Comonotonicity: Difference between revisions
No edit summary |
m Small writing fix |
||
(23 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
In [[probability theory]], '''comonotonicity''' mainly refers to the perfect positive dependence between the components of a [[multivariate random variable|random vector]], essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called |
In [[probability theory]], '''comonotonicity''' mainly refers to the perfect positive dependence between the components of a [[multivariate random variable|random vector]], essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity. |
||
Comonotonicity is also related to the comonotonic additivity of the [[Choquet integral]].<ref>{{harv|Sriboonchitta|Wong|Dhompongsa|Nguyen|2010|pp=149–152}}</ref> |
Comonotonicity is also related to the comonotonic additivity of the [[Choquet integral]].<ref>{{harv|Sriboonchitta|Wong|Dhompongsa|Nguyen|2010|pp=149–152}}</ref> |
||
The concept of comonotonicity has applications in [[financial risk management]] and [[actuarial science]]. In particular, the sum |
The concept of comonotonicity has applications in [[financial risk management]] and [[actuarial science]], see e.g. {{harvtxt|Dhaene|Denuit|Goovaerts|Vyncke|2002a}} and {{harvtxt|Dhaene|Denuit|Goovaerts|Vyncke|2002b}}. In particular, the sum of the components {{math|<var>X</var><sub>1</sub> + <var>X</var><sub>2</sub> + · · · + <var>X<sub>n</sub></var>}} is the riskiest if the [[joint probability distribution]] of the random vector {{math|(<var>X</var><sub>1</sub>, <var>X</var><sub>2</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem 6}}</ref> Furthermore, the {{math|<var>α</var>}}-[[quantile]] of the sum equals the sum of the {{math|<var>α</var>}}-quantiles of its components, hence comonotonic random variables are quantile-additive.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem 7}}</ref><ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition 6.15}}</ref> In practical risk management terms it means that there is minimal (or eventually no) variance reduction from diversification. |
||
For extensions of comonotonicity, see {{harvtxt|Jouini|Napp|2004}} and {{harvtxt|Puccetti|Scarsini|2010}}. |
For extensions of comonotonicity, see {{harvtxt|Jouini|Napp|2004}} and {{harvtxt|Puccetti|Scarsini|2010}}. |
||
==Definitions== |
==Definitions== |
||
⚫ | |||
⚫ | A subset |
||
⚫ | |||
⚫ | |||
⚫ | A subset {{math|<var>S</var>}} of {{math|'''R'''<sup><var>n</var></sup>}} is called ''comonotonic''<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Definition 1}}</ref> (sometimes also ''nondecreasing''<ref>See {{harv|Nelsen|2006|loc=Definition 2.5.1}} for the case {{math|<var>n</var> {{=}} 2}}</ref>) if, for all {{math|(<var>x</var><sub>1</sub>, <var>x</var><sub>2</sub>, . . . , <var>x<sub>n</sub></var>)}} and {{math|(<var>y</var><sub>1</sub>, <var>y</var><sub>2</sub>, . . . , <var>y<sub>n</sub></var>)}} in {{math|<var>S</var>}} with {{math|<var>x<sub>i</sub></var> < <var>y<sub>i</sub></var>}} for some {{math|<var>i</var> ∈ {1, 2, . . . , <var>n</var>}}}, it follows that {{math|<var>x<sub>j</sub></var> ≤ <var>y<sub>j</sub></var>}} for all {{math|<var>j</var> ∈ {1, 2, . . . , <var>n</var>}}}. |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
==Properties== |
==Properties== |
||
An '''R'''<sup> |
An {{math|'''R'''<sup><var>n</var></sup>}}-valued random vector {{math|<var>X</var> {{=}} (<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic if and only if it can be represented as |
||
:<math>(X_1,\ldots, |
:<math>(X_1,\ldots,X_n)=_\text{d}(F_{X_1}^{-1}(U),\ldots,F_{X_n}^{-1}(U)), \, </math> |
||
where =<sub>d</sub> stands for equality in distribution, on the right-hand side are the [[left-continuous]] generalized inverses<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition A.3 (properties of the generalized inverse)}}</ref> of the cumulative distribution functions |
