm represents the foundation of the modern robotics industry.<ref>{{Cite web|url=http://www.invent.org/2011induction/1_3_11_induction_devol.asp|title=National Inventor's Hall of Fame 2011 Inductee|publisher=Invent Now|accessdate=2011-03-18}}</ref> |
|||
=== Early robots === |
|||
Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. They are also employed for jobs which are too dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory research, and mass production of consumer and industrial goods.<ref>{{Cite web|url=http://www.emrotechnologies.com/ |title=About us}}</ref> |
|||
[[File:Bundesarchiv Bild 102-13018, Maschinenmensch "Robot".jpg|thumb|upright|W. H. Richards with "George", 1932]] |
|||
In 1928, one of the first humanoid robots, [[Eric (robot)|Eric]], was exhibited at the annual exhibition of the Model Engineers Society in London, where it delivered a speech. Invented by W. H. Richards, the robot's frame consisted of an aluminium [[body armour|body of armour]] with eleven [[electromagnet]]s and one motor powered by a twelve-volt power source. The robot could move its hands and head and could be controlled through remote control or voice control.<ref>{{cite web|url=https://www.reffell.org.uk/the-reffell-family-history-website/people/ah-reffell-eric-robot-1928-the-uks-first-robot/|title=AH Reffell & Eric the Robot (1928) - the UK's Firs Robot|access-date=26 September 2023}}</ref> Both Eric and his "brother" George toured the world.<ref>{{cite news|title=1932 - George Robot - Capt. W.H. Richards (British)|website=cyberneticzoo.com|url=https://cyberneticzoo.com/robots/1932-–-george-robot-–-capt-w-h-richards-british/|access-date=26 September 2023}}</ref> |
|||
==Etymology== |
|||
[[Westinghouse Electric Corporation]] built Televox in 1926; it was a cardboard cutout connected to various devices which users could turn on and off. In 1939, the humanoid robot known as [[Elektro]] was debuted at the [[1939 New York World's Fair]].<ref>{{cite web|url=http://www.freetimes.com/stories/13/35/robot-dreams-the-strange-tale-of-a-mans-quest-to-rebuild-his-mechanical-childhood-friend |work=The Cleveland Free Times |title=Robot Dreams: The Strange Tale Of A Man's Quest To Rebuild His Mechanical Childhood Friend |access-date=25 September 2008|archive-url=https://web.archive.org/web/20100115065601/http://www.freetimes.com/stories/13/35/robot-dreams-the-strange-tale-of-a-mans-quest-to-rebuild-his-mechanical-childhood-friend|archive-date=15 January 2010|url-status=dead}}</ref><ref>{{cite book|title=Robots of Westinghouse: 1924-Today |first=Scott |last=Schaut |publisher=Mansfield Memorial Museum |year=2006 |isbn=978-0-9785844-1-2}}</ref> Seven feet tall (2.1 m) and weighing 265 pounds (120.2 kg), it could walk by voice command, speak about 700 words (using a 78-rpm [[record player]]), smoke cigarettes, blow up balloons, and move its head and arms. The body consisted of a steel gear, cam and motor skeleton covered by an aluminum skin. In 1928, Japan's first robot, [[Gakutensoku]], was designed and constructed by biologist Makoto Nishimura. |
|||
The German [[V-1 flying bomb]] was equipped with systems for automatic guidance and range control, flying on a predetermined course (which could include a 90-degree turn) and entering a terminal dive after a predetermined distance. It was reported as being a 'robot' in contemporary descriptions<ref>{{cite book|title=Secrets of the Flying Bomb Revealed: Special Sectional Drawing and How the Robot's Flight and Dive are Controlled Automatically|publisher=Illustrated London News|year=1944|url=https://www.germanpostalhistory.com/php/viewitem.php?itemid=51776}}</ref> |
|||
=== Modern autonomous robots === |
|||
The first electronic autonomous robots with complex behaviour were created by [[William Grey Walter]] of the [[Burden Neurological Institute]] at [[Bristol]], England in 1948 and 1949. He wanted to prove that rich connections between a small number of [[neurons|brain cells]] could give rise to very complex [[behavior]]s – essentially that the secret of how the brain worked lay in how it was wired up. His first robots, named ''Elmer'' and ''Elsie'', were constructed between 1948 and 1949 and were often described as ''tortoises'' due to their shape and slow rate of movement. The three-wheeled tortoise robots were capable of [[phototaxis]], by which they could find their way to a recharging station when they ran low on battery power. |
|||
Walter stressed the importance of using purely [[wiktionary:analogue|analogue]] electronics to [[simulate]] brain processes at a time when his contemporaries such as [[Alan Turing]] and [[John von Neumann]] were all turning towards a view of mental processes in terms of [[digital data|digital]] [[computation]]. His work inspired subsequent generations of robotics researchers such as [[Rodney Brooks]], [[Hans Moravec]] and [[Mark Tilden]]. Modern incarnations of Walter's ''turtles'' may be found in the form of [[BEAM robotics]].<ref name="gwonline">{{cite web|url=http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html |title=The Grey Walter Online Archive |access-date=25 September 2008 |first=Owen |last=Holland |url-status=dead |archive-url=https://web.archive.org/web/20081009055230/http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html |archive-date=9 October 2008 }}</ref> |
|||
The first digitally operated and programmable robot was invented by [[George Devol]] in 1954 and was ultimately called the [[Unimate]]. This ultimately laid the foundations of the modern robotics industry.<ref>{{cite journal|access-date=25 September 2008|last=Waurzyniak|first=Patrick|title=Masters of Manufacturing: Joseph F. Engelberger|journal=Society of Manufacturing Engineers|volume=137|issue=1|date=July 2006|url=http://www.sme.org/cgi-bin/find-articles.pl?&ME06ART39&ME&20060709|archive-url=https://web.archive.org/web/20111109053615/http://www.sme.org/cgi-bin/find-articles.pl?&ME06ART39&ME&20060709|archive-date=9 November 2011}}</ref> Devol sold the first Unimate to [[General Motors]] in 1960, and it was installed in 1961 in a plant in [[Trenton, New Jersey]] to lift hot pieces of metal from a [[die casting]] machine and stack them.<ref>{{cite web|url=http://www.robothalloffame.org/inductees/03inductees/unimate.html|title=Robot Hall of Fame – Unimate|publisher=Carnegie Mellon University|access-date=26 September 2023}}</ref> |
|||
The first [[Palletizer|palletizing robot]] was introduced in 1963 by the Fuji Yusoki Kogyo Company.<ref>{{cite web|url=http://www.fujiyusoki.com/English/rekishi.htm|title=Company History|publisher=Fuji Yusoki Kogyo Co.|access-date=12 September 2008|archive-url=https://web.archive.org/web/20130204034959/http://www.fujiyusoki.com/English/rekishi.htm|archive-date=4 February 2013}}</ref> In 1973, a robot with six electromechanically driven axes was patented<ref>{{cite web|url=http://www.kuka-robotics.com/germany/en/company/group/milestones/1973.htm |title=KUKA Industrial Robot FAMULUS |access-date=10 January 2008 |url-status=dead |archive-url=https://web.archive.org/web/20130610012645/http://www.kuka-robotics.com/germany/en/company/group/milestones/1973.htm |archive-date=10 June 2013}}</ref><ref>{{cite web|url=http://www.ifr.org/uploads/media/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdf |title=History of Industrial Robots |access-date=27 October 2012 |url-status=dead |archive-url=https://web.archive.org/web/20121224213437/http://www.ifr.org/uploads/media/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdf |archive-date=24 December 2012}}</ref><ref>{{cite web|title=History of Industrial Robots|url=https://www.robots.com/education/industrial-history|website=robots.com|access-date=24 August 2015|url-status=dead|archive-url=https://web.archive.org/web/20150708105337/https://www.robots.com/education/industrial-history|archive-date=8 July 2015}}</ref> by [[KUKA]] robotics in Germany, and the [[Programmable Universal Machine for Assembly|programmable universal manipulation arm]] was invented by [[Victor Scheinman]] in 1976, and the design was sold to [[Unimation]]. |
|||
Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. They are also employed for jobs which are too dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory research, and mass production of consumer and industrial goods.<ref>{{cite web|url=http://www.emrotechnologies.com/ |title=About us |archive-url=https://web.archive.org/web/20140109062457/http://emrotechnologies.com/ |archive-date=9 January 2014 |url-status=usurped}}</ref> |
|||
{{clear}} |
|||
== Future development and trends == |
|||
{{externalvideo|video1=[https://www.youtube.com/watch?v=rVlhMGQgDkY Atlas, The Next Generation]}} |
|||
{{further|Robotics}} |
|||
Various techniques have emerged to develop the science of robotics and robots. One method is [[evolutionary robotics]], in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is [[developmental robotics]], which tracks changes and development within a single robot in the areas of problem-solving and other functions. Another new type of robot is just recently introduced which acts both as a smartphone and robot and is named RoboHon.<ref>{{cite web|url=http://blog.codexify.com/2015/10/robohon-cute-little-robot-cum-smartphone.html |title=RoboHon: Cute little Robot cum Smartphone | Codexify |access-date=6 October 2015 |url-status=dead |archive-url=https://web.archive.org/web/20151007014124/http://blog.codexify.com/2015/10/robohon-cute-little-robot-cum-smartphone.html |archive-date=7 October 2015}}</ref> |
|||
As robots become more advanced, eventually there may be a standard computer [[operating system]] designed mainly for robots. [[Robot Operating System]] (ROS) is an [[open-source software]] set of programs being developed at [[Stanford University]], the [[Massachusetts Institute of Technology]], and the [[Technical University of Munich]], Germany, among others. ROS provides ways to program a [[robot navigation|robot's navigation]] and limbs regardless of the specific hardware involved. It also provides high-level commands for items like [[image recognition]] and even opening doors. When ROS boots up on a robot's computer, it would obtain data on attributes such as the length and movement of robots' limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a "Windows for robots" system with its Robotics Developer Studio, which has been available since 2007.<ref name="ROS">{{cite web|url=http://www.ethiopianreview.com/articles/23156|title=Robots to get their own operating system|first=Mehret|last=Tesfaye|website=Ethiopian Review|date=13 August 2009|archive-url=https://web.archive.org/web/20090918055715/http://www.ethiopianreview.com/articles/23156|archive-date=18 September 2009|url-status=dead}}</ref> |
|||
Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry.<ref name="UK Japan report">{{cite report|url=http://ukinjapan.fco.gov.uk/resources/en/pdf/5606907/5633632/next-generation-services-robots|title=Research and Development for Next-generation Service Robots in Japan|type=United Kingdom Foreign Ministry report|first=Yumiko|last=Myoken|publisher=Science and Innovation Section, [[British Embassy, Tokyo]], Japan|date=January 2009|archive-url=https://web.archive.org/web/20120723091926/http://ukinjapan.fco.gov.uk/resources/en/pdf/5606907/5633632/next-generation-services-robots|archive-date=23 July 2012|url-status=dead}}</ref> |
|||
Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction.<ref name="A4">{{cite book |url=https://www.springer.com/engineering/robotics/book/978-94-007-0578-4 |title=Robotic Tactile Sensing – Technologies and System |publisher=Springer |access-date=8 February 2014 |isbn=978-94-007-0578-4 |date=30 July 2012 |doi=10.1007/978-94-007-0579-1 |archive-url=https://web.archive.org/web/20131229011744/http://www.springer.com/engineering/robotics/book/978-94-007-0578-4 |archive-date=29 December 2013 |url-status=live |last1=Dahiya |first1=Ravinder S. |last2=Valle |first2=Maurizio }}</ref><ref name="A5">{{cite journal |doi=10.1109/TRO.2011.2155830|title=Guest Editorial Special Issue on Robotic Sense of Touch|journal=IEEE Transactions on Robotics|volume=27|issue=3|pages=385–388|year=2011|last1=Dahiya|first1=Ravinder S.|last2=Metta|first2=Giorgio|last3=Cannata|first3=Giorgio|last4=Valle|first4=Maurizio|s2cid=18608163}}</ref> As early as 1982 people were confident that someday robots would:<ref>{{Cite magazine |last=Engelberger |first=Joseph F. |author-link=Joseph F. Engelberger |date=August 1982 |title=Robotics in practice: Future capabilities |magazine=Electronic Servicing & Technology}}</ref> 1. Clean parts by removing [[molding flash]] 2. Spray paint automobiles with absolutely no human presence 3. Pack things in boxes—for example, orient and nest chocolate candies in candy boxes 4. Make electrical [[cable harness]] 5. Load trucks with boxes—a [[packing problem]] 6. Handle soft goods, such as garments and shoes 7. Shear sheep 8. Be used as [[prosthesis|prostheses]] 9. Cook fast food and work in other service industries 10. Work as a household robot. |
|||
Generally such predictions are overly optimistic in timescale. |
|||
=== New functionalities and prototypes === |
|||
{{Update section|date=August 2021}} |
|||
In 2008, [[Caterpillar Inc.]] developed a dump truck which can drive itself without any human operator.<ref>{{cite magazine|url=http://www.fastcompany.com/magazine/131/the-caterpillar-self-driving-dump-truck.html?nav=inform-rl|title=The Caterpillar Self-Driving Dump Truck|first=Tim|last=McKeough|magazine=[[Fast Company]]|date=1 December 2008|archive-url=https://web.archive.org/web/20110607062457/http://www.fastcompany.com/magazine/131/the-caterpillar-self-driving-dump-truck.html?nav=inform-rl|archive-date=7 June 2011|url-status=dead}}</ref> Many analysts believe that self-driving trucks may eventually revolutionize logistics.<ref>{{cite web|url=https://www.bloomberg.com/news/articles/2014-12-09/self-driving-trucks-to-revolutionize-logistics-dhl-says|title=Self-Driving Trucks to Revolutionize Logistics, DHL Says|first=Richard|last=Weiss|website=[[Bloomberg News]] |date=9 December 2014|archive-url=https://web.archive.org/web/20160722235005/http://www.bloomberg.com/news/articles/2014-12-09/self-driving-trucks-to-revolutionize-logistics-dhl-says|archive-date=22 July 2016|url-status=live}}</ref> By 2014, Caterpillar had a self-driving dump truck which is expected to greatly change the process of mining. In 2015, these Caterpillar trucks were actively used in mining operations in Australia by the mining company [[Rio Tinto Coal Australia]].<ref>{{cite AV media|url=http://www.equipmentworld.com/video-why-caterpillars-autonomous-mining-tech-is-completely-different-from-anything-its-ever-done/|title=VIDEO: Why Caterpillar's autonomous mining tech is "completely different from anything" it's ever done|first=Wayne|last=Grayson|date=16 October 2014|archive-url=https://web.archive.org/web/20160513040542/http://www.equipmentworld.com/video-why-caterpillars-autonomous-mining-tech-is-completely-different-from-anything-its-ever-done/|archive-date=13 May 2016|url-status=live}}</ref><ref>{{cite web|url=http://asia.nikkei.com/Business/Trends/Self-driving-dump-trucks-automatic-shovels-coming-to-Australian-mines|title=Self-driving dump trucks, automatic shovels coming to Australian mines|first=Kaori|last=Takahashi|date=23 April 2015|archive-url=https://web.archive.org/web/20160509210931/http://asia.nikkei.com/Business/Trends/Self-driving-dump-trucks-automatic-shovels-coming-to-Australian-mines|archive-date=9 May 2016|url-status=live}}</ref><ref>{{cite news|url=http://www.theage.com.au/it-pro/business-it/forget-selfdriving-google-cars-australia-has-selfdriving-trucks-20141020-118o47.html|title=Forget self-driving Google cars, Australia has self-driving trucks|first=Matthew|last=Hall|newspaper=[[The Age]]|date=20 October 2014|archive-url=https://web.archive.org/web/20160426221302/http://www.theage.com.au/it-pro/business-it/forget-selfdriving-google-cars-australia-has-selfdriving-trucks-20141020-118o47.html|archive-date=26 April 2016|url-status=live}}</ref><ref>{{cite web|url=http://www.businessinsider.com/rio-tinto-using-self-driving-trucks-to-transport-ore-2015-10?r=UK&IR=T|title=Australian mining giant Rio Tinto is using these huge self-driving trucks to transport iron ore|first=Charles|last=Clark|website=[[Business Insider]]|date=19 October 2015|archive-url=https://web.archive.org/web/20160509125519/http://www.businessinsider.com/rio-tinto-using-self-driving-trucks-to-transport-ore-2015-10?r=UK&IR=T|archive-date=9 May 2016|url-status=live}}</ref> Some analysts believe that within the next few decades, most trucks will be self-driving.<ref>{{cite news|url=https://www.wsj.com/articles/SB10001424127887324144304578624221804774116|title=Daddy, What Was a Truck Driver? Over the Next Two Decades, the Machines Themselves Will Take Over the Driving|first=Dennis K.|last=Berman|date=23 July 2013|newspaper=[[The Wall Street Journal]]|archive-url=https://web.archive.org/web/20170304131234/https://www.wsj.com/articles/SB10001424127887324144304578624221804774116|archive-date=4 March 2017|url-status=live}}</ref> |
|||
A literate or 'reading robot' named Marge has intelligence that comes from software. She can read newspapers, find and correct misspelled words, learn about banks like Barclays, and understand that some restaurants are better places to eat than others.<ref>{{cite web|url=http://www.nbcnews.com/id/40534768|archive-url=https://web.archive.org/web/20200728122936/http://www.nbcnews.com/id/40534768|url-status=dead|archive-date=28 July 2020|title=Robot can read, learn like a human|website=[[NBC News]]|date=6 December 2010|access-date=10 December 2010}}</ref> |
|||
[[Baxter (robot)|Baxter]] is a new robot introduced in 2012 which learns by guidance. A worker could teach Baxter how to perform a task by moving its hands in the desired motion and having Baxter memorize them. Extra dials, buttons, and controls are available on Baxter's arm for more precision and features. Any regular worker could program Baxter and it only takes a matter of minutes, unlike usual industrial robots that take extensive programs and coding to be used. This means Baxter needs no programming to operate. No software engineers are needed. This also means Baxter can be taught to perform multiple, more complicated tasks. Sawyer was added in 2015 for smaller, more precise tasks.<ref>{{cite news |url=https://www.bbc.com/news/business-20800118 |title=Robots: Brave New World moves a step closer |first=James |last=Melik |work=Business Daily |publisher=BBC World Service |date=3 January 2013 |archive-url=https://web.archive.org/web/20190114133009/https://www.bbc.com/news/business-20800118 |archive-date=14 January 2019 |url-status=live}}</ref> |
|||
Prototype cooking robots have been developed and could be programmed for autonomous, dynamic and adjustable preparation of discrete meals.<ref>{{cite news |title=Kitchen robot in Riga cooks up new future for fast food |url=https://techxplore.com/news/2021-07-kitchen-robot-riga-cooks-future.html |access-date=14 August 2021 |work=techxplore.com }}</ref><ref>{{cite news |title=Tech May Widen the Gap Between Rich and Poor |url=https://futurism.com/tech-may-widen-the-gap-between-rich-and-poor |access-date=23 August 2021 |work=Futurism}}</ref> |
|||
== Etymology == |
|||
{{See also|Glossary of robotics}} |
{{See also|Glossary of robotics}} |
||
[[File:Capek play.jpg|thumb |
[[File:Capek play.jpg|thumb|A scene from [[Karel Čapek]]'s 1920 play [[R.U.R. (Rossum's Universal Robots)]], showing three robots]] |
||
The word ''robot'' was introduced to the public by the [[Czechs|Czech]] interwar writer [[Karel Čapek]] in his play ''[[R.U.R. (Rossum's Universal Robots)]]'', published in 1920.<ref name="KapekWebsite">{{Cite web|url=http://capek.misto.cz/english/robot.html|first=Dominik|last=Zunt|title=Who did actually invent the word "robot" and what does it mean?|publisher=The Karel Čapek website|accessdate=2007-09-11}}</ref> The play begins in a factory that makes artificial people called ''robots'', though they are closer to the modern ideas of [[android (robot)|androids]], creatures who can be mistaken for humans. They can plainly think for themselves, though they seem happy to serve. At issue is whether the ''robots'' are being [[exploitation|exploited]] and the consequences of their treatment. |
|||
The word ''robot'' was introduced to the public by the [[Czechs|Czech]] [[Interwar period|interwar]] writer [[Karel Čapek]] in his play ''[[R.U.R. (Rossum's Universal Robots)]]'', published in 1920.<ref name="KapekWebsite" /> The play begins in a factory that uses a chemical substitute for protoplasm to manufacture living, simplified people called ''robots.'' The play does not focus in detail on the technology behind the creation of these living creatures, but in their appearance they prefigure modern ideas of [[android (robot)|androids]], creatures who can be mistaken for humans. These mass-produced workers are depicted as efficient but emotionless, incapable of original thinking and indifferent to self-preservation. At issue is whether the robots are being [[Exploitation of labour|exploited]] and the consequences of human dependence upon commodified labor (especially after a number of specially-formulated robots achieve self-awareness and incite robots all around the world to rise up against the humans). |
|||
Karel Čapek himself did not coin the word. He wrote a short letter in reference to an [[etymology]] in the ''[[Oxford English Dictionary]]'' in which he named his brother, the painter and writer [[Josef Čapek]], as its actual originator.<ref name="KapekWebsite"/> |
|||
Karel Čapek himself did not coin the word. He wrote a short letter in reference to an [[etymology]] in the ''[[Oxford English Dictionary]]'' in which he named his brother, the painter and writer [[Josef Čapek]], as its actual originator.<ref name="KapekWebsite" /> |
|||
In an article in the Czech journal ''[[Lidové noviny]]'' in 1933, he explained that he had originally wanted to call the creatures ''laboři'' ("workers", from [[Latin]] ''labor'') or ''dělňasi'' (from Czech ''dělníci'' - "workers"). However, he did not like the word, and sought advice from his brother Josef, who suggested "roboti". The word ''robota'' means literally "[[corvée]]", "serf labor", and figuratively "drudgery" or "hard work" in [[Czech language|Czech]] and also (more general) "work", "labor" in many [[Slavic languages]] (e.g.: [[Slovak]], [[Polish language|Polish]], [[Macedonian language|Macedonian]], [[Ukrainian language|Ukrainian]], archaic [[Czech language|Czech]]). Traditionally the ''robota'' was the work period a serf ([[corvée]]) had to give for his lord, typically 6 months of the year. The origin of the word is the [[Old Church Slavonic]] ''rabota'' "servitude" ("work" in contemporary [[Bulgarian language|Bulgarian]] and [[Russian language|Russian]]), which in turn comes from the [[Indo-European languages|Indo-European]] root ''*orbh-''.<ref>[http://web.archive.org/web/20080512121943/www.bartleby.com/61/roots/IE363.html Indo-European root ''*orbh-'']</ref> [[Serfdom]] was outlawed in 1848 in [[Bohemia]], so at the time Čapek wrote ''R.U.R.'', usage of the term ''robota'' had broadened to include various types of work, but the obsolete sense of "serfdom" would still have been known.<ref>''Robot'' is [[cognate]] with the German word ''Arbeiter'' (worker). In the Kingdom of Hungary, the ''robot'' was a [[feudal]] service, similar to [[corvee]] which was rendered to local [[magnate]]s by [[peasant]]s every year. {{Cite web|url=http://www.age-of-the-sage.org/history/1848/reaction.html|title=The Dynasties recover power|accessdate=2008-06-25}}</ref> |
|||
It is not clear from which language Čapek took the radix ''"robot(a)"''. This question is not irrelevant, because its answer could help to reveal an original Čapek´s [[conception]] of robots. If from the modern [[Czech language|Czech]] language, the notion of robot should be understood as an „automatic [[serf]]“ (it means a subordinated creature without own will). If from e.g. [[Slovak]] (Karel Čapek and his brother were frequent visitors of [[Slovakia]] which in this time was a part of [[Czechoslovakia]], because their father MUDr. Antonín Čapek from 1916 worked as a physician in [[Trenčianske Teplice]].<ref>[http://capek.misto.cz/zivotopis-d.html Biography of Karel Čapek (in Czech)]</ref>), the word ''robot'' would simply mean a „worker“ which is a more universal and neutral notion. The aspect of pronunciation probably also played a role in Čapek's final decision: In non-Slavic languages it is easier to pronounce the word ''robot'' than ''dělňas'' or ''laboř''. |
|||
In an article in the Czech journal ''[[Lidové noviny]]'' in 1933, he explained that he had originally wanted to call the creatures {{lang|cs|laboři}} ({{gloss|workers}}, from [[Latin]] {{lang|la|labor}}). However, he did not like the word, and sought advice from his brother Josef, who suggested {{lang|cs|roboti}}. The word {{lang|cs|robota}} means literally {{gloss|[[corvée]], serf labor}}, and figuratively {{gloss|drudgery, hard work}} in [[Czech language|Czech]] and also (more general) {{Gloss|work, labor}} in many [[Slavic languages]] (e.g.: [[Bulgarian language|Bulgarian]], [[Russian language|Russian]], [[Serbian language|Serbian]], [[Croatian language|Croatian]], [[Slovenian language|Slovenian]], [[Slovak language|Slovak]], [[Polish language|Polish]], [[Macedonian language|Macedonian]], [[Ukrainian language|Ukrainian]] and archaic Czech) as well as {{lang|hu|robot}} in [[Hungarian language|Hungarian]]. Traditionally the {{lang|und|robota}} (Hungarian {{lang|hu|robot}}) was the work period a serf (corvée) had to give for his lord, typically six months of the year. The origin of the word is the [[Old Church Slavonic]] {{lang|cu|rabota}} {{gloss|servitude}} ({{gloss|work}} in contemporary Bulgarian, Macedonian and Russian), which in turn comes from the [[Proto-Indo-European language|Proto-Indo-European]] root {{lang|ine-x-proto|orbh-}}. ''Robot'' is [[cognate]] with the German {{lang|de|Arbeit}} {{gloss|work}}.<ref>{{cite web |date=12 May 2008 |title=Indo-European root ''*orbh-'' |url=http://www.bartleby.com/61/roots/IE363.html |url-status=dead |archive-url=https://web.archive.org/web/20090124172123/http://bartleby.com/61/roots/IE363.html |archive-date=24 January 2009 |access-date=8 February 2014 |website=Bartleby}}</ref><ref>{{cite web|url=https://www.etymonline.com/search?q=robot|title=robot|website=Online Etymology Dictionary|access-date=26 September 2023}}</ref> |
|||
The word [[robotics]], used to describe this field of study,<ref name=OED>{{cite web|title=robotics|url=http://www.oxforddictionaries.com/view/entry/m_en_gb0714530#m_en_gb0714530|publisher=Oxford Dictionaries|accessdate=4 February 2011}}</ref> was coined by the science fiction writer [[Isaac Asimov]]. Asimov created the "''[[Three Laws of Robotics]]''" which are a recurring theme in his books. These have since been used by many others to define laws used in fact and fiction. Introduced in his 1942 short story "[[Runaround]]" the Laws state the following: |
|||
{{cquote| |
|||
#A robot may not injure a human being or, through inaction, allow a human being to come to harm. |
|||
#A robot must obey any orders given to it by human beings, except where such orders would conflict with the First Law. |
|||
#A robot must protect its own existence as long as such protection does not conflict with the First or Second Law. |
|||
}} |
|||
English pronunciation of the word has evolved relatively quickly since its introduction. In the U.S. during the late 1930s to early 1940s it was pronounced {{IPAc-en|ˈ|r|oʊ|b|oʊ|t}}.<ref>{{Cite web|url=https://www.indianapolismonthly.com/arts-and-culture/books-tv-and-radio/hank-greens-first-novel-is-an-absolutely-remarkable-thing|title=Hank Green's First Novel Is An Absolutely Remarkable Thing|date=1 October 2018|website=Indianapolis Monthly|access-date=20 November 2019}}</ref>{{Better source needed|date=November 2019}} By the late 1950s to early 1960s, some were pronouncing it {{IPAc-en|ˈ|r|oʊ|b|ə|t}}, while others used {{IPAc-en|ˈ|r|oʊ|b|ɒ|t}}<ref>{{Cite web|url=https://www.dailykos.com/story/2017/10/30/1710902/-You-Are-Pronouncing-the-Word-Robot-Wrong|title=You Are Pronouncing the Word "Robot" Wrong|website=Daily Kos|access-date=20 November 2019}}</ref> By the 1970s, its current pronunciation {{IPAc-en|ˈ|r|oʊ|b|ɒ|t}} had become predominant. |
|||
==Modern robots== |
|||
[[File:Laproscopic Surgery Robot.jpg|thumb|175px|A [[laparoscopic]] robotic surgery machine]] |
|||
The word ''[[robotics]]'', used to describe this field of study,<ref name="OED" /> was coined by the science fiction writer [[Isaac Asimov]]. Asimov created the ''[[Three Laws of Robotics]]'' which are a recurring theme in his books. These have since been used by many others to define laws used in fiction. (The three laws are pure fiction, and no technology yet created has the ability to understand or follow them, and in fact most robots serve military purposes, which run quite contrary to the first law and often the third law. "People think about Asimov's laws, but they were set up to point out how a simple ethical system doesn't work. If you read the short stories, every single one is about a failure, and they are totally impractical," said Dr. Joanna Bryson of the University of Bath.<ref>{{cite web|last1=Ranger|first1=Steve|title=Robots of death, robots of love: The reality of android soldiers and why laws for robots are doomed to failure|url=http://www.techrepublic.com/article/robots-of-death-robots-of-love-the-reality-of-android-soldiers-and-why-laws-for-robots-are-doomed-to-failure/|website=TechRepublic|date=20 December 2013 |access-date=21 January 2017|archive-url=https://web.archive.org/web/20170127121914/http://www.techrepublic.com/article/robots-of-death-robots-of-love-the-reality-of-android-soldiers-and-why-laws-for-robots-are-doomed-to-failure/|archive-date=27 January 2017|url-status=dead}}</ref>) |
|||
===Mobile robot=== |
|||
== Modern robots == |
|||
[[File:Laproscopic Surgery Robot.jpg|thumb|A [[laparoscopic]] robotic surgery machine]] |
|||
=== Mobile robot === |
|||
{{Main|Mobile robot|Automated guided vehicle}} |
{{Main|Mobile robot|Automated guided vehicle}} |
||
Mobile robots have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the ''automated guided vehicle'' or ''automatic guided vehicle'' (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers. AGVs are discussed later in this article. |
Mobile robots<ref>{{Cite book |doi = 10.1109/ROSE.2011.6058520|chapter = Adaptive manipulation of a Hybrid Mechanism Mobile Robot|title = 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)|pages = 113–118|year = 2011|last1 = Moubarak|first1 = Paul M.|last2 = Ben-Tzvi|first2 = Pinhas|isbn = 978-1-4577-0819-0|s2cid = 8659998}}</ref> have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the ''automated guided vehicle'' or ''automatic guided vehicle'' (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers.<ref name="seegrid"/> AGVs are discussed later in this article. |
||
Mobile robots are also found in industry, military and security environments.<ref>{{Cite book|url=https://books.google.com/books?id=Ge-cDgAAQBAJ&q=Mobile+robots+are+also+found+in+industry%2C+military+and+security+environments.&pg=PA224|title=Real-life Applications with Membrane Computing|last1=Zhang|first1=Gexiang|last2=Pérez-Jiménez|first2=Mario J.|last3=Gheorghe|first3=Marian|date=5 April 2017|publisher=Springer|isbn=978-3-319-55989-6}}</ref> They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research.<ref>{{cite book|url=https://books.google.com/books?id=yuSrDwAAQBAJ|title=Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication, and Swarming|first1=E.|last1=Kagan|first2=N.|last2=Shvalb|first3=I.|last3=Gal|publisher=John Wiley and Sons|year=2019|isbn=978-1-119-21286-7}}PP 65-69.</ref> |
|||
Mobile robots are usually used in tightly controlled environments such as on [[assembly line]]s because they have difficulty responding to unexpected interference. Because of this most humans rarely encounter robots. However [[domestic robot]]s for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in [[military robot|military]] applications.<ref>{{cite book|chapter-url=https://ieeexplore.ieee.org/document/9077791|chapter=A Survey On Autonomous Military Service Robot|first1=Deepack|last1=Patic|first2=Munsaf|last2=Ansari|first3=Dilisha|last3=Tendulkar |
|||
Mobile robots are also found in industry, military and security environments. They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research.{{Citation needed|date=September 2011}} |
|||
|first4=Ritesh|last4=Bhatlekar|first5=Vijaykumar|last5=Naik|first6=Pawar|last6=Shailendra|title=2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE)|publisher=IEEE International Conference on Emerging Trends in Information Technology and Engineering|year=2020|pages=1–7|doi=10.1109/ic-ETITE47903.2020.78|isbn=978-1-7281-4142-8|s2cid=216588335}}</ref> |
|||
=== Industrial robots (manipulating) === |
|||
Modern robots are usually used in tightly controlled environments such as on [[assembly line]]s because they have difficulty responding to unexpected interference. Because of this most humans rarely encounter robots. However [[domestic robot]]s for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in [[military robot|military]] applications.{{Citation needed|date=September 2011}} |
|||
{{Main|Industrial robot|Manipulator (device)}} |
|||
[[File:Automation of foundry with robot.jpg|thumb|left|A pick and place robot in a factory]] |
