Jump to content

Comonotonicity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Nmdwolf (talk | contribs)
m Small writing fix
 
(23 intermediate revisions by 16 users not shown)
Line 1: Line 1:
In [[probability theory]], '''comonotonicity''' mainly refers to the perfect positive dependence between the components of a [[multivariate random variable|random vector]], essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called [[countermonotonicity]].
In [[probability theory]], '''comonotonicity''' mainly refers to the perfect positive dependence between the components of a [[multivariate random variable|random vector]], essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity.


Comonotonicity is also related to the comonotonic additivity of the [[Choquet integral]].<ref>{{harv|Sriboonchitta|Wong|Dhompongsa|Nguyen|2010|pp=149–152}}</ref>
Comonotonicity is also related to the comonotonic additivity of the [[Choquet integral]].<ref>{{harv|Sriboonchitta|Wong|Dhompongsa|Nguyen|2010|pp=149–152}}</ref>


The concept of comonotonicity has applications in [[financial risk management]] and [[actuarial science]]. In particular, the sum ''S'' of the components ''X''<sub>1</sub> + ''X''<sub>2</sub> + ... + ''X<sub>n</sub>'' is the riskiest if the [[joint probability distribution]] of the random vector (''X''<sub>1</sub>,''X''<sub>2</sub>,...,''X<sub>n</sub>'') is comonotonic.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem&nbsp;6}}</ref> Furthermore, the α-[[quantile]] of the sum equals of the sum of the α-quantiles of its components, hence comonotonic random variables are quantile-additive.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem&nbsp;7}}</ref><ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition&nbsp;6.15}}</ref>
The concept of comonotonicity has applications in [[financial risk management]] and [[actuarial science]], see e.g. {{harvtxt|Dhaene|Denuit|Goovaerts|Vyncke|2002a}} and {{harvtxt|Dhaene|Denuit|Goovaerts|Vyncke|2002b}}. In particular, the sum of the components {{math|<var>X</var><sub>1</sub> + <var>X</var><sub>2</sub> + · · · + <var>X<sub>n</sub></var>}} is the riskiest if the [[joint probability distribution]] of the random vector {{math|(<var>X</var><sub>1</sub>, <var>X</var><sub>2</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem&nbsp;6}}</ref> Furthermore, the {{math|<var>α</var>}}-[[quantile]] of the sum equals the sum of the {{math|<var>α</var>}}-quantiles of its components, hence comonotonic random variables are quantile-additive.<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Theorem&nbsp;7}}</ref><ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition&nbsp;6.15}}</ref> In practical risk management terms it means that there is minimal (or eventually no) variance reduction from diversification.


For extensions of comonotonicity, see {{harvtxt|Jouini|Napp|2004}} and {{harvtxt|Puccetti|Scarsini|2010}}.
For extensions of comonotonicity, see {{harvtxt|Jouini|Napp|2004}} and {{harvtxt|Puccetti|Scarsini|2010}}.


==Definitions==
==Definitions==
===Comonotonicity of subsets of <math>\mathbb R^n</math>===
A subset ''S'' of '''R'''<sup>''d''</sup> is called ''comonotonic''<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Definition&nbsp;1}}</ref> (sometimes also ''nondecreasing''<ref>See {{harv|Nelsen|2006|loc=Definition&nbsp;2.5.1}} for the case ''d''&nbsp;=&nbsp;2</ref>) if, for all (''x''<sub>1</sub>,''x''<sub>2</sub>,...,''x<sub>d</sub>'') and (''y''<sub>1</sub>,''y''<sub>2</sub>,...,''y<sub>d</sub>'') in ''S'' with ''x<sub>i</sub>''&nbsp;<&nbsp;''y<sub>i</sub>'' for some ''i''&nbsp;&nbsp;{1,2,...,''d''}, it follows that ''x<sub>j</sub>''&nbsp;&nbsp;''y<sub>j</sub>'' for all ''j''&nbsp;&nbsp;{1,2,...,''d''}.


===Comonotonicity of subsets of {{math|R<sup><var>n</var></sup>}}===
This means that ''S'' is a [[totally ordered set]].
A subset {{math|<var>S</var>}} of {{math|'''R'''<sup><var>n</var></sup>}} is called ''comonotonic''<ref>{{harv|Kaas|Dhaene|Vyncke|Goovaerts|2002|loc=Definition&nbsp;1}}</ref> (sometimes also ''nondecreasing''<ref>See {{harv|Nelsen|2006|loc=Definition&nbsp;2.5.1}} for the case {{math|<var>n</var> {{=}} 2}}</ref>) if, for all {{math|(<var>x</var><sub>1</sub>, <var>x</var><sub>2</sub>, . . . , <var>x<sub>n</sub></var>)}} and {{math|(<var>y</var><sub>1</sub>, <var>y</var><sub>2</sub>, . . . , <var>y<sub>n</sub></var>)}} in {{math|<var>S</var>}} with {{math|<var>x<sub>i</sub></var> < <var>y<sub>i</sub></var>}} for some {{math|<var>i</var> {1, 2, . . . , <var>n</var>}}}, it follows that {{math|<var>x<sub>j</sub></var> <var>y<sub>j</sub></var>}} for all {{math|<var>j</var> {1, 2, . . . , <var>n</var>}}}.


