Jump to content

Frobenius covariant: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
 
(28 intermediate revisions by 12 users not shown)
Line 1: Line 1:
In [[Matrix (mathematics)|matrix theory]], the '''Frobenius covariants''' of a [[square matrix]] ''A'' are matrices ''A''<sub>''i''</sub> associated with the [[eigenvalue, eigenvector and eigenspace|eigenvalues and eigenvectors]] of ''A''.<ref name=horn>
In [[Matrix (mathematics)|matrix theory]], the '''Frobenius covariants''' of a [[square matrix]] {{mvar|A}} are special polynomials of it, namely [[projection (linear algebra)|projection]] matrices ''A''<sub>''i''</sub> associated with the [[eigenvalue, eigenvector and eigenspace|eigenvalues and eigenvectors]] of {{mvar|A}}.<ref name=horn>Roger A. Horn and Charles R. Johnson (1991), ''Topics in Matrix Analysis''. Cambridge University Press, {{ISBN|978-0-521-46713-1}}</ref>{{rp|pp.403,437–8}} They are named after the mathematician [[Ferdinand Georg Frobenius|Ferdinand Frobenius]].
Roger A. Horn and Charles R. Johnson (1991), ''Topics in Matrix Analysis''. Cambridge University Press, ISBN 978-0-521-46713-1
</ref> Each covariant is a [[projection (linear algebra)|projection]]<!--OF WHAT?--> on the [[eigenvalue, eigenvector and eigenspace|eigenspace]] associated with ''λ''<sub>''i''</sub>.


Each covariant is a [[projection (linear algebra)|projection]] on the [[eigenvalue, eigenvector and eigenspace|eigenspace]] associated with the eigenvalue {{math|''λ''<sub>''i''</sub>}}.
Frobenius covariants are the coefficients of [[Sylvester's formula]], that expresses a [[matrix function|function of a matrix]] ''f''(''A'') as a linear combination of its values on the eigenvalues of ''A''. They are named after the mathematician [[Ferdinand Georg Frobenius|Ferdinand Frobenius]].
Frobenius covariants are the coefficients of [[Sylvester's formula]], which expresses a [[matrix function|function of a matrix]] {{math|''f''(''A'')}} as a matrix polynomial, namely a linear combination
of that function's values on the eigenvalues of {{mvar|A}}.


==Formal definition==
==Formal definition==
Let ''A'' be a [[diagonalizable matrix]] with ''k'' distinct eigenvalues, ''λ''<sub>1</sub>, &hellip;, ''λ''<sub>''k''</sub>. The Frobenius covariant ''A''<sub>''i''</sub>, for ''i'' = 1,&hellip;, ''k'', is the matrix
Let {{mvar|A}} be a [[diagonalizable matrix]] with eigenvalues ''λ''<sub>1</sub>, ..., ''λ''<sub>''k''</sub>.
The Frobenius covariant {{math|''A''<sub>''i''</sub>}}, for ''i'' = 1,..., ''k'', is the matrix
:<math> A_i = \prod_{j=1 \atop j \ne i}^k \frac{1}{\lambda_i-\lambda_j} (A - \lambda_j I). </math>
:<math> A_i \equiv \prod_{j=1 \atop j \ne i}^k \frac{1}{\lambda_i-\lambda_j} (A - \lambda_j I)~. </math>
It is essentially the [[Lagrange polynomial]] with matrix argument. If the eigenvalue ''λ''<sub>''i''</sub> is simple, then as an idempotent projection matrix to a one-dimensional subspace, {{math|''A''<sub>''i''</sub>}} has a unit [[Trace (linear algebra)|trace]].

{{see also|Resolvent formalism}}


==Computing the covariants==
==Computing the covariants==
[[File:GeorgFrobenius.jpg|180px|thumb|right|[[Ferdinand Georg Frobenius]] (1849–1917), German mathematician. His main interests were [[elliptic function]]s [[differential equation]]s, and later [[group theory]].]]
The Frobenius covariants of a matrix ''A'' can be obtained from any [[eigendecomposition]] ''A'' = ''SDS''<sup>−1</sup>, where ''S'' is non-singular and ''D'' is diagonal with ''D''<sub>''i'',''i''</sub> = ''λ''<sub>''i''</sub>.
If ''A'' has no multiple eigenvalues, then let ''c''<sub>''i''</sub> be the ''i''th left eigenvector of ''A'', that is, the ''i''th column of ''S''; and let ''r''<sub>''i''</sub> be the ''i''th right eigenvector of ''A'', namely the ''i''th row of ''S''<sup>−1</sup>. Then ''A''<sub>''i''</sub> = ''c''<sub>''i''</sub>''r''<sub>''i''</sub>.