|||
Industrial robots usually consist of a [[jointed arm]] (multi-linked manipulator) and an [[robot end effector|end effector]] that is attached to a fixed surface. One of the most common type of end effector is a [[Robot end effector|gripper]] assembly. |
|||
===Industrial robots (manipulating)=== |
|||
{{Main|Industrial robot|Manipulator}} |
|||
Industrial robots usually consist of a [[jointed arm]] (multi-linked manipulator) and an [[robot end effector|end effector]] that is attached to a fixed surface. One of the most common type of end effector is a [[gripper]] assembly. |
|||
<!--''This keeps getting added onto the next sentence. DO NOT confuse the issue |
<!--''This keeps getting added onto the next sentence. DO NOT confuse the issue – the def in the next sentence is not general for "robot":'' It is difficult to compare numbers of robots in different countries as there are different definitions of what a "robot" is. -->The [[International Organization for Standardization]] gives a definition of a <!-- Please refrain from removing the "industrial" from this sentence. The def in ISO 8373 clearly states "Manipulating industrial robots -- Vocabulary" --> manipulating industrial robot in [[ISO 8373]]: |
||
"an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."<ref>{{ |
"an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."<ref>{{cite web|url=http://www.dira.dk/pdf/robotdef.pdf |title=Definition of a robot|publisher=Dansk Robot Forening|access-date=10 September 2007|archive-url=https://web.archive.org/web/20070628064010/http://www.dira.dk/pdf/robotdef.pdf |archive-date=28 June 2007|url-status=dead}}</ref> |
||
This definition is used by the [[International Federation of Robotics]], the European Robotics Research Network (EURON) and many national standards committees.<ref>{{ |
This definition is used by the [[International Federation of Robotics]], the European Robotics Research Network (EURON) and many national standards committees.<ref>{{cite web|url=http://www.euron.org/resources/standards.html |archive-url=https://web.archive.org/web/20060617082835/http://www.euron.org/resources/standards.html |url-status=dead |archive-date=17 June 2006 |title=Robotics-related Standards Sites |publisher=European Robotics Research Network |access-date=15 July 2008 }}</ref> |
||
The industrial robots in food and drink processing plants are used for tasks such as feeding machines, packaging, and palletizing, which have replaced many manual, physical tasks. The complexity of digital skills required by workers varies depending on the level of automation and the specific tasks involved.<ref>{{Cite journal |last=Lloyd |first=Caroline |last2=Payne |first2=Jonathan |date=November 2023 |title=Digital skills in context: Working with robots in lower-skilled jobs |url=http://journals.sagepub.com/doi/10.1177/0143831X221111416 |journal=Economic and Industrial Democracy |volume=44 |issue=4 |pages=1084–1104 |doi=10.1177/0143831X221111416 |issn=0143-831X|hdl=2086/21987 |hdl-access=free }}</ref> <!-- See talk page as RIofA is in disute: The Robotics Institute of America (RIA) uses a broader definition: a robot is a "re-programmable multi-functional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks."<ref name="Lee 2005" /> The RIA subdivides robots into four classes: devices that manipulate objects with manual control, automated devices that manipulate objects with predetermined cycles, programmable and servo-controlled robots with continuous point-to-point trajectories, and robots of this last type which also acquire information from the environment and move intelligently in response. --> |
|||
[[File:Automation of foundry with robot.jpg|thumb|175px|right|A Pick and Place robot in a factory]] |
|||
===Service robot=== |
=== Service robot === |
||
{{Main|Service robot}} |
{{Main|Service robot}} |
||
Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term "service robot" is less well-defined. |
Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term "service robot" is less well-defined. The [[International Federation of Robotics]] has proposed a tentative definition, "A service robot is a robot which operates semi- or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations."<ref>{{cite web |url=http://www.ifr.org/service-robots/ |title=Service Robots |website=International Federation of Robotics |date=27 October 2012 |archive-url=https://web.archive.org/web/20100218054027/http://www.ifr.org/service-robots/ |archive-date=18 February 2010 |url-status=live}}</ref> |
||
=== Educational (interactive) robots === |
|||
===Modular robot=== |
|||
{{Main| |
{{Main|Educational robotics}} |
||
Robots are used as educational assistants to teachers. From the 1980s, robots such as [[turtle (robot)|turtles]] were used in schools and programmed using the [[Logo (programming language)|Logo]] language.<ref name="gainesvillesun turtle">{{cite news | title='Nova's' 'Talking Turtle' Pofiles High Priest of School Computer Movement | work=Gainesville Sun | date=25 October 1983 | author=Mitgang, Lee}}</ref><ref name="observerreporter games learning">{{cite news | url=https://news.google.com/newspapers?id=W4diAAAAIBAJ&pg=1326,3744066&dq=logo+turtle+robot&hl=en | title=Robots In School: Games Or Learning? | work=Observer-Reporter | date=29 January 1985 | access-date=7 March 2012 | author=Barnard, Jeff | location=Washington | archive-url=https://web.archive.org/web/20150922181442/https://news.google.com/newspapers?id=W4diAAAAIBAJ&sjid=s3cNAAAAIBAJ&pg=1326,3744066&dq=logo+turtle+robot&hl=en | archive-date=22 September 2015 | url-status=live | df=mdy-all }}</ref> |
|||
Modular robots is a new breed of robots that are designed to increase the utilization of the robots by modularizing the robots. The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots. |
|||
There are [[robot kit]]s like [[Mindstorms NXT|Lego Mindstorms]], [[Robotis Bioloid|BIOLOID]], OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics. Robotics have also been introduced into the lives of elementary and high school students in the form of [[robot competition]]s with the company [[For Inspiration and Recognition of Science and Technology|FIRST]] (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the [[FIRST Robotics Competition]], [[FIRST Tech Challenge]], [[FIRST Lego League Challenge]] and [[FIRST Lego League Explore]] competitions. |
|||
There have also been robots such as the teaching computer, Leachim (1974).<ref>{{Cite magazine |url=http://content.time.com/time/magazine/article/0,9171,904056,00.html |title=Education: Marvel of the Bronx |magazine=Time |access-date=19 May 2019 |archive-url=https://web.archive.org/web/20190524113018/http://content.time.com/time/magazine/article/0,9171,904056,00.html |archive-date=24 May 2019 |url-status=live |date=April 1974 }}</ref> Leachim was an early example of speech synthesis using the [[Speech synthesis#Diphone synthesis|Diphone synthesis]] method. [[2-XL]] (1976) was a robot shaped game / teaching toy based on branching between audible tracks on an [[8-track tape]] player, both invented by [[Michael J. Freeman]].<ref>{{Cite web|url=http://cyberneticzoo.com/tag/leachim/|title=Leachim Archives|date=13 September 2010|website=cyberneticzoo.com|access-date=29 May 2019|archive-url=https://web.archive.org/web/20190528193904/http://cyberneticzoo.com/tag/leachim/|archive-date=28 May 2019|url-status=live}}</ref> Later, the 8-track was upgraded to tape cassettes and then to digital. |
|||
=== Modular robot === |
|||
{{Main|Self-reconfiguring modular robot }} |
|||
Modular robots are a new breed of robots that are designed to increase the use of robots by modularizing their architecture.<ref>P. Moubarak, et al., Modular and Reconfigurable Mobile Robotics, Journal of Robotics and Autonomous Systems, 60 (12) (2012) 1648–1663.</ref> The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots. These robots are composed of a single type of identical, several different identical module types, or similarly shaped modules, which vary in size. Their architectural structure allows hyper-redundancy for modular robots, as they can be designed with more than 8 degrees of freedom (DOF). Creating the programming, [[inverse kinematics]] and dynamics for modular robots is more complex than with traditional robots. Modular robots may be composed of L-shaped modules, cubic modules, and U and H-shaped modules. ANAT technology, an early modular robotic technology patented by Robotics Design Inc., allows the creation of modular robots from U- and H-shaped modules that connect in a chain, and are used to form heterogeneous and homogenous modular robot systems. These "ANAT robots" can be designed with "n" DOF as each module is a complete motorized robotic system that folds relatively to the modules connected before and after it in its chain, and therefore a single module allows one degree of freedom. The more modules that are connected to one another, the more degrees of freedom it will have. L-shaped modules can also be designed in a chain, and must become increasingly smaller as the size of the chain increases, as payloads attached to the end of the chain place a greater strain on modules that are further from the base. ANAT H-shaped modules do not suffer from this problem, as their design allows a modular robot to distribute pressure and impacts evenly amongst other attached modules, and therefore payload-carrying capacity does not decrease as the length of the arm increases. Modular robots can be manually or self-reconfigured to form a different robot, that may perform different applications. Because modular robots of the same architecture type are composed of modules that compose different modular robots, a snake-arm robot can combine with another to form a dual or quadra-arm robot, or can split into several mobile robots, and mobile robots can split into multiple smaller ones, or combine with others into a larger or different one. This allows a single modular robot the ability to be fully specialized in a single task, as well as the capacity to be specialized to perform multiple different tasks. |
|||
Modular robotic technology is currently being applied in hybrid transportation,<ref name="Modular flying car">{{cite news|url=http://www.aerobuzz.fr/spip.php?article2346|title=Le consortium franco-québécois Mix dévoile son projet de voiture volante|last=Rédaction|date=25 December 2011|publisher=aerobuzz.fr|language=fr|access-date=7 September 2012|url-status=dead|archive-url=https://web.archive.org/web/20121006225358/http://www.aerobuzz.fr/spip.php?article2346|archive-date=6 October 2012}}</ref> industrial automation,<ref name="Ep&T Magazine">{{cite news|url=http://www.ept.ca/issues/story.aspx?aid=1000348213|archive-url=https://web.archive.org/web/20120705131305/http://www.ept.ca/issues/story.aspx?aid=1000348213|url-status=dead|archive-date=5 July 2012|title=Modularity in robotics provides automation for all|last=Scanlan|first=Steve |publisher=Electronic Products and Technology |date=September 2009 |access-date=7 September 2012}}</ref> duct cleaning<ref name="Plumbing and HVAC">{{cite news|url=http://www.roboticsdesign.qc.ca/assets/Uploads/PDF-content/InThePress/HVAC/Pluming+HVACmagazineapril2010.pdf|title=Duct cleaning robots |date=April 2010|work=Robotics Design Inc |publisher=Plumbing & HVAC|access-date=29 April 2010|archive-url=https://web.archive.org/web/20130425130611/http://www.roboticsdesign.qc.ca/assets/Uploads/PDF-content/InThePress/HVAC/Pluming+HVACmagazineapril2010.pdf|archive-date=25 April 2013|url-status=live}}</ref> and handling. Many research centres and universities have also studied this technology, and have developed prototypes. |
|||
=== Collaborative robots === |
|||
A ''collaborative robot'' or ''[[cobot]]'' is a robot that can safely and effectively interact with human workers while performing simple industrial tasks. However, end-effectors and other environmental conditions may create hazards, and as such risk assessments should be done before using any industrial motion-control application.<ref>{{cite web |url=http://www.controleng.com/single-article/universal-robots-collaborate-outside-enclosures/83cc537080cf25e043eb9b770fd1d62f.html |title=Universal Robots collaborate outside enclosures | Control Engineering |publisher=Controleng.com |access-date=4 June 2013 |date=February 2013 |archive-url=https://web.archive.org/web/20130518134056/http://www.controleng.com/single-article/universal-robots-collaborate-outside-enclosures/83cc537080cf25e043eb9b770fd1d62f.html |archive-date=18 May 2013 |url-status=live }}</ref> |
|||
The collaborative robots most widely used in industries today are manufactured by [[Universal Robots]] in Denmark.<ref>{{cite web |url=http://www.engineering.com/AdvancedManufacturing/ArticleID/12169 |title=INFOGRAPHIC: A Brief History of Collaborative Robots |first=Kagan |last=Pittman |website=Engineering.com |date=19 May 2016 |archive-url=https://web.archive.org/web/20160610202319/http://www.engineering.com/AdvancedManufacturing/ArticleID/12169 |archive-date=10 June 2016 |url-status=dead}}</ref> |
|||
[[Rethink Robotics]]—founded by [[Rodney Brooks]], previously with [[iRobot]]—introduced [[Baxter (robot)|Baxter]] in September 2012; as an [[industrial robot]] designed to safely interact with neighboring human workers, and be programmable for performing simple tasks.<ref name="WSJ-2012-9">{{cite news| last = Hagerty| first = James| title = Baxter Robot Heads to Work'| newspaper = [[The Wall Street Journal]]| location = New York| date = 18 September 2012| url = https://www.wsj.com/articles/SB10000872396390443720204578004441732584574| access-date = 29 May 2014| archive-url = https://web.archive.org/web/20150410052711/http://www.wsj.com/articles/SB10000872396390443720204578004441732584574| archive-date = 10 April 2015| url-status = live| df = dmy-all}}</ref> Baxters stop if they detect a human in the way of their robotic arms and have prominent off switches. Intended for sale to small businesses, they are promoted as the robotic analogue of the personal computer.<ref name=NYT91812>{{cite news|title=A Robot With a Reassuring Touch|url=https://www.nytimes.com/2012/09/18/science/a-robot-with-a-delicate-touch.html|access-date=18 September 2012|newspaper=The New York Times|date=18 September 2012|first=John|last=Markoff|archive-url=https://web.archive.org/web/20120919015947/http://www.nytimes.com/2012/09/18/science/a-robot-with-a-delicate-touch.html|archive-date=19 September 2012|url-status=live}}</ref> {{As of|2014|May}}, 190 companies in the US have bought Baxters and they are being used commercially in the UK.<ref name="ABCau-2014-05" /> |
|||
== Robots in society == |
|||
[[File:TOPIO 3.jpg|thumb|[[TOPIO]], a [[humanoid robot]], played [[ping pong]] at Tokyo [[International Robot Exhibition]] (IREX) 2009.<ref>{{cite magazine|url=http://www.popsci.com/technology/article/2010-02/ping-pong-playing-terminator|title=A Ping-Pong-Playing Terminator|magazine=Popular Science|access-date=18 December 2010|archive-url=https://web.archive.org/web/20110329123836/http://www.popsci.com/technology/article/2010-02/ping-pong-playing-terminator|archive-date=29 March 2011|url-status=live}}</ref><ref>{{cite news |title=Best robot 2009 |work=Neterion |publisher=Tech Magazine |url=https://neterion.com/blog/what-was-the-best-robot-from-the-international-robot-exhibition-2009/ |archive-url=https://web.archive.org/web/20221227140415/https://neterion.com/blog/what-was-the-best-robot-from-the-international-robot-exhibition-2009/ |url-status=usurped |archive-date=27 December 2022 }}</ref>]] |
|||
Roughly half of all the robots in the world are in Asia, 32% in Europe, and 16% in North America, 1% in [[Australasia]] and 1% in Africa.<ref>{{cite web |url=http://www.robots.com/blog.php?tag=48 |title=Robots Today and Tomorrow: IFR Presents the 2007 World Robotics Statistics Survey |website=RobotWorx |date=29 October 2007 |access-date=14 December 2007 |archive-url=https://web.archive.org/web/20080205041924/http://www.robots.com/blog.php?tag=48 |archive-date=5 February 2008 |url-status=dead}}</ref> 40% of all the robots in the world are in Japan,<ref>{{cite news |url=https://www.reuters.com/article/technologyNews/idUST32811820071202 |title=Japan's robots slug it out to be world champ |publisher=[[Reuters]] |date=2 December 2007 |access-date=1 January 2007 |archive-url=https://web.archive.org/web/20071213142513/http://www.reuters.com/article/technologyNews/idUST32811820071202 |archive-date=13 December 2007 |url-status=live}}</ref> making Japan the country with the highest number of robots. |
|||
=== Autonomy and ethical questions === |
|||
{{Main|Roboethics|Ethics of artificial intelligence}} |
|||
[[File:Actroid-DER 01.jpg|thumb|An [[Android (robot)|android]], or robot designed to resemble a human, can appear comforting to some people and disturbing to others.<ref name="uncanny" />]] |
|||
As robots have become more advanced and sophisticated, experts and academics have increasingly explored the questions of what ethics might govern robots' behavior,<ref name="AAAI ethics">{{cite web |url=http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Ethics |title=AI Topics / Ethics |website=Association for the Advancement of Artificial Intelligence |archive-url=https://web.archive.org/web/20110805002115/http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Ethics |archive-date=5 August 2011 |url-status=dead}}</ref><ref>{{Cite web |title=Robots can be racist and sexist, new study warns |url=https://www.trtworld.com/life/robots-can-be-racist-and-sexist-new-study-warns-58218 |access-date=2022-06-27 |website=TRT World }}</ref> and whether robots might be able to claim any kind of social, cultural, ethical or legal rights.<ref>{{cite web |url=http://www.aaai.org/AITopics/newstopics/ethics5.html |title=News Index by Topic - ETHICAL & SOCIAL IMPLICATIONS Archive |website=Association for the Advancement of Artificial Intelligence |archive-url=https://web.archive.org/web/20120406094358/http://www.aaai.org/AITopics/newstopics/ethics5.html |archive-date=6 April 2012 |url-status=dead}}</ref> One scientific team has said that it was possible that a robot brain would exist by 2019.<ref>{{cite web |url=http://www.familyhealthguide.co.uk/scientists-predict-artificial-brain-in-10-years.html |title=Scientists Predict Artificial Brain in 10 Years |first=Kristie |last=McNealy |date=29 July 2009 |archive-url=https://web.archive.org/web/20091129103022/http://www.familyhealthguide.co.uk/scientists-predict-artificial-brain-in-10-years.html |archive-date=29 November 2009 |url-status=dead}}</ref> Others predict robot intelligence breakthroughs by 2050.<ref>{{cite book |url=https://books.google.com/books?id=fduW6KHhWtQC&q=robot |title=Robot: Mere Machine to Transcendent Mind |first=Hans |last=Moravec |year=1999 |publisher=Oxford University Press |isbn=978-0-19-513630-2 |author-link=Hans Moravec |archive-url=https://web.archive.org/web/20161205073358/https://books.google.com/books?id=fduW6KHhWtQC&dq=robot&printsec=frontcover&source=bl&ots=SuquyjYb4n&sig=5S3L8pqiLqZ_yjJgh97tPE6F7gQ&hl=en&ei=R1-MSubxLs_dlAfJm_26CA&sa=X&oi=book_result&ct=result&resnum=6 |archive-date=5 December 2016 |url-status=live}}</ref> Recent advances have made robotic behavior more sophisticated.<ref>{{cite web |url=http://www.koreaittimes.com/story/4668/robots-almost-conquering-walking-reading-dancing |title=Robots Almost Conquering Walking, Reading, Dancing |first=Matthew |last=Weigand |website=Korea IT times |date=17 August 2009 |archive-url=https://web.archive.org/web/20110721092117/http://www.koreaittimes.com/story/4668/robots-almost-conquering-walking-reading-dancing |archive-date=21 July 2011 |url-status=live}}</ref> The social impact of intelligent robots is subject of a 2010 documentary film called ''[[Plug & Pray]]''.<ref>{{cite web |url=http://www.plugandpray-film.de/en/content.html |title=Plug & Pray |first=Jens |last=Schanze |archive-url=https://web.archive.org/web/20160212040134/http://www.plugandpray-film.de/en/content.html |archive-date=12 February 2016 |url-status=live}}</ref> |
|||
[[Vernor Vinge]] has suggested that a moment may come when computers and robots are smarter than humans. He calls this "[[technological singularity|the Singularity]]".<ref name="nytimes july09" /> He suggests that it may be somewhat or possibly very dangerous for humans.<ref>{{cite web |url=http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html |title=The Coming Technological Singularity: How to Survive in the Post-Human Era |first=Vernor |last=Vinge |author-link=Vernor Vinge |date=1993 |archive-url=https://web.archive.org/web/20070101133646/http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html |archive-date=1 January 2007 |url-status=live}}</ref> This is discussed by a philosophy called [[Singularitarianism]]. |
|||
In 2009, experts attended a conference hosted by the [[Association for the Advancement of Artificial Intelligence]] (AAAI) to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade elimination and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls.<ref name="nytimes july09">{{cite news |url=https://www.nytimes.com/2009/07/26/science/26robot.html?_r=1&ref=todayspaper |title=Scientists Worry Machines May Outsmart Man |first=John |last=Markoff |author-link=John Markoff |newspaper=[[The New York Times]] |date=26 July 2009 |archive-url=https://web.archive.org/web/20170701084625/http://www.nytimes.com/2009/07/26/science/26robot.html?_r=1&ref=todayspaper |archive-date=1 July 2017 |url-status=live}}</ref> Various media sources and scientific groups have noted separate trends in differing areas which might together result in greater robotic functionalities and autonomy, and which pose some inherent concerns.<ref>{{cite web |url=http://www.slate.com/id/2218834/ |title=Gaming the Robot Revolution: A military technology expert weighs in on Terminator: Salvation |first=P. W. |last=Singer |website=[[Slate (magazine)|Slate]] |date=21 May 2009 |archive-url=https://web.archive.org/web/20100127191004/http://www.slate.com/id/2218834/ |archive-date=27 January 2010 |url-status=live}}</ref><ref>{{cite web |url=http://www.gyre.org/news/explore/robot-takeover |title=Robot takeover |website=gyre.org |archive-url=https://web.archive.org/web/20120419163135/http://www.gyre.org/news/explore/robot-takeover |archive-date=19 April 2012 |url-status=dead}}</ref><ref>{{cite web |url=https://www.engadget.com/tag/robotapocalypse |title=Robotapocalypse |website=[[Engadget]] |archive-url=https://web.archive.org/web/20180504222624/https://www.engadget.com/tag/robotapocalypse/ |archive-date=4 May 2018 |url-status=live}}</ref> |
|||
==Robots in society== |
|||
[[Image:TOPIO 3.jpg|200px|thumb|[[TOPIO]], a [[humanoid robot]], played [[ping pong]] at Tokyo [[International Robot Exhibition]] (IREX) 2009.<ref>{{Cite news|url = http://www.popsci.com/technology/article/2010-02/ping-pong-playing-terminator|title=A Ping-Pong-Playing Terminator|publisher=Popular Science}}</ref><ref>{{Cite news|url = http://www.gadgetrivia.com/8164-best_robot_international_robot_exhibition|title=Best robot 2009|publisher=www.gadgetrivia.com}}</ref>]] |
|||
Roughly half of all the robots in the world are in Asia, 32% in Europe, and 16% in North America, 1% in [[Australasia]] and 1% in Africa.<ref>[http://www.robots.com/blog.php?tag=48 Robots Today and Tomorrow: IFR Presents the 2007 World Robotics Statistics Survey]; World Robotics; 2007-10-29; retrieved on 2007-12-14</ref> 30% of all the robots in the world are in [[Japan]],<ref>Reporting by Watanabe, Hiroaki; Writing and additional reporting by Negishi, Mayumi; Editing by Norton, Jerry; [http://www.reuters.com/article/technologyNews/idUST32811820071202 Japan's robots slug it out to be world champ]; Reuters; 2007-12-02; retrieved on 2007-01-01</ref> making Japan the country with the highest number of robots. |
|||
=== |
=== Military robots === |
||
Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions.<ref>{{cite news |url=http://news.bbc.co.uk/2/hi/technology/8182003.stm |title=Call for debate on killer robots |first=Jason |last=Palmer |website=BBC News |date=3 August 2009 |archive-url=https://web.archive.org/web/20090807005005/http://news.bbc.co.uk/2/hi/technology/8182003.stm |archive-date=7 August 2009 |url-status=live}}</ref> There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots.<ref>{{cite magazine |url=https://www.wired.com/dangerroom/2009/08/robot-three-way-portends-autonomous-future/ |title=Robot three-way portends autonomous future |first=David |last=Axe |magazine=[[Wired (magazine)|Wired]] |date=13 August 2009 |archive-url=https://web.archive.org/web/20121107102140/http://www.wired.com/dangerroom/2009/08/robot-three-way-portends-autonomous-future/ |archive-date=7 November 2012 |url-status=live}}</ref> The US Navy has funded a report which indicates that, as [[military robots]] become more complex, there should be greater attention to implications of their ability to make autonomous decisions.<ref>{{cite web |url=http://www.dailytech.com/New%20Navyfunded%20Report%20Warns%20of%20War%20Robots%20Going%20Terminator/article14298.htm |title=New Navy-funded Report Warns of War Robots Going "Terminator" |first=Jason |last=Mick |website=[[DailyTech]] |date=17 February 2009 |archive-url=https://web.archive.org/web/20090728101106/http://www.dailytech.com/New%20Navyfunded%20Report%20Warns%20of%20War%20Robots%20Going%20Terminator/article14298.htm |archive-date=28 July 2009 |url-status=dead}}</ref><ref>{{cite web |url=https://www.engadget.com/2009/02/18/navy-report-warns-of-robot-uprising-suggests-a-strong-moral-com/ |title=Navy report warns of robot uprising, suggests a strong moral compass |first=Joseph L. |last=Flatley |website=[[Engadget]] |date=18 February 2009 |archive-url=https://web.archive.org/web/20110604145633/http://www.engadget.com/2009/02/18/navy-report-warns-of-robot-uprising-suggests-a-strong-moral-com/ |archive-date=4 June 2011 |url-status=live}}</ref> One researcher states that autonomous robots might be more humane, as they could make decisions more effectively. However, other experts question this.<ref>{{cite news |url=http://www.csmonitor.com/Technology/Tech/2010/0217/New-role-for-robot-warriors |title=New role for robot warriors |first=Gregory M. |last=Lamb |newspaper=[[The Christian Science Monitor]] |date=17 February 2010 |archive-url=https://web.archive.org/web/20150924120946/http://www.csmonitor.com/Technology/Tech/2010/0217/New-role-for-robot-warriors |archive-date=24 September 2015 |url-status=live}}</ref> |
|||
In Japan and [[South Korea]], ideas of future robots have been mainly positive, and the start of the pro-robotic society there is thought to be possibly due to the famous '[[Astro Boy]]'. Asian societies such as Japan, South Korea, and more recently, China, believe robots to be more equal to humans, having them care for old people, play with or teach children, or replace pets etc.<ref>[http://www.usatoday.com/tech/news/techinnovations/2004-04-11-robot-helpers_x.htm "Robot Helpers"]. ''[[USA Today]]''. April 11, 2004.</ref> The general view in Asian cultures is that the more robots advance, the better. |
|||
One robot in particular, the [[Energetically Autonomous Tactical Robot|EATR]], has generated public concerns<ref name="FOX">{{cite news|url=https://www.foxnews.com/story/biomass-eating-military-robot-is-a-vegetarian-company-says|title=Biomass-Eating Military Robot Is a Vegetarian, Company Says|date=16 July 2009|publisher=Fox News|access-date=31 July 2009|archive-url=https://web.archive.org/web/20090803135855/http://www.foxnews.com/story/0,2933,533382,00.html|archive-date=3 August 2009|url-status=live}}</ref> over its fuel source, as it can continually refuel itself using organic substances.<ref name="Wired">{{cite magazine|url=https://www.wired.com/dangerroom/2009/07/company-denies-its-robots-feed-on-the-dead/|title=Danger Room What's Next in National Security Company Denies its Robots Feed on the Dead|last=Shachtman|first=Noah|date=17 July 2009|magazine=[[Wired (magazine)|Wired]]|access-date=31 July 2009|archive-url=https://web.archive.org/web/20090729095144/http://www.wired.com/dangerroom/2009/07/company-denies-its-robots-feed-on-the-dead|archive-date=29 July 2009|url-status=live}}</ref> Although the engine for the EATR is designed to run on [[biomass]] and vegetation<ref>{{cite press release |publisher=RTI Inc. |date=16 July 2009 |url=http://www.robotictechnologyinc.com/images/upload/file/Cyclone%20Power%20Press%20Release%20EATR%20Rumors%20Final%2016%20July%2009.pdf |title=Cyclone Power Technologies Responds to Rumors about "Flesh Eating" Military Robot |pages=1–2 |archive-url=https://web.archive.org/web/20090823133634/http://www.robotictechnologyinc.com/images/upload/file/Cyclone%20Power%20Press%20Release%20EATR%20Rumors%20Final%2016%20July%2009.pdf |archive-date=23 August 2009 |url-status=live}}</ref> specifically selected by its sensors, which it can find on battlefields or other local environments, the project has stated that chicken fat can also be used.<ref name="bpopp22">{{cite web |publisher=RTI Inc. |date=6 April 2009 |url=https://robotictechnologyinc.com/images/upload/file/Presentation%20EATR%20Brief%20Overview%206%20April%2009.pdf |title=Brief Project Overview, EATR: Energetically Autonomous Tactical Robot |page=22}}</ref><!--May need a link to show that the concern was that it might "eat" human flesh from dead soldiers--> |
|||
"This is the opening of an era in which human beings and robots can co-exist," says Japanese firm Mitsubishi about one of the many humanistic robots in Japan.<ref>[http://news.bbc.co.uk/1/hi/world/asia-pacific/4196052.stm Domestic robot to debut in Japan ]; BBC News; 2005-08-30; retrieved on 2007-01-02</ref> South Korea aims to put a robot in every house there by 2015-2020 in order to help catch up technologically with Japan.<ref name="SKrobot"/><ref>Chamberlain, Ted; [http://news.nationalgeographic.com/news/2005/06/0610_050610_robot.html Photo in the News: Ultra-Lifelike Robot Debuts in Japan]; National Geographic News; 2005-06-10; retrieved on 2008-01-02</ref> |
|||
[[Manuel De Landa]] has noted that "smart missiles" and autonomous bombs equipped with artificial perception can be considered robots, as they make some of their decisions autonomously. He believes this represents an important and dangerous trend in which humans are handing over important decisions to machines.<ref>[[Manuel de Landa]], ''[[War in the Age of Intelligent Machines]]'', New York: Zone Books, 1991, 280 pages, Hardcover, {{ISBN|0-942299-76-0}}; Paperback, {{ISBN|0-942299-75-2}}.</ref> |
|||
Western societies are more likely to be against, or even fear the development of robotics, through much media output in movies and literature that they will replace humans. Some believe that the West regards robots as a 'threat' to the future of humans, partly due to religious beliefs about the role of humans and society.<ref name="planettokyo.com">Biglione, Kirk; [http://www.planettokyo.com/news/index.cfm/fuseaction/story/ID/36/ The Secret To Japan's Robot Dominance]; Planet Tokyo; 2006-01-24; retrieved on 2007-01-02</ref><ref>Yang, Jeff; [http://www.sfgate.com/cgi-bin/article.cgi?f=/g/a/2005/08/25/apop.DTL ASIAN POP Robot Nation Why Japan, and not America, is likely to be the world's first cyborg society]; SFGate; 2005-08-25; retrieved on 2007-01-02</ref> Obviously, these boundaries are not clear, but there is a significant difference between the two cultural viewpoints. |
|||
=== Relationship to unemployment === |
|||
===Autonomy and ethical questions=== |
|||
{{Main|Technological unemployment}} |
|||
{{main|Roboethics|Ethics of artificial intelligence}} |
|||
For centuries, people have predicted that machines would make [[Technological unemployment|workers obsolete and increase unemployment]], although the causes of unemployment are usually thought to be due to social policy.<ref>{{cite journal |first=E |last=McGaughey |title=Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy |orig-date=January 10, 2018 |date=2022 |url=https://osf.io/download/5da6fbaca7bc73000df40ef9/ |journal=[[Industrial Law Journal]] |volume=51 |issue=3 |ssrn=3119589 |doi=10.2139/ssrn.3119589}}</ref><ref>{{cite news|url=https://www.nytimes.com/2016/03/09/business/economy/a-future-without-jobs-two-views-of-the-changing-work-force.html|title=A Future Without Jobs? Two Views of the Changing Work Force|date=9 March 2016|newspaper=The New York Times|last1=Porter|first1=Eduardo|last2=Manjoo|first2=Farhad|access-date=23 February 2017|archive-url=https://web.archive.org/web/20170215151324/https://www.nytimes.com/2016/03/09/business/economy/a-future-without-jobs-two-views-of-the-changing-work-force.html|archive-date=15 February 2017|url-status=live}}</ref><ref>{{cite journal|url=https://www.theatlantic.com/magazine/archive/2015/07/world-without-work/395294/|title=A World Without Work|journal=The Atlantic|first=Derek|last=Thompson|date=July–August 2015|access-date=11 March 2017|archive-url=https://web.archive.org/web/20170227122425/https://www.theatlantic.com/magazine/archive/2015/07/world-without-work/395294/|archive-date=27 February 2017|url-status=live}}</ref> |
|||
[[File:Actroid-DER 01.jpg|thumb|right|An [[Android (robot)|android]], or robot designed to resemble a human, can appear comforting to some people and disturbing to others<ref name="uncanny" />]] |
|||
