Jump to content

Rubrene: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
FrescoBot (talk | contribs)
 
(27 intermediate revisions by 19 users not shown)
Line 1: Line 1:
{{chembox
{{chembox
| Watchedfields = changed
| verifiedrevid = 464384456
| verifiedrevid = 464384456
| ImageFile = Rubrene.svg
| ImageFile = Rubrene.svg
Line 7: Line 8:
| ImageAlt1 = Space-filling model
| ImageAlt1 = Space-filling model
| ImageFile2 = Rubrene.jpg
| ImageFile2 = Rubrene.jpg
| IUPACName = 5,6,11,12-Tetraphenyltetracene
| PIN = 5,6,11,12-Tetraphenyltetracene
| OtherNames = 5,6,11,12-Tetraphenylnaphthacene, rubrene
| OtherNames = 5,6,11,12-Tetraphenylnaphthacene, rubrene
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 61510
| ChemSpiderID = 61510
Line 24: Line 25:
| SMILES = c5(c3c(c1ccccc1c(c2ccccc2)c3c(c4ccccc4)c6ccccc56)c7ccccc7)c8ccccc8
| SMILES = c5(c3c(c1ccccc1c(c2ccccc2)c3c(c4ccccc4)c6ccccc56)c7ccccc7)c8ccccc8
}}
}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| Formula = C<sub>42</sub>H<sub>28</sub>
| Formula = C<sub>42</sub>H<sub>28</sub>
| MolarMass = 532.7 g/mol
| MolarMass = 532.7 g/mol
| Appearance =
| Appearance =
| Density =
| Density =
| MeltingPt = 315 °C
| MeltingPtC = 315
| BoilingPt =
| BoilingPt =
| Solubility =
| Solubility =
}}
}}
| Section3 = {{Chembox Hazards
|Section3={{Chembox Hazards
| MainHazards =
| MainHazards =
| FlashPt =
| FlashPt =
| Autoignition =
| AutoignitionPt =
}}
}}
}}
}}


'''Rubrene''' ('''5,6,11,12-tetraphenylnaphthacene''') is a red colored [[polycyclic aromatic hydrocarbon]]. Rubrene is used as a [[sensitiser]] in [[chemoluminescence]] and as a yellow light source in [[lightstick]]s.
'''Rubrene''' ('''5,6,11,12-tetraphenyltetracene''') is the [[organic compound]] with the formula {{chem2|(C18H8(C6H5)4}}. It is a red colored [[polycyclic aromatic hydrocarbon]]. Because of its distinctive optical and electrical properties, rubrene has been extensively studied. It has been used as a [[Photosensitizer|sensitiser]] in [[chemoluminescence]] and as a yellow light source in [[lightstick]]s.<ref>{{cite journal |doi=10.1021/acs.chemrev.2c00844 |title=Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices |date=2023 |last1=Sawatzki-Park |first1=Michael |last2=Wang |first2=Shu-Jen |last3=Kleemann |first3=Hans |last4=Leo |first4=Karl |journal=Chemical Reviews |volume=123 |issue=13 |pages=8232–8250 |pmid=37315945 |pmc=10347425 }}</ref>


As an [[organic semiconductor]], the major application of rubrene is in [[Organic LED|organic light-emitting diode]]s (OLEDs) and [[organic field-effect transistor]]s, which are the core elements of flexible displays. Single-crystal [[transistors]] can be prepared using crystalline rubrene, which is grown in a modified zone furnace on a temperature gradient. This technique, known as physical vapor transport, was introduced in 1998.<ref>A. Laudise, C. Kloc, P. Simpkins, and T. Siegrist "Physical vapor growth of organic semiconductors" J. Cryst. Growth 187, 449
(1998) {{doi|10.1016/S0022-0248(98)00034-7}}</ref><ref>Oana Diana Jurchescu "Molecular organic semiconductors for electronic devices" chapter [http://dissertations.ub.rug.nl/FILES/faculties/science/2006/o.d.jurchescu/06_c6.pdf Low Temperature Crystal Structure of Rubrene Single Crystals Grown by Vapor Transport], PhD thesis (2006) Rijksuniversiteit Groningen</ref>