This means that {{math|<var>S</var>}} is a [[totally ordered set]].
===Comonotonicity of probability measures on R<sup>''d''</sup>===
Let ''μ'' be a [[probability measure]] on the ''d''-dimensional [[Euclidean space]] '''R'''<sup>''d''</sup> and let ''F'' denote its multivariate [[cumulative distribution function]], that is


===Comonotonicity of probability measures on {{math|R<sup><var>n</var></sup>}}===
:<math>F(x_1,\ldots,x_d):=\mu\bigl(\{(y_1,\ldots,y_d)\in{\mathbb R}^d\mid y_1\le x_1,\ldots,y_d\le x_d\}\bigr),\qquad (x_1,\ldots,x_d)\in{\mathbb R}^d.</math>
Let {{math|<var>μ</var>}} be a [[probability measure]] on the {{math|<var>n</var>}}-dimensional [[Euclidean space]] {{math|'''R'''<sup><var>n</var></sup>}} and let {{math|<var>F</var>}} denote its multivariate [[cumulative distribution function]], that is


:<math>F(x_1,\ldots,x_n):=\mu\bigl(\{(y_1,\ldots,y_n)\in{\mathbb R}^n\mid y_1\le x_1,\ldots,y_n\le x_n\}\bigr),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n.</math>
Furthermore, let ''F''<sub>1</sub>,...,''F<sub>d</sub>'' denote the cumulative distribution functions of the ''d'' one-dimensional [[marginal distribution]]s of ''μ'', that means


Furthermore, let {{math|<var>F</var><sub>1</sub>, . . . , <var>F<sub>n</sub></var>}} denote the cumulative distribution functions of the {{math|<var>n</var>}} one-dimensional [[marginal distribution]]s of {{math|<var>μ</var>}}, that means
:<math>F_i(x):=\mu\bigl(\{(y_1,\ldots,y_d)\in{\mathbb R}^d\mid y_i\le x\}\bigr),\qquad x\in{\mathbb R}</math>


:<math>F_i(x):=\mu\bigl(\{(y_1,\ldots,y_n)\in{\mathbb R}^n\mid y_i\le x\}\bigr),\qquad x\in{\mathbb R}</math>
for every ''i''&nbsp;&nbsp;{1,2,...,''d''}. Then ''μ'' is called ''comonotonic'', if


for every {{math|<var>i</var> {1, 2, . . . , <var>n</var>}}}. Then {{math|<var>μ</var>}} is called ''comonotonic'', if
:<math>F(x_1,\ldots,x_d)=\min_{i\in\{1,\ldots,d\}}F_i(x_i),\qquad (x_1,\ldots,x_d)\in{\mathbb R}^d.</math>


:<math>F(x_1,\ldots,x_n)=\min_{i\in\{1,\ldots,n\}}F_i(x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n.</math>
Note that the probability measure ''μ'' is comonotonic if and only if its [[support (measure theory)|support]] in comonotonic.<ref>See {{harv|Nelsen|2006|loc=Theorem&nbsp;2.5.4}} for the case ''d''&nbsp;=&nbsp;2</ref>


Note that the probability measure {{math|<var>μ</var>}} is comonotonic if and only if its [[support (measure theory)|support]] {{math|<var>S</var>}} is comonotonic according to the above definition.<ref>See {{harv|Nelsen|2006|loc=Theorem&nbsp;2.5.4}} for the case {{math|<var>n</var> {{=}} 2}}</ref>
===Comonotonicity of R<sup>''d''</sup>-valued random vectors===
An '''R'''<sup>''d''</sup>-valued random vector <math>X=(X_1,\ldots,X_d)</math> is called ''comonotonic'', if its multivariate [[probability distribution|distribution]] (the [[pushforward measure]]) is comonotonic, this means


===Comonotonicity of {{math|R<sup><var>n</var></sup>}}-valued random vectors===
:<math>{\mathbb P}(X_1\le x_1,\ldots,X_d\le x_d)=\min_{i\in\{1,\ldots,d\}}{\mathbb P}(X_i\le x_i),\qquad (x_1,\ldots,x_d)\in{\mathbb R}^d.</math>
An {{math|'''R'''<sup><var>n</var></sup>}}-valued random vector {{math|<var>X</var> {{=}} (<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} is called ''comonotonic'', if its multivariate [[probability distribution|distribution]] (the [[pushforward measure]]) is comonotonic, this means

:<math>\Pr(X_1\le x_1,\ldots,X_n\le x_n)=\min_{i\in\{1,\ldots,n\}} \Pr(X_i\le x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n.</math>


==Properties==
==Properties==
An '''R'''<sup>''d''</sup>-valued random vector <math>X=(X_1,\ldots,X_d)</math> is comonotonic if and only if it can be represented as
An {{math|'''R'''<sup><var>n</var></sup>}}-valued random vector {{math|<var>X</var> {{=}} (<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic if and only if it can be represented as


:<math>(X_1,\ldots,X_d)=_\text{d}(F_{X_1}^{-1}(U),\ldots,F_{X_d}^{-1}(U)), \, </math>
:<math>(X_1,\ldots,X_n)=_\text{d}(F_{X_1}^{-1}(U),\ldots,F_{X_n}^{-1}(U)), \, </math>


where =<sub>d</sub> stands for equality in distribution, on the right-hand side are the