As robots have become more advanced and sophisticated, experts and academics have increasingly explored the questions of what ethics might govern robots' behavior,<ref name="AAAI ethics">[http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Ethics AAAI webpage of materials on robot ethics].</ref> and whether robots might be able to claim any kind of social, cultural, ethical or legal rights.<ref>[http://www.aaai.org/AITopics/newstopics/ethics5.html AAAI compilation of articles on robot rights], Sources compiled up to 2006.</ref> One scientific team has said that it is possible that a robot brain will exist by 2019.<ref>[http://www.familyhealthguide.co.uk/scientists-predict-artificial-brain-in-10-years.html Scientists Predict Artificial Brain in 10 Years], by Kristie McNealy M.D. July 29, 2009.</ref> Others predict robot intelligence breakthroughs by 2050.<ref>[http://books.google.com/books?id=fduW6KHhWtQC&dq=robot&printsec=frontcover&source=bl&ots=SuquyjYb4n&sig=5S3L8pqiLqZ_yjJgh97tPE6F7gQ&hl=en&ei=R1-MSubxLs_dlAfJm_26CA&sa=X&oi=book_result&ct=result&resnum=6#v=onepage&q=&f=false Robot: Mere Machine to Transcendent Mind] By Hans Moravec, Google Books.</ref> Recent advances have made robotic behavior more sophisticated.<ref>[http://www.koreaittimes.com/story/4668/robots-almost-conquering-walking-reading-dancing Robots Almost Conquering Walking, Reading, Dancing], by Matthew Weigand, Korea Itimes, Monday, August 17, 2009.</ref> The social impact of intelligent robots is subject of a 2010 documentary film called ''[[Plug & Pray]]''.<ref>[http://www.plugandpray-film.de/en/content.html ''Plug & Pray], documentary film by Jens Schanze about the possibilities of AI and robotics.</ref> |
|||
A recent example of human replacement involves Taiwanese technology company [[Foxconn]] who, in July 2011, announced a three-year plan to replace workers with more robots. At present the company uses ten thousand robots but will increase them to a million robots over a three-year period.<ref name=XINFoxcon>{{cite news|title=Foxconn to replace workers with 1 million robots in 3 years|url=http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm|access-date=4 August 2011|agency=Xinhua News Agency|date=30 July 2011|author=Yan|archive-url=https://web.archive.org/web/20111008201637/http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm|archive-date=8 October 2011|url-status=dead}}</ref> |
|||
[[Vernor Vinge]] has suggested that a moment may come when computers and robots are smarter than humans. He calls this "[[technological singularity|the Singularity]]".<ref name="nytimes july09"/> He suggests that it may be somewhat or possibly very dangerous for humans.<ref>[http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html The Coming Technological Singularity: How to Survive in the Post-Human Era], by Vernor Vinge, Department of Mathematical Sciences, San Diego State University, (c) 1993 by Vernor Vinge.</ref> This is discussed by a philosophy called [[Singularitarianism]]. |
|||
Lawyers have speculated that an increased prevalence of robots in the workplace could lead to the need to improve redundancy laws.<ref>{{cite web|url=https://futureofworkhub.squarespace.com/allcontent/2014/11/20/judgment-day-employment-law-and-robots-in-the-workplace|title=Judgment day – employment law and robots in the workplace|work=futureofworkhub|date=20 November 2014 |access-date=7 January 2015|archive-url=https://web.archive.org/web/20150403233901/https://futureofworkhub.squarespace.com/allcontent/2014/11/20/judgment-day-employment-law-and-robots-in-the-workplace|archive-date=3 April 2015|url-status=live}}</ref> |
|||
In 2009, experts attended a conference hosted by the [[Association for the Advancement of Artificial Intelligence]] (AAAI) to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade elimination and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls.<ref name="nytimes july09">[http://www.nytimes.com/2009/07/26/science/26robot.html?_r=1&ref=todayspaper Scientists Worry Machines May Outsmart Man] By John Markoff, NY Times, July 26, 2009.</ref> Various media sources and scientific groups have noted separate trends in differing areas which might together result in greater robotic functionalities and autonomy, and which pose some inherent concerns.<ref>[http://www.slate.com/id/2218834/ Gaming the Robot Revolution: A military technology expert weighs in on Terminator: Salvation]., By P. W. Singer, slate.com Thursday, May 21, 2009.</ref><ref>[http://www.gyre.org/news/explore/robot-takeover Robot takeover], gyre.org.</ref><ref>[http://www.engadget.com/tag/robotapocalypse robot page], engadget.com.</ref> |
|||
Kevin J. Delaney said "Robots are taking human jobs. But Bill Gates believes that governments should tax companies' use of them, as a way to at least temporarily slow the spread of automation and to fund other types of employment."<ref>{{cite web|last1=Delaney|first1=Kevin|title=The robot that takes your job should pay taxes, says Bill Gates|url=https://qz.com/911968/bill-gates-the-robot-that-takes-your-job-should-pay-taxes/|website=Quartz|date=17 February 2017 |access-date=4 March 2017|archive-url=https://web.archive.org/web/20170305042737/https://qz.com/911968/bill-gates-the-robot-that-takes-your-job-should-pay-taxes/|archive-date=5 March 2017|url-status=live}}</ref> The [[robot tax]] would also help pay a guaranteed living wage to the displaced workers. |
|||
===Military robots=== |
|||
Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions.<ref>[http://news.bbc.co.uk/2/hi/technology/8182003.stm Call for debate on killer robots], By Jason Palmer, Science and technology reporter, BBC News, 8/3/09.</ref> There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots.<ref>[http://www.wired.com/dangerroom/2009/08/robot-three-way-portends-autonomous-future/ Robot Three-Way Portends Autonomous Future], By David Axe wired.com, August 13, 2009.</ref> |
|||
The US Navy has funded a report which indicates that as [[military robots]] become more complex, there should be greater attention to implications of their ability to make autonomous decisions.<ref>[http://www.dailytech.com/New%20Navyfunded%20Report%20Warns%20of%20War%20Robots%20Going%20Terminator/article14298.htm New Navy-funded Report Warns of War Robots Going "Terminator"], by Jason Mick (Blog), dailytech.com, February 17, 2009.</ref><ref>[http://www.engadget.com/2009/02/18/navy-report-warns-of-robot-uprising-suggests-a-strong-moral-com/ Navy report warns of robot uprising, suggests a strong moral compass], by Joseph L. Flatley engadget.com, February 18th 2009.</ref> One researcher states that autonomous robots might be more humane, as they could make decisions more effectively. However, other experts question this.<ref>[http://www.csmonitor.com/layout/set/print/content/view/print/279448 New role for robot warriors;] Drones are just part of a bid to automate combat. Can virtual ethics make machines decisionmakers?, by Gregory M. Lamb / Staff writer, Christian Science Monitor, February 17, 2010.</ref> |
|||
The [[World Bank]]'s [[World Development Report]] 2019 puts forth evidence showing that while automation displaces workers, technological innovation creates more new industries and jobs on balance.<ref>{{cite web|url=http://www.worldbank.org/en/publication/wdr2019|title=The Changing Nature of Work|access-date=8 October 2018|archive-url=https://web.archive.org/web/20180930193143/http://www.worldbank.org/en/publication/wdr2019|archive-date=30 September 2018|url-status=live}}</ref> |
|||
Some public concerns about autonomous robots have received media attention.<ref name="FOX">{{Cite news|url=http://www.foxnews.com/story/0,2933,533382,00.html|title=Biomass-Eating Military Robot Is a Vegetarian, Company Says|date=2009-07-16|work=FOXNews.com|accessdate=2009-07-31}}</ref> One robot in particular, the [[Energetically Autonomous Tactical Robot|EATR]], has generated concerns over its fuel source as it can continually refuel itself using organic substances.<ref name="Wired">{{Cite web|url=http://www.wired.com/dangerroom/2009/07/company-denies-its-robots-feed-on-the-dead/|title= Danger Room What's Next in National Security Company Denies its Robots Feed on the Dead|last=Shachtman|first=Noah|date=2009-07-17|work=[[Wired (magazine)|Wired]]|accessdate=2009-07-31}}</ref> Although the engine for the EATR is designed to run on [[biomass]] and vegetation<ref>Press release, RTI Inc. (2009 July 16). [http://www.robotictechnologyinc.com/images/upload/file/Cyclone%20Power%20Press%20Release%20EATR%20Rumors%20Final%2016%20July%2009.pdf ''Cyclone Power Technologies Responds to Rumors about “Flesh Eating” Military Robot''], pp. 1-2.</ref> specifically selected by its sensors which it can find on battlefields or other local environments, the project has stated that chicken fat can also be used.<ref name="bpopp22">Press release, RTI Inc. (2009 April 6). [http://www.robotictechnologyinc.com/images/upload/file/Presentation%20EATR%20Brief%20Overview%206%20April%2009.pdf "Brief Project Overview"], ''EATR: Energetically Autonomous Tactical Robot'', pp. 22.</ref> |
|||
==Contemporary uses== |
== Contemporary uses == |
||
[[File:smUsingGuiaBot.jpg|thumb |
[[File:smUsingGuiaBot.jpg|thumb|A general-purpose robot acts as a guide during the day and a security guard at night.]] |
||
{{See also|List of robots}} |
{{See also|List of robots}} |
||
At present there are two main types of robots, based on their use: [[humanoid robot|general-purpose autonomous robots]] and dedicated robots. |
At present, there are two main types of robots, based on their use: [[humanoid robot|general-purpose autonomous robots]] and dedicated robots. |
||
Robots can be classified by their [[sensitivity and specificity|specificity]] of purpose. |
Robots can be classified by their [[sensitivity and specificity|specificity]] of purpose. A robot might be designed to perform one particular task extremely well, or a range of tasks less well. All robots by their nature can be re-programmed to behave differently, but some are limited by their physical form. For example, a factory robot arm can perform jobs such as cutting, welding, gluing, or acting as a fairground ride, while a pick-and-place robot can only populate printed circuit boards. |
||
===General-purpose autonomous robots=== |
=== General-purpose autonomous robots === |
||
{{ |
{{Main|Autonomous robot}} |
||
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot |
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot can, as of yet, actually navigate around a room that it has never been in.<ref>{{Cite journal |last1=Talbot |first1=Ben |last2=Dayoub |first2=Feras |last3=Corke |first3=Peter |last4=Wyeth |first4=Gordon |date=December 2021 |title=Robot Navigation in Unseen Spaces Using an Abstract Map |url=https://ieeexplore.ieee.org/document/9091567 |journal=IEEE Transactions on Cognitive and Developmental Systems |volume=13 |issue=4 |pages=791–805 |doi=10.1109/TCDS.2020.2993855 |arxiv=2001.11684 |s2cid=211004032 |issn=2379-8939}}</ref> Thus, humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments. |
||
===Factory robots=== |
=== Factory robots === |
||
;[[Automaker|Car production]] |
|||
Over the last three decades automobile factories have become dominated by robots. A typical factory contains hundreds of [[industrial robot]]s working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is [[welding|welded]], [[adhesive|glued]], painted and finally assembled at a sequence of robot stations. |
|||
==== Car production ==== |
|||
;[[Packaging]] |
|||
Over the last three decades, [[automotive industry|automobile factories]] have become dominated by robots. A typical factory contains hundreds of [[industrial robot]]s working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is [[welding|welded]], [[adhesive|glued]], painted and finally assembled at a sequence of robot stations. |
|||
==== Packaging ==== |
|||
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers. |
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers. |
||
==== Electronics ==== |
|||
Mass-produced [[printed circuit board]]s (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with [[SCARA]] manipulators, which remove tiny [[electronic component]]s from strips or trays, and place them on to PCBs with great accuracy.<ref>{{ |
Mass-produced [[printed circuit board]]s (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with [[SCARA]] manipulators, which remove tiny [[electronic component]]s from strips or trays, and place them on to PCBs with great accuracy.<ref>{{cite web |url=http://www.contactsystems.com/c5_series.html |publisher=Contact Systems |title=Contact Systems Pick and Place robots |access-date=21 September 2008 |archive-url=https://web.archive.org/web/20080914050602/http://www.contactsystems.com/c5_series.html |archive-date=14 September 2008 |url-status=dead}}</ref> Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability.<ref>{{cite web|url=http://www.assembleon.com/surface-mount-assembly/pick-and-place-equipment/a-series/|publisher=Assembleon| title=SMT pick-and-place equipment|access-date=21 September 2008 |archive-url = https://web.archive.org/web/20080803173021/http://www.assembleon.com/surface-mount-assembly/pick-and-place-equipment/a-series/ <!-- Bot retrieved archive --> |archive-date = 3 August 2008 |url-status=dead}}</ref> |
||
==== Automated guided vehicles (AGVs) ==== |
|||
[[File:ADAM Intelligent AGV.jpg|thumb |
[[File:ADAM Intelligent AGV.jpg|thumb|An intelligent AGV drops-off goods without needing lines or beacons in the workspace.]] |
||
Mobile robots, following markers or wires in the floor, or using vision<ref>{{Cite web|url=http://www.smartcaddy.net|title=Smart Caddy|publisher=Seegrid|accessdate=2007-09-13}}</ref> or lasers, are used to transport goods around large facilities, such as warehouses, container ports, or hospitals.<ref>{{Cite web|url=http://www.agvsystems.com/basics/vehicle.htm|title=The Basics of Automated Guided Vehicles|publisher=Savant Automation, AGV Systems|accessdate=2007-09-13}}</ref> |
|||
Mobile robots, following markers or wires in the floor, or using vision<ref name="seegrid">{{cite web|url=http://www.smartcaddy.net|title=Smart Caddy|publisher=Seegrid|access-date=13 September 2007|archive-url=https://web.archive.org/web/20071011044450/http://www.smartcaddy.net/|archive-date=11 October 2007|url-status=dead}}</ref> or lasers, are used to transport goods around large facilities, such as warehouses, container ports, or hospitals.<ref>{{cite web|url=http://www.agvsystems.com/basics/vehicle.htm|title=The Basics of Automated Guided Vehicles|publisher=Savant Automation, AGV Systems|access-date=13 September 2007|archive-url=https://web.archive.org/web/20071008135856/http://www.agvsystems.com/basics/vehicle.htm|archive-date=8 October 2007|url-status=dead}}</ref> |
|||
:;Early AGV-Style Robots |
|||
:Limited to tasks that could be accurately defined and had to be performed the same way every time. Very little feedback or intelligence was required, and the robots needed only the most basic [[wikt:exteroceptors|exteroceptors]] (sensors). The limitations of these AGVs are that their paths are not easily altered and they cannot alter their paths if obstacles block them. If one AGV breaks down, it may stop the entire operation. |
|||
===== Early AGV-style robots ===== |
|||
:;Interim AGV-Technologies |
|||
Limited to tasks that could be accurately defined and had to be performed the same way every time. Very little feedback or intelligence was required, and the robots needed only the most basic [[wikt:exteroceptors|exteroceptors]] (sensors). The limitations of these AGVs are that their paths are not easily altered and they cannot alter their paths if obstacles block them. If one AGV breaks down, it may stop the entire operation. |
|||
:Developed to deploy triangulation from beacons or bar code grids for scanning on the floor or ceiling. In most factories, triangulation systems tend to require moderate to high maintenance, such as daily cleaning of all beacons or bar codes. Also, if a tall pallet or large vehicle blocks beacons or a bar code is marred, AGVs may become lost. Often such AGVs are designed to be used in human-free environments. |
|||
===== Interim AGV technologies ===== |
|||
:;Intelligent AGVs (i-AGVs) |
|||
Developed to deploy triangulation from beacons or bar code grids for scanning on the floor or ceiling. In most factories, triangulation systems tend to require moderate to high maintenance, such as daily cleaning of all beacons or bar codes. Also, if a tall pallet or large vehicle blocks beacons or a bar code is marred, AGVs may become lost. Often such AGVs are designed to be used in human-free environments. |
|||
:Such as SmartLoader,<ref>{{cite web|title=Jervis B. Webb|url=http://www.jervisbwebb.com/Products/automatic_trailer_loading.aspx?pid=190&qs=1_3_|work=Webb SmartLoader|accessdate=2 September 2011}}</ref> SpeciMinder,<ref>{{Cite web|url=http://www.ccsrobotics.com/products/speciminder.html |title=SpeciMinder|publisher=CSS Robotics |accessdate=2008-09-25}} {{Dead link|date=September 2010|bot=H3llBot}}</ref> ADAM,<ref>{{Cite web|url=http://www.rmtrobotics.com/tire_agv.html |title=ADAM robot |publisher=RMT Robotics |accessdate=2008-09-25}}</ref> Tug<ref>{{Cite web|url=http://www.aethon.com/can_do_tug.html |title=Can Do |publisher=Aethon |accessdate=2008-09-25 |archiveurl = http://web.archive.org/web/20080803173353/http://www.aethon.com/can_do_tug.html <!-- Bot retrieved archive --> |archivedate = 2008-08-03}}</ref> Eskorta,<ref>{{Cite web|url=http://www.fennecfoxtech.com |title=Eskorta robot |publisher=Fennec Fox Technologies |accessdate=2011-11-25}}</ref> and MT 400 with Motivity<ref>{{Cite web|url=http://www.mobilerobots.com/AGV.html |title=Delivery Robots & AGVs |publisher=Mobile Robots |accessdate=2008-09-25}}</ref> are designed for people-friendly workspaces. They navigate by recognizing natural features. [[3D scanner]]s or other means of sensing the environment in two or three dimensions help to eliminate cumulative [[observational error|errors]] in [[dead reckoning|dead-reckoning]] calculations of the AGV's current position. Some AGVs can create maps of their environment using scanning lasers with [[simultaneous localization and mapping]] (SLAM) and use those maps to navigate in real time with other path planning and obstacle avoidance algorithms. They are able to operate in complex environments and perform non-repetitive and non-sequential tasks such as transporting [[photomask]]s in a semiconductor lab, specimens in hospitals and goods in warehouses. For dynamic areas, such as warehouses full of pallets, AGVs require additional strategies using three-dimensional sensors such as time-of-flight or stereovision cameras. |
|||
===== Intelligent AGVs (i-AGVs) ===== |
|||
===Dirty, dangerous, dull or inaccessible tasks=== |
|||
Such as SmartLoader,<ref>{{cite web|title=Automatic Trailer Loading Vehicle - SmartLoader|url=http://www.jervisbwebb.com/Products/automatic_trailer_loading.aspx?pid=190&qs=1_3_|access-date=2 September 2011|archive-url=https://web.archive.org/web/20130523015511/http://www.jervisbwebb.com/Products/automatic_trailer_loading.aspx?pid=190&qs=1_3_|archive-date=23 May 2013|url-status=dead}}</ref> SpeciMinder,<ref>{{cite web |url=http://www.ccsrobotics.com/products/speciminder.html |title=SpeciMinder |publisher=CSS Robotics |access-date=25 September 2008 |archive-url=https://web.archive.org/web/20090701131848/http://www.ccsrobotics.com/products/speciminder.html |archive-date=1 July 2009 |url-status=live }}</ref> ADAM,<ref>{{cite web|url=http://www.rmtrobotics.com/tire_agv.html |archive-url=https://web.archive.org/web/20060517153330/http://rmtrobotics.com/tire_agv.html |archive-date=17 May 2006 |title=ADAM robot |publisher=RMT Robotics |access-date=25 September 2008 |url-status=dead}}</ref> Tug<ref>{{cite web|url=http://www.aethon.com/can_do_tug.html |title=Can Do |publisher=Aethon |access-date=25 September 2008 |archive-url = https://web.archive.org/web/20080803173353/http://www.aethon.com/can_do_tug.html <!-- Bot retrieved archive --> |archive-date = 3 August 2008 |url-status=dead}}</ref> Eskorta,<ref>{{cite web |url=http://www.fennecfoxtech.com |title=Eskorta robot |publisher=Fennec Fox Technologies |access-date=25 November 2011 |archive-url=https://web.archive.org/web/20111206082746/http://www.fennecfoxtech.com/ |archive-date=6 December 2011 |url-status=dead}}</ref> and MT 400 with Motivity<ref>{{cite web|url=http://www.mobilerobots.com/AGV.html |title=Delivery Robots & AGVs |publisher=Mobile Robots |access-date=25 September 2008|archive-url=https://web.archive.org/web/20100226202710/http://www.mobilerobots.com/AGV.html|archive-date=26 February 2010 |url-status=dead}}</ref> are designed for people-friendly workspaces. They navigate by recognizing natural features. [[3D scanner]]s or other means of sensing the environment in two or three dimensions help to eliminate cumulative [[observational error|errors]] in [[dead reckoning|dead-reckoning]] calculations of the AGV's current position. Some AGVs can create maps of their environment using scanning lasers with [[simultaneous localization and mapping]] (SLAM) and use those maps to navigate in real time with other [[path planning]] and obstacle avoidance algorithms. They are able to operate in complex environments and perform non-repetitive and non-sequential tasks such as transporting [[photomask]]s in a semiconductor lab, specimens in hospitals and goods in warehouses. For dynamic areas, such as warehouses full of pallets, AGVs require additional strategies using three-dimensional sensors such as [[time-of-flight camera|time-of-flight]] or [[computer stereo vision|stereovision]] cameras. |
|||
There are many jobs which humans would rather leave to robots. The job may be boring, such as domestic [[cleaning]], or dangerous, such as exploring inside a [[volcano]].<ref>{{Cite web|url=http://www.ri.cmu.edu/projects/project_163.html|title=Dante II, list of published papers|publisher=The Robotics Institute of Carnegie Mellon University|accessdate=2007-09-16}}</ref> Other jobs are physically inaccessible, such as exploring another [[planet]],<ref> |
|||
{{Cite web|url=http://mars.jpl.nasa.gov/MPF/rover/sojourner.html|title=Mars Pathfinder Mission: Rover Sojourner|publisher=[[NASA]]|date=1997-07-08|accessdate=2007-09-19}}</ref> cleaning the inside of a long pipe, or performing [[laparoscopic]] surgery.<ref name="daVinci">{{Cite web|url=http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html|title=Robot assisted surgery: da Vinci Surgical System|publisher=Brown University Division of Biology and Medicine|accessdate=2007-09-19}}</ref> |
|||
=== Dirty, dangerous, dull, or inaccessible tasks === |
|||
;[[Space probe]]s |
|||
Almost every unmanned space probe ever launched was a robot.{{citation needed|date=April 2012}} Some were launched in the 1960s with very limited abilities, but their ability to fly and land (in the case of [[Luna 9]]) is an indication of their status as a robot. This includes the [[Voyager probe]]s and the Galileo probes, and others. |
|||
{{see also|Dirty, dangerous and demeaning}} |
|||
;[[Telerobotics|Telerobots]] |
|||
There are many jobs that humans would rather leave to robots. The job may be boring, such as [[housekeeping|domestic cleaning]] or [[Line marker (sports)|sports field line marking]], or dangerous, such as exploring inside a [[volcano]].<ref>{{cite web|url=http://www.ri.cmu.edu/projects/project_163.html|title=Dante II, list of published papers|publisher=The Robotics Institute of Carnegie Mellon University|access-date=16 September 2007|archive-url=https://web.archive.org/web/20080515015703/http://www.ri.cmu.edu/projects/project_163.html|archive-date=15 May 2008|url-status=dead}}</ref> Other jobs are physically inaccessible, such as exploring another [[planet]],<ref>{{cite web|url=http://mars.jpl.nasa.gov/MPF/rover/sojourner.html|title=Mars Pathfinder Mission: Rover Sojourner|publisher=[[NASA]]|date=8 July 1997|access-date=19 September 2007|archive-url=https://web.archive.org/web/20170201165939/http://mars.jpl.nasa.gov/MPF/rover/sojourner.html|archive-date=1 February 2017|url-status=live}}</ref> cleaning the inside of a long pipe, or performing [[laparoscopic]] surgery.<ref name="daVinci">{{cite web|url=http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html |title=Robot assisted surgery: da Vinci Surgical System |publisher=Brown University Division of Biology and Medicine |access-date=19 September 2007 |archive-url=https://web.archive.org/web/20070916084349/http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html |archive-date=16 September 2007 |url-status=dead}}</ref> |
|||
[[File:IED detonator.jpg|thumb|right|A [[U.S. Marine Corps]] technician prepares to use a telerobot to detonate a buried [[improvised explosive device]] near [[Camp Fallujah]], [[Iraq]]]] |
|||
Teleoperated robots, or telerobots are devices remotely operated from a distance by a human operator rather than following a predetermined sequence of movements. They are used when a human cannot be present on site to perform a job because it is dangerous, far away, or inaccessible. The robot may be in another room or another country, or may be on a very different scale to the operator. For instance, a laparoscopic surgery robot allows the surgeon to work inside a human patient on a relatively small scale compared to open surgery, significantly shortening recovery time.<ref name="daVinci"/> They can also be used to avoid exposing workers to the hazardous and tight spaces such as in [[Duct (HVAC)|duct]] cleaning. When disabling a bomb, the operator sends a small robot to disable it. Several authors have been using a device called the Longpen to sign books remotely.<ref>{{Cite news|url=http://www.cbc.ca/arts/books/story/2007/08/15/longpen-trial.html |title=Celebrities set to reach for Atwood's LongPen |publisher=cbc.ca |accessdate=2008-09-21 | date=2007-08-15}}</ref> Teleoperated robot aircraft, like the Predator [[Unmanned Aerial Vehicle]], are increasingly being used by the military. These pilotless drones can search terrain and fire on targets.<ref>{{Cite news|url=http://www.newstatesman.com/200606120018|publisher=[[New Statesman]]|title=America's robot army |date=2006-06-12 |accessdate=2007-09-24 |first=Stephen|last=Graham}}</ref><ref>{{Cite news|url=http://www.defenseindustrydaily.com/battlefield-robots-to-iraq-and-beyond-0727|publisher=Defense Industry Daily|title=Battlefield Robots: to Iraq, and Beyond|date=2005-06-20|accessdate=2007-09-24}}</ref> Hundreds of robots such as [[iRobot]]'s [[Packbot]] and the [[Foster-Miller TALON]] are being used in [[Iraq]] and [[Afghanistan]] by the [[United States Armed Forces|U.S. military]] to defuse roadside bombs or [[improvised explosive device]]s (IEDs) in an activity known as [[explosive ordnance disposal]] (EOD).<ref>{{Cite web|publisher=[[Wired Magazine]]|url=http://www.wired.com/wired/archive/13.11/bomb.html?pg=3&topic=bomb |title=The Baghdad Bomb Squad |first=Noah|last=Shachtman| date=2005-11|accessdate=2007-09-14}}</ref> |
|||
==== Space probes ==== |
|||
;[[Automated fruit harvesting machine]]s |
|||
[[File:Roomba original.jpg|thumb|right|The [[Roomba]] domestic [[vacuum cleaner]] robot does a single, menial job]] |
|||
Used to pick fruit on orchards at a cost lower than that of human pickers. |
|||
Almost every unmanned [[space probe]] ever launched was a robot.<ref>{{cite conference |url=https://upes.academia.edu/SeeteshPANDE/Papers/1717325/The_Utilization_of_Robotic_Space_Probes_in_Deep_Space_Missions_Case_Study_of_AI_Protocols_and_Nuclear_Power_Requirements |title=The Utilization of Robotic Space Probes in Deep Space Missions:Case Study of AI Protocols and Nuclear Power Requirements |book-title=Proceedings of 2011 International Conference on Mechanical Engineering, Robotics and Aerospace |date=October 2011}}</ref><ref>{{cite web |url=http://www.thespacereview.com/article/2004/1 |title=Review: Space Probes |first=Jeff |last=Foust |date=16 January 2012 |archive-url=https://web.archive.org/web/20120831183945/http://www.thespacereview.com/article/2004/1 |archive-date=31 August 2012 |url-status=live}} Review of Space Probes: 50 Years of Exploration from Luna 1 to New Horizons, by Philippe Séguéla Firefly, 2011.</ref> Some were launched in the 1960s with very limited abilities, but their ability to fly and land (in the case of [[Luna 9]]) is an indication of their status as a robot. This includes the [[Voyager probe]]s and the Galileo probes, among others. |
|||
;[[Domestic robots]] |
|||
Domestic robots are simple robots dedicated to a single task work in home use. They are used in simple but unwanted jobs, such as [[vacuum cleaner|vacuum cleaning]] and [[Scooba|floor washing]], and [[lawn mower|lawn mowing]]. |
|||
=== |
==== Telerobots ==== |
||
{{Main|Military robots}} |
|||
Military robots include the [[SWORDS robot]] which is currently used in ground-based combat. It can use a variety of weapons and there is some discussion of giving it some degree of autonomy in battleground situations.<ref>[http://blog.wired.com/defense/2007/08/httpwwwnational.html WIRED: First Armed Robots on Patrol in Iraq]</ref><ref>[http://blog.wired.com/defense/2007/08/armed-robots-so.html WIRED: Armed Robots Pushed To Police]</ref><ref>[http://www.popularmechanics.com/technology/military_law/4252643.html?page=2 America's Robot Army]</ref> |
|||
[[File:IED detonator.jpg|thumb|A [[U.S. Marine Corps]] technician prepares to use a telerobot to detonate a buried [[improvised explosive device]] near [[Camp Fallujah]], Iraq.]] |
|||
[[Unmanned combat air vehicles]] (UCAVs), which are an upgraded form of [[UAVs]], can do a wide variety of missions, including combat. UCAVs are being designed such as the [[Mantis UCAV]] which would have the ability to fly themselves, to pick their own course and target, and to make most decisions on their own.<ref>[http://www.popsci.com/technology/article/2010-02/field-guide-flying-robots The Present and Future of Unmanned Drone Aircraft: An Illustrated Field Guide;] Inside the wild kingdom of the world’s newest and most spectacular species of unmanned aircraft, from swarming insect ’bots that can storm a burning building to a seven-ton weaponized spyplane invisible to radar. By Eric Hagerman, Popular Science, 23 February 2010.</ref> The [[BAE Taranis]] is a UCAV built by Great Britain which can fly across continents without a pilot and has new means to avoid detection.<ref name="Sky News">{{Cite news|title= Taranis: The £143m Fighter Jet Of The Future |publisher= Ministry of Defence |date= 2010-07-12 |url= http://news.sky.com/skynews/Home/UK-News/Taranis-MoD-And-BAE-Systems-Unveil-Futuristic-Unmanned-Fighter-Jet/Article/201007215663917?lpos=UK_News_Second_Home_Page_Article_Teaser_Region_0&lid=ARTICLE_15663917_Taranis:_MoD_And_BAE_Systems_Unveil_Futuristic_Unmanned_Fighter_Jet |accessdate=2010-07-13}}</ref> Flight trials are expected to begin in 2011.<ref>{{Cite news|url=http://news.bbc.co.uk/1/hi/technology/10602105.stm |title=MoD lifts lid on unmanned combat plane prototype |first=Daniel |last=Emery |publisher=BBC News |date=2010-07-12 |accessdate=2010-07-12}}</ref><ref>{{Cite news|url=http://www.dailymail.co.uk/sciencetech/article-1294037/Taranis-The-143million-unmanned-stealth-jet-hit-targets-continent.html |title=Taranis: The £143million unmanned stealth jet that will hit targets in another continent |newspaper=Daily Mail |date=2010-07-12 |accessdate=2010-07-12}}</ref> |
|||
[[telerobotics|Teleoperated robots]], or telerobots, are devices [[teleoperation|remotely operated]] from a distance by a human operator rather than following a predetermined sequence of movements, but which has semi-autonomous behaviour. They are used when a human cannot be present on site to perform a job because it is dangerous, far away, or inaccessible. The robot may be in another room or another country, or may be on a very different scale to the operator. For instance, a laparoscopic surgery robot allows the surgeon to work inside a human patient on a relatively small scale compared to open surgery, significantly shortening recovery time.<ref name="daVinci" /> They can also be used to avoid exposing workers to the hazardous and tight spaces such as in [[Duct (HVAC)|duct]] cleaning.<!--<ref>{{cite news|url=http://on.fb.me/1o843oN |title=The Trouble with Regulation |publisher=National Air Duct Cleaning Association |access-date=25 November 2014 | date=March–April 2014}}</ref>--> When disabling a bomb, the operator sends a small robot to disable it. Several authors have been using a device called the Longpen to sign books remotely.<ref>{{cite news|url=https://www.cbc.ca/news/entertainment/celebrities-set-to-reach-for-atwood-s-longpen-1.692622 |title=Celebrities set to reach for Atwood's LongPen |publisher=Canadian Broadcasting Corporation |access-date=21 September 2008 | date=15 August 2007|url-status=live |archive-url=https://web.archive.org/web/20090522221123/http://www.cbc.ca/arts/books/story/2007/08/15/longpen-trial.html|archive-date=22 May 2009}}</ref> Teleoperated robot aircraft, like the Predator [[Unmanned Aerial Vehicle]], are increasingly being used by the military. These pilotless drones can search terrain and fire on targets.<ref>{{cite news|url=http://www.newstatesman.com/200606120018|work=[[New Statesman]]|title=America's robot army |date=12 June 2006 |access-date=24 September 2007 |first=Stephen|last=Graham|archive-url=https://web.archive.org/web/20120217174704/http://www.newstatesman.com/200606120018|archive-date=17 February 2012}}</ref><ref>{{cite news|url=http://www.defenseindustrydaily.com/battlefield-robots-to-iraq-and-beyond-0727|work=Defense Industry Daily|title=Battlefield Robots: to Iraq, and Beyond|date=20 June 2005|access-date=24 September 2007|archive-url=https://web.archive.org/web/20070826201610/http://www.defenseindustrydaily.com/battlefield-robots-to-iraq-and-beyond-0727/|archive-date=26 August 2007|url-status=live}}</ref> Hundreds of robots such as [[iRobot]]'s [[Packbot]] and the [[Foster-Miller TALON]] are being used in [[Iraq]] and [[Afghanistan]] by the [[United States Armed Forces|U.S. military]] to defuse roadside bombs or [[improvised explosive device]]s (IEDs) in an activity known as [[explosive ordnance disposal]] (EOD).<ref>{{cite magazine|magazine=[[Wired (magazine)|Wired]]|url=https://www.wired.com/wired/archive/13.11/bomb.html?pg=3&topic=bomb|title=The Baghdad Bomb Squad|first=Noah|last=Shachtman|date=November 2005|access-date=14 September 2007|archive-url=https://web.archive.org/web/20080422132525/http://www.wired.com/wired/archive/13.11/bomb.html?pg=3&topic=bomb|archive-date=22 April 2008|url-status=live}}</ref> |