==Electronic properties==
Rubrene holds the distinction of being the organic semiconductor with the highest carrier mobility, which reaches 40&nbsp;cm<sup>2</sup>/(V·s) for [[Electron hole|holes]]. This value was measured in OFETs prepared by peeling a thin layer of single-crystalline rubrene and transferring to a Si/SiO<sub>2</sub> substrate.<ref name=sc>{{cite journal|format=free download review|journal=Sci. Technol. Adv. Mater. |volume=10|year=2009|page= 024314|doi=10.1088/1468-6996/10/2/024314|title=Organic field-effect transistors using single crystals|author=Tatsuo Hasegawa and Jun Takeya|issue=2|bibcode=2009STAdM..10b4314H}}</ref>
As an [[organic semiconductor]], the major application of rubrene is in [[Organic LED|organic light-emitting diode]]s (OLEDs) and [[organic field-effect transistor]]s, which are the core elements of flexible displays. Single-crystal [[transistors]] can be prepared using crystalline rubrene, which is grown in a modified zone furnace on a temperature gradient. This technique, known as physical vapor transport, was introduced in 1998.<ref>{{cite journal|doi=10.1016/S0022-0248(98)00034-7|title=Physical vapor growth of organic semiconductors|journal=Journal of Crystal Growth|volume=187|issue=3–4|pages=449|year=1998|last1=Laudise|first1=R.A|last2=Kloc|first2=Ch|last3=Simpkins|first3=P.G|last4=Siegrist|first4=T|bibcode=1998JCrGr.187..449L}}</ref><ref>[[Oana Jurchescu|Jurchescu, Oana Diana]] (2006) [http://dissertations.ub.rug.nl/FILES/faculties/science/2006/o.d.jurchescu/06_c6.pdf "Low Temperature Crystal Structure of Rubrene Single Crystals Grown by Vapor Transport"] in ''Molecular organic semiconductors for electronic devices'', PhD thesis Rijksuniversiteit Groningen.</ref>

Rubrene holds the distinction of being the organic semiconductor with the highest carrier mobility, reaching 40&nbsp;cm<sup>2</sup>/(V·s) for [[Electron hole|holes]]. This value was measured in OFETs prepared by peeling a thin layer of single-crystalline rubrene and transferring to a Si/SiO<sub>2</sub> substrate.<ref name=sc>{{cite journal|journal=Sci. Technol. Adv. Mater. |volume=10|date=2009|page= 024314|doi=10.1088/1468-6996/10/2/024314|title=Organic field-effect transistors using single crystals|author=Hasegawa, Tatsuo and Takeya, Jun |issue=2|bibcode=2009STAdM..10b4314H|pmc=5090444|pmid=27877287}}</ref>


==Crystal structure==
==Crystal structure==
Several [[Polymorphism (materials science)|polymorph]]s of rubrene are known. Crystals grown from vapor in vacuum can be [[monoclinic]],<ref>{{cite journal|author=Taylor, W. H.|journal= Zeitschrift für Kristallographie|title= X-ray measurements on diflavylene, rubrene, and related compounds|volume= 93|page= 151|date=1936|issue= 1–6|doi=10.1524/zkri.1936.93.1.151|s2cid= 101491070}}</ref> [[triclinic]],<ref>Akopyan, S. A.; Avoyan, R. L. and Struchkov, Yu. T. Z. Strukt. Khim. 3, 602 (1962)</ref> and [[orthorhombic]] motifs.<ref>{{cite journal|author=Henn, D. E.|author2=Williams, W. G.|name-list-style=amp |journal= J. Appl. Crystallogr.|doi=10.1107/S0021889871006812|title=Crystallographic data for an orthorhombic form of rubrene|volume= 4|page= 256 |date=1971|issue=3}}</ref> Orthorhombic crystals ([[space group]] B<sub>bam</sub>) are obtained in a closed system in a two-zone furnace at ambient pressure.<ref>Bulgarovskaya, I.; Vozzhennikov, V.; Aleksandrov, S.; Belsky, V. (1983). Latv. PSR Zinat. Akad. Vestis, Fiz. Teh. Zinat. Ser. 4. 53: 115</ref>
Rubrene crystals are formed through competition between rather weak intermolecular
interactions, namely π-stacking and quadrupolar interactions. Owing to these weak interactions,
different growth conditions can lead to different crystalline structures – a phenomenon common to many organic crystals. Therefore, several [[Polymorphism (materials science)|polymorph]]s of rubrene are known for crystals grown from vapor in vacuum using sealed ampoules, including a [[monoclinic]],<ref>{{cite journal|author=Taylor, W. H.|journal= Z. Kristallogr.|volume= 93|page= 151|year=1936}}</ref> [[triclinic]]<ref>S. A. Akopyan, R. L. Avoyan, and Yu. T. Struchkov, Z. Strukt. Khim. 3, 602 (1962)</ref> and [[orthorhombic]] ([[space group]] Aba2) forms.<ref>{{cite journal|author=Henn, D. E. and Williams, W. G. |journal= J. Appl. Cryst.|doi=10.1107/S0021889871006812|title=Crystallographic data for an orthorhombic form of rubrene|volume= 4|page= 256 |year=1971|issue=3}}</ref> Another orthorhombic form (space group Bbam) is known in crystals obtained in a closed system, in a two-zone furnace, at ambient pressure.<ref>I. Bulgarovskaya, V. Vozzhennikov, S. Aleksandrov, and V. Belsky, Latv. PSR Zinat. Akad. Vestis, Fiz. Teh. Zinat. Ser. 4, 53 (1983) 115.</ref>