where {{math|{{=}}<sub>d</sub>}} stands for equality in distribution, on the right-hand side are the [[left-continuous]] generalized inverses<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition A.3 (properties of the generalized inverse)}}</ref> of the cumulative distribution functions {{math|<var>F</var><sub><var>X</var><sub>1</sub></sub>, . . . , <var>F<sub>X<sub>n</sub></sub></var>}}, and {{math|<var>U</var>}} is a [[uniform distribution (continuous)|uniformly distributed random variable]] on the [[unit interval]]. More generally, a random vector is comonotonic if and only if it agrees in distribution with a random vector where all components are [[monotonic function|non-decreasing functions]] (or all are non-increasing functions) of the same random variable.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition 5.16 and its proof}}</ref> |
||
==Upper bounds== |
==Upper bounds== |
||
===Upper Fréchet–Hoeffding bound for cumulative distribution functions=== |
===Upper Fréchet–Hoeffding bound for cumulative distribution functions=== |
||
{{main|Fréchet–Hoeffding copula bounds}} |
{{main|Fréchet–Hoeffding copula bounds}} |
||
Let |
Let {{math|<var>X</var> {{=}} (<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} be an {{math|'''R'''<sup><var>n</var></sup>}}-valued random vector. Then, for every {{math|<var>i</var> ∈ {1, 2, . . . , <var>n</var>}}}, |
||
:<math> |
:<math>\Pr(X_1\le x_1,\ldots,X_n\le x_n) \le \Pr(X_i\le x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n,</math> |
||
hence |
hence |
||
:<math> |
:<math>\Pr(X_1\le x_1,\ldots,X_n\le x_n)\le\min_{i\in\{1,\ldots,n\}} \Pr(X_i\le x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n,</math> |
||
with equality everywhere if and only if |
with equality everywhere if and only if {{math|(<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic. |
||
===Upper bound for the covariance=== |
===Upper bound for the covariance=== |
||
Let |
Let {{math|(<var>X</var>, <var>Y</var>)}} be a bivariate random vector such that the [[expected value]]s of {{math|<var>X</var>}}, {{math|<var>Y</var>}} and the product {{math|<var>X</var><var>Y</var>}} exist. Let {{math|(<var>X</var><sup>*</sup>, <var>Y</var><sup>*</sup>)}} be a comonotonic bivariate random vector with the same one-dimensional marginal distributions as {{math|(<var>X</var>, <var>Y</var>)}}.<ref group="note">{{math|(<var>X</var><sup>*</sup>, <var>Y</var><sup>*</sup>)}} always exists, take for example {{math|(<var>F<sub>X</sub></var><sup>−1</sup>(<var>U</var>), <var>F<sub>Y </sub></var><sup>−1</sup>(<var>U</var>))}}, see section [[#Properties|Properties]] above.</ref> Then it follows from [[Höffding's formula for the covariance]]<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Lemma 5.24}}</ref> and the upper Fréchet–Hoeffding bound that |
||
:<math>\text{Cov}(X,Y)\le\text{Cov}(X^*,Y^*)</math> |
:<math>\text{Cov}(X,Y)\le\text{Cov}(X^*,Y^*)</math> |
||
Line 62: | Line 64: | ||
and, correspondingly, |
and, correspondingly, |
||
:<math> |
:<math> \operatorname E[XY]\le \operatorname E[X^*Y^*]</math> |
||
with equality if and only if |
with equality if and only if {{math|(<var>X</var>, <var>Y</var>)}} is comonotonic.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Theorem 5.25(2)}}</ref> |
||
Note that this result generalizes the [[rearrangement inequality]] and [[Chebyshev's sum inequality]]. |
|||
==See also== |
==See also== |
||
* [[Copula (probability theory) |
* [[Copula (probability theory)]] |
||
==Notes== |
==Notes== |
||
Line 90: | Line 94: | ||
| issue = 1 |
| issue = 1 |
||
| pages = 3–33 |
| pages = 3–33 |
||
| year = |
| year = 2002a |
||