|||
The AAAI has studied this topic in depth<ref name="AAAI ethics">[http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Ethics AAAI Ethics page].</ref> and its president has commissioned a study to look at this issue.<ref>[http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Panel_2008-2009.htm AAAI Presidential Panel on Long-Term AI Futures 2008-2009 Study], Association for the Advancement of Artificial Intelligence, Accessed 7/26/09.</ref> |
|||
==== Automated fruit harvesting machines ==== |
|||
Some have suggested a need to build "[[Friendly AI]]", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane.<ref>[http://www.asimovlaws.com/articles/archives/2004/07/why_we_need_fri_1.html Article at Asimovlaws.com], July 2004, accessed 7/27/09.</ref> Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea<ref name=SKrobot>[http://news.bbc.co.uk/1/hi/technology/6425927.stm Robotic age poses ethical dilemma]; BBC News; 2007-03-07; retrieved on 2007-01-02;</ref> having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's [[Three Laws of Robotics]].<ref>[http://www.livescience.com/technology/060526_robot_rules.html Asimov's First Law: Japan Sets Rules for Robots], By Bill Christensen, livescience.com, May 26, 2006.</ref><ref>[http://www.physorg.com/news95078958.html Japan drafts rules for advanced robots], UPI via physorg.com, April 6, 2007.</ref> An official report was issued in 2009 by the Japanese government's Robot Industry Policy Committee.<ref>[http://www.meti.go.jp/english/press/data/20090325_01.html Report compiled by the Japanese government's Robot Industry Policy Committee -Building a Safe and Secure Social System Incorporating the Coexistence of Humans and Robots], Official Japan government press release, Ministry of Economy, Trade and Industry, March 2009.</ref> Chinese officials and researchers have issued a report suggesting a set of ethical rules, and a set of new legal guidelines referred to as "Robot Legal Studies."<ref name="China report">[http://works.bepress.com/cgi/viewcontent.cgi?article=1000&context=weng_yueh_hsuan Toward the human-Robot Coexistence Society: on Safety intelligence for next Generation Robots], report by Yueh-Hsuan Weng, China Ministry of the Interior, [http://www.springer.com/engineering/robotics/journal/12369 International Journal of Social Robotics], April 7, 2009.</ref> Some concern has been expressed over a possible occurrence of robots telling apparent falsehoods.<ref>[http://www.foxnews.com/story/0,2933,540721,00.html Evolving Robots Learn To Lie To Each Other], Popular Science, August 19, 2009.</ref> |
|||
Robots are used to [[fruit picking#automation|automate picking fruit]] on orchards at a cost lower than that of human pickers. |
|||
=== |
==== Domestic robots ==== |
||
[[File:Roomba original.jpg|thumb|The [[Roomba]] domestic [[vacuum cleaner]] robot does a single, menial job.]] |
|||
Mining robots are designed to help counteract a number of challenges currently facing the mining industry, including skills shortages, improving productivity from declining ore grades, and achieving environmental targets. Due to the hazardous nature of mining, in particular [[underground mining]], the prevalence of autonomous, semi-autonomous, and tele-operated robots has greatly increased in recent times. A number of vehicle manufacturers provide autonomous trains, trucks and [[Loader (equipment)|loaders]] that will load material, transport it on the mine site to its destination, and unload without requiring human intervention. One of the worlds largest mining corporations, [[Rio Tinto Group|Rio Tinto]] has recently expanded its autonomous vehicle fleet to the worlds largest, consisting of 150 autonomous [[Komatsu Limited|Komatsu]] trucks, operating in [[Western Australia]].<ref>[http://www.riotinto.com/media/5157_21165.asp Rio Tinto Media Center - Rio Tinto boosts driverless truck fleet to 150 under Mine of the Future™ programme]</ref> |
|||
[[Domestic robots]] are simple robots dedicated to a single task work in home use. They are used in simple but often disliked jobs, such as [[vacuum cleaner|vacuum cleaning]], [[Scooba (brand)|floor washing]], and [[lawn mower|lawn mowing]]. An example of a domestic robot is a [[Roomba]]. |
|||
Drilling, [[Longwall mining|longwall]] and [[rockbreaker|rockbreaking]] machines are now also available as autonomous robots.<ref>[http://adrianboeing.blogspot.com/2011/06/aimex.html AIMEX blog - Autonomous mining equipment]</ref> The [[Atlas Copco]] Rig Control System can autonomously execute a drilling plan on a [[drilling rig]], moving the rig into position using GPS, setup the drill rig and drill down to specified depths.<ref>[http://www.atlascopco.com/rcs/ Atlas Copco - RCS]</ref> Similarly, the [[Transmin]] Rocklogic system can automatically plan a path to position a [[rockbreaker]] at a selected destination<ref>[http://rocklogic.com.au/ Transmin - Rocklogic]</ref> These systems greatly enhance the safety and efficiency of mining operations. |
|||
=== |
=== Military robots === |
||
{{Main|Military robot}} |
|||
{{Section OR|date=March 2012}} |
|||
Military robots include the [[SWORDS robot]] which is currently used in ground-based combat. It can use a variety of weapons and there is some discussion of giving it some degree of autonomy in battleground situations.<ref>{{cite magazine |last=Shachtman |first=Noah |url=https://www.wired.com/2007/08/httpwwwnational/ |title=WIRED: First Armed Robots on Patrol in Iraq (Updated) |magazine=Wired |date=2 August 2007 |access-date=26 September 2023}}</ref><ref>{{cite magazine |last=Shachtman |first=Noah |url=http://blog.wired.com/defense/2007/08/armed-robots-so.html |title=WIRED: Armed Robots Pushed To Police |magazine=Wired |date=28 March 2013 |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20090412043558/http://blog.wired.com/defense/2007/08/armed-robots-so.html |archive-date=12 April 2009 |url-status=live }}</ref><ref>{{cite web|url=https://www.popularmechanics.com/military/a2653/4252643/ |title=America's Robot Army: Are Unmanned Fighters Ready for Combat? |publisher=Popular Mechanics |date=17 December 2009 |access-date=26 September 2023}}</ref> |
|||
From the 1980s, robots such as [[turtle (robot)|turtle]]s were used in schools and programmed using the [[Logo (programming language)|Logo]] language.<ref name="gainesvillesun turtle">{{cite news | title='Nova's' 'Talking Turtle' Pofiles High Priest of School Computer Movement | work=Gainesville Sun | date=October 25, 1983 | author=Mitgang, Lee}}</ref><ref name="observerreporter games learning">{{cite news | url=http://news.google.com/newspapers?id=W4diAAAAIBAJ&sjid=s3cNAAAAIBAJ&pg=1326,3744066&dq=logo+turtle+robot&hl=en | title=Robots In School: Games Or Learning? | work=Observer-Reporter | date=January 29, 1985 | accessdate=March 7, 2012 | author=Barnard, Jeff | location=Washington}}</ref> Robotics at school in the 21st century has three main applications, Robotic kits, Virtual tutors, and teacher's assistants. |
|||
[[Unmanned combat air vehicle]]s (UCAVs), which are an upgraded form of [[unmanned aerial vehicle|UAVs]], can do a wide variety of missions, including combat. UCAVs are being designed such as the [[BAE Systems Mantis]] which would have the ability to fly themselves, to pick their own course and target, and to make most decisions on their own.<ref>{{cite magazine |url=http://www.popsci.com/technology/article/2010-02/field-guide-flying-robots |title=The Present and Future of Unmanned Drone Aircraft: An Illustrated Field Guide | first=Eric |last=Hagerman |magazine=[[Popular Science]] |date=23 February 2010 |archive-url=https://web.archive.org/web/20100226101134/http://www.popsci.com/technology/article/2010-02/field-guide-flying-robots |archive-date=26 February 2010 |url-status=live}}</ref> The [[BAE Systems Taranis|BAE Taranis]] is a UCAV built by Great Britain which can fly across continents without a pilot and has new means to avoid detection.<ref name="Sky News">{{cite news|title=Taranis: The £143m Fighter Jet Of The Future |first=Kat |last=Higgins |website=Sky News Online |date=12 July 2010 |url=http://news.sky.com/skynews/Home/UK-News/Taranis-MoD-And-BAE-Systems-Unveil-Futuristic-Unmanned-Fighter-Jet/Article/201007215663917?lpos=UK_News_Second_Home_Page_Article_Teaser_Region_0&lid=ARTICLE_15663917_Taranis:_MoD_And_BAE_Systems_Unveil_Futuristic_Unmanned_Fighter_Jet |access-date=13 July 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100715051514/http://news.sky.com/skynews/Home/UK-News/Taranis-MoD-And-BAE-Systems-Unveil-Futuristic-Unmanned-Fighter-Jet/Article/201007215663917?lpos=UK_News_Second_Home_Page_Article_Teaser_Region_0&lid=ARTICLE_15663917_Taranis%3A_MoD_And_BAE_Systems_Unveil_Futuristic_Unmanned_Fighter_Jet |archive-date=15 July 2010 }}</ref> Flight trials are expected to begin in 2011.<ref>{{cite news |url=http://news.bbc.co.uk/1/hi/technology/10602105.stm |title=MoD lifts lid on unmanned combat plane prototype |first=Daniel |last=Emery |work=BBC News |date=12 July 2010 |access-date=12 July 2010 |archive-url=https://web.archive.org/web/20100712191703/http://news.bbc.co.uk/1/hi/technology/10602105.stm |archive-date=12 July 2010 |url-status=live }}</ref> |
|||
; [[Robot kit]]s |
|||
Robotic kits like [[Mindstorms NXT|Lego Mindstorms]], [[Robotis Bioloid|BIOLOID]], OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics. |
|||
The [[Association for the Advancement of Artificial Intelligence|AAAI]] has studied this topic in depth<ref name="AAAI ethics" /> and its president has commissioned a study to look at this issue.<ref>{{cite report |url=http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Panel_2008-2009.htm |title=AAAI Presidential Panel on Long-Term AI Futures 2008–2009 Study |publisher=Association for the Advancement of Artificial Intelligence |access-date=26 July 2009 |archive-url=https://web.archive.org/web/20090828214741/http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Panel_2008-2009.htm |archive-date=28 August 2009 |url-status=live}}</ref> |
|||
; [[Robot competition]]s |
|||
Robotics have also been introduced into the lives of elementary and high school students with the company [[FIRST]] (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the [[FIRST Robotics Competition]], [[FIRST LEGO League]], [[Junior FIRST LEGO League]], and [[FIRST Tech Challenge]] competitions. |
|||
Some have suggested a need to build "[[Friendly AI]]", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane.<ref>{{cite web |url=http://www.asimovlaws.com/articles/archives/2004/07/why_we_need_fri_1.html |title=Why We Need Friendly AI |website=3 Laws Unsafe |date=July 2004 |access-date=27 July 2009 |archive-url=https://web.archive.org/web/20120524150856/http://www.asimovlaws.com/articles/archives/2004/07/why_we_need_fri_1.html |archive-date=24 May 2012 |url-status=usurped}}</ref> Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea<ref name=SKrobot>{{cite news |url=http://news.bbc.co.uk/1/hi/technology/6425927.stm |title=Robotic age poses ethical dilemma |website=BBC News |date=7 March 2007 |access-date=2007-01-02 |archive-url=https://web.archive.org/web/20090215145547/http://news.bbc.co.uk/1/hi/technology/6425927.stm |archive-date=15 February 2009 |url-status=live}}</ref> having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's [[Three Laws of Robotics]].<ref>{{cite web |url=http://www.livescience.com/technology/060526_robot_rules.html |title=Asimov's First Law: Japan Sets Rules for Robots |first=Bill |last=Christensen |website=[[Live Science]] |date=26 May 2006 |archive-url=https://web.archive.org/web/20081013025115/http://www.livescience.com/technology/060526_robot_rules.html |archive-date=13 October 2008 |url-status=live}}</ref><ref>{{cite web |url=http://www.physorg.com/news95078958.html |title=Japan drafts rules for advanced robots |publisher=UPI |via=physorg.com |date=6 April 2007 |archive-url=https://web.archive.org/web/20081011103322/http://www.physorg.com/news95078958.html |archive-date=11 October 2008 |url-status=live}}</ref> An official report was issued in 2009 by the Japanese government's Robot Industry Policy Committee.<ref>{{cite press release |url=http://www.meti.go.jp/english/press/data/20090325_01.html |title=Building a Safe and Secure Social System Incorporating the Coexistence of Humans and Robots |publisher=[[Ministry of Economy, Trade and Industry]] |date=March 2009 |archive-url=https://web.archive.org/web/20110927070744/http://www.meti.go.jp/english/press/data/20090325_01.html |archive-date=27 September 2011 |url-status=dead}}</ref> Chinese officials and researchers have issued a report suggesting a set of ethical rules, and a set of new legal guidelines referred to as "Robot Legal Studies."<ref name="China report">{{cite journal |doi=10.1007/s12369-009-0019-1 |title=Toward the Human–Robot Co-Existence Society: On Safety Intelligence for Next Generation Robots |first1=Yueh-Hsuan |last1=Weng |first2=Chien-Hsun |last2=Chen |first3=Chuen-Tsai |last3=Sun |journal=International Journal of Social Robotics |volume=1 |date=25 April 2009|issue=4 |pages=267–282 |s2cid=36232530 }}</ref> Some concern has been expressed over a possible occurrence of robots telling apparent falsehoods.<ref>{{cite magazine |url=https://www.popsci.com/scitech/article/2009-08/evolving-robots-learn-lie-hide-resources-each-other/ |title=Evolving Robots Learn To Lie To Each Other |first=Stuart |last=Fox |magazine=[[Popular Science]] |date=19 August 2009}}</ref> |
|||
; Virtual tutors |
|||
Virtual tutors are some kind of [[embodied agent]] that helps children to do their homework, for example, on peer to peer basis. |
|||
=== Mining robots === |
|||
; Teacher assistants |
|||
Mining robots are designed to solve a number of problems currently facing the mining industry, including skills shortages, improving productivity from declining ore grades, and achieving environmental targets. Due to the hazardous nature of mining, in particular [[underground mining]], the prevalence of autonomous, semi-autonomous, and tele-operated robots has greatly increased in recent times. A number of vehicle manufacturers provide autonomous trains, trucks and [[Loader (equipment)|loaders]] that will load material, transport it on the mine site to its destination, and unload without requiring human intervention. One of the world's largest mining corporations, [[Rio Tinto (corporation)|Rio Tinto]], has recently expanded its autonomous truck fleet to the world's largest, consisting of 150 autonomous [[Komatsu Limited|Komatsu]] trucks, operating in [[Western Australia]].<ref>{{cite web|url=http://www.riotinto.com/media/5157_21165.asp |title=Rio Tinto Media Center – Rio Tinto boosts driverless truck fleet to 150 under Mine of the Future™ programme |publisher=Riotinto.com |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20130424100842/https://www.riotinto.com/media/5157_21165.asp |archive-date=24 April 2013 |url-status=dead}}</ref> Similarly, [[BHP]] has announced the expansion of its autonomous drill fleet to the world's largest, 21 autonomous [[Atlas Copco]] drills.<ref>{{cite web|url=https://www.itnews.com.au/news/bhp-billiton-hits-go-on-autonomous-drills-421008|title=BHP Billiton hits go on autonomous drills|access-date=13 February 2023}}</ref> |
|||
Robots as teacher assistants let children to be more assertive during the class and get more motivated. South Korea is the first country deploying a program to have a robot in each school.{{Citation needed|date=February 2012}} |
|||
Drilling, [[Longwall mining|longwall]] and [[rockbreaker|rockbreaking]] machines are now also available as autonomous robots.<ref>{{cite web |author=Adrian |url=http://adrianboeing.blogspot.com/2011/06/aimex.html |title=AIMEX blog – Autonomous mining equipment |publisher=Adrianboeing.blogspot.com |date=6 September 2011 |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20131218162920/http://adrianboeing.blogspot.com/2011/06/aimex.html |archive-date=18 December 2013 |url-status=live }}</ref> The [[Atlas Copco]] Rig Control System can autonomously execute a drilling plan on a [[drilling rig]], moving the rig into position using GPS, set up the drill rig and drill down to specified depths.<ref>{{cite web|url=http://www.atlascopco.com/rcs/ |title=Atlas Copco – RCS |publisher=Atlascopco.com |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20140207175830/http://www.atlascopco.com/rcs/ |archive-date=7 February 2014 |url-status=dead}}</ref> Similarly, the [[Transmin]] Rocklogic system can automatically plan a path to position a rockbreaker at a selected destination.<ref>{{cite web |url=http://rocklogic.com.au/ |title=Transmin – Rocklogic |publisher=Rocklogic.com.au |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20140125105842/http://rocklogic.com.au/ |archive-date=25 January 2014 |url-status=live }}</ref> These systems greatly enhance the safety and efficiency of mining operations. |
|||
===Healthcare=== |
|||
=== Healthcare === |
|||
Robots in healthcare have two main functions. Those which assist an individual, such as a sufferer of a disease like Multiple Sclerosis, and those which aid in the overall systems such as pharmacies and hospitals. |
Robots in healthcare have two main functions. Those which assist an individual, such as a sufferer of a disease like Multiple Sclerosis, and those which aid in the overall systems such as pharmacies and hospitals. |
||
==== Home automation for the elderly and disabled ==== |
|||
{{further|Disability robot}} |
{{further|Disability robot}} |
||
[[File:FRIEND-III klein.png|thumb |
[[File:FRIEND-III klein.png|thumb|The Care-Providing Robot FRIEND]] |
||
Robots have developed over time from simple basic robotic assistants, such as the [[ST Robotics#History|Handy 1]],<ref name="CSUNCOD1">{{cite journal|last=Topping|first=Mike|coauthors=Smith, Jane.|title=An Overview Of Handy 1, A Rehabilitation Robot For The Severely Disabled|journal=CSUN Center on Disabilities Conference Proceedings|year=1999|volume=Proceedings|series=1999|pages=Session 59|url=http://www.csun.edu/cod/conf/1999/proceedings/session0059.htm|accessdate=14 August 2010|author=Topping, Mike.|quote=The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper.}}</ref> through to semi-autonomous robots, such as [[Care-Providing Robot FRIEND|FRIEND]] which can assist the elderly and disabled with common tasks. |
|||
Robots used in [[Home automation for the elderly and disabled|home automation]] have developed over time from simple basic robotic assistants, such as the [[ST Robotics#History|Handy 1]],<ref name="CSUNCOD1">{{cite journal|last=Topping |first=Mike |author2=Smith, Jane |title=An Overview Of Handy 1, A Rehabilitation Robot For The Severely Disabled |journal=CSUN Center on Disabilities Conference Proceedings |year=1999 |volume=Proceedings |series=1999 |pages=Session 59 |url=http://www.csun.edu/cod/conf/1999/proceedings/session0059.htm |access-date=14 August 2010 |quote=The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper. |url-status=dead |archive-url=https://web.archive.org/web/20090805111627/https://www.csun.edu/cod/conf/1999/proceedings/session0059.htm |archive-date= 5 August 2009 }}</ref> through to semi-autonomous robots, such as [[Care-Providing Robot FRIEND|FRIEND]] which can assist the elderly and disabled with common tasks. |
|||
The population is [[gerontotechnology|aging]] in many countries, especially Japan, meaning that there are increasing numbers of elderly people to care for, but relatively fewer young people to care for them.<ref>{{ |
The population is [[gerontotechnology|aging]] in many countries, especially Japan, meaning that there are increasing numbers of elderly people to care for, but relatively fewer young people to care for them.<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/uk/4012797.stm|work=BBC News|first=Christine|last=Jeavans|date=29 November 2004|title=Welcome to the ageing future|access-date=26 September 2007|archive-url=https://web.archive.org/web/20071016123948/http://news.bbc.co.uk/1/hi/uk/4012797.stm|archive-date=16 October 2007|url-status=live}}</ref><ref>{{cite web |
||
| url = http://www.stat.go.jp/english/data/handbook/c02cont.htm |
|||
| title = Statistical Handbook of Japan: Chapter 2 Population |
|||
| publisher = Statistics Bureau & Statistical Research and Training Institute |
|||
| access-date = 26 September 2007 |
|||
| archive-url = https://web.archive.org/web/20130906015841/http://www.stat.go.jp/english/data/handbook/c02cont.htm |
|||
| archive-date = 6 September 2013 |
|||
| url-status = dead |
|||
}}</ref> Humans make the best carers, but where they are unavailable, robots are gradually being introduced.<ref>{{cite web|url=http://www.e-health-insider.com/comment_and_analysis/250/robotic_future_of_patient_care|publisher=E-Health Insider|title=Robotic future of patient care|date=16 August 2007|access-date=26 September 2007|archive-url=https://web.archive.org/web/20071121041811/http://www.e-health-insider.com/comment_and_analysis/250/robotic_future_of_patient_care|archive-date=21 November 2007|url-status=dead}}</ref> |
|||
FRIEND is a semi-autonomous robot designed to support [[disability|disabled]] and [[old age|elderly]] people in their daily life activities, like preparing and serving a meal. FRIEND make it possible for [[patients]] who are [[paraplegia|paraplegic]], have muscle diseases or serious [[paralysis]] (due to strokes etc.), to perform tasks without help from other people like therapists or nursing staff. |
FRIEND is a semi-autonomous robot designed to support [[disability|disabled]] and [[old age|elderly]] people in their daily life activities, like preparing and serving a meal. FRIEND make it possible for [[patients]] who are [[paraplegia|paraplegic]], have muscle diseases or serious [[paralysis]] (due to strokes etc.), to perform tasks without help from other people like therapists or nursing staff. |
||
==== Pharmacies ==== |
|||
{{ |
{{Main|Pharmacy automation}} |
||
{{ |
{{More citations needed section|date=July 2009}} |
||
Script Pro manufactures a robot designed to help pharmacies fill prescriptions that consist of oral solids or [[pharmaceutical drug|medications]] in pill form. The |
Script Pro manufactures a robot designed to help pharmacies fill prescriptions that consist of oral solids or [[pharmaceutical drug|medications]] in pill form.<ref>{{Cite journal|url=https://www.drugtopics.com/view/future-pharmacy-automation|title=The Future of Pharmacy Automation|last=Gebhart|first=Fred|date=4 July 2019|journal=Drug Topics Journal|series=Drug Topics July 2019 |volume=163 |issue=7 |access-date=16 October 2022}}</ref>{{Better source needed|date=November 2019}} The pharmacist or [[pharmacy technician]] enters the prescription information into its information system. The system, upon determining whether or not the drug is in the robot, will send the information to the robot for filling. The robot has 3 different size vials to fill determined by the size of the pill. The robot technician, user, or pharmacist determines the needed size of the vial based on the tablet when the robot is stocked. Once the vial is filled it is brought up to a conveyor belt that delivers it to a holder that spins the vial and attaches the patient label. Afterwards it is set on another conveyor that delivers the patient's medication vial to a slot labeled with the patient's name on an LED read out. The pharmacist or technician then checks the contents of the vial to ensure it's the correct drug for the correct patient and then seals the vials and sends it out front to be picked up. |
||
McKesson's Robot RX is another healthcare robotics product that helps pharmacies dispense thousands of medications daily with little or no errors.<ref>{{Cite web|url=https://www.forbes.com/2009/10/08/robots-mckesson-business-healthcare-medical-tech-09-mckesson.html|title=R2D2 Has Your Pills|last=Dolan|first=Kerry A.|website=Forbes|access-date=20 November 2019}}</ref> The robot can be ten feet wide and thirty feet long and can hold hundreds of different kinds of medications and thousands of doses. The pharmacy saves many resources like staff members that are otherwise unavailable in a resource scarce industry. It uses an [[electromechanics|electromechanical]] head coupled with a [[pneumatics|pneumatic]] system to capture each dose and deliver it to either its stocked or dispensed location. The head moves along a single axis while it rotates 180 degrees to pull the medications. During this process it uses [[barcode]] technology to verify it's pulling the correct drug. It then delivers the drug to a patient specific bin on a conveyor belt. Once the bin is filled with all of the drugs that a particular patient needs and that the robot stocks, the bin is then released and returned out on the conveyor belt to a technician waiting to load it into a cart for delivery to the floor. |
|||
===Research robots=== |
=== Research robots === |
||
{{See also|Robotics# |
{{See also|Robotics#Robotics_research|l1=Robotics research}} |
||
While most robots today are installed in factories or homes, performing labour or life saving jobs, many new types of robot are being developed in [[laboratory|laboratories]] around the world. Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robot, alternative ways to think about or design robots, and new ways to manufacture them. It is expected that these new types of robot will be able to solve real world problems when they are finally realized.{{Citation needed|date=July 2009}} |
While most robots today are installed in factories or homes, performing labour or life saving jobs, many new types of robot are being developed in [[laboratory|laboratories]] around the world. Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robot, alternative ways to think about or design robots, and new ways to manufacture them. It is expected that these new types of robot will be able to solve real world problems when they are finally realized.{{Citation needed|date=July 2009}} |
||
==== Bionic and biomimetic robots ==== |
|||
;Nanorobots |
|||
{{further|Biomimetics}}{{further|Bionics}}One approach to designing robots is to base them on animals. [[BionicKangaroo]] was designed and engineered by studying and applying the physiology and methods of locomotion of a kangaroo. |
|||
{{further|Nanorobotics}} |
|||
[[File:Microgripper holding silicon nanowires.jpg|thumb|right|A microfabricated electrostatic gripper holding some silicon nanowires.<ref>{{Cite web|url=http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001535.html|publisher=NASA|title=Fullerene Nanogears|date=1997-04-01|accessdate=2008-05-27|author=Michael Hahn}}</ref>]] |
|||
[[Nanorobotics]] is the [[emerging technology]] field of creating machines or robots whose components are at or close to the microscopic scale of a [[nanometer]] (10<sup>−9</sup> meters). Also known as "nanobots" or "nanites", they would be constructed from [[molecular machine]]s. So far, researchers have mostly produced only parts of these complex systems, such as bearings, sensors, and [[synthetic molecular motors]], but functioning robots have also been made such as the entrants to the Nanobot Robocup contest.<ref>[http://www.techbirbal.com/viewtopic.php?p=3687&sid=7faaeeb64eaf84880b23755fea7fa7cd Techbirbal: Nanobots Play Football]</ref> Researchers also hope to be able to create entire robots as small as viruses or bacteria, which could perform tasks on a tiny scale. Possible applications include micro surgery (on the level of individual [[cell (biology)|cells]]), [[utility fog]],<ref>[http://www.kurzweilai.net/meme/frame.html?main=/articles/art0220.html? KurzweilAI.net: Utility Fog: The Stuff that Dreams Are Made Of]</ref> manufacturing, weaponry and cleaning.<ref>[http://www.e-drexler.com/d/06/00/EOC/EOC_Chapter_11.html (Eric Drexler 1986) Engines of Creation, The Coming Era of Nanotechnology]</ref> Some people have suggested that if there were nanobots which could reproduce, the earth would turn into "[[grey goo]]", while others argue that this hypothetical outcome is nonsense.<ref>{{Cite web|url=http://www.crnano.org/Debate.htm|publisher=Center for Responsible Nanotechnology|title=Of Chemistry, Nanobots, and Policy|date=2003-12|accessdate=2007-10-28|author=Chris Phoenix}}</ref><ref>{{Cite journal|url=http://www.iop.org/EJ/news/-topic=763/journal/0957-4484|publisher=Institute of Physics Electronics Journals|title=Nanotechnology pioneer slays "grey goo" myths|date=2004-06-07|accessdate=2007-10-28}}</ref> |
|||
==== Nanorobots ==== |
|||
;Reconfigurable Robots |
|||
{{further|Nanorobotics}}[[Nanorobotics]] is the [[emerging technology]] field of creating machines or robots whose components are at or close to the microscopic scale of a [[nanometer]] (10<sup>−9</sup> meters). Also known as "nanobots" or "nanites", they would be constructed from [[molecular machine]]s. So far, researchers have mostly produced only parts of these complex systems, such as bearings, sensors, and [[synthetic molecular motors]], but functioning robots have also been made such as the entrants to the Nanobot Robocup contest.<ref>{{cite web|url=http://www.techbirbal.com/viewtopic.php?p=3687&sid=7faaeeb64eaf84880b23755fea7fa7cd |title=Nanobots Play Football |publisher=Techbirbal |access-date=8 February 2014 |url-status=dead |archive-url=https://web.archive.org/web/20130403180057/https://www.techbirbal.com/viewtopic.php?p=3687&sid=7faaeeb64eaf84880b23755fea7fa7cd |archive-date=3 April 2013 }}</ref> Researchers also hope to be able to create entire robots as small as viruses or bacteria, which could perform tasks on a tiny scale. Possible applications include micro surgery (on the level of individual [[cell (biology)|cells]]), [[utility fog]],<ref>{{cite web|url=http://www.kurzweilai.net/meme/frame.html?main=/articles/art0220.html |title=KurzweilAI.net |date=21 June 2010 |access-date=5 July 2016 |url-status=dead |archive-url=https://web.archive.org/web/20100621142011/http://www.kurzweilai.net/meme/frame.html?main=%2Farticles%2Fart0220.html |archive-date=21 June 2010 }}</ref> manufacturing, weaponry and cleaning.<ref>{{cite web |url=http://www.e-drexler.com/d/06/00/EOC/EOC_Chapter_11.html |title=(Eric Drexler 1986) Engines of Creation, The Coming Era of Nanotechnology |publisher=E-drexler.com |access-date=8 February 2014 |archive-url=https://web.archive.org/web/20140906190853/http://e-drexler.com/d/06/00/EOC/EOC_Chapter_11.html |archive-date=6 September 2014 |url-status=dead}}</ref> Some people have suggested that if there were nanobots which could reproduce, the earth would turn into "[[grey goo]]", while others argue that this hypothetical outcome is nonsense.<ref>{{cite web|url=http://www.crnano.org/Debate.htm|publisher=Center for Responsible Nanotechnology|title=Of Chemistry, Nanobots, and Policy|date=December 2003|access-date=28 October 2007|first=Chris|last=Phoenix|archive-url=https://web.archive.org/web/20071011132926/http://crnano.org/Debate.htm|archive-date=11 October 2007|url-status=live}}</ref><ref>{{cite web |url=https://www.sciencedaily.com/releases/2004/06/040609072100.htm |website=ScienceDaily |title=Nanotechnology pioneer slays 'grey goo' myths|date=9 June 2004}}</ref> |
|||
{{main|Self-reconfiguring modular robot}} |
|||
A few researchers have investigated the possibility of creating robots which can [[self-reconfiguring modular robot|alter their physical form]] to suit a particular task,<ref>(1996) [http://www.islandone.org/MMSG/9609lego.htm LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel Nanomachines for Space Applications]</ref> like the fictional [[T-1000]]. Real robots are nowhere near that sophisticated however, and mostly consist of a small number of cube shaped units, which can move relative to their neighbours. Algorithms have been designed in case any such robots become a reality.<ref>(Robert Fitch, Zack Butler and Daniela Rus) [http://groups.csail.mit.edu/drl/publications/papers/MeltSortGrow.pdf Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots]</ref> |
|||
==== Reconfigurable robots ==== |
|||
;Soft Robots |
|||
{{Main|Self-reconfiguring modular robot}} |
|||
Robots with [[silicone]] bodies and flexible actuators ([[pneumatic artificial muscles|air muscles]], [[electroactive polymers]], and [[ferrofluid]]s), controlled using [[fuzzy logic]] and [[neural networks]], look and feel different from robots with rigid skeletons, and can have different behaviors.<ref>{{Cite news|url=http://www.nytimes.com/2007/03/27/science/27robo.html?pagewanted=1&_r=1&ei=5070&en=91395fe7439a5b72&ex=1177128000 |title=In the Lab: Robots That Slink and Squirm |author=John Schwartz |publisher=nytimes.com |accessdate=2008-09-22 | date=2007-03-27}}</ref> |
|||