The Frobenius covariants of a matrix {{mvar|A}} can be obtained from any [[eigendecomposition]] {{math|''A'' {{=}} ''SDS''<sup>−1</sup>}}, where {{mvar|S}} is non-singular and {{mvar|D}} is diagonal with {{math|''D''<sub>''i'',''i''</sub> {{=}} ''λ''<sub>''i''</sub>}}.
If ''A'' has multiple eigenvalues then ''A''<sub>''i''</sub> = Σ<sub>''j''</sub> ''c''<sub>''j''</sub>''r''<sub>''j''</sub>, where the sum is over all rows and columns associated with the eigenvalue ''λ''<sub>''i''</sub>.<ref name=horn/>{{rp|p.521}}
If {{mvar|A}} has no multiple eigenvalues, then let ''c''<sub>''i''</sub> be the {{mvar|i}}th right eigenvector of {{mvar|A}}, that is, the {{mvar|i}}th column of {{mvar|S}}; and let ''r''<sub>''i''</sub> be the {{mvar|i}}th left eigenvector of {{mvar|A}}, namely the {{mvar|i}}th row of {{mvar|S}}<sup>−1</sup>. Then {{math|''A''<sub>''i''</sub> {{=}} ''c''<sub>''i''</sub> ''r''<sub>''i''</sub>}}.

If {{mvar|A}} has an eigenvalue ''λ''<sub>''i''</sub> appearing multiple times, then {{math|''A''<sub>''i''</sub> {{=}} Σ<sub>''j''</sub> ''c''<sub>''j''</sub> ''r''<sub>''j''</sub>}}, where the sum is over all rows and columns associated with the eigenvalue ''λ''<sub>''i''</sub>.<ref name=horn/>{{rp|p.521}}


==Example==
==Example==
Line 19: Line 26:
Consider the two-by-two matrix:
Consider the two-by-two matrix:
:<math> A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}.</math>
:<math> A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}.</math>
This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is
This matrix has two eigenvalues, 5 and −2; hence {{math| (''A'' − 5)(''A'' + 2) {{=}} 0}}.
The corresponding eigen decomposition is
:<math> A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}. </math>
:<math> A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}. </math>
Hence the Frobenius covariants are
Hence the Frobenius covariants, manifestly projections, are
:<math> \begin{align}
:<math> \begin{array}{rl}
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} \\
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} = A_1^2\\
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}.
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}=A_2^2 ~,
\end{align} </math>
\end{array} </math>
with
:<math>A_1 A_2 = 0 , \qquad A_1 + A_2 = I ~.</math>
Note {{math|tr{{nnbsp}}''A''<sub>1</sub> {{=}} tr{{nnbsp}}''A''<sub>2</sub> {{=}} 1}}, as required.


==References==
==References==
{{Reflist}}
{{Reflist}}


[[Category:matrix theory]]
[[Category:Matrix theory]]

Latest revision as of 07:48, 25 January 2024

In matrix theory, the Frobenius covariants of a square matrix A are special polynomials of it, namely projection matrices Ai associated with the eigenvalues and eigenvectors of A.[1]: pp.403, 437–8  They are named after the mathematician Ferdinand Frobenius.

Each covariant is a projection on the eigenspace associated with the eigenvalue λi. Frobenius covariants are the coefficients of Sylvester's formula, which expresses a function of a matrix f(A) as a matrix polynomial, namely a linear combination of that function's values on the eigenvalues of A.

Formal definition

[edit]

Let A be a diagonalizable matrix with eigenvalues λ1, ..., λk.

The Frobenius covariant Ai, for i = 1,..., k, is the matrix

It is essentially the Lagrange polynomial with matrix argument. If the eigenvalue λi is simple, then as an idempotent projection matrix to a one-dimensional subspace, Ai has a unit trace.

Computing the covariants

[edit]
Ferdinand Georg Frobenius (1849–1917), German mathematician. His main interests were elliptic functions differential equations, and later group theory.

The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS−1, where S is non-singular and D is diagonal with Di,i = λi. If A has no multiple eigenvalues, then let ci be the ith right eigenvector of A, that is, the ith column of S; and let ri be the ith left eigenvector of A, namely the ith row of S−1. Then Ai = ci ri.

If A has an eigenvalue λi appearing multiple times, then Ai = Σj cj rj, where the sum is over all rows and columns associated with the eigenvalue λi.[1]: p.521 

Example

[edit]

Consider the two-by-two matrix:

This matrix has two eigenvalues, 5 and −2; hence (A − 5)(A + 2) = 0.

The corresponding eigen decomposition is

Hence the Frobenius covariants, manifestly projections, are

with

Note tr A1 = tr A2 = 1, as required.

References

[edit]
  1. ^ a b Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1