==Synthesis==
==Synthesis==
Rubrene can be synthesized from [[1,1,3-triphenylprop-2-yne-1-ol]] treated with [[thionyl chloride]].<ref>{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=840–841}}</ref>
Rubrene is prepared by treating [[1,1,3-Triphenyl-2-propyn-1-ol]] with [[thionyl chloride]].<ref>{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=840–841}}</ref>
[[File:3-chloro-1,1,3-triphenylpropa-1,2-diene.png|400px]]


The 3-chloro-1,1,3-triphenylpropa-1,2-diene then [[Dimer (chemistry)|dimerises]] to rubrene.
:[[File:3-chloro-1,1,3-triphenylpropa-1,2-diene.png|500px]]


The resulting chloro[[allene]] undergoes [[Dimer (chemistry)|dimerization]] and [[dehydrochlorination]] to give rubrene.<ref>{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=844–845}}</ref>
[[File:Rubrene synthesis.png|400px]]


:[[File:Rubrene synthesis.png|350px]]
It is reported that this method has a 26% yield with respect to [[1,1,3-triphenylprop-2-yne-1-ol]].<ref>{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=844–845}}</ref>

==Redox properties==
Rubrene, like other polycyclic aromatic molecules, undergoes redox reactions in solution. It oxidizes and reduces reversibly at 0.95 V and −1.37 V, respectively vs [[saturated calomel electrode|SCE]]. When the cation and anion are co-generated in an electrochemical cell, they can combine with annihilation of their charges, but producing an excited rubrene molecule that emits at 540&nbsp;nm. This phenomenon is called [[electrochemiluminescence]].<ref>{{cite journal|author=Richter, M. M.|title=Electrochemiluminescence (ECL)|journal=Chemical Reviews|volume=104|issue=6|pages=3003–36|doi=10.1021/cr020373d|pmid=15186186|year=2004}}</ref>


==References==
==References==
{{Commons category|Rubrene}}
{{reflist}}
{{reflist}}


Line 68: Line 71:
[[Category:Organic semiconductors]]
[[Category:Organic semiconductors]]
[[Category:Fluorescent dyes]]
[[Category:Fluorescent dyes]]

[[de:Rubren]]
[[fr:Rubrène]]
[[nl:Rubreen]]
[[ja:ルブレン]]
[[pl:Rubren]]

Latest revision as of 22:38, 14 December 2024

Rubrene
Skeletal formula
Space-filling model
Names
Preferred IUPAC name
5,6,11,12-Tetraphenyltetracene
Other names
5,6,11,12-Tetraphenylnaphthacene, rubrene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.494 Edit this at Wikidata
EC Number
  • 208-242-0
  • InChI=1S/C42H28/c1-5-17-29(18-6-1)37-33-25-13-14-26-34(33)39(31-21-9-3-10-22-31)42-40(32-23-11-4-12-24-32)36-28-16-15-27-35(36)38(41(37)42)30-19-7-2-8-20-30/h1-28H checkY
    Key: YYMBJDOZVAITBP-UHFFFAOYSA-N checkY
  • InChI=1/C42H28/c1-5-17-29(18-6-1)37-33-25-13-14-26-34(33)39(31-21-9-3-10-22-31)42-40(32-23-11-4-12-24-32)36-28-16-15-27-35(36)38(41(37)42)30-19-7-2-8-20-30/h1-28H
    Key: YYMBJDOZVAITBP-UHFFFAOYAD
  • c5(c3c(c1ccccc1c(c2ccccc2)c3c(c4ccccc4)c6ccccc56)c7ccccc7)c8ccccc8
Properties
C42H28
Molar mass 532.7 g/mol
Melting point 315 °C (599 °F; 588 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Rubrene (5,6,11,12-tetraphenyltetracene) is the organic compound with the formula (C18H8(C6H5)4. It is a red colored polycyclic aromatic hydrocarbon. Because of its distinctive optical and electrical properties, rubrene has been extensively studied. It has been used as a sensitiser in chemoluminescence and as a yellow light source in lightsticks.[1]