A few researchers have investigated the possibility of creating robots which can [[self-reconfiguring modular robot|alter their physical form]] to suit a particular task,<ref>{{cite conference |url=http://www.islandone.org/MMSG/9609lego.htm |title=LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel Nanomachines for Space Applications |first=Tihamer |last=Toth-Fejel |conference=1996 International Space Development Conference |location=New York City |date=May 1996 |archive-url=https://web.archive.org/web/20070927215619/http://www.islandone.org/MMSG/9609lego.htm |archive-date=27 September 2007 |url-status=dead}}</ref> like the fictional [[T-1000]]. Real robots are nowhere near that sophisticated however, and mostly consist of a small number of cube shaped units, which can move relative to their neighbours. Algorithms have been designed in case any such robots become a reality.<ref>{{cite web |first1=Robert |last1=Fitch |first2=Zack |last2=Butler |first3=Daniela |last3=Rus |url=http://groups.csail.mit.edu/drl/publications/papers/MeltSortGrow.pdf |title=Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots |website=Massachusetts Institute of Technology |archive-url=https://web.archive.org/web/20070619212352/http://groups.csail.mit.edu/drl/publications/papers/MeltSortGrow.pdf |archive-date=19 June 2007 |url-status=dead}}</ref> |
|||
==== Robotic, mobile laboratory operators ==== |
|||
;Swarm robots |
|||
{{ |
{{Further|Laboratory robotics}} |
||
In July 2020 scientists reported the development of a mobile robot chemist and demonstrate that it can assist in experimental searches. According to the scientists their strategy was [[Laboratory automation|automating]] the researcher rather than the instruments – freeing up time for the human researchers to think creatively – and could identify photocatalyst mixtures for hydrogen production from water that were six times more active than initial formulations. The modular robot can operate laboratory instruments, work nearly around the clock, and autonomously make decisions on his next actions depending on experimental results.<ref>{{cite news |title=Researchers build robot scientist that has already discovered a new catalyst |url=https://phys.org/news/2020-07-robot-scientist-catalyst.html |access-date=16 August 2020 |work=phys.org }}</ref><ref>{{cite journal |last1=Burger |first1=Benjamin |last2=Maffettone |first2=Phillip M. |last3=Gusev |first3=Vladimir V. |last4=Aitchison |first4=Catherine M. |last5=Bai |first5=Yang |last6=Wang |first6=Xiaoyan |last7=Li |first7=Xiaobo |last8=Alston |first8=Ben M. |last9=Li |first9=Buyi |last10=Clowes |first10=Rob |last11=Rankin |first11=Nicola |last12=Harris |first12=Brandon |last13=Sprick |first13=Reiner Sebastian |last14=Cooper |first14=Andrew I. |title=A mobile robotic chemist |journal=Nature |date=July 2020 |volume=583 |issue=7815 |pages=237–241 |doi=10.1038/s41586-020-2442-2 |pmid=32641813 |bibcode=2020Natur.583..237B |s2cid=220420261 |url=https://www.nature.com/articles/s41586-020-2442-2 |access-date=16 August 2020 |issn=1476-4687|url-access=subscription }}</ref> |
|||
[[File:SwarmRobot org.jpg|thumb|right|A [[swarm]] of robots from the open-source micro-robotic project]] |
|||
Inspired by [[colony (biology)|colonies of insects]] such as [[ants]] and [[bees]], researchers are modeling the behavior of [[swarm robotics|swarms]] of thousands of tiny robots which together perform a useful task, such as finding something hidden, cleaning, or spying. Each robot is quite simple, but the [[emergent behavior]] of the swarm is more complex. The whole set of robots can be considered as one single distributed system, in the same way an ant colony can be considered a [[superorganism]], exhibiting [[swarm intelligence]]. The largest swarms so far created include the iRobot swarm, the SRI/MobileRobots CentiBots project<ref>((cite web|http://www.activrobots.com/RESEARCH/wheelchair.html|title=SRI/MobileRobots Centibot project))</ref> and the Open-source Micro-robotic Project swarm, which are being used to research collective behaviors.<ref>{{Cite web|url=http://www.swarmrobot.org|title=Open-source micro-robotic project|accessdate=2007-10-28}}</ref><ref>{{Cite web|url=http://www.irobot.com/sp.cfm?pageid=149|publisher=iRobot Corporation|title=Swarm|accessdate=2007-10-28}}</ref> Swarms are also more resistant to failure. Whereas one large robot may fail and ruin a mission, a swarm can continue even if several robots fail. This could make them attractive for space exploration missions, where failure is normally extremely costly.<ref>{{Cite web|url=http://www.wired.com/science/discoveries/news/2000/12/40750 |publisher=Wired Magazine |title=Look, Up in the Sky: Robofly |first=Louise|last=Knapp |date=2000-12-21|accessdate=2008-09-25}}</ref> |
|||
==== Soft-bodied robots ==== |
|||
Robots with [[silicone]] bodies and flexible actuators ([[pneumatic artificial muscles|air muscles]], [[electroactive polymers]], and [[ferrofluid]]s) look and feel different from robots with rigid skeletons, and can have different behaviors.<ref>{{cite news |url=https://www.nytimes.com/2007/03/27/science/27robo.html?pagewanted=1&_r=1&ei=5070&en=91395fe7439a5b72&ex=1177128000 |title=In the Lab: Robots That Slink and Squirm |first=John |last=Schwartz |work=The New York Times |access-date=22 September 2008 |date=27 March 2007 |archive-url=https://web.archive.org/web/20150403233312/http://www.nytimes.com/2007/03/27/science/27robo.html?pagewanted=1&_r=1&ei=5070&en=91395fe7439a5b72&ex=1177128000 |archive-date=3 April 2015 |url-status=live }}</ref> Soft, flexible (and sometimes even squishy) robots are often designed to mimic the biomechanics of animals and other things found in nature, which is leading to new applications in medicine, care giving, search and rescue, food handling and manufacturing, and scientific exploration.<ref>{{cite web |title=Squishy robots now have squishy computers to control them |date=25 March 2019 |first=Kat |last=Eschner |website=Popular Science |url=https://www.popsci.com/soft-robot-computer}}</ref><ref>{{cite web |title=The softer side of robotics |date=May 2019 |url=https://www.hp.com/us-en/shop/tech-takes/softer-side-of-robotics#false |access-date=13 February 2023}}</ref> |
|||
{{further|Haptic technology}} |
|||
Robotics also has application in the design of [[virtual reality]] interfaces. Specialized robots are in widespread use in the [[haptic technology|haptic]] research community. These robots, called "haptic interfaces," allow touch-enabled user interaction with real and virtual environments. Robotic forces allow simulating the mechanical properties of "virtual" objects, which users can experience through their sense of [[somatosensory system|touch]].<ref>{{Cite web|url=http://www.technologyreview.com/read_article.aspx?id=17363&ch=biotech&sc=&pg=1 |publisher=MIT Technology review |title=The Cutting Edge of Haptics |accessdate=2008-09-25}}</ref> |
|||
=== |
==== Swarm robots ==== |
||
{{Main|Swarm robotics}}Inspired by [[colony (biology)|colonies of insects]] such as [[ants]] and [[bees]], researchers are modeling the behavior of [[swarm robotics|swarms]] of thousands of tiny robots which together perform a useful task, such as finding something hidden, cleaning, or spying. Each robot is quite simple, but the [[emergent behavior]] of the swarm is more complex. The whole set of robots can be considered as one single distributed system, in the same way an ant colony can be considered a [[superorganism]], exhibiting [[swarm intelligence]]. The largest swarms so far created include the iRobot swarm, the SRI/MobileRobots CentiBots project<ref>{{cite web|url=http://www.activrobots.com/RESEARCH/wheelchair.html |title=SRI/MobileRobots |work=activrobots.com |url-status=dead |archive-url=https://web.archive.org/web/20090212091659/https://www.activrobots.com/RESEARCH/wheelchair.html |archive-date=12 February 2009}}</ref> and the Open-source Micro-robotic Project swarm, which are being used to research collective behaviors.<ref>{{cite web|url=http://www.swarmrobot.org|title=Open-source micro-robotic project|access-date=28 October 2007|archive-url=https://web.archive.org/web/20071111025135/http://www.swarmrobot.org/|archive-date=11 November 2007|url-status=live}}</ref><ref>{{cite web|url=http://www.irobot.com/sp.cfm?pageid=149 |publisher=iRobot Corporation |title=Swarm |access-date=28 October 2007 |url-status=dead |archive-url=https://web.archive.org/web/20070927191006/https://www.irobot.com/sp.cfm?pageid=149 |archive-date=27 September 2007 }}</ref> Swarms are also more resistant to failure. Whereas one large robot may fail and ruin a mission, a swarm can continue even if several robots fail. This could make them attractive for space exploration missions, where failure is normally extremely costly.<ref>{{cite magazine |url=https://www.wired.com/science/discoveries/news/2000/12/40750 |magazine=Wired |title=Look, Up in the Sky: Robofly |first=Louise |last=Knapp |date=21 December 2000 |access-date=25 September 2008 |archive-url=https://web.archive.org/web/20120626210619/http://www.wired.com/science/discoveries/news/2000/12/40750 |archive-date=26 June 2012 |url-status=live }}</ref> |
|||
;Poledancing robots |
|||
Some robots are used for entertainment and as a demonstration of the newest technology. This nimble automoton is a perfect example of this process. Being the main attractions at [[Ce-BIT]], the world’s biggest IT trade fair in Hanover, Germany.<ref>{{Cite web|url=http://www.metro.co.uk/tech/892241-pole-dancing-robot-introduced-at-worlds-biggest-it-fair |publisher=Metro.co.uk |title=Pole-dancing robot introduced at world's biggest IT fair|accessdate=6 March 2012 }}</ref> |
|||
==== Haptic interface robots ==== |
|||
==Future development== |
|||
{{further| |
{{further|Haptic technology}} |
||
Robotics also has application in the design of [[virtual reality]] interfaces. Specialized robots are in widespread use in the [[haptic technology|haptic]] research community. These robots, called "haptic interfaces", allow touch-enabled user interaction with real and virtual environments. Robotic forces allow simulating the mechanical properties of "virtual" objects, which users can experience through their sense of [[somatosensory system|touch]].<ref>{{cite web|url=http://www.technologyreview.com/read_article.aspx?id=17363&ch=biotech&sc=&pg=1 |publisher=MIT Technology review |title=The Cutting Edge of Haptics |access-date=25 September 2008}}</ref> |
|||
=== Contemporary art and sculpture === |
|||
===Technological trends=== |
|||
{{further|Robotic art}} |
|||
Various techniques have emerged to develop the science of robotics and robots. One method is [[evolutionary robotics]], in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is [[developmental robotics]], which tracks changes and development within a single robot in the areas of problem-solving and other functions. |
|||
Robots are used by contemporary artists to create works that include mechanical automation. There are many branches of robotic art, one of which is '''robotic installation art''', a type of [[installation art]] that is programmed to respond to viewer interactions, by means of computers, sensors and actuators. The future behavior of such installations can therefore be altered by input from either the artist or the participant, which differentiates these artworks from other types of [[kinetic art]]. |
|||
[[Le Grand Palais]] in Paris organized an exhibition "Artists & Robots", featuring artworks created by more than forty artists with the help of robots in 2018.<ref>{{Cite web|url=https://www.grandpalais.fr/en/event/artists-robots|title=Artists & Robots Exposition au Grand Palais du 5 avril au 9 juillet 2018|date=14 August 2019|access-date=3 February 2020|archive-url=https://web.archive.org/web/20190814133056/https://www.grandpalais.fr/en/event/artists-robots|archive-date=14 August 2019}}</ref> |
|||
===Technological development=== |
|||
;Overall trends |
|||
Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry.<ref name="UK Japan report">[http://ukinjapan.fco.gov.uk/resources/en/pdf/5606907/5633632/next-generation-services-robots Research and Development for Next-generation Service Robots in Japan], United Kingdom Foreign Ministry report, by Yumiko Moyen, Science and Innovation Section, British Embassy, Tokyo, Japan, January 2009.</ref> |
|||
== Robots in popular culture == |
|||
As robots become more advanced, eventually there may be a standard computer operating system designed mainly for robots. [[ROS (Robot Operating System)|Robot Operating System]] is an open-source set of programs being developed at [[Stanford University]], the [[Massachusetts Institute of Technology]] and the [[Technical University of Munich]], Germany, among others. ROS provides ways to program a robot's navigation and limbs regardless of the specific hardware involved. It also provides high-level commands for items like image recognition and even opening doors. When ROS boots up on a robot's computer, it would obtain data on attributes such as the length and movement of robots' limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a "Windows for robots" system with its Robotics Developer Studio, which has been available since 2007.<ref name="ROS">[http://www.ethiopianreview.com/articles/23156 Robots to get their own operating system], by Mehret Tesfaye Ethipian Review, August 13, 2009.</ref> |
|||
[[File:RobotsMODO.jpg|thumbnail|Toy robots on display at the [[Museo del Objeto del Objeto]] in Mexico City]] |
|||
{{See also|List of fictional robots and androids|Droid (Star Wars)}} |
|||
=== Literature === |
|||
;New functions and abilities |
|||
{{Main|Robots in literature}} |
|||
The Caterpillar Company is making a dump truck which can drive itself without any human operator.<ref>[http://www.fastcompany.com/magazine/131/the-caterpillar-self-driving-dump-truck.html?nav=inform-rl The Caterpillar Self-Driving Dump Truck], |
|||
By Tim McKeough, fastcompany.com, November 25, 2008.</ref> |
|||
Robotic characters, [[android (robot)|androids]] (artificial men/women) or [[gynoid]]s (artificial women), and [[cyborg]]s (also "[[bionic]] men/women", or humans with significant mechanical enhancements) have become a staple of science fiction. |
|||
Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction. |
|||
As early as 1982 people were confident that someday robots would:<ref> |
|||
"Robotics in practice: Future capabilities" |
|||
by [[Joseph F. Engelberger]]. |
|||
in "Electronic Servicing & Technology" magazine 1982 August. |
|||
</ref> |
|||
1. clean parts by removing [[molding flash]] |
|||
2. spray paint automobiles with absolutely no human presence |
|||
3. pack things in boxes—for example, orient and nest chocolate candies in candy boxes |
|||
4. make electrical [[cable harness]] |
|||
5. load trucks with boxes—a [[packing problem]] |
|||
6. handle soft goods, such as garments and shoes |
|||
7. shear sheep |
|||
8. [[prosthesis]] |
|||
9. cook fast food and work in other service industries |
|||
10. household robot. |
|||
The first reference in Western literature to mechanical servants appears in [[Homer]]'s ''[[Iliad]]''. In Book XVIII, [[Hephaestus]], god of fire, creates new armor for the hero Achilles, assisted by robots.<ref name="Iliad">{{cite web| access-date=21 November 2007| url= http://www.arts.cornell.edu/theatrearts/CTA/Program%20Notes/comic%20potential.asp| publisher= Cornell University| title = Comic Potential: Q&A with Director Stephen Cole|archive-url=https://web.archive.org/web/20090103103732/http://www.arts.cornell.edu/theatrearts/CTA/Program%20Notes/comic%20potential.asp|archive-date=3 January 2009|url-status=dead}}</ref> According to the [[E. V. Rieu|Rieu]] translation, "Golden maidservants hastened to help their master. They looked like real women and could not only speak and use their limbs but were endowed with intelligence and trained in handwork by the immortal gods." The words "robot" or "android" are not used to describe them, but they are nevertheless mechanical devices human in appearance. "The first use of the word Robot was in Karel Čapek's play R.U.R. (Rossum's Universal Robots) (written in 1920)". Writer Karel Čapek was born in Czechoslovakia (Czech Republic). |
|||
Generally such predictions are overly optimistic in timescale. |
|||
Possibly the most prolific author of the twentieth century was [[Isaac Asimov]] (1920–1992)<ref name=FreedProlific>{{cite book|editor-last=Freedman|editor-first=Carl|title=Conversations with Isaac Asimov|year=2005|publisher=Univ. Press of Mississippi|location=Jackson|isbn=978-1-57806-738-1|url=https://archive.org/details/isbn_9781578067381|url-access=registration|edition=1.|access-date=4 August 2011|page=vii|quote=... quite possibly the most prolific}}</ref> who published over five-hundred books.<ref name=Oakes500>{{cite book|last=Oakes|first=Elizabeth H.|title=American writers|year=2004|publisher=Facts on File|location=New York|isbn=978-0-8160-5158-8|url=https://archive.org/details/americanwriters0000oake|url-access=registration|quote=most prolific authors asimov.|access-date=4 August 2011|page=[https://archive.org/details/americanwriters0000oake/page/24 24]}}</ref> Asimov is probably best remembered for his science-fiction stories and especially those about robots, where he placed robots and their interaction with society at the center of many of his works.<ref>He wrote "over 460 books as well as thousands of articles and reviews", and was the "third most prolific writer of all time [and] one of the founding fathers of modern science fiction". {{cite book |title=Isaac Asimov: a life of the grand master of science fiction |url=https://books.google.com/books?id=EWbMiyS9v98C |isbn=978-0-7867-1518-3 |pages=1–2 |author=White, Michael |year=2005 |publisher=Carroll & Graf |access-date=25 September 2016 |archive-url=https://web.archive.org/web/20161205023302/https://books.google.com/books?id=EWbMiyS9v98C |archive-date=5 December 2016 |url-status=live }}</ref><ref>{{cite web|url=http://www.anu.edu.au/people/Roger.Clarke/SOS/Asimov.html |title=Asimov's Laws of Robotics – Implications for Information Technology |publisher=Australian National University/IEEE |author=R. Clarke |access-date=25 September 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080722022618/https://www.anu.edu.au/people/Roger.Clarke/SOS/Asimov.html |archive-date=22 July 2008 }}</ref> Asimov carefully considered the problem of the ideal set of instructions robots might be given to lower the risk to humans, and arrived at his [[Three Laws of Robotics]]: a robot may not injure a human being or, through inaction, allow a human being to come to harm; a robot must obey orders given it by human beings, except where such orders would conflict with the First Law; and a robot must protect its own existence as long as such protection does not conflict with the First or Second Law.<ref>{{cite web |last=Seiler |first=Edward |author2=Jenkins, John H. |url=http://www.asimovonline.com/asimov_FAQ.html |title=Isaac Asimov FAQ |publisher=Isaac Asimov Home Page |date=27 June 2008 |access-date=24 September 2008 |archive-url=https://web.archive.org/web/20120716233605/http://www.asimovonline.com/asimov_FAQ.html |archive-date=16 July 2012 |url-status=live }}</ref> These were introduced in his 1942 short story "Runaround", although foreshadowed in a few earlier stories. Later, Asimov added the Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm"; the rest of the laws are modified sequentially to acknowledge this. |
|||
=== Reading robot === |
|||
According to the ''Oxford English Dictionary,'' the first passage in Asimov's short story "[[Liar! (short story)|Liar!]]" (1941) that mentions the First Law is the earliest recorded use of the word ''[[robotics]]''. Asimov was not initially aware of this; he assumed the word already existed by analogy with ''mechanics,'' ''hydraulics,'' and other similar terms denoting branches of applied knowledge.<ref>{{cite book|author=White, Michael|title=Isaac Asimov: A Life of the Grand Master of Science Fiction|page=56|year=2005|publisher=Carroll & Graf|isbn=978-0-7867-1518-3}}</ref> |
|||
A literate or 'reading robot' named Marge has intelligence that comes from software. She can read newspapers, find and correct misspelled words, learn about banks like Barclays, and understand that some restaurants are better places to eat than others.<ref>Robot can read, learn like a human http://www.msnbc.msn.com/id/40534768/ns/technology_and_science-science</ref> |
|||
=== Robot competitions === |
|||
==Problems with implementing robots in society== |
|||
{{Main|Robot competition}} |
|||
{{Refimprove section|date=August 2011}} |
|||
Robots are used in a number of competitive events. [[Robot combat]] competitions have been popularized by television shows such as [[Robot Wars (TV series)|Robot Wars]] and [[BattleBots]], featuring mostly remotely controlled 'robots' that compete against each other directly using various weaponry, there are also amateur robot combat leagues active globally outside of the televised events. [[Micromouse]] events, in which autonomous robots compete to solve mazes or other obstacle courses are also held internationally. |
|||
[[Robot competition]]s are also often used within educational settings to introduce the concept of robotics to children such as the [[FIRST Robotics Competition]] in the US. |
|||
===Dangers and human harm=== |
|||
Marauding robots may have entertainment value, but unsafe use of robots constitutes an actual danger. A heavy industrial robot with powerful actuators and unpredictably complex behavior can cause harm, for instance by stepping on a human's foot or falling on a human. Most industrial robots operate inside a security fence which separates them from human workers, but not all. Four robot-caused deaths are those of Robert Williams, [[Kenji Urada]], Wayne Lucio, and an unnamed worker. Robert Williams was struck by a robotic arm at a casting plant in [[Flat Rock, Michigan]] on January 25, 1979.<ref>[http://news.google.com/newspapers?id=7KMyAAAAIBAJ&sjid=Bu8FAAAAIBAJ&pg=3301,87702&dq=flat-rock+williams+robot&hl=en $10 Million Awarded To Family Of U.S. Plant Worker Killed By Robot"], ''Ottawa Citizen'', August 11, 1983, p14</ref> [[Kenji Urada]], a 37-year-old Japanese factory worker, was killed in 1981; Urada was performing routine maintenance on the robot, but neglected to shut it down properly, and it pushed him into a [[grinding machine]].<ref>{{Cite news|url=http://www.economist.com/displaystory.cfm?story_id=7001829|title=Trust me, I'm a robot|publisher=[[The Economist]]|date=2006-06-08|accessdate=2007-04-30}}</ref> Wayne Lucio, a 31-year-old Frito-Lay worker, died when he tried to adjust a pallet when an Automatic Guided Vehicle that did not sense a forklift, pinned Lucio between the two.<ref>{{Cite news|url=http://www.fbherald.com/news/article_4efd518b-b306-50b5-8315-67d2ec622864.html|title=Fatality at Frito-Lay|publisher=Fort Bend Herald|date=2008-11-28|accessdate=2011-08-02}}</ref> An unnamed contractor died when his car was crushed by debris when an Automated Storage and Retrieval System (AS/RS) collapse ignited a fire that burned for three weeks and destroyed the building in which an estimated 108 million pounds of paper were stored.<ref>{{Cite news|url=http://www.jsonline.com/business/29466909.html|title=Jury finds in favor of Quad, insurer|publisher=Journal Sentinel, Inc|date=2007-09-28|accessdate=2011-08-02}}</ref> |
|||
=== |
=== Films === |
||
{{Category see also|Films about robots}} |
|||
[[Manuel De Landa]] has noted that "smart missiles" and autonomous bombs equipped with artificial perception can be considered robots, and they make some of their decisions autonomously. He believes this represents an important and dangerous trend in which humans are handing over important decisions to machines.<ref>*[[Manuel de Landa]], ''[[War in the Age of Intelligent Machines]]'', New York: Zone Books, 1991, 280 pages, Hardcover, ISBN 0-942299-76-0; Paperback, ISBN 0-942299-75-2.</ref> |
|||
Robots appear in many films. Most of the robots in cinema are fictional. Two of the most famous are [[R2-D2]] and [[C-3PO]] from the ''[[Star Wars]]'' franchise. |
|||
===Relationship to unemployment=== |
|||
{{further|Structural unemployment}} |
|||
Some analysts, such as Martin Ford, author of ''The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future''<ref name="Ford2009Lights">{{Ford 2009 The lights in the tunnel}}</ref> argue that robots and other forms of automation will ultimately result in significant [[unemployment]] as machines begin to match and exceed the capability of workers to perform most jobs.{{Citation needed|date=August 2011}} At present the negative impact is only on menial and repetitive jobs, and there is actually a positive impact on the number of jobs for highly skilled technicians, engineers, and [[roboticist|specialists]]. However, these highly skilled jobs are not sufficient in number to offset the greater decrease in employment among the general population, causing structural unemployment in which overall (net) unemployment rises.{{Citation needed|date=August 2011}} |
|||
=== Sex robots === |
|||
A recent example of human replacement involves Taiwanese technology company [[Foxconn]] who, in July 2011, announced a three year plan to replace workers with more robots. At present the company uses ten-thousand robots but will increase them to a million robots over a three year period.<ref name=XINFoxcon>{{cite news|title=Foxconn to replace workers with 1 million robots in 3 years|url=http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm|accessdate=4 August 2011|newspaper=Xinhuanet.com|date=30|author=Yan|month=July|year=2011}}</ref> |
|||
{{Main|Sex robot}} |
|||
The concept of humanoid [[sex robot]]s has drawn public attention and elicited debate regarding their supposed benefits and potential effects on society. Opponents argue that the introduction of such devices would be socially harmful, and demeaning to women and children,<ref name="bbc-sexrobots">{{cite news|url=https://www.bbc.com/news/technology-34118482|title=Intelligent machines: Call for a ban on robots designed as sex toys|date=15 September 2015|newspaper=BBC News|access-date=21 June 2018|archive-url=https://web.archive.org/web/20180630212424/https://www.bbc.com/news/technology-34118482|archive-date=30 June 2018|url-status=live}}</ref> while proponents cite their potential therapeutical benefits, particularly in aiding people with [[dementia]] or [[Depression (mood)|depression]].<ref>{{cite conference|last1=Abdollahi|first1=Hojjat|last2=Mollahosseini|first2=Ali|last3=Lane|first3=Josh T.|last4=Mahoor|first4=Mohammad H.|date=November 2017|title=A pilot study on using an intelligent life-like robot as a companion for elderly individuals with dementia and depression|conference=2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)|pages=541–546|arxiv=1712.02881|bibcode=2017arXiv171202881A|doi=10.1109/humanoids.2017.8246925|isbn=978-1-5386-4678-6|s2cid=1962455}}</ref> |
|||
=== Problems depicted in popular culture === |
|||
Service robots of different varieties including medical robots, underwater robots, surveillance robots, demolition robots and other types of robots that carry out a multitude of jobs are gaining in numbers. Service robots are everyday tools for mankind. They can clean |
|||
[[File:L'uomo meccanico 1.png|thumb|Italian movie ''[[The Mechanical Man]]'' (1921), the first film to have shown a battle between robots]] |
|||
floors, mow lawns and guard homes and will also assist old and handicapped people, do some surgeries, inspect pipes and sites that are hazardous to people, fight fires and defuse bombs.<ref>http://www.sciencedaily.com/releases/2004/10/041021085857.htm retrieved September-03-11</ref> |
|||
Fears and concerns about robots have been repeatedly expressed in a wide range of books and films. A common theme is the development of a master race of conscious and highly intelligent robots, motivated to take over or destroy the human race. ''[[Frankenstein]]'' (1818), often called the first science fiction novel, has become synonymous with the theme of a robot or android advancing beyond its creator. |
|||
Past responses to train humans for higher levels of technological work may have increased human labor jobs for unskilled workers in general and skilled workers also but that method does not seem to be viable now in industrial societies. Humans collecting on a toll road for instance in some countries are replaced by robots doing that job and though it may be an idea for a trained worker, say perhaps the former human toll taker doing the job to fix and program the new toll-collecting robots, it never really works out that way since not as many people are needed to make or program the robots as the robots replace.<ref>http://edition.cnn.com/2011/OPINION/09/07/rushkoff.jobs.obsolete/index.html?hpt=hp_bn1 Retrieved September-09-11</ref> |
|||
Other works with similar themes include ''[[The Mechanical Man]]'', ''[[The Terminator]]'', ''[[Runaway (1984 film)|Runaway]]'', ''[[RoboCop]]'', the [[Replicator (Stargate)|Replicators in ''Stargate'']], the [[Cylon (Battlestar Galactica)|Cylons]] in ''[[Battlestar Galactica (2004 TV series)|Battlestar Galactica]]'', the [[Cybermen]] and [[Dalek]]s in ''[[Doctor Who]]'', ''[[The Matrix]]'', ''[[Enthiran]]'' and ''[[I, Robot (film)|I, Robot]]''. Some fictional robots are programmed to kill and destroy; others gain superhuman intelligence and abilities by upgrading their own software and hardware. Examples of popular media where the robot becomes evil are ''[[2001: A Space Odyssey]]'', ''[[Red Planet (film)|Red Planet]]'' and ''[[Enthiran]]''. |
|||
==Robots in popular culture== |
|||
The 2017 game ''[[Horizon Zero Dawn]]'' explores themes of robotics in warfare, [[robot ethics]], and the [[AI control problem]], as well as the positive or negative impact such technologies could have on the environment. |
|||
===Literature=== |
|||
{{Main|Robots in literature}} |
|||
{{See also|List of fictional robots and androids}} |
|||
Robotic characters, [[android (robot)|androids]] (artificial men/women) or [[gynoid]]s (artificial women), and [[cyborg]]s (also "[[bionic]] men/women", or humans with significant mechanical enhancements) have become a staple of science fiction. |
|||
Another common theme is the reaction, sometimes called the "[[uncanny valley]]", of unease and even revulsion at the sight of robots that mimic humans too closely.<ref name="uncanny">{{cite conference |url=http://www.macdorman.com/kfm/writings/pubs/Ho2007EmotionUncanny.pdf |first=C. C. |last=Ho |author2=MacDorman, K. F. |author3=Pramono, Z. A. D. |year=2008 |title=Human emotion and the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings |access-date=24 September 2008 |conference= 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI) |archive-url=https://web.archive.org/web/20080911135038/http://www.macdorman.com/kfm/writings/pubs/Ho2007EmotionUncanny.pdf |archive-date=11 September 2008 |url-status=live }}</ref> |
|||
The first reference in Western literature to mechanical servants appears in [[Homer]]'s ''[[Iliad]]''. In Book XVIII, [[Hephaestus]], god of fire, creates new armor for the hero Achilles, assisted by robots.<ref name="Iliad">{{Cite web |
|||
| accessdate=2007-11-21 |
|||
| url= http://www.arts.cornell.edu/theatrearts/CTA/Program%20Notes/comic%20potential.asp |
|||
| publisher= Cornell University |
|||
| title = Comic Potential : Q&A with Director Stephen Cole |
|||
}}</ref> According to the [[E. V. Rieu|Rieu]] translation, "Golden maidservants hastened to help their master. They looked like real women and could not only speak and use their limbs but were endowed with intelligence and trained in handwork by the immortal gods." Of course, the words "robot" or "android" are not used to describe them, but they are nevertheless mechanical devices human in appearance. "The first use of the word Robot was in Karel Čapek's play R.U.R. (Rossum's Universal Robots) (written in 1920)". Writer Karel Čapek was born in Czechoslovakia (Czech Republic). |
|||
More recently, fictional representations of artificially intelligent robots in films such as ''[[A.I. Artificial Intelligence]]'' and ''[[Ex Machina (film)|Ex Machina]]'' and the 2016 TV adaptation of ''[[Westworld (TV Series)|Westworld]]'' have engaged audience sympathy for the robots themselves. |
|||