| url = http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf |
| url = http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf |
||
| mr = 1956509 |
|||
| zbl = 1051.62107 |
|||
| doi = 10.1016/s0167-6687(02)00134-8 |
|||
| access-date = 2012-08-28 |
|||
| archive-url = https://web.archive.org/web/20081209024033/http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf |
|||
| archive-date = 2008-12-09 |
|||
| url-status = dead |
|||
}} |
|||
* {{Citation |
* {{Citation |
||
| last1 = Dhaene |
| last1 = Dhaene |
||
Line 106: | Line 118: | ||
| issue = 2 |
| issue = 2 |
||
| pages = 133–161 |
| pages = 133–161 |
||
| year = |
| year = 2002b |
||
| url = http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf |
| url = http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf |
||
| mr = 1932751 |
|||
| zbl = 1037.62107 |
|||
| doi = 10.1016/s0167-6687(02)00135-x |
|||
| citeseerx = 10.1.1.10.789 |
|||
| access-date = 2012-08-28 |
|||
| archive-url = https://web.archive.org/web/20081209023502/http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf |
|||
| archive-date = 2008-12-09 |
|||
| url-status = dead |
|||
}} |
|||
* {{Citation |
* {{Citation |
||
| last = Jouini |
| last = Jouini |
||
Line 122: | Line 143: | ||
| url = http://www.ceremade.dauphine.fr/~jouini/DEF180RR.pdf |
| url = http://www.ceremade.dauphine.fr/~jouini/DEF180RR.pdf |
||
| mr = 2104639 |
| mr = 2104639 |
||
| zbl = 1063.60002 |
| zbl = 1063.60002 |
||
| doi=10.1007/s10203-004-0049-y}} |
|||
* {{Citation |
* {{Citation |
||
| last = Kaas |
| last = Kaas |
||
Line 142: | Line 164: | ||
| url = http://www.casact.org/library/astin/vol32no1/71.pdf |
| url = http://www.casact.org/library/astin/vol32no1/71.pdf |
||
| mr = 1928014 |
| mr = 1928014 |
||
| zbl = 1061.62511 |
| zbl = 1061.62511 |
||
| doi=10.2143/ast.32.1.1015| doi-access = free |
|||
}} |
|||
* {{Citation |
* {{Citation |
||
| last = McNeil |
| last = McNeil |
||
Line 155: | Line 179: | ||
| series = Princeton Series in Finance |
| series = Princeton Series in Finance |
||
| year = 2005 |
| year = 2005 |
||
| url = |
| url = https://books.google.com/books?id=f5J_OZPeq50C |
||
| isbn = 0-691-12255- |
| isbn = 978-0-691-12255-7 |
||
| mr = 2175089 |
| mr = 2175089 |
||
| zbl = 1089.91037}} |
| zbl = 1089.91037}} |
||
Line 169: | Line 193: | ||
| edition = second |
| edition = second |
||
| pages = xiv+269 |
| pages = xiv+269 |
||
| id = |
|||
| id = {{ISBN-10|0-387-28659-4}}, {{ISBN-13|978-0387-28659-4}} |
|||
| mr = 2197664 |
| mr = 2197664 |
||
| zbl = 1152.62030 |
| zbl = 1152.62030| isbn = 978-0-387-28659-4 |
||
}} |
|||
* {{Citation |
* {{Citation |
||
| last = Puccetti |
| last = Puccetti |
||
Line 186: | Line 211: | ||
| issn = 0047-259X |
| issn = 0047-259X |
||
| mr = 2557634 |
| mr = 2557634 |
||
| zbl = 1184.62081 |
| zbl = 1184.62081 |
||
| doi=10.1016/j.jmva.2009.08.003}} |
|||
* {{Citation |
* {{Citation |
||
| last = Sriboonchitta |
| last = Sriboonchitta |
||
Line 200: | Line 226: | ||
| publisher = Chapman & Hall/CRC Press |
| publisher = Chapman & Hall/CRC Press |
||
| year = 2010 |
| year = 2010 |
||
| url = |
| url = https://books.google.com/books?id=omxatN4lVCkC |
||
| isbn = 978-1-4200-8266-1 |
| isbn = 978-1-4200-8266-1 |
||
| mr = 2590381 |
| mr = 2590381 |
||
Line 206: | Line 232: | ||
[[Category:Theory of probability distributions]] |
[[Category:Theory of probability distributions]] |
||
[[Category: |
[[Category:Independence (probability theory)]] |
||
[[Category:Covariance and correlation]] |
[[Category:Covariance and correlation]] |
Latest revision as of 10:16, 13 March 2024
In probability theory, comonotonicity mainly refers to the perfect positive dependence between the components of a random vector, essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity.