Electronic properties

[edit]

As an organic semiconductor, the major application of rubrene is in organic light-emitting diodes (OLEDs) and organic field-effect transistors, which are the core elements of flexible displays. Single-crystal transistors can be prepared using crystalline rubrene, which is grown in a modified zone furnace on a temperature gradient. This technique, known as physical vapor transport, was introduced in 1998.[2][3]

Rubrene holds the distinction of being the organic semiconductor with the highest carrier mobility, reaching 40 cm2/(V·s) for holes. This value was measured in OFETs prepared by peeling a thin layer of single-crystalline rubrene and transferring to a Si/SiO2 substrate.[4]

Crystal structure

[edit]

Several polymorphs of rubrene are known. Crystals grown from vapor in vacuum can be monoclinic,[5] triclinic,[6] and orthorhombic motifs.[7] Orthorhombic crystals (space group Bbam) are obtained in a closed system in a two-zone furnace at ambient pressure.[8]

Synthesis

[edit]

Rubrene is prepared by treating 1,1,3-Triphenyl-2-propyn-1-ol with thionyl chloride.[9]

The resulting chloroallene undergoes dimerization and dehydrochlorination to give rubrene.[10]

Redox properties

[edit]

Rubrene, like other polycyclic aromatic molecules, undergoes redox reactions in solution. It oxidizes and reduces reversibly at 0.95 V and −1.37 V, respectively vs SCE. When the cation and anion are co-generated in an electrochemical cell, they can combine with annihilation of their charges, but producing an excited rubrene molecule that emits at 540 nm. This phenomenon is called electrochemiluminescence.[11]

References

[edit]
  1. ^ Sawatzki-Park, Michael; Wang, Shu-Jen; Kleemann, Hans; Leo, Karl (2023). "Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices". Chemical Reviews. 123 (13): 8232–8250. doi:10.1021/acs.chemrev.2c00844. PMC 10347425. PMID 37315945.
  2. ^ Laudise, R.A; Kloc, Ch; Simpkins, P.G; Siegrist, T (1998). "Physical vapor growth of organic semiconductors". Journal of Crystal Growth. 187 (3–4): 449. Bibcode:1998JCrGr.187..449L. doi:10.1016/S0022-0248(98)00034-7.
  3. ^ Jurchescu, Oana Diana (2006) "Low Temperature Crystal Structure of Rubrene Single Crystals Grown by Vapor Transport" in Molecular organic semiconductors for electronic devices, PhD thesis Rijksuniversiteit Groningen.
  4. ^ Hasegawa, Tatsuo and Takeya, Jun (2009). "Organic field-effect transistors using single crystals". Sci. Technol. Adv. Mater. 10 (2): 024314. Bibcode:2009STAdM..10b4314H. doi:10.1088/1468-6996/10/2/024314. PMC 5090444. PMID 27877287.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Taylor, W. H. (1936). "X-ray measurements on diflavylene, rubrene, and related compounds". Zeitschrift für Kristallographie. 93 (1–6): 151. doi:10.1524/zkri.1936.93.1.151. S2CID 101491070.
  6. ^ Akopyan, S. A.; Avoyan, R. L. and Struchkov, Yu. T. Z. Strukt. Khim. 3, 602 (1962)
  7. ^ Henn, D. E. & Williams, W. G. (1971). "Crystallographic data for an orthorhombic form of rubrene". J. Appl. Crystallogr. 4 (3): 256. doi:10.1107/S0021889871006812.
  8. ^ Bulgarovskaya, I.; Vozzhennikov, V.; Aleksandrov, S.; Belsky, V. (1983). Latv. PSR Zinat. Akad. Vestis, Fiz. Teh. Zinat. Ser. 4. 53: 115
  9. ^ Furniss, B. Vogel's Textbook of Practical Organic Chemistry (5th ed.). pp. 840–841.
  10. ^ Furniss, B. Vogel's Textbook of Practical Organic Chemistry (5th ed.). pp. 844–845.
  11. ^ Richter, M. M. (2004). "Electrochemiluminescence (ECL)". Chemical Reviews. 104 (6): 3003–36. doi:10.1021/cr020373d. PMID 15186186.