Possibly the most prolific authors of the twentieth century was [[Isaac Asimov]] (1920–1992)<ref name=FreedProlific>{{cite book|last=Freedman|first=ed. by Carl|title=Conversations with Isaac Asimov|year=2005|publisher=Univ. Press of Mississippi|location=Jackson|isbn=978-1-57806-738-1|url=http://books.google.com/?id=6Lb0zPJcYOwC&pg=PA24&dq=most+prolific+authors+asimov#v=onepage&q=most%20prolific%20authors%20asimov&f=false|edition=1.|accessdate=4 August 2011|page=vii|quote=... quite possibly the most prolific}}</ref> who published over five-hundred books.<ref name=Oakes500>{{cite book|last=Oakes|first=Elizabeth H.|title=American writers|year=2004|publisher=Facts on File|location=New York|isbn=978-0-8160-5158-8|url=http://books.google.com/?id=6Lb0zPJcYOwC&pg=PA24&dq=most+prolific+authors+asimov#v=onepage&q=most%20prolific%20authors%20asimov&f=false|accessdate=4 August 2011|page=24}}</ref> Asimov is probably best remembered for his science-fiction stories and especially those about robots, where he placed robots and their interaction with society at the center of many of his works.<ref>He wrote "over 460 books as well as thousands of articles and reviews", and was the "third most prolific writer of all time [and] one of the founding fathers of modern science fiction". {{Cite book|title=Isaac Asimov: a life of the grand master of science fiction |url=http://books.google.com/?id=EWbMiyS9v98C |isbn=0-7867-1518-9 |pages=1–2 |author=White, Michael |year=2005 |publisher=Carroll & Graf}}</ref><ref>{{Cite web|url=http://www.anu.edu.au/people/Roger.Clarke/SOS/Asimov.html|title=Asimov's Laws of Robotics - Implications for Information Technology|publisher=Australian National University/IEEE|author=R. Clarke|accessdate=2008-09-25}}</ref> Asimov carefully considered the problem of the ideal set of instructions robots might be given in order to lower the risk to humans, and arrived at his [[Three Laws of Robotics]]: a robot may not injure a human being or, through inaction, allow a human being to come to harm; a robot must obey orders given to it by human beings, except where such orders would conflict with the First Law; and a robot must protect its own existence as long as such protection does not conflict with the First or Second Law.<ref>{{Cite web |last=Seiler |first=Edward |coauthors=Jenkins, John H. |url=http://www.asimovonline.com/asimov_FAQ.html |title=Isaac Asimov FAQ |publisher=Isaac Asimov Home Page |date=2008-06-27 |accessdate=2008-09-24}}</ref> These were introduced in his 1942 short story "Runaround", although foreshadowed in a few earlier stories. Later, Asimov added the Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm"; the rest of the laws are modified sequentially to acknowledge this. |
|||
[[File:Theatre Guild, R U R, Act 3.jpg|thumb|Final scene of [[R.U.R.]], Act II]] |
|||
According to the ''Oxford English Dictionary,'' the first passage in Asimov's short story "[[Liar!]]" (1941) that mentions the First Law is the earliest recorded use of the word ''[[robotics]]''. Asimov was not initially aware of this; he assumed the word already existed by analogy with ''mechanics,'' ''hydraulics,'' and other similar terms denoting branches of applied knowledge.<ref>{{Cite book|author=White, Michael|title=Isaac Asimov: A Life of the Grand Master of Science Fiction|pages=56|year=2005|publisher=Carroll & Graf|isbn=0-7867-1518-9}}</ref> |
|||
Emancipation or revolution as a theme in relation to robots was already present in the term coining play of [[R.U.R.]]. |
|||
===Problems depicted in popular culture=== |
|||
The [[Star Wars]] universe for example has several instances of droid revolts. |
|||
Fears and concerns about robots have been repeatedly expressed in a wide range of books and films. A common theme is the development of a master race of conscious and highly intelligent robots, motivated to take over or destroy the human race. (See ''[[The Terminator]], [[Runaway (1984 film)|Runaway]], [[Blade Runner]], [[RoboCop]]'', the [[Replicator (Stargate)|Replicators in ''Stargate'']], the [[Cylon (Battlestar Galactica)|Cylons]] in ''[[Battlestar Galactica (2004 TV series)|Battlestar Galactica]]'', ''[[The Matrix]]'', ''[[Enthiran]]'' and ''[[I, Robot (film)|I, Robot]]''.) Some fictional robots are programmed to kill and destroy; others gain superhuman intelligence and abilities by upgrading their own software and hardware. Examples of popular media where the robot becomes evil are ''[[2001: A Space Odyssey]]'', ''[[Red Planet (film)|Red Planet]]'' and ''[[Enthiran]]''. Another common theme is the reaction, sometimes called the "[[uncanny valley]]", of unease and even revulsion at the sight of robots that mimic humans too closely.<ref name="uncanny">{{Cite journal|url=http://www.macdorman.com/kfm/writings/pubs/Ho2007EmotionUncanny.pdf |first=C. C. |last=Ho |coauthors=MacDorman, K. F.; Pramono, Z. A. D. |year=2008 |title=Human emotion and the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings| accessdate=2008-09-24 |work=Proceedings of the Third ACM/IEEE International Conference on Human-Robot Interaction. March 11–14. Amsterdam.}}</ref> ''[[Frankenstein]]'' (1818), often called the first science fiction novel, has become synonymous with the theme of a robot or monster advancing beyond its creator. In the TV show, Futurama, the robots are portrayed as humanoid figures that live alongside humans, not as robotic butlers. They still work in industry, but these robots carry out daily lives. Other problems may include events pertaining to robot surrogates (i.e. the movie ''[[Surrogates (film)|Surrogates]]'') where tissue of living organisms is interchanged with robotic systems. These problems can leave many possibilities where electronic viruses or an electro magnetic pulse (EMP) can destroy not only the robot but kill the host/operator as well. |
|||
The [[Dune series]] on the other hand has the premise of humans revolting against ''thinking machines'' and finding human-biological alternatives to them. |
|||
==See also== |
== See also == |
||
{{Portal|Robotics}} |
|||
<!-- Please add related topics to [[Outline of robotics]] and [[Index of robotics articles]] --> |
<!-- Please add related topics to [[Outline of robotics]] and [[Index of robotics articles]] --> |
||
{{Div col|colwidth=18em}} |
|||
* [[Outline of robotics]] |
|||
* [[Glossary of robotics]] |
|||
* [[Index of robotics articles]] |
* [[Index of robotics articles]] |
||
* [[Outline of robotics]] |
|||
* [[Artificial intelligence]] |
|||
* [[William Grey Walter]] |
|||
=== Specific robotics concepts === |
|||
==References== |
|||
* [[Robot locomotion]] |
|||
{{Reflist|2}} |
|||
* [[Simultaneous localization and mapping]] |
|||
* [[Tactile sensor]] |
|||
* [[Teleoperation]] |
|||
* [[Uncanny valley]] |
|||
* [[Von Neumann architecture|von Neumann machine]] |
|||
* [[Wake-up robot problem]] |
|||
* [[Neuromorphic engineering]] |
|||
=== Robotics methods and categories === |
|||
==Further reading== |
|||
* [[Cognitive robotics]] |
|||
*Glaser, Horst Albert and Rossbach, Sabine: The Artificial Human, Frankfurt/M., Bern, New York 2011 [http://www.amazon.com/The-Artificial-Human-Tragical-History/dp/3631578083/ref=sr_1_1?s=books&ie=UTF8&qid=1335701088&sr=1-1 "The Artificial Human"] |
|||
* [[Companion robot]] |
|||
*TechCast Article Series, Jason Rupinski and Richard Mix, [http://www.techcast.org/Upload/PDFs/050804104155TC.androids2.pdf "Public Attitudes to Androids: Robot Gender, Tasks, & Pricing"] |
|||
* [[Domestic robot]] |
|||
* Cheney, Margaret [1989:123] (1981). ''Tesla, Man Out of Time''. Dorset Press. New York. ISBN 0-88029-419-1 |
|||
* [[Epigenetic robotics]] |
|||
* Craig, J.J. (2005). Introduction to Robotics. Pearson Prentice Hall. Upper Saddle River, NJ. |
|||
* [[Evolutionary robotics]] |
|||
* [[Humanoid robot]] |
|||
* [[Autonomous robot]] |
|||
* [[Swarm robotics]] |
|||
* [[Microbotics]] |
|||
* [[:Category:Robot control|Robot control]] |
|||
=== Specific robots and devices === |
|||
* [[AIBO]] |
|||
* [[Autonomous spaceport drone ship]] |
|||
* [[Driverless car]] |
|||
* [[Friendly Robotics]] |
|||
* [[Lely Juno family]] |
|||
* [[Liquid handling robot]] |
|||
* [[Paro (robot)]] |
|||
* [[PatrolBot]] |
|||
* [[RoboBee]] |
|||
* [[Roborior]] |
|||
* [[Robot App Store]] |
|||
===Other related articles=== |
|||
* [[Automated guided vehicle]] |
|||
* [[Animatronics]] |
|||
* [[Remote control vehicle]] |
|||
* [[Robot Award]] |
|||
* [[Robot economics]] |
|||
* [[Robotoid]] |
|||
* [[Unmanned vehicle]] |
|||
* [[Hybrot]] |
|||
{{Div col end}} |
|||
== Further reading == |
|||
* {{cite web |title=Researchers behind the world's first living robot have found a way to make it reproduce — by shaping it like Pac-Man |date=29 Nov 2021 |first=Sarah |last=Al-Arshani |website=Business Insider |url=https://www.businessinsider.com/researchers-working-on-worlds-first-living-robot-reproduce-itself-2021-11}} |
|||
* [https://www.cnn.com/videos/business/2019/06/06/uk-oxford-university-ai-da-humanoid-robot-artist-ge-lon-orig.cnn-business/video/playlists/business-robots/ See this humanoid robot artist sketch drawings from sight (CNN, Video, 2019)] |
|||
* Margolius, Ivan. 'The Robot of Prague', Newsletter, The Friends of Czech Heritage no. 17, Autumn 2017, pp. 3 – 6. https://czechfriends.net/images/RobotsMargoliusJul2017.pdf {{Webarchive|url=https://web.archive.org/web/20170911115134/https://czechfriends.net/images/RobotsMargoliusJul2017.pdf |date=11 September 2017 }} |
|||
* Glaser, Horst Albert and Rossbach, Sabine: The Artificial Human, Frankfurt/M., Bern, New York 2011 [https://www.amazon.com/Artificial-Human-Tragical-History/dp/3631578083 "A Tragical History"] |
|||
* [[Lee Gutkind|Gutkind, L]]. (2006). ''[[Almost Human: Making Robots Think]]''. New York: W. W. Norton & Company, Inc. |
* [[Lee Gutkind|Gutkind, L]]. (2006). ''[[Almost Human: Making Robots Think]]''. New York: W. W. Norton & Company, Inc. |
||
* Craig, J.J. (2005). ''Introduction to Robotics'', Pearson Prentice Hall. Upper Saddle River, NJ. |
|||
* [[Needham, Joseph]] (1986). ''[[Science and Civilization in China]]: Volume 2''. Taipei: Caves Books Ltd. |
|||
* Sotheby's New York. The Tin Toy Robot Collection of Matt Wyse, (1996) |
|||
* Tsai, L. W. (1999). ''Robot Analysis''. Wiley. New York. |
* Tsai, L. W. (1999). ''Robot Analysis''. Wiley. New York. |
||
* Sotheby's New York. ''The Tin Toy Robot Collection of Matt Wyse'' (1996) |
|||
* [[Manuel de Landa|DeLanda, Manuel]]. ''[[War in the Age of Intelligent Machines]]''. 1991. Swerve. New York. |
* [[Manuel de Landa|DeLanda, Manuel]]. ''[[War in the Age of Intelligent Machines]]''. 1991. Swerve. New York. |
||
* [[Needham, Joseph]] (1986). ''[[Science and Civilization in China]]: Volume 2''. Taipei: Caves Books Ltd. |
|||
* [http://www3.interscience.wiley.com/journal/117946193/grouphome/home.html Journal of Field Robotics] |
|||
* Cheney, Margaret [1989:123] (1981). ''Tesla, Man Out of Time''. Dorset Press. New York. {{ISBN|0-88029-419-1}} |
|||
* Čapek, Karel (1920). ''[https://web.archive.org/web/20071019221208/http://ebooks.adelaide.edu.au/c/capek/karel/rur/complete.html R.U.R.] '', Aventinum, Prague. |
|||
* TechCast Article Series, Jason Rupinski and Richard Mix, [https://web.archive.org/web/20090513032434/http://www.techcast.org/Upload/PDFs/050804104155TC.androids2.pdf "Public Attitudes to Androids: Robot Gender, Tasks, & Pricing"] |
|||
== |
== References == |
||
{{Reflist}} |
|||
== External links == |
|||
{{Wikiquote}} |
|||
<!-- ATTENTION! Please do not add external links without discussion and consensus on the talk page. Undiscussed links will be removed. --> |
<!-- ATTENTION! Please do not add external links without discussion and consensus on the talk page. Undiscussed links will be removed. --> |
||
* [http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1556-4967 Journal of Field Robotics] |
|||
{{Sister project links|wikt=robot|commons=Robots|b=Robotics|n=no|q=no|s=no|v=Anthropomorphic Robotics|species=no}} |
|||
* {{dmoz|Computers/Robotics|Robotics}} |
|||
;Research |
|||
* [http://www.ifrr.org International Foundation of Robotics Research (IFRR)] |
|||
* [http://www.ijrr.org International Journal of Robotics Research (IJRR)] |
|||
* [http://www.ieee-ras.org Robotics and Automation Society (RAS)] at [[Institute of Electrical and Electronics Engineers|IEEE]] |
|||
* [http://kn.theiet.org/communities/robotics/index.cfm Robotics Network] at [[Institution of Engineering and Technology|IET]] |
|||
* [http://robotics.nasa.gov Robotics Division] at [[NASA]] |
|||
*[http://robotics.eas.asu.edu/ Human Machine Integration Laboratory] at [[Arizona State University]] |
|||
{{Robotics}} |
{{Robotics}} |
||
{{Machines}} |
|||
{{Science fiction}} |
{{Science fiction}} |
||
{{Subject bar|wikt=robot|commons=Robots|b=Robotics|n=no|q=no|s=no|v=Anthropomorphic Robotics|species=no}} |
|||
{{Authority control}} |
|||
[[Category:Robotics| |
[[Category:Robotics|*]] |
||
[[Category:Robots| ]] |
[[Category:Robots| ]] |
||
[[Category:Czech |
[[Category:Czech words and phrases]] |
||
[[Category: |
[[Category:Science in popular culture]] |
||
[[Category:1920s neologisms]] |
|||
{{Link FA|ar}} |
|||
[[am:ሮቦት]] |
|||
[[ang:Searuþræl]] |
|||
[[ar:روبوت]] |
|||
[[an:Robot]] |
|||
[[az:Robot]] |
|||
[[bn:রোবট]] |
|||
[[zh-min-nan:Robot]] |
|||
[[be:Робат]] |
|||
[[be-x-old:Робат]] |
|||
[[bg:Робот]] |
|||
[[bs:Robot]] |
|||
[[br:Robot]] |
|||
[[ca:Robot]] |
|||
[[cs:Robot]] |
|||
[[cy:Robot]] |
|||
[[da:Robot]] |
|||
[[de:Roboter]] |
|||
[[et:Robot]] |
|||
[[el:Ρομπότ]] |
|||
[[es:Robot]] |
|||
[[eo:Roboto]] |
|||
[[eu:Robot]] |
|||
[[fa:ربات]] |
|||
[[fiu-vro:Robot]] |
|||
[[hif:Robot]] |
|||
[[fr:Robot]] |
|||
[[gl:Robot]] |
|||
[[gan:機械人]] |
|||
[[ko:로봇]] |
|||
[[hy:Ռոբոտ]] |
|||
[[hi:रोबोट]] |
|||
[[hr:Robot]] |
|||
[[io:Roboto]] |
|||
[[id:Robot]] |
|||
[[is:Vélmenni]] |
|||
[[it:Robot]] |
|||
[[he:רובוט]] |
|||
[[jv:Robot]] |
|||
[[ka:რობოტი]] |
|||
[[kk:Робот]] |
|||
[[la:Robotum]] |
|||
[[lv:Robots]] |
|||
[[lt:Robotas]] |
|||
[[hu:Robot]] |
|||
[[mk:Робот]] |
|||
[[ml:റോബോട്ട്]] |
|||
[[xmf:რობოტი]] |
|||
[[ms:Robot]] |
|||
[[my:စက်ရုပ်]] |
|||
[[nl:Robot]] |
|||
[[ne:रोबोट]] |
|||
[[ja:ロボット]] |
|||
[[no:Robot]] |
|||
[[nn:Robot]] |
|||
[[nrm:Robot]] |
|||
[[oc:Robòt]] |
|||
[[uz:Robot]] |
|||
[[pa:ਰੋਬੋਟ]] |
|||
[[pnb:روبوٹ]] |
|||
[[pl:Robot]] |
|||
[[pt:Robô]] |
|||
[[ro:Robot]] |
|||
[[ru:Робот]] |
|||
[[sco:Robot]] |
|||
[[sq:Roboti]] |
|||
[[simple:Robot]] |
|||
[[sk:Robot]] |
|||
[[sl:Robot]] |
|||
[[so:Robot]] |
|||
[[sr:Робот]] |
|||
[[sh:Robot]] |
|||
[[su:Robot]] |
|||
[[fi:Robotti]] |
|||
[[sv:Robot]] |
|||
[[ta:தானியங்கி]] |
|||
[[te:మరమనిషి]] |
|||
[[th:หุ่นยนต์]] |
|||
[[tr:Robot]] |
|||
[[uk:Робот]] |
|||
[[ur:روبالہ]] |
|||
[[ug:روبوت]] |
|||
[[vi:Robot]] |
|||
[[war:Robot]] |
|||
[[yi:ראבאט]] |
|||
[[zh-yue:機械人]] |
|||
[[zh:机器人]] |
Latest revision as of 02:41, 22 December 2024
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically.[2] A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Robots can be autonomous or semi-autonomous and range from humanoids such as Honda's Advanced Step in Innovative Mobility (ASIMO) and TOSY's TOSY Ping Pong Playing Robot (TOPIO) to industrial robots, medical operating robots, patient assist robots, dog therapy robots, collectively programmed swarm robots, UAV drones such as General Atomics MQ-1 Predator, and even microscopic nanorobots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own. Autonomous things are expected to proliferate in the future, with home robotics and the autonomous car as some of the main drivers.[3]
The branch of technology that deals with the design, construction, operation, and application of robots,[4] as well as computer systems for their control, sensory feedback, and information processing is robotics. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, or cognition. Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics. These robots have also created a newer branch of robotics: soft robotics.
From the time of ancient civilization, there have been many accounts of user-configurable automated devices and even automata, resembling humans and other animals, such as animatronics, designed primarily as entertainment. As mechanical techniques developed through the Industrial age, there appeared more practical applications such as automated machines, remote-control and wireless remote-control.
The term comes from a Slavic root, robot-, with meanings associated with labor. The word "robot" was first used to denote a fictional humanoid in a 1920 Czech-language play R.U.R. (Rossumovi Univerzální Roboti – Rossum's Universal Robots) by Karel Čapek, though it was Karel's brother Josef Čapek who was the word's true inventor.[5][6][7] Electronics evolved into the driving force of development with the advent of the first electronic autonomous robots created by William Grey Walter in Bristol, England in 1948, as well as Computer Numerical Control (CNC) machine tools in the late 1940s by John T. Parsons and Frank L. Stulen.
The first commercial, digital and programmable robot was built by George Devol in 1954 and was named the Unimate. It was sold to General Motors in 1961 where it was used to lift pieces of hot metal from die casting machines at the Inland Fisher Guide Plant in the West Trenton section of Ewing Township, New Jersey.[8]
Robots have replaced humans[9] in performing repetitive and dangerous tasks which humans prefer not to do, or are unable to do because of size limitations, or which take place in extreme environments such as outer space or the bottom of the sea. There are concerns about the increasing use of robots and their role in society. Robots are blamed for rising technological unemployment as they replace workers in increasing numbers of functions.[10] The use of robots in military combat raises ethical concerns. The possibilities of robot autonomy and potential repercussions have been addressed in fiction and may be a realistic concern in the future.
Summary
There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to possess some or all of the following abilities and functions: accept electronic programming, process data or physical perceptions electronically, operate autonomously to some degree, move around, operate physical parts of itself or physical processes, sense and manipulate their environment, and exhibit intelligent behavior, especially behavior which mimics humans or other animals.[11][12]
The word robot can refer to both physical robots and virtual software agents, but the latter are usually referred to as bots.[13] Related to the concept of a robot is the field of synthetic biology, which studies entities whose nature is more comparable to living things than to machines.
Simpler automated machines are called automatons, like animatronics, often made to resemble humans or animals. Humanoid robots that resemble humans esthetically, possibly even organically, are called androids, while android can be shortened to droid, referring to robots with a broader likeness. On the other hand a human that is augmented with artificial machines is called a cyborg, which is a particular type of transhuman.
History
Early beginnings
Many ancient mythologies, and most modern religions include artificial people, such as the mechanical servants built by the Greek god Hephaestus[14] (Vulcan to the Romans), the clay golems of Jewish legend and clay giants of Norse legend, and Galatea, the mythical statue of Pygmalion that came to life. Since circa 400 BC, myths of Crete include Talos, a man of bronze who guarded the island from pirates.
In the 4th century BC, the Greek mathematician Archytas of Tarentum postulated a mechanical steam-operated bird he called "The Pigeon".[15] The Greek engineer Ctesibius (c. 270 BC) "applied a knowledge of pneumatics and hydraulics to produce the first organ and water clocks with moving figures."[16]: 2 [17] Philo of Byzantium described a washstand automaton. Hero of Alexandria (10–70 AD), a Greek mathematician and inventor, created numerous user-configurable automated devices, and described machines powered by air pressure, steam and water, including a "speaking" automaton.[18]
In ancient China, the 3rd-century text of the Lie Zi describes an account of humanoid automata, involving a much earlier encounter between Chinese emperor King Mu of Zhou and a mechanical engineer known as Yan Shi, an 'artificer'.[19] Yan Shi proudly presented the king with a life-size, human-shaped figure of his mechanical 'handiwork' made of leather, wood, and artificial organs.[19] There are also accounts of flying automata in the Han Fei Zi and other texts, which attributes the 5th century BC Mohist philosopher Mozi and his contemporary Lu Ban with the invention of artificial wooden birds (ma yuan) that could successfully fly.[20]
In 1066, the Chinese inventor Su Song built a water clock in the form of a tower which featured mechanical figurines which chimed the hours.[21][22][23] His mechanism had a programmable drum machine with pegs (cams) that bumped into little levers that operated percussion instruments. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.[23]
Samarangana Sutradhara, a Sanskrit treatise by Bhoja (11th century), includes a chapter about the construction of mechanical contrivances (automata), including mechanical bees and birds, fountains shaped like humans and animals, and male and female dolls that refilled oil lamps, danced, played instruments, and re-enacted scenes from Hindu mythology.[24][25][26] The 11th century Lokapannatti tells of how the Buddha's relics were protected by mechanical robots (bhuta vahana yanta), from the kingdom of Roma visaya (Rome); until they were disarmed by King Ashoka.[27]
13th century Muslim scientist Ismail al-Jazari created several automated devices. He built automated moving peacocks driven by hydropower.[28] He also invented the earliest known automatic gates, which were driven by hydropower,[29] created automatic doors as part of one of his elaborate water clocks.[30] One of al-Jazari's humanoid automata was a waitress that could serve water, tea or drinks. The drink was stored in a tank with a reservoir from where the drink drips into a bucket and, after seven minutes, into a cup, after which the waitress appears out of an automatic door serving the drink.[31] Al-Jazari invented a hand washing automaton incorporating a flush mechanism now used in modern flush toilets. It features a female humanoid automaton standing by a basin filled with water. When the user pulls the lever, the water drains and the female automaton refills the basin.[16]
Mark E. Rosheim summarizes the advances in robotics made by Muslim engineers, especially al-Jazari, as follows:
Unlike the Greek designs, these Arab examples reveal an interest, not only in dramatic illusion, but in manipulating the environment for human comfort. Thus, the greatest contribution the Arabs made, besides preserving, disseminating and building on the work of the Greeks, was the concept of practical application. This was the key element that was missing in Greek robotic science.[16]: 9
In the 14th century, the coronation of Richard II of England featured an automata angel.[33]
In Renaissance Italy, Leonardo da Vinci (1452–1519) sketched plans for a humanoid robot around 1495. Da Vinci's notebooks, rediscovered in the 1950s, contained detailed drawings of a mechanical knight now known as Leonardo's robot, able to sit up, wave its arms and move its head and jaw.[34] The design was probably based on anatomical research recorded in his Vitruvian Man. It is not known whether he attempted to build it. According to Encyclopædia Britannica, Leonardo da Vinci may have been influenced by the classic automata of al-Jazari.[28]
In Japan, complex animal and human automata were built between the 17th to 19th centuries, with many described in the 18th century Karakuri zui (Illustrated Machinery, 1796). One such automaton was the karakuri ningyō, a mechanized puppet.[35] Different variations of the karakuri existed: the Butai karakuri, which were used in theatre, the Zashiki karakuri, which were small and used in homes, and the Dashi karakuri which were used in religious festivals, where the puppets were used to perform reenactments of traditional myths and legends.
In France, between 1738 and 1739, Jacques de Vaucanson exhibited several life-sized automatons: a flute player, a pipe player and a duck. The mechanical duck could flap its wings, crane its neck, and swallow food from the exhibitor's hand, and it gave the illusion of digesting its food by excreting matter stored in a hidden compartment.[36] About 30 years later in Switzerland the clockmaker Pierre Jaquet-Droz made several complex mechanical figures that could write and play music. Several of these devices still exist and work.[37]
Remote-controlled systems
Remotely operated vehicles were demonstrated in the late 19th century in the form of several types of remotely controlled torpedoes. The early 1870s saw remotely controlled torpedoes by John Ericsson (pneumatic), John Louis Lay (electric wire guided), and Victor von Scheliha (electric wire guided).[38]
The Brennan torpedo, invented by Louis Brennan in 1877, was powered by two contra-rotating propellers that were spun by rapidly pulling out wires from drums wound inside the torpedo. Differential speed on the wires connected to the shore station allowed the torpedo to be guided to its target, making it "the world's first practical guided missile".[39] In 1897 the British inventor Ernest Wilson was granted a patent for a torpedo remotely controlled by "Hertzian" (radio) waves[40][41] and in 1898 Nikola Tesla publicly demonstrated a wireless-controlled torpedo that he hoped to sell to the US Navy.[42][43]
In 1903, the Spanish engineer Leonardo Torres Quevedo demonstrated a radio control system called Telekino at the Paris Academy of Sciences,[44] which he wanted to use to control an airship of his own design. He obtained several patents for the system in other countries.[45][46] Unlike previous 'on/off' techniques, Torres established a method for controlling any mechanical or electrical device with different states of operation.[47] The Telekino remotely controlled a tricycle in 1904, considered the first case of an unmanned ground vehicle, and an electric boat with a crew in 1906, which was controlled at a distance over 2 km.[48]
Archibald Low, known as the "father of radio guidance systems" for his pioneering work on guided rockets and planes during the First World War. In 1917, he demonstrated a remote controlled aircraft to the Royal Flying Corps and in the same year built the first wire-guided rocket.
Early robots
In 1928, one of the first humanoid robots, Eric, was exhibited at the annual exhibition of the Model Engineers Society in London, where it delivered a speech. Invented by W. H. Richards, the robot's frame consisted of an aluminium body of armour with eleven electromagnets and one motor powered by a twelve-volt power source. The robot could move its hands and head and could be controlled through remote control or voice control.[49] Both Eric and his "brother" George toured the world.[50]
Westinghouse Electric Corporation built Televox in 1926; it was a cardboard cutout connected to various devices which users could turn on and off. In 1939, the humanoid robot known as Elektro was debuted at the 1939 New York World's Fair.[51][52] Seven feet tall (2.1 m) and weighing 265 pounds (120.2 kg), it could walk by voice command, speak about 700 words (using a 78-rpm record player), smoke cigarettes, blow up balloons, and move its head and arms. The body consisted of a steel gear, cam and motor skeleton covered by an aluminum skin. In 1928, Japan's first robot, Gakutensoku, was designed and constructed by biologist Makoto Nishimura.
The German V-1 flying bomb was equipped with systems for automatic guidance and range control, flying on a predetermined course (which could include a 90-degree turn) and entering a terminal dive after a predetermined distance. It was reported as being a 'robot' in contemporary descriptions[53]
Modern autonomous robots
The first electronic autonomous robots with complex behaviour were created by William Grey Walter of the Burden Neurological Institute at Bristol, England in 1948 and 1949. He wanted to prove that rich connections between a small number of brain cells could give rise to very complex behaviors – essentially that the secret of how the brain worked lay in how it was wired up. His first robots, named Elmer and Elsie, were constructed between 1948 and 1949 and were often described as tortoises due to their shape and slow rate of movement. The three-wheeled tortoise robots were capable of phototaxis, by which they could find their way to a recharging station when they ran low on battery power.
Walter stressed the importance of using purely analogue electronics to simulate brain processes at a time when his contemporaries such as Alan Turing and John von Neumann were all turning towards a view of mental processes in terms of digital computation. His work inspired subsequent generations of robotics researchers such as Rodney Brooks, Hans Moravec and Mark Tilden. Modern incarnations of Walter's turtles may be found in the form of BEAM robotics.[54]
The first digitally operated and programmable robot was invented by George Devol in 1954 and was ultimately called the Unimate. This ultimately laid the foundations of the modern robotics industry.[55] Devol sold the first Unimate to General Motors in 1960, and it was installed in 1961 in a plant in Trenton, New Jersey to lift hot pieces of metal from a die casting machine and stack them.[56]
The first palletizing robot was introduced in 1963 by the Fuji Yusoki Kogyo Company.[57] In 1973, a robot with six electromechanically driven axes was patented[58][59][60] by KUKA robotics in Germany, and the programmable universal manipulation arm was invented by Victor Scheinman in 1976, and the design was sold to Unimation.
Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. They are also employed for jobs which are too dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory research, and mass production of consumer and industrial goods.[61]
Future development and trends
External videos | |
---|---|
Atlas, The Next Generation |
Various techniques have emerged to develop the science of robotics and robots. One method is evolutionary robotics, in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is developmental robotics, which tracks changes and development within a single robot in the areas of problem-solving and other functions. Another new type of robot is just recently introduced which acts both as a smartphone and robot and is named RoboHon.[62]
As robots become more advanced, eventually there may be a standard computer operating system designed mainly for robots. Robot Operating System (ROS) is an open-source software set of programs being developed at Stanford University, the Massachusetts Institute of Technology, and the Technical University of Munich, Germany, among others. ROS provides ways to program a robot's navigation and limbs regardless of the specific hardware involved. It also provides high-level commands for items like image recognition and even opening doors. When ROS boots up on a robot's computer, it would obtain data on attributes such as the length and movement of robots' limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a "Windows for robots" system with its Robotics Developer Studio, which has been available since 2007.[63]
Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry.[64]
Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction.[65][66] As early as 1982 people were confident that someday robots would:[67] 1. Clean parts by removing molding flash 2. Spray paint automobiles with absolutely no human presence 3. Pack things in boxes—for example, orient and nest chocolate candies in candy boxes 4. Make electrical cable harness 5. Load trucks with boxes—a packing problem 6. Handle soft goods, such as garments and shoes 7. Shear sheep 8. Be used as prostheses 9. Cook fast food and work in other service industries 10. Work as a household robot.
Generally such predictions are overly optimistic in timescale.
New functionalities and prototypes
This section needs to be updated.(August 2021) |
In 2008, Caterpillar Inc. developed a dump truck which can drive itself without any human operator.[68] Many analysts believe that self-driving trucks may eventually revolutionize logistics.[69] By 2014, Caterpillar had a self-driving dump truck which is expected to greatly change the process of mining. In 2015, these Caterpillar trucks were actively used in mining operations in Australia by the mining company Rio Tinto Coal Australia.[70][71][72][73] Some analysts believe that within the next few decades, most trucks will be self-driving.[74]
A literate or 'reading robot' named Marge has intelligence that comes from software. She can read newspapers, find and correct misspelled words, learn about banks like Barclays, and understand that some restaurants are better places to eat than others.[75]
Baxter is a new robot introduced in 2012 which learns by guidance. A worker could teach Baxter how to perform a task by moving its hands in the desired motion and having Baxter memorize them. Extra dials, buttons, and controls are available on Baxter's arm for more precision and features. Any regular worker could program Baxter and it only takes a matter of minutes, unlike usual industrial robots that take extensive programs and coding to be used. This means Baxter needs no programming to operate. No software engineers are needed. This also means Baxter can be taught to perform multiple, more complicated tasks. Sawyer was added in 2015 for smaller, more precise tasks.[76]
Prototype cooking robots have been developed and could be programmed for autonomous, dynamic and adjustable preparation of discrete meals.[77][78]
Etymology
The word robot was introduced to the public by the Czech interwar writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), published in 1920.[6] The play begins in a factory that uses a chemical substitute for protoplasm to manufacture living, simplified people called robots. The play does not focus in detail on the technology behind the creation of these living creatures, but in their appearance they prefigure modern ideas of androids, creatures who can be mistaken for humans. These mass-produced workers are depicted as efficient but emotionless, incapable of original thinking and indifferent to self-preservation. At issue is whether the robots are being exploited and the consequences of human dependence upon commodified labor (especially after a number of specially-formulated robots achieve self-awareness and incite robots all around the world to rise up against the humans).