Comonotonicity is also related to the comonotonic additivity of the Choquet integral.[1]
The concept of comonotonicity has applications in financial risk management and actuarial science, see e.g. Dhaene et al. (2002a) and Dhaene et al. (2002b). In particular, the sum of the components X1 + X2 + · · · + Xn is the riskiest if the joint probability distribution of the random vector (X1, X2, . . . , Xn) is comonotonic.[2] Furthermore, the α-quantile of the sum equals the sum of the α-quantiles of its components, hence comonotonic random variables are quantile-additive.[3][4] In practical risk management terms it means that there is minimal (or eventually no) variance reduction from diversification.
For extensions of comonotonicity, see Jouini & Napp (2004) and Puccetti & Scarsini (2010).
Definitions
[edit]Comonotonicity of subsets of Rn
[edit]A subset S of Rn is called comonotonic[5] (sometimes also nondecreasing[6]) if, for all (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in S with xi < yi for some i ∈ {1, 2, . . . , n}, it follows that xj ≤ yj for all j ∈ {1, 2, . . . , n}.
This means that S is a totally ordered set.
Comonotonicity of probability measures on Rn
[edit]Let μ be a probability measure on the n-dimensional Euclidean space Rn and let F denote its multivariate cumulative distribution function, that is
Furthermore, let F1, . . . , Fn denote the cumulative distribution functions of the n one-dimensional marginal distributions of μ, that means
for every i ∈ {1, 2, . . . , n}. Then μ is called comonotonic, if
Note that the probability measure μ is comonotonic if and only if its support S is comonotonic according to the above definition.[7]
Comonotonicity of Rn-valued random vectors
[edit]An Rn-valued random vector X = (X1, . . . , Xn) is called comonotonic, if its multivariate distribution (the pushforward measure) is comonotonic, this means
Properties
[edit]An Rn-valued random vector X = (X1, . . . , Xn) is comonotonic if and only if it can be represented as
where =d stands for equality in distribution, on the right-hand side are the left-continuous generalized inverses[8] of the cumulative distribution functions FX1, . . . , FXn, and U is a uniformly distributed random variable on the unit interval. More generally, a random vector is comonotonic if and only if it agrees in distribution with a random vector where all components are non-decreasing functions (or all are non-increasing functions) of the same random variable.[9]
Upper bounds
[edit]Upper Fréchet–Hoeffding bound for cumulative distribution functions
[edit]Let X = (X1, . . . , Xn) be an Rn-valued random vector. Then, for every i ∈ {1, 2, . . . , n},
hence
with equality everywhere if and only if (X1, . . . , Xn) is comonotonic.
Upper bound for the covariance
[edit]Let (X, Y) be a bivariate random vector such that the expected values of X, Y and the product XY exist. Let (X*, Y*) be a comonotonic bivariate random vector with the same one-dimensional marginal distributions as (X, Y).[note 1] Then it follows from Höffding's formula for the covariance[10] and the upper Fréchet–Hoeffding bound that
and, correspondingly,
with equality if and only if (X, Y) is comonotonic.[11]
Note that this result generalizes the rearrangement inequality and Chebyshev's sum inequality.