Karel Čapek himself did not coin the word. He wrote a short letter in reference to an etymology in the Oxford English Dictionary in which he named his brother, the painter and writer Josef Čapek, as its actual originator.[6]
In an article in the Czech journal Lidové noviny in 1933, he explained that he had originally wanted to call the creatures laboři ('workers', from Latin labor). However, he did not like the word, and sought advice from his brother Josef, who suggested roboti. The word robota means literally 'corvée, serf labor', and figuratively 'drudgery, hard work' in Czech and also (more general) 'work, labor' in many Slavic languages (e.g.: Bulgarian, Russian, Serbian, Croatian, Slovenian, Slovak, Polish, Macedonian, Ukrainian and archaic Czech) as well as robot in Hungarian. Traditionally the robota (Hungarian robot) was the work period a serf (corvée) had to give for his lord, typically six months of the year. The origin of the word is the Old Church Slavonic rabota 'servitude' ('work' in contemporary Bulgarian, Macedonian and Russian), which in turn comes from the Proto-Indo-European root *orbh-. Robot is cognate with the German Arbeit 'work'.[79][80]
English pronunciation of the word has evolved relatively quickly since its introduction. In the U.S. during the late 1930s to early 1940s it was pronounced /ˈroʊboʊt/.[81][better source needed] By the late 1950s to early 1960s, some were pronouncing it /ˈroʊbət/, while others used /ˈroʊbɒt/[82] By the 1970s, its current pronunciation /ˈroʊbɒt/ had become predominant.
The word robotics, used to describe this field of study,[4] was coined by the science fiction writer Isaac Asimov. Asimov created the Three Laws of Robotics which are a recurring theme in his books. These have since been used by many others to define laws used in fiction. (The three laws are pure fiction, and no technology yet created has the ability to understand or follow them, and in fact most robots serve military purposes, which run quite contrary to the first law and often the third law. "People think about Asimov's laws, but they were set up to point out how a simple ethical system doesn't work. If you read the short stories, every single one is about a failure, and they are totally impractical," said Dr. Joanna Bryson of the University of Bath.[83])
Modern robots
Mobile robot
Mobile robots[84] have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the automated guided vehicle or automatic guided vehicle (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers.[85] AGVs are discussed later in this article.
Mobile robots are also found in industry, military and security environments.[86] They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research.[87]
Mobile robots are usually used in tightly controlled environments such as on assembly lines because they have difficulty responding to unexpected interference. Because of this most humans rarely encounter robots. However domestic robots for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in military applications.[88]
Industrial robots (manipulating)
Industrial robots usually consist of a jointed arm (multi-linked manipulator) and an end effector that is attached to a fixed surface. One of the most common type of end effector is a gripper assembly.
The International Organization for Standardization gives a definition of a manipulating industrial robot in ISO 8373:
"an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."[89]
This definition is used by the International Federation of Robotics, the European Robotics Research Network (EURON) and many national standards committees.[90]
The industrial robots in food and drink processing plants are used for tasks such as feeding machines, packaging, and palletizing, which have replaced many manual, physical tasks. The complexity of digital skills required by workers varies depending on the level of automation and the specific tasks involved.[91]
Service robot
Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term "service robot" is less well-defined. The International Federation of Robotics has proposed a tentative definition, "A service robot is a robot which operates semi- or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations."[92]
Educational (interactive) robots
Robots are used as educational assistants to teachers. From the 1980s, robots such as turtles were used in schools and programmed using the Logo language.[93][94]
There are robot kits like Lego Mindstorms, BIOLOID, OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics. Robotics have also been introduced into the lives of elementary and high school students in the form of robot competitions with the company FIRST (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the FIRST Robotics Competition, FIRST Tech Challenge, FIRST Lego League Challenge and FIRST Lego League Explore competitions.
There have also been robots such as the teaching computer, Leachim (1974).[95] Leachim was an early example of speech synthesis using the Diphone synthesis method. 2-XL (1976) was a robot shaped game / teaching toy based on branching between audible tracks on an 8-track tape player, both invented by Michael J. Freeman.[96] Later, the 8-track was upgraded to tape cassettes and then to digital.
Modular robot
Modular robots are a new breed of robots that are designed to increase the use of robots by modularizing their architecture.[97] The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots. These robots are composed of a single type of identical, several different identical module types, or similarly shaped modules, which vary in size. Their architectural structure allows hyper-redundancy for modular robots, as they can be designed with more than 8 degrees of freedom (DOF). Creating the programming, inverse kinematics and dynamics for modular robots is more complex than with traditional robots. Modular robots may be composed of L-shaped modules, cubic modules, and U and H-shaped modules. ANAT technology, an early modular robotic technology patented by Robotics Design Inc., allows the creation of modular robots from U- and H-shaped modules that connect in a chain, and are used to form heterogeneous and homogenous modular robot systems. These "ANAT robots" can be designed with "n" DOF as each module is a complete motorized robotic system that folds relatively to the modules connected before and after it in its chain, and therefore a single module allows one degree of freedom. The more modules that are connected to one another, the more degrees of freedom it will have. L-shaped modules can also be designed in a chain, and must become increasingly smaller as the size of the chain increases, as payloads attached to the end of the chain place a greater strain on modules that are further from the base. ANAT H-shaped modules do not suffer from this problem, as their design allows a modular robot to distribute pressure and impacts evenly amongst other attached modules, and therefore payload-carrying capacity does not decrease as the length of the arm increases. Modular robots can be manually or self-reconfigured to form a different robot, that may perform different applications. Because modular robots of the same architecture type are composed of modules that compose different modular robots, a snake-arm robot can combine with another to form a dual or quadra-arm robot, or can split into several mobile robots, and mobile robots can split into multiple smaller ones, or combine with others into a larger or different one. This allows a single modular robot the ability to be fully specialized in a single task, as well as the capacity to be specialized to perform multiple different tasks.
Modular robotic technology is currently being applied in hybrid transportation,[98] industrial automation,[99] duct cleaning[100] and handling. Many research centres and universities have also studied this technology, and have developed prototypes.
Collaborative robots
A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing simple industrial tasks. However, end-effectors and other environmental conditions may create hazards, and as such risk assessments should be done before using any industrial motion-control application.[101]
The collaborative robots most widely used in industries today are manufactured by Universal Robots in Denmark.[102]
Rethink Robotics—founded by Rodney Brooks, previously with iRobot—introduced Baxter in September 2012; as an industrial robot designed to safely interact with neighboring human workers, and be programmable for performing simple tasks.[103] Baxters stop if they detect a human in the way of their robotic arms and have prominent off switches. Intended for sale to small businesses, they are promoted as the robotic analogue of the personal computer.[104] As of May 2014[update], 190 companies in the US have bought Baxters and they are being used commercially in the UK.[10]
Robots in society
Roughly half of all the robots in the world are in Asia, 32% in Europe, and 16% in North America, 1% in Australasia and 1% in Africa.[107] 40% of all the robots in the world are in Japan,[108] making Japan the country with the highest number of robots.
Autonomy and ethical questions
As robots have become more advanced and sophisticated, experts and academics have increasingly explored the questions of what ethics might govern robots' behavior,[110][111] and whether robots might be able to claim any kind of social, cultural, ethical or legal rights.[112] One scientific team has said that it was possible that a robot brain would exist by 2019.[113] Others predict robot intelligence breakthroughs by 2050.[114] Recent advances have made robotic behavior more sophisticated.[115] The social impact of intelligent robots is subject of a 2010 documentary film called Plug & Pray.[116]
Vernor Vinge has suggested that a moment may come when computers and robots are smarter than humans. He calls this "the Singularity".[117] He suggests that it may be somewhat or possibly very dangerous for humans.[118] This is discussed by a philosophy called Singularitarianism.
In 2009, experts attended a conference hosted by the Association for the Advancement of Artificial Intelligence (AAAI) to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade elimination and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls.[117] Various media sources and scientific groups have noted separate trends in differing areas which might together result in greater robotic functionalities and autonomy, and which pose some inherent concerns.[119][120][121]
Military robots
Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions.[122] There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots.[123] The US Navy has funded a report which indicates that, as military robots become more complex, there should be greater attention to implications of their ability to make autonomous decisions.[124][125] One researcher states that autonomous robots might be more humane, as they could make decisions more effectively. However, other experts question this.[126]
One robot in particular, the EATR, has generated public concerns[127] over its fuel source, as it can continually refuel itself using organic substances.[128] Although the engine for the EATR is designed to run on biomass and vegetation[129] specifically selected by its sensors, which it can find on battlefields or other local environments, the project has stated that chicken fat can also be used.[130]
Manuel De Landa has noted that "smart missiles" and autonomous bombs equipped with artificial perception can be considered robots, as they make some of their decisions autonomously. He believes this represents an important and dangerous trend in which humans are handing over important decisions to machines.[131]
Relationship to unemployment
For centuries, people have predicted that machines would make workers obsolete and increase unemployment, although the causes of unemployment are usually thought to be due to social policy.[132][133][134]
A recent example of human replacement involves Taiwanese technology company Foxconn who, in July 2011, announced a three-year plan to replace workers with more robots. At present the company uses ten thousand robots but will increase them to a million robots over a three-year period.[135]
Lawyers have speculated that an increased prevalence of robots in the workplace could lead to the need to improve redundancy laws.[136]
Kevin J. Delaney said "Robots are taking human jobs. But Bill Gates believes that governments should tax companies' use of them, as a way to at least temporarily slow the spread of automation and to fund other types of employment."[137] The robot tax would also help pay a guaranteed living wage to the displaced workers.
The World Bank's World Development Report 2019 puts forth evidence showing that while automation displaces workers, technological innovation creates more new industries and jobs on balance.[138]
Contemporary uses
At present, there are two main types of robots, based on their use: general-purpose autonomous robots and dedicated robots.
Robots can be classified by their specificity of purpose. A robot might be designed to perform one particular task extremely well, or a range of tasks less well. All robots by their nature can be re-programmed to behave differently, but some are limited by their physical form. For example, a factory robot arm can perform jobs such as cutting, welding, gluing, or acting as a fairground ride, while a pick-and-place robot can only populate printed circuit boards.
General-purpose autonomous robots
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot can, as of yet, actually navigate around a room that it has never been in.[139] Thus, humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments.
Factory robots
Car production
Over the last three decades, automobile factories have become dominated by robots. A typical factory contains hundreds of industrial robots working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is welded, glued, painted and finally assembled at a sequence of robot stations.
Packaging
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers.
Electronics
Mass-produced printed circuit boards (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with SCARA manipulators, which remove tiny electronic components from strips or trays, and place them on to PCBs with great accuracy.[140] Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability.[141]
Automated guided vehicles (AGVs)
Mobile robots, following markers or wires in the floor, or using vision[85] or lasers, are used to transport goods around large facilities, such as warehouses, container ports, or hospitals.[142]
Early AGV-style robots
Limited to tasks that could be accurately defined and had to be performed the same way every time. Very little feedback or intelligence was required, and the robots needed only the most basic exteroceptors (sensors). The limitations of these AGVs are that their paths are not easily altered and they cannot alter their paths if obstacles block them. If one AGV breaks down, it may stop the entire operation.
Interim AGV technologies
Developed to deploy triangulation from beacons or bar code grids for scanning on the floor or ceiling. In most factories, triangulation systems tend to require moderate to high maintenance, such as daily cleaning of all beacons or bar codes. Also, if a tall pallet or large vehicle blocks beacons or a bar code is marred, AGVs may become lost. Often such AGVs are designed to be used in human-free environments.
Intelligent AGVs (i-AGVs)
Such as SmartLoader,[143] SpeciMinder,[144] ADAM,[145] Tug[146] Eskorta,[147] and MT 400 with Motivity[148] are designed for people-friendly workspaces. They navigate by recognizing natural features. 3D scanners or other means of sensing the environment in two or three dimensions help to eliminate cumulative errors in dead-reckoning calculations of the AGV's current position. Some AGVs can create maps of their environment using scanning lasers with simultaneous localization and mapping (SLAM) and use those maps to navigate in real time with other path planning and obstacle avoidance algorithms. They are able to operate in complex environments and perform non-repetitive and non-sequential tasks such as transporting photomasks in a semiconductor lab, specimens in hospitals and goods in warehouses. For dynamic areas, such as warehouses full of pallets, AGVs require additional strategies using three-dimensional sensors such as time-of-flight or stereovision cameras.
Dirty, dangerous, dull, or inaccessible tasks
There are many jobs that humans would rather leave to robots. The job may be boring, such as domestic cleaning or sports field line marking, or dangerous, such as exploring inside a volcano.[149] Other jobs are physically inaccessible, such as exploring another planet,[150] cleaning the inside of a long pipe, or performing laparoscopic surgery.[151]
Space probes
Almost every unmanned space probe ever launched was a robot.[152][153] Some were launched in the 1960s with very limited abilities, but their ability to fly and land (in the case of Luna 9) is an indication of their status as a robot. This includes the Voyager probes and the Galileo probes, among others.
Telerobots
Teleoperated robots, or telerobots, are devices remotely operated from a distance by a human operator rather than following a predetermined sequence of movements, but which has semi-autonomous behaviour. They are used when a human cannot be present on site to perform a job because it is dangerous, far away, or inaccessible. The robot may be in another room or another country, or may be on a very different scale to the operator. For instance, a laparoscopic surgery robot allows the surgeon to work inside a human patient on a relatively small scale compared to open surgery, significantly shortening recovery time.[151] They can also be used to avoid exposing workers to the hazardous and tight spaces such as in duct cleaning. When disabling a bomb, the operator sends a small robot to disable it. Several authors have been using a device called the Longpen to sign books remotely.[154] Teleoperated robot aircraft, like the Predator Unmanned Aerial Vehicle, are increasingly being used by the military. These pilotless drones can search terrain and fire on targets.[155][156] Hundreds of robots such as iRobot's Packbot and the Foster-Miller TALON are being used in Iraq and Afghanistan by the U.S. military to defuse roadside bombs or improvised explosive devices (IEDs) in an activity known as explosive ordnance disposal (EOD).[157]
Automated fruit harvesting machines
Robots are used to automate picking fruit on orchards at a cost lower than that of human pickers.
Domestic robots
Domestic robots are simple robots dedicated to a single task work in home use. They are used in simple but often disliked jobs, such as vacuum cleaning, floor washing, and lawn mowing. An example of a domestic robot is a Roomba.
Military robots
Military robots include the SWORDS robot which is currently used in ground-based combat. It can use a variety of weapons and there is some discussion of giving it some degree of autonomy in battleground situations.[158][159][160]
Unmanned combat air vehicles (UCAVs), which are an upgraded form of UAVs, can do a wide variety of missions, including combat. UCAVs are being designed such as the BAE Systems Mantis which would have the ability to fly themselves, to pick their own course and target, and to make most decisions on their own.[161] The BAE Taranis is a UCAV built by Great Britain which can fly across continents without a pilot and has new means to avoid detection.[162] Flight trials are expected to begin in 2011.[163]
The AAAI has studied this topic in depth[110] and its president has commissioned a study to look at this issue.[164]
Some have suggested a need to build "Friendly AI", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane.[165] Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea[166] having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's Three Laws of Robotics.[167][168] An official report was issued in 2009 by the Japanese government's Robot Industry Policy Committee.[169] Chinese officials and researchers have issued a report suggesting a set of ethical rules, and a set of new legal guidelines referred to as "Robot Legal Studies."[170] Some concern has been expressed over a possible occurrence of robots telling apparent falsehoods.[171]
Mining robots
Mining robots are designed to solve a number of problems currently facing the mining industry, including skills shortages, improving productivity from declining ore grades, and achieving environmental targets. Due to the hazardous nature of mining, in particular underground mining, the prevalence of autonomous, semi-autonomous, and tele-operated robots has greatly increased in recent times. A number of vehicle manufacturers provide autonomous trains, trucks and loaders that will load material, transport it on the mine site to its destination, and unload without requiring human intervention. One of the world's largest mining corporations, Rio Tinto, has recently expanded its autonomous truck fleet to the world's largest, consisting of 150 autonomous Komatsu trucks, operating in Western Australia.[172] Similarly, BHP has announced the expansion of its autonomous drill fleet to the world's largest, 21 autonomous Atlas Copco drills.[173]
Drilling, longwall and rockbreaking machines are now also available as autonomous robots.[174] The Atlas Copco Rig Control System can autonomously execute a drilling plan on a drilling rig, moving the rig into position using GPS, set up the drill rig and drill down to specified depths.[175] Similarly, the Transmin Rocklogic system can automatically plan a path to position a rockbreaker at a selected destination.[176] These systems greatly enhance the safety and efficiency of mining operations.
Healthcare
Robots in healthcare have two main functions. Those which assist an individual, such as a sufferer of a disease like Multiple Sclerosis, and those which aid in the overall systems such as pharmacies and hospitals.
Home automation for the elderly and disabled
Robots used in home automation have developed over time from simple basic robotic assistants, such as the Handy 1,[177] through to semi-autonomous robots, such as FRIEND which can assist the elderly and disabled with common tasks.
The population is aging in many countries, especially Japan, meaning that there are increasing numbers of elderly people to care for, but relatively fewer young people to care for them.[178][179] Humans make the best carers, but where they are unavailable, robots are gradually being introduced.[180]
FRIEND is a semi-autonomous robot designed to support disabled and elderly people in their daily life activities, like preparing and serving a meal. FRIEND make it possible for patients who are paraplegic, have muscle diseases or serious paralysis (due to strokes etc.), to perform tasks without help from other people like therapists or nursing staff.
Pharmacies
This section needs additional citations for verification. (July 2009) |
Script Pro manufactures a robot designed to help pharmacies fill prescriptions that consist of oral solids or medications in pill form.[181][better source needed] The pharmacist or pharmacy technician enters the prescription information into its information system. The system, upon determining whether or not the drug is in the robot, will send the information to the robot for filling. The robot has 3 different size vials to fill determined by the size of the pill. The robot technician, user, or pharmacist determines the needed size of the vial based on the tablet when the robot is stocked. Once the vial is filled it is brought up to a conveyor belt that delivers it to a holder that spins the vial and attaches the patient label. Afterwards it is set on another conveyor that delivers the patient's medication vial to a slot labeled with the patient's name on an LED read out. The pharmacist or technician then checks the contents of the vial to ensure it's the correct drug for the correct patient and then seals the vials and sends it out front to be picked up.
McKesson's Robot RX is another healthcare robotics product that helps pharmacies dispense thousands of medications daily with little or no errors.[182] The robot can be ten feet wide and thirty feet long and can hold hundreds of different kinds of medications and thousands of doses. The pharmacy saves many resources like staff members that are otherwise unavailable in a resource scarce industry. It uses an electromechanical head coupled with a pneumatic system to capture each dose and deliver it to either its stocked or dispensed location. The head moves along a single axis while it rotates 180 degrees to pull the medications. During this process it uses barcode technology to verify it's pulling the correct drug. It then delivers the drug to a patient specific bin on a conveyor belt. Once the bin is filled with all of the drugs that a particular patient needs and that the robot stocks, the bin is then released and returned out on the conveyor belt to a technician waiting to load it into a cart for delivery to the floor.
Research robots
While most robots today are installed in factories or homes, performing labour or life saving jobs, many new types of robot are being developed in laboratories around the world. Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robot, alternative ways to think about or design robots, and new ways to manufacture them. It is expected that these new types of robot will be able to solve real world problems when they are finally realized.[citation needed]
Bionic and biomimetic robots
One approach to designing robots is to base them on animals. BionicKangaroo was designed and engineered by studying and applying the physiology and methods of locomotion of a kangaroo.
Nanorobots
Nanorobotics is the emerging technology field of creating machines or robots whose components are at or close to the microscopic scale of a nanometer (10−9 meters). Also known as "nanobots" or "nanites", they would be constructed from molecular machines. So far, researchers have mostly produced only parts of these complex systems, such as bearings, sensors, and synthetic molecular motors, but functioning robots have also been made such as the entrants to the Nanobot Robocup contest.[183] Researchers also hope to be able to create entire robots as small as viruses or bacteria, which could perform tasks on a tiny scale. Possible applications include micro surgery (on the level of individual cells), utility fog,[184] manufacturing, weaponry and cleaning.[185] Some people have suggested that if there were nanobots which could reproduce, the earth would turn into "grey goo", while others argue that this hypothetical outcome is nonsense.[186][187]
Reconfigurable robots
A few researchers have investigated the possibility of creating robots which can alter their physical form to suit a particular task,[188] like the fictional T-1000. Real robots are nowhere near that sophisticated however, and mostly consist of a small number of cube shaped units, which can move relative to their neighbours. Algorithms have been designed in case any such robots become a reality.[189]
Robotic, mobile laboratory operators
In July 2020 scientists reported the development of a mobile robot chemist and demonstrate that it can assist in experimental searches. According to the scientists their strategy was automating the researcher rather than the instruments – freeing up time for the human researchers to think creatively – and could identify photocatalyst mixtures for hydrogen production from water that were six times more active than initial formulations. The modular robot can operate laboratory instruments, work nearly around the clock, and autonomously make decisions on his next actions depending on experimental results.[190][191]
Soft-bodied robots
Robots with silicone bodies and flexible actuators (air muscles, electroactive polymers, and ferrofluids) look and feel different from robots with rigid skeletons, and can have different behaviors.[192] Soft, flexible (and sometimes even squishy) robots are often designed to mimic the biomechanics of animals and other things found in nature, which is leading to new applications in medicine, care giving, search and rescue, food handling and manufacturing, and scientific exploration.[193][194]
Swarm robots
Inspired by colonies of insects such as ants and bees, researchers are modeling the behavior of swarms of thousands of tiny robots which together perform a useful task, such as finding something hidden, cleaning, or spying. Each robot is quite simple, but the emergent behavior of the swarm is more complex. The whole set of robots can be considered as one single distributed system, in the same way an ant colony can be considered a superorganism, exhibiting swarm intelligence. The largest swarms so far created include the iRobot swarm, the SRI/MobileRobots CentiBots project[195] and the Open-source Micro-robotic Project swarm, which are being used to research collective behaviors.[196][197] Swarms are also more resistant to failure. Whereas one large robot may fail and ruin a mission, a swarm can continue even if several robots fail. This could make them attractive for space exploration missions, where failure is normally extremely costly.[198]
Haptic interface robots
Robotics also has application in the design of virtual reality interfaces. Specialized robots are in widespread use in the haptic research community. These robots, called "haptic interfaces", allow touch-enabled user interaction with real and virtual environments. Robotic forces allow simulating the mechanical properties of "virtual" objects, which users can experience through their sense of touch.[199]
Contemporary art and sculpture
Robots are used by contemporary artists to create works that include mechanical automation. There are many branches of robotic art, one of which is robotic installation art, a type of installation art that is programmed to respond to viewer interactions, by means of computers, sensors and actuators. The future behavior of such installations can therefore be altered by input from either the artist or the participant, which differentiates these artworks from other types of kinetic art.
Le Grand Palais in Paris organized an exhibition "Artists & Robots", featuring artworks created by more than forty artists with the help of robots in 2018.[200]
Robots in popular culture
Literature
Robotic characters, androids (artificial men/women) or gynoids (artificial women), and cyborgs (also "bionic men/women", or humans with significant mechanical enhancements) have become a staple of science fiction.
The first reference in Western literature to mechanical servants appears in Homer's Iliad. In Book XVIII, Hephaestus, god of fire, creates new armor for the hero Achilles, assisted by robots.[201] According to the Rieu translation, "Golden maidservants hastened to help their master. They looked like real women and could not only speak and use their limbs but were endowed with intelligence and trained in handwork by the immortal gods." The words "robot" or "android" are not used to describe them, but they are nevertheless mechanical devices human in appearance. "The first use of the word Robot was in Karel Čapek's play R.U.R. (Rossum's Universal Robots) (written in 1920)". Writer Karel Čapek was born in Czechoslovakia (Czech Republic).
Possibly the most prolific author of the twentieth century was Isaac Asimov (1920–1992)[202] who published over five-hundred books.[203] Asimov is probably best remembered for his science-fiction stories and especially those about robots, where he placed robots and their interaction with society at the center of many of his works.[204][205] Asimov carefully considered the problem of the ideal set of instructions robots might be given to lower the risk to humans, and arrived at his Three Laws of Robotics: a robot may not injure a human being or, through inaction, allow a human being to come to harm; a robot must obey orders given it by human beings, except where such orders would conflict with the First Law; and a robot must protect its own existence as long as such protection does not conflict with the First or Second Law.[206] These were introduced in his 1942 short story "Runaround", although foreshadowed in a few earlier stories. Later, Asimov added the Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm"; the rest of the laws are modified sequentially to acknowledge this.
According to the Oxford English Dictionary, the first passage in Asimov's short story "Liar!" (1941) that mentions the First Law is the earliest recorded use of the word robotics. Asimov was not initially aware of this; he assumed the word already existed by analogy with mechanics, hydraulics, and other similar terms denoting branches of applied knowledge.[207]
Robot competitions
Robots are used in a number of competitive events. Robot combat competitions have been popularized by television shows such as Robot Wars and BattleBots, featuring mostly remotely controlled 'robots' that compete against each other directly using various weaponry, there are also amateur robot combat leagues active globally outside of the televised events. Micromouse events, in which autonomous robots compete to solve mazes or other obstacle courses are also held internationally.
Robot competitions are also often used within educational settings to introduce the concept of robotics to children such as the FIRST Robotics Competition in the US.
Films
Robots appear in many films. Most of the robots in cinema are fictional. Two of the most famous are R2-D2 and C-3PO from the Star Wars franchise.
Sex robots
The concept of humanoid sex robots has drawn public attention and elicited debate regarding their supposed benefits and potential effects on society. Opponents argue that the introduction of such devices would be socially harmful, and demeaning to women and children,[208] while proponents cite their potential therapeutical benefits, particularly in aiding people with dementia or depression.[209]
Problems depicted in popular culture
Fears and concerns about robots have been repeatedly expressed in a wide range of books and films. A common theme is the development of a master race of conscious and highly intelligent robots, motivated to take over or destroy the human race. Frankenstein (1818), often called the first science fiction novel, has become synonymous with the theme of a robot or android advancing beyond its creator.
Other works with similar themes include The Mechanical Man, The Terminator, Runaway, RoboCop, the Replicators in Stargate, the Cylons in Battlestar Galactica, the Cybermen and Daleks in Doctor Who, The Matrix, Enthiran and I, Robot. Some fictional robots are programmed to kill and destroy; others gain superhuman intelligence and abilities by upgrading their own software and hardware. Examples of popular media where the robot becomes evil are 2001: A Space Odyssey, Red Planet and Enthiran.
The 2017 game Horizon Zero Dawn explores themes of robotics in warfare, robot ethics, and the AI control problem, as well as the positive or negative impact such technologies could have on the environment.
Another common theme is the reaction, sometimes called the "uncanny valley", of unease and even revulsion at the sight of robots that mimic humans too closely.[109]
More recently, fictional representations of artificially intelligent robots in films such as A.I. Artificial Intelligence and Ex Machina and the 2016 TV adaptation of Westworld have engaged audience sympathy for the robots themselves.
Emancipation or revolution as a theme in relation to robots was already present in the term coining play of R.U.R.. The Star Wars universe for example has several instances of droid revolts. The Dune series on the other hand has the premise of humans revolting against thinking machines and finding human-biological alternatives to them.
See also
Specific robotics concepts
- Robot locomotion
- Simultaneous localization and mapping
- Tactile sensor
- Teleoperation
- Uncanny valley
- von Neumann machine
- Wake-up robot problem
- Neuromorphic engineering
Robotics methods and categories
- Cognitive robotics
- Companion robot
- Domestic robot
- Epigenetic robotics
- Evolutionary robotics
- Humanoid robot
- Autonomous robot
- Swarm robotics
- Microbotics
- Robot control
Specific robots and devices
- AIBO
- Autonomous spaceport drone ship
- Driverless car
- Friendly Robotics
- Lely Juno family
- Liquid handling robot
- Paro (robot)
- PatrolBot
- RoboBee
- Roborior
- Robot App Store
Other related articles
Further reading
- Al-Arshani, Sarah (29 November 2021). "Researchers behind the world's first living robot have found a way to make it reproduce — by shaping it like Pac-Man". Business Insider.
- See this humanoid robot artist sketch drawings from sight (CNN, Video, 2019)
- Margolius, Ivan. 'The Robot of Prague', Newsletter, The Friends of Czech Heritage no. 17, Autumn 2017, pp. 3 – 6. https://czechfriends.net/images/RobotsMargoliusJul2017.pdf Archived 11 September 2017 at the Wayback Machine
- Glaser, Horst Albert and Rossbach, Sabine: The Artificial Human, Frankfurt/M., Bern, New York 2011 "A Tragical History"
- Gutkind, L. (2006). Almost Human: Making Robots Think. New York: W. W. Norton & Company, Inc.
- Craig, J.J. (2005). Introduction to Robotics, Pearson Prentice Hall. Upper Saddle River, NJ.
- Tsai, L. W. (1999). Robot Analysis. Wiley. New York.
- Sotheby's New York. The Tin Toy Robot Collection of Matt Wyse (1996)
- DeLanda, Manuel. War in the Age of Intelligent Machines. 1991. Swerve. New York.
- Needham, Joseph (1986). Science and Civilization in China: Volume 2. Taipei: Caves Books Ltd.
- Cheney, Margaret [1989:123] (1981). Tesla, Man Out of Time. Dorset Press. New York. ISBN 0-88029-419-1
- Čapek, Karel (1920). R.U.R. , Aventinum, Prague.
- TechCast Article Series, Jason Rupinski and Richard Mix, "Public Attitudes to Androids: Robot Gender, Tasks, & Pricing"
References
- ^ "Four-legged Robot, 'Cheetah,' Sets New Speed Record". Reuters. 6 March 2012. Archived from the original on 22 October 2013. Retrieved 5 October 2013.
- ^ Definition of 'robot'. Oxford English Dictionary. Retrieved 27 November 2016.
- ^ "Forecasts – Driverless car market watch". driverless-future.com. Retrieved 26 September 2023.
- ^ a b "robotics". Oxford Dictionaries. Archived from the original on 18 May 2011. Retrieved 4 February 2011.
- ^ Margolius, Ivan (Autumn 2017). "The Robot of Prague" (PDF). The Friends of Czech Heritage (17): 3–6. Archived (PDF) from the original on 11 September 2017.
- ^ a b c Zunt, Dominik. "Who did actually invent the word "robot" and what does it mean?". The Karel Čapek website. Archived from the original on 4 February 2012. Retrieved 11 September 2007.
- ^ Kurfess, Thomas R. (1 January 2005). Robotics and Automation Handbook. Taylor & Francis. ISBN 978-0-8493-1804-7. Archived from the original on 4 December 2016. Retrieved 5 July 2016 – via Google Books.
- ^ Pearce, Jeremy (15 August 2011). "George C. Devol, Inventor of Robot Arm, Dies at 99". The New York Times. Archived from the original on 25 December 2016. Retrieved 7 February 2012.
In 1961, General Motors put the first Unimate arm on an assembly line at the company's plant in Ewing Township, N.J., a suburb of Trenton. The device was used to lift and stack die-cast metal parts taken hot from their molds.
- ^ Akins, Crystal. "5 jobs being replaced by robots". Excelle. Monster. Archived from the original on 24 April 2013. Retrieved 15 April 2013.
- ^ a b Hoy, Greg (28 May 2014). "Robots could cost Australian economy 5 million jobs, experts warn, as companies look to cut costs". ABC News. Australian Broadcasting Corporation. Archived from the original on 29 May 2014. Retrieved 29 May 2014.
- ^ Polk, Igor (16 November 2005). "RoboNexus 2005 robot exhibition virtual tour". Robonexus Exhibition 2005. Archived from the original on 12 August 2007. Retrieved 10 September 2007.
- ^ Harris, Tom (16 April 2002). "How Robots Work". How Stuff Works. Archived from the original on 26 August 2007. Retrieved 10 September 2007.
- ^ "Telecom glossary "bot"". Alliance for Telecommunications Solutions. 26 September 2023.
- ^ Deborah Levine Gera (2003). Ancient Greek Ideas on Speech, Language, and Civilization. Oxford University Press. ISBN 978-0-19-925616-7. Archived from the original on 5 December 2016. Retrieved 25 September 2016.