See also
[edit]Notes
[edit]- ^ (X*, Y*) always exists, take for example (FX−1(U), FY −1(U)), see section Properties above.
Citations
[edit]- ^ (Sriboonchitta et al. 2010, pp. 149–152)
- ^ (Kaas et al. 2002, Theorem 6)
- ^ (Kaas et al. 2002, Theorem 7)
- ^ (McNeil, Frey & Embrechts 2005, Proposition 6.15)
- ^ (Kaas et al. 2002, Definition 1)
- ^ See (Nelsen 2006, Definition 2.5.1) for the case n = 2
- ^ See (Nelsen 2006, Theorem 2.5.4) for the case n = 2
- ^ (McNeil, Frey & Embrechts 2005, Proposition A.3 (properties of the generalized inverse))
- ^ (McNeil, Frey & Embrechts 2005, Proposition 5.16 and its proof)
- ^ (McNeil, Frey & Embrechts 2005, Lemma 5.24)
- ^ (McNeil, Frey & Embrechts 2005, Theorem 5.25(2))
References
[edit]- Dhaene, Jan; Denuit, Michel; Goovaerts, Marc J.; Vyncke, David (2002a), "The concept of comonotonicity in actuarial science and finance: theory" (PDF), Insurance: Mathematics & Economics, 31 (1): 3–33, doi:10.1016/s0167-6687(02)00134-8, MR 1956509, Zbl 1051.62107, archived from the original (PDF) on 2008-12-09, retrieved 2012-08-28
- Dhaene, Jan; Denuit, Michel; Goovaerts, Marc J.; Vyncke, David (2002b), "The concept of comonotonicity in actuarial science and finance: applications" (PDF), Insurance: Mathematics & Economics, 31 (2): 133–161, CiteSeerX 10.1.1.10.789, doi:10.1016/s0167-6687(02)00135-x, MR 1932751, Zbl 1037.62107, archived from the original (PDF) on 2008-12-09, retrieved 2012-08-28
- Jouini, Elyès; Napp, Clotilde (2004), "Conditional comonotonicity" (PDF), Decisions in Economics and Finance, 27 (2): 153–166, doi:10.1007/s10203-004-0049-y, ISSN 1593-8883, MR 2104639, Zbl 1063.60002
- Kaas, Rob; Dhaene, Jan; Vyncke, David; Goovaerts, Marc J.; Denuit, Michel (2002), "A simple geometric proof that comonotonic risks have the convex-largest sum" (PDF), ASTIN Bulletin, 32 (1): 71–80, doi:10.2143/ast.32.1.1015, MR 1928014, Zbl 1061.62511
- McNeil, Alexander J.; Frey, Rüdiger; Embrechts, Paul (2005), Quantitative Risk Management. Concepts, Techniques and Tools, Princeton Series in Finance, Princeton, NJ: Princeton University Press, ISBN 978-0-691-12255-7, MR 2175089, Zbl 1089.91037
- Nelsen, Roger B. (2006), An Introduction to Copulas, Springer Series in Statistics (second ed.), New York: Springer, pp. xiv+269, ISBN 978-0-387-28659-4, MR 2197664, Zbl 1152.62030
- Puccetti, Giovanni; Scarsini, Marco (2010), "Multivariate comonotonicity" (PDF), Journal of Multivariate Analysis, 101 (1): 291–304, doi:10.1016/j.jmva.2009.08.003, ISSN 0047-259X, MR 2557634, Zbl 1184.62081
- Sriboonchitta, Songsak; Wong, Wing-Keung; Dhompongsa, Sompong; Nguyen, Hung T. (2010), Stochastic Dominance and Applications to Finance, Risk and Economics, Boca Raton, FL: Chapman & Hall/CRC Press, ISBN 978-1-4200-8266-1, MR 2590381, Zbl 1180.91010