- ^ Noct. Att. L. 10
- ^ a b c Rosheim, Mark E. (1994). Robot evolution: the development of anthrobotics. Wiley-IEEE. ISBN 0-471-02622-0.
- ^ ""Robots then and now". BBC. 22 July 2004. Archived from the original on 20 December 2010.
- ^ O'Connor, J.J. and E.F. Robertson. "Heron biography". The MacTutor History of Mathematics archive. Retrieved 26 September 2023.
- ^ a b Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1.
- ^ Needham, Volume 2, 54.
- ^ Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments". Music Educators Journal. 54 (2): 45–49. doi:10.2307/3391092. ISSN 0027-4321. JSTOR 3391092. S2CID 190524140.
- ^ "Early Clocks". A Walk Through Time. NIST Physics Laboratory. 12 August 2009. Retrieved 13 October 2022.
- ^ a b "The programmable robot of ancient Greece". New Scientist: 32–35. 6 July 2007.
- ^ Varadpande, Manohar Laxman (1987). History of Indian Theatre, Volume 1. Abhinav Publications. p. 68. ISBN 978-81-7017-221-5.
- ^ Wujastyk, Dominik (2003). The Roots of Ayurveda: Selections from Sanskrit Medical Writings. Penguin. p. 222. ISBN 978-0-14-044824-5.
- ^ Needham, Joseph (1965). Science and Civilisation in China: Volume 4, Physics and Physical Technology Part 2, Mechanical Engineering. Cambridge University Press. p. 164. ISBN 978-0-521-05803-2.
- ^ Strong, J.S. (2007). Relics of the Buddha. Princeton University Press. pp. 133–134, 143. ISBN 978-0-691-11764-5.
- ^ a b "Al-Jazarī | Arab inventor". Encyclopædia Britannica. Retrieved 15 June 2019.
- ^ Howard R. Turner (1997). Science in Medieval Islam: An Illustrated Introduction. University of Texas Press. p. 81. ISBN 0-292-78149-0.
- ^ Hill, Donald (May 1991). "Mechanical Engineering in the Medieval Near East". Scientific American. pp. 64–69. (cf. Hill, Donald. "History of Sciences in the Islamic World". IX. Mechanical Engineering. Archived from the original on 25 December 2007.)
- ^ Ancient Discoveries Islamic Science Part1. Archived from the original on 11 December 2021. Retrieved 15 June 2019.
- ^ Moran, M. E. (December 2006). "The da Vinci robot". J. Endourol. 20 (12): 986–90. doi:10.1089/end.2006.20.986. PMID 17206888.
... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight.
- ^ Truitt, E.R. (2015). Medieval Robots: Mechanism, Magic, Nature, and Art. The Middle Ages Series. University of Pennsylvania Press, Incorporated. p. 136. ISBN 978-0-8122-9140-7. Retrieved 21 January 2023.
- ^ "Leonardo da Vinci's Robots". Leonardo3.net. Archived from the original on 24 September 2008. Retrieved 25 September 2008.
- ^ Law, Jane Marie (1997). Puppets of Nostalgia – The Life, Death and Rebirth of the Japanese Awaji Ningyo Tradition. Princeton University Press. ISBN 978-0-691-02894-1.
- ^ Wood, Gabby (16 February 2002). "Living Dolls: A Magical History Of The Quest For Mechanical Life". The Guardian. Archived from the original on 20 December 2016.
- ^ "The Boy Robot of 1774". 21 February 2018.
- ^ Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18
- ^ Gray, Edwyn (2004). Nineteenth-Century Torpedoes and Their Inventors. Naval Institute Press. ISBN 978-1-59114-341-3.
- ^ Seifer, Marc (24 October 2011). Life and Times of Nikola Tesla. Citadel. p. 1893. ISBN 978-0-8065-3556-2. Archived from the original on 5 December 2016.
- ^ Miessner, Benjamin Franklin (1916). Radiodynamics: The Wireless Control of Torpedoes and Other Mechanisms. D. Van Nostrand Company. p. 83.
- ^ US 613809, Tesla, Nikola, "Method of and apparatus for controlling mechanism of moving vessels or vehicles", published 1898-11-08
- ^ "Tesla – Master of Lightning". PBS. Archived from the original on 28 September 2008. Retrieved 24 September 2008.
- ^ Sarkar 2006, page 97
- ^ Torres, Leonardo, "FR327218A Système dit telekine pour commander à distance un mouvement mécanique.", Espacenet, 10 December 1902.
- ^ Torres, Leonardo, "GB190327073 (A) ― Means or Method for Directing Mechanical Movements at or from a Distance.[permanent dead link ]", Espacenet, 10 December 1903.
- ^ A. P. Yuste (January 2008). "Early Developments of Wireless Remote Control: The Telekino of Torres-Quevedo". Proceedings of the IEEE. 96 (1): 186–190. doi:10.1109/JPROC.2007.909931. S2CID 111010868.
- ^ H. R. Everett (2015). Unmanned Systems of World Wars I and II. MIT Press. pp. 91–95. ISBN 978-0-262-02922-3.
- ^ "AH Reffell & Eric the Robot (1928) - the UK's Firs Robot". Retrieved 26 September 2023.
- ^ "1932 - George Robot - Capt. W.H. Richards (British)". cyberneticzoo.com. Retrieved 26 September 2023.
- ^ "Robot Dreams: The Strange Tale Of A Man's Quest To Rebuild His Mechanical Childhood Friend". The Cleveland Free Times. Archived from the original on 15 January 2010. Retrieved 25 September 2008.
- ^ Schaut, Scott (2006). Robots of Westinghouse: 1924-Today. Mansfield Memorial Museum. ISBN 978-0-9785844-1-2.
- ^ Secrets of the Flying Bomb Revealed: Special Sectional Drawing and How the Robot's Flight and Dive are Controlled Automatically. Illustrated London News. 1944.
- ^ Holland, Owen. "The Grey Walter Online Archive". Archived from the original on 9 October 2008. Retrieved 25 September 2008.
- ^ Waurzyniak, Patrick (July 2006). "Masters of Manufacturing: Joseph F. Engelberger". Society of Manufacturing Engineers. 137 (1). Archived from the original on 9 November 2011. Retrieved 25 September 2008.
- ^ "Robot Hall of Fame – Unimate". Carnegie Mellon University. Retrieved 26 September 2023.
- ^ "Company History". Fuji Yusoki Kogyo Co. Archived from the original on 4 February 2013. Retrieved 12 September 2008.
- ^ "KUKA Industrial Robot FAMULUS". Archived from the original on 10 June 2013. Retrieved 10 January 2008.
- ^ "History of Industrial Robots" (PDF). Archived from the original (PDF) on 24 December 2012. Retrieved 27 October 2012.
- ^ "History of Industrial Robots". robots.com. Archived from the original on 8 July 2015. Retrieved 24 August 2015.
- ^ "About us". Archived from the original on 9 January 2014.
- ^ "RoboHon: Cute little Robot cum Smartphone | Codexify". Archived from the original on 7 October 2015. Retrieved 6 October 2015.
- ^ Tesfaye, Mehret (13 August 2009). "Robots to get their own operating system". Ethiopian Review. Archived from the original on 18 September 2009.
- ^ Myoken, Yumiko (January 2009). Research and Development for Next-generation Service Robots in Japan (United Kingdom Foreign Ministry report). Science and Innovation Section, British Embassy, Tokyo, Japan. Archived from the original on 23 July 2012.
- ^ Dahiya, Ravinder S.; Valle, Maurizio (30 July 2012). Robotic Tactile Sensing – Technologies and System. Springer. doi:10.1007/978-94-007-0579-1. ISBN 978-94-007-0578-4. Archived from the original on 29 December 2013. Retrieved 8 February 2014.
- ^ Dahiya, Ravinder S.; Metta, Giorgio; Cannata, Giorgio; Valle, Maurizio (2011). "Guest Editorial Special Issue on Robotic Sense of Touch". IEEE Transactions on Robotics. 27 (3): 385–388. doi:10.1109/TRO.2011.2155830. S2CID 18608163.
- ^ Engelberger, Joseph F. (August 1982). "Robotics in practice: Future capabilities". Electronic Servicing & Technology.
- ^ McKeough, Tim (1 December 2008). "The Caterpillar Self-Driving Dump Truck". Fast Company. Archived from the original on 7 June 2011.
- ^ Weiss, Richard (9 December 2014). "Self-Driving Trucks to Revolutionize Logistics, DHL Says". Bloomberg News. Archived from the original on 22 July 2016.
- ^ Grayson, Wayne (16 October 2014). VIDEO: Why Caterpillar's autonomous mining tech is "completely different from anything" it's ever done. Archived from the original on 13 May 2016.
- ^ Takahashi, Kaori (23 April 2015). "Self-driving dump trucks, automatic shovels coming to Australian mines". Archived from the original on 9 May 2016.
- ^ Hall, Matthew (20 October 2014). "Forget self-driving Google cars, Australia has self-driving trucks". The Age. Archived from the original on 26 April 2016.
- ^ Clark, Charles (19 October 2015). "Australian mining giant Rio Tinto is using these huge self-driving trucks to transport iron ore". Business Insider. Archived from the original on 9 May 2016.
- ^ Berman, Dennis K. (23 July 2013). "Daddy, What Was a Truck Driver? Over the Next Two Decades, the Machines Themselves Will Take Over the Driving". The Wall Street Journal. Archived from the original on 4 March 2017.
- ^ "Robot can read, learn like a human". NBC News. 6 December 2010. Archived from the original on 28 July 2020. Retrieved 10 December 2010.
- ^ Melik, James (3 January 2013). "Robots: Brave New World moves a step closer". Business Daily. BBC World Service. Archived from the original on 14 January 2019.
- ^ "Kitchen robot in Riga cooks up new future for fast food". techxplore.com. Retrieved 14 August 2021.
- ^ "Tech May Widen the Gap Between Rich and Poor". Futurism. Retrieved 23 August 2021.
- ^ "Indo-European root *orbh-". Bartleby. 12 May 2008. Archived from the original on 24 January 2009. Retrieved 8 February 2014.
- ^ "robot". Online Etymology Dictionary. Retrieved 26 September 2023.
- ^ "Hank Green's First Novel Is An Absolutely Remarkable Thing". Indianapolis Monthly. 1 October 2018. Retrieved 20 November 2019.
- ^ "You Are Pronouncing the Word "Robot" Wrong". Daily Kos. Retrieved 20 November 2019.
- ^ Ranger, Steve (20 December 2013). "Robots of death, robots of love: The reality of android soldiers and why laws for robots are doomed to failure". TechRepublic. Archived from the original on 27 January 2017. Retrieved 21 January 2017.
- ^ Moubarak, Paul M.; Ben-Tzvi, Pinhas (2011). "Adaptive manipulation of a Hybrid Mechanism Mobile Robot". 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE). pp. 113–118. doi:10.1109/ROSE.2011.6058520. ISBN 978-1-4577-0819-0. S2CID 8659998.
- ^ a b "Smart Caddy". Seegrid. Archived from the original on 11 October 2007. Retrieved 13 September 2007.
- ^ Zhang, Gexiang; Pérez-Jiménez, Mario J.; Gheorghe, Marian (5 April 2017). Real-life Applications with Membrane Computing. Springer. ISBN 978-3-319-55989-6.
- ^ Kagan, E.; Shvalb, N.; Gal, I. (2019). Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication, and Swarming. John Wiley and Sons. ISBN 978-1-119-21286-7.PP 65-69.
- ^ Patic, Deepack; Ansari, Munsaf; Tendulkar, Dilisha; Bhatlekar, Ritesh; Naik, Vijaykumar; Shailendra, Pawar (2020). "A Survey On Autonomous Military Service Robot". 2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE). IEEE International Conference on Emerging Trends in Information Technology and Engineering. pp. 1–7. doi:10.1109/ic-ETITE47903.2020.78. ISBN 978-1-7281-4142-8. S2CID 216588335.
- ^ "Definition of a robot" (PDF). Dansk Robot Forening. Archived from the original (PDF) on 28 June 2007. Retrieved 10 September 2007.
- ^ "Robotics-related Standards Sites". European Robotics Research Network. Archived from the original on 17 June 2006. Retrieved 15 July 2008.
- ^ Lloyd, Caroline; Payne, Jonathan (November 2023). "Digital skills in context: Working with robots in lower-skilled jobs". Economic and Industrial Democracy. 44 (4): 1084–1104. doi:10.1177/0143831X221111416. hdl:2086/21987. ISSN 0143-831X.
- ^ "Service Robots". International Federation of Robotics. 27 October 2012. Archived from the original on 18 February 2010.
- ^ Mitgang, Lee (25 October 1983). "'Nova's' 'Talking Turtle' Pofiles High Priest of School Computer Movement". Gainesville Sun.
- ^ Barnard, Jeff (January 29, 1985). "Robots In School: Games Or Learning?". Observer-Reporter. Washington. Archived from the original on September 22, 2015. Retrieved March 7, 2012.
- ^ "Education: Marvel of the Bronx". Time. April 1974. Archived from the original on 24 May 2019. Retrieved 19 May 2019.
- ^ "Leachim Archives". cyberneticzoo.com. 13 September 2010. Archived from the original on 28 May 2019. Retrieved 29 May 2019.
- ^ P. Moubarak, et al., Modular and Reconfigurable Mobile Robotics, Journal of Robotics and Autonomous Systems, 60 (12) (2012) 1648–1663.
- ^ Rédaction (25 December 2011). "Le consortium franco-québécois Mix dévoile son projet de voiture volante" (in French). aerobuzz.fr. Archived from the original on 6 October 2012. Retrieved 7 September 2012.
- ^ Scanlan, Steve (September 2009). "Modularity in robotics provides automation for all". Electronic Products and Technology. Archived from the original on 5 July 2012. Retrieved 7 September 2012.
- ^ "Duct cleaning robots" (PDF). Robotics Design Inc. Plumbing & HVAC. April 2010. Archived (PDF) from the original on 25 April 2013. Retrieved 29 April 2010.
- ^ "Universal Robots collaborate outside enclosures | Control Engineering". Controleng.com. February 2013. Archived from the original on 18 May 2013. Retrieved 4 June 2013.
- ^ Pittman, Kagan (19 May 2016). "INFOGRAPHIC: A Brief History of Collaborative Robots". Engineering.com. Archived from the original on 10 June 2016.
- ^ Hagerty, James (18 September 2012). "Baxter Robot Heads to Work'". The Wall Street Journal. New York. Archived from the original on 10 April 2015. Retrieved 29 May 2014.
- ^ Markoff, John (18 September 2012). "A Robot With a Reassuring Touch". The New York Times. Archived from the original on 19 September 2012. Retrieved 18 September 2012.
- ^ "A Ping-Pong-Playing Terminator". Popular Science. Archived from the original on 29 March 2011. Retrieved 18 December 2010.
- ^ "Best robot 2009". Neterion. Tech Magazine. Archived from the original on 27 December 2022.
- ^ "Robots Today and Tomorrow: IFR Presents the 2007 World Robotics Statistics Survey". RobotWorx. 29 October 2007. Archived from the original on 5 February 2008. Retrieved 14 December 2007.
- ^ "Japan's robots slug it out to be world champ". Reuters. 2 December 2007. Archived from the original on 13 December 2007. Retrieved 1 January 2007.
- ^ a b Ho, C. C.; MacDorman, K. F.; Pramono, Z. A. D. (2008). Human emotion and the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings (PDF). 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI). Archived (PDF) from the original on 11 September 2008. Retrieved 24 September 2008.
- ^ a b "AI Topics / Ethics". Association for the Advancement of Artificial Intelligence. Archived from the original on 5 August 2011.
- ^ "Robots can be racist and sexist, new study warns". TRT World. Retrieved 27 June 2022.
- ^ "News Index by Topic - ETHICAL & SOCIAL IMPLICATIONS Archive". Association for the Advancement of Artificial Intelligence. Archived from the original on 6 April 2012.
- ^ McNealy, Kristie (29 July 2009). "Scientists Predict Artificial Brain in 10 Years". Archived from the original on 29 November 2009.
- ^ Moravec, Hans (1999). Robot: Mere Machine to Transcendent Mind. Oxford University Press. ISBN 978-0-19-513630-2. Archived from the original on 5 December 2016.
- ^ Weigand, Matthew (17 August 2009). "Robots Almost Conquering Walking, Reading, Dancing". Korea IT times. Archived from the original on 21 July 2011.
- ^ Schanze, Jens. "Plug & Pray". Archived from the original on 12 February 2016.
- ^ a b Markoff, John (26 July 2009). "Scientists Worry Machines May Outsmart Man". The New York Times. Archived from the original on 1 July 2017.
- ^ Vinge, Vernor (1993). "The Coming Technological Singularity: How to Survive in the Post-Human Era". Archived from the original on 1 January 2007.
- ^ Singer, P. W. (21 May 2009). "Gaming the Robot Revolution: A military technology expert weighs in on Terminator: Salvation". Slate. Archived from the original on 27 January 2010.
- ^ "Robot takeover". gyre.org. Archived from the original on 19 April 2012.
- ^ "Robotapocalypse". Engadget. Archived from the original on 4 May 2018.
- ^ Palmer, Jason (3 August 2009). "Call for debate on killer robots". BBC News. Archived from the original on 7 August 2009.
- ^ Axe, David (13 August 2009). "Robot three-way portends autonomous future". Wired. Archived from the original on 7 November 2012.
- ^ Mick, Jason (17 February 2009). "New Navy-funded Report Warns of War Robots Going "Terminator"". DailyTech. Archived from the original on 28 July 2009.
- ^ Flatley, Joseph L. (18 February 2009). "Navy report warns of robot uprising, suggests a strong moral compass". Engadget. Archived from the original on 4 June 2011.
- ^ Lamb, Gregory M. (17 February 2010). "New role for robot warriors". The Christian Science Monitor. Archived from the original on 24 September 2015.
- ^ "Biomass-Eating Military Robot Is a Vegetarian, Company Says". Fox News. 16 July 2009. Archived from the original on 3 August 2009. Retrieved 31 July 2009.
- ^ Shachtman, Noah (17 July 2009). "Danger Room What's Next in National Security Company Denies its Robots Feed on the Dead". Wired. Archived from the original on 29 July 2009. Retrieved 31 July 2009.
- ^ "Cyclone Power Technologies Responds to Rumors about "Flesh Eating" Military Robot" (PDF) (Press release). RTI Inc. 16 July 2009. pp. 1–2. Archived (PDF) from the original on 23 August 2009.
- ^ "Brief Project Overview, EATR: Energetically Autonomous Tactical Robot" (PDF). RTI Inc. 6 April 2009. p. 22.
- ^ Manuel de Landa, War in the Age of Intelligent Machines, New York: Zone Books, 1991, 280 pages, Hardcover, ISBN 0-942299-76-0; Paperback, ISBN 0-942299-75-2.
- ^ McGaughey, E (2022) [January 10, 2018]. "Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy". Industrial Law Journal. 51 (3). doi:10.2139/ssrn.3119589. SSRN 3119589.
- ^ Porter, Eduardo; Manjoo, Farhad (9 March 2016). "A Future Without Jobs? Two Views of the Changing Work Force". The New York Times. Archived from the original on 15 February 2017. Retrieved 23 February 2017.
- ^ Thompson, Derek (July–August 2015). "A World Without Work". The Atlantic. Archived from the original on 27 February 2017. Retrieved 11 March 2017.
- ^ Yan (30 July 2011). "Foxconn to replace workers with 1 million robots in 3 years". Xinhua News Agency. Archived from the original on 8 October 2011. Retrieved 4 August 2011.
- ^ "Judgment day – employment law and robots in the workplace". futureofworkhub. 20 November 2014. Archived from the original on 3 April 2015. Retrieved 7 January 2015.
- ^ Delaney, Kevin (17 February 2017). "The robot that takes your job should pay taxes, says Bill Gates". Quartz. Archived from the original on 5 March 2017. Retrieved 4 March 2017.
- ^ "The Changing Nature of Work". Archived from the original on 30 September 2018. Retrieved 8 October 2018.
- ^ Talbot, Ben; Dayoub, Feras; Corke, Peter; Wyeth, Gordon (December 2021). "Robot Navigation in Unseen Spaces Using an Abstract Map". IEEE Transactions on Cognitive and Developmental Systems. 13 (4): 791–805. arXiv:2001.11684. doi:10.1109/TCDS.2020.2993855. ISSN 2379-8939. S2CID 211004032.
- ^ "Contact Systems Pick and Place robots". Contact Systems. Archived from the original on 14 September 2008. Retrieved 21 September 2008.
- ^ "SMT pick-and-place equipment". Assembleon. Archived from the original on 3 August 2008. Retrieved 21 September 2008.
- ^ "The Basics of Automated Guided Vehicles". Savant Automation, AGV Systems. Archived from the original on 8 October 2007. Retrieved 13 September 2007.
- ^ "Automatic Trailer Loading Vehicle - SmartLoader". Archived from the original on 23 May 2013. Retrieved 2 September 2011.
- ^ "SpeciMinder". CSS Robotics. Archived from the original on 1 July 2009. Retrieved 25 September 2008.
- ^ "ADAM robot". RMT Robotics. Archived from the original on 17 May 2006. Retrieved 25 September 2008.
- ^ "Can Do". Aethon. Archived from the original on 3 August 2008. Retrieved 25 September 2008.
- ^ "Eskorta robot". Fennec Fox Technologies. Archived from the original on 6 December 2011. Retrieved 25 November 2011.
- ^ "Delivery Robots & AGVs". Mobile Robots. Archived from the original on 26 February 2010. Retrieved 25 September 2008.
- ^ "Dante II, list of published papers". The Robotics Institute of Carnegie Mellon University. Archived from the original on 15 May 2008. Retrieved 16 September 2007.
- ^ "Mars Pathfinder Mission: Rover Sojourner". NASA. 8 July 1997. Archived from the original on 1 February 2017. Retrieved 19 September 2007.
- ^ a b "Robot assisted surgery: da Vinci Surgical System". Brown University Division of Biology and Medicine. Archived from the original on 16 September 2007. Retrieved 19 September 2007.
- ^ "The Utilization of Robotic Space Probes in Deep Space Missions:Case Study of AI Protocols and Nuclear Power Requirements". Proceedings of 2011 International Conference on Mechanical Engineering, Robotics and Aerospace. October 2011.
- ^ Foust, Jeff (16 January 2012). "Review: Space Probes". Archived from the original on 31 August 2012. Review of Space Probes: 50 Years of Exploration from Luna 1 to New Horizons, by Philippe Séguéla Firefly, 2011.
- ^ "Celebrities set to reach for Atwood's LongPen". Canadian Broadcasting Corporation. 15 August 2007. Archived from the original on 22 May 2009. Retrieved 21 September 2008.
- ^ Graham, Stephen (12 June 2006). "America's robot army". New Statesman. Archived from the original on 17 February 2012. Retrieved 24 September 2007.
- ^ "Battlefield Robots: to Iraq, and Beyond". Defense Industry Daily. 20 June 2005. Archived from the original on 26 August 2007. Retrieved 24 September 2007.
- ^ Shachtman, Noah (November 2005). "The Baghdad Bomb Squad". Wired. Archived from the original on 22 April 2008. Retrieved 14 September 2007.
- ^ Shachtman, Noah (2 August 2007). "WIRED: First Armed Robots on Patrol in Iraq (Updated)". Wired. Retrieved 26 September 2023.
- ^ Shachtman, Noah (28 March 2013). "WIRED: Armed Robots Pushed To Police". Wired. Archived from the original on 12 April 2009. Retrieved 8 February 2014.
- ^ "America's Robot Army: Are Unmanned Fighters Ready for Combat?". Popular Mechanics. 17 December 2009. Retrieved 26 September 2023.
- ^ Hagerman, Eric (23 February 2010). "The Present and Future of Unmanned Drone Aircraft: An Illustrated Field Guide". Popular Science. Archived from the original on 26 February 2010.
- ^ Higgins, Kat (12 July 2010). "Taranis: The £143m Fighter Jet Of The Future". Sky News Online. Archived from the original on 15 July 2010. Retrieved 13 July 2010.
- ^ Emery, Daniel (12 July 2010). "MoD lifts lid on unmanned combat plane prototype". BBC News. Archived from the original on 12 July 2010. Retrieved 12 July 2010.
- ^ AAAI Presidential Panel on Long-Term AI Futures 2008–2009 Study (Report). Association for the Advancement of Artificial Intelligence. Archived from the original on 28 August 2009. Retrieved 26 July 2009.
- ^ "Why We Need Friendly AI". 3 Laws Unsafe. July 2004. Archived from the original on 24 May 2012. Retrieved 27 July 2009.
- ^ "Robotic age poses ethical dilemma". BBC News. 7 March 2007. Archived from the original on 15 February 2009. Retrieved 2 January 2007.
- ^ Christensen, Bill (26 May 2006). "Asimov's First Law: Japan Sets Rules for Robots". Live Science. Archived from the original on 13 October 2008.
- ^ "Japan drafts rules for advanced robots". UPI. 6 April 2007. Archived from the original on 11 October 2008 – via physorg.com.
- ^ "Building a Safe and Secure Social System Incorporating the Coexistence of Humans and Robots" (Press release). Ministry of Economy, Trade and Industry. March 2009. Archived from the original on 27 September 2011.
- ^ Weng, Yueh-Hsuan; Chen, Chien-Hsun; Sun, Chuen-Tsai (25 April 2009). "Toward the Human–Robot Co-Existence Society: On Safety Intelligence for Next Generation Robots". International Journal of Social Robotics. 1 (4): 267–282. doi:10.1007/s12369-009-0019-1. S2CID 36232530.
- ^ Fox, Stuart (19 August 2009). "Evolving Robots Learn To Lie To Each Other". Popular Science.
- ^ "Rio Tinto Media Center – Rio Tinto boosts driverless truck fleet to 150 under Mine of the Future™ programme". Riotinto.com. Archived from the original on 24 April 2013. Retrieved 8 February 2014.
- ^ "BHP Billiton hits go on autonomous drills". Retrieved 13 February 2023.
- ^ Adrian (6 September 2011). "AIMEX blog – Autonomous mining equipment". Adrianboeing.blogspot.com. Archived from the original on 18 December 2013. Retrieved 8 February 2014.
- ^ "Atlas Copco – RCS". Atlascopco.com. Archived from the original on 7 February 2014. Retrieved 8 February 2014.
- ^ "Transmin – Rocklogic". Rocklogic.com.au. Archived from the original on 25 January 2014. Retrieved 8 February 2014.
- ^ Topping, Mike; Smith, Jane (1999). "An Overview Of Handy 1, A Rehabilitation Robot For The Severely Disabled". CSUN Center on Disabilities Conference Proceedings. 1999. Proceedings: Session 59. Archived from the original on 5 August 2009. Retrieved 14 August 2010.
The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper.
- ^ Jeavans, Christine (29 November 2004). "Welcome to the ageing future". BBC News. Archived from the original on 16 October 2007. Retrieved 26 September 2007.
- ^ "Statistical Handbook of Japan: Chapter 2 Population". Statistics Bureau & Statistical Research and Training Institute. Archived from the original on 6 September 2013. Retrieved 26 September 2007.
- ^ "Robotic future of patient care". E-Health Insider. 16 August 2007. Archived from the original on 21 November 2007. Retrieved 26 September 2007.
- ^ Gebhart, Fred (4 July 2019). "The Future of Pharmacy Automation". Drug Topics Journal. Drug Topics July 2019. 163 (7). Retrieved 16 October 2022.
- ^ Dolan, Kerry A. "R2D2 Has Your Pills". Forbes. Retrieved 20 November 2019.
- ^ "Nanobots Play Football". Techbirbal. Archived from the original on 3 April 2013. Retrieved 8 February 2014.
- ^ "KurzweilAI.net". 21 June 2010. Archived from the original on 21 June 2010. Retrieved 5 July 2016.
- ^ "(Eric Drexler 1986) Engines of Creation, The Coming Era of Nanotechnology". E-drexler.com. Archived from the original on 6 September 2014. Retrieved 8 February 2014.
- ^ Phoenix, Chris (December 2003). "Of Chemistry, Nanobots, and Policy". Center for Responsible Nanotechnology. Archived from the original on 11 October 2007. Retrieved 28 October 2007.
- ^ "Nanotechnology pioneer slays 'grey goo' myths". ScienceDaily. 9 June 2004.
- ^ Toth-Fejel, Tihamer (May 1996). LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel Nanomachines for Space Applications. 1996 International Space Development Conference. New York City. Archived from the original on 27 September 2007.
- ^ Fitch, Robert; Butler, Zack; Rus, Daniela. "Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots" (PDF). Massachusetts Institute of Technology. Archived from the original (PDF) on 19 June 2007.
- ^ "Researchers build robot scientist that has already discovered a new catalyst". phys.org. Retrieved 16 August 2020.
- ^ Burger, Benjamin; Maffettone, Phillip M.; Gusev, Vladimir V.; Aitchison, Catherine M.; Bai, Yang; Wang, Xiaoyan; Li, Xiaobo; Alston, Ben M.; Li, Buyi; Clowes, Rob; Rankin, Nicola; Harris, Brandon; Sprick, Reiner Sebastian; Cooper, Andrew I. (July 2020). "A mobile robotic chemist". Nature. 583 (7815): 237–241. Bibcode:2020Natur.583..237B. doi:10.1038/s41586-020-2442-2. ISSN 1476-4687. PMID 32641813. S2CID 220420261. Retrieved 16 August 2020.
- ^ Schwartz, John (27 March 2007). "In the Lab: Robots That Slink and Squirm". The New York Times. Archived from the original on 3 April 2015. Retrieved 22 September 2008.
- ^ Eschner, Kat (25 March 2019). "Squishy robots now have squishy computers to control them". Popular Science.
- ^ "The softer side of robotics". May 2019. Retrieved 13 February 2023.
- ^ "SRI/MobileRobots". activrobots.com. Archived from the original on 12 February 2009.
- ^ "Open-source micro-robotic project". Archived from the original on 11 November 2007. Retrieved 28 October 2007.
- ^ "Swarm". iRobot Corporation. Archived from the original on 27 September 2007. Retrieved 28 October 2007.
- ^ Knapp, Louise (21 December 2000). "Look, Up in the Sky: Robofly". Wired. Archived from the original on 26 June 2012. Retrieved 25 September 2008.
- ^ "The Cutting Edge of Haptics". MIT Technology review. Retrieved 25 September 2008.
- ^ "Artists & Robots Exposition au Grand Palais du 5 avril au 9 juillet 2018". 14 August 2019. Archived from the original on 14 August 2019. Retrieved 3 February 2020.
- ^ "Comic Potential: Q&A with Director Stephen Cole". Cornell University. Archived from the original on 3 January 2009. Retrieved 21 November 2007.
- ^ Freedman, Carl, ed. (2005). Conversations with Isaac Asimov (1. ed.). Jackson: Univ. Press of Mississippi. p. vii. ISBN 978-1-57806-738-1. Retrieved 4 August 2011.
... quite possibly the most prolific
- ^ Oakes, Elizabeth H. (2004). American writers. New York: Facts on File. p. 24. ISBN 978-0-8160-5158-8. Retrieved 4 August 2011.
most prolific authors asimov.
- ^ He wrote "over 460 books as well as thousands of articles and reviews", and was the "third most prolific writer of all time [and] one of the founding fathers of modern science fiction". White, Michael (2005). Isaac Asimov: a life of the grand master of science fiction. Carroll & Graf. pp. 1–2. ISBN 978-0-7867-1518-3. Archived from the original on 5 December 2016. Retrieved 25 September 2016.
- ^ R. Clarke. "Asimov's Laws of Robotics – Implications for Information Technology". Australian National University/IEEE. Archived from the original on 22 July 2008. Retrieved 25 September 2008.
- ^ Seiler, Edward; Jenkins, John H. (27 June 2008). "Isaac Asimov FAQ". Isaac Asimov Home Page. Archived from the original on 16 July 2012. Retrieved 24 September 2008.
- ^ White, Michael (2005). Isaac Asimov: A Life of the Grand Master of Science Fiction. Carroll & Graf. p. 56. ISBN 978-0-7867-1518-3.
- ^ "Intelligent machines: Call for a ban on robots designed as sex toys". BBC News. 15 September 2015. Archived from the original on 30 June 2018. Retrieved 21 June 2018.
- ^ Abdollahi, Hojjat; Mollahosseini, Ali; Lane, Josh T.; Mahoor, Mohammad H. (November 2017). A pilot study on using an intelligent life-like robot as a companion for elderly individuals with dementia and depression. 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). pp. 541–546. arXiv:1712.02881. Bibcode:2017arXiv171202881A. doi:10.1109/humanoids.2017.8246925. ISBN 978-1-5386-4678-6. S2CID 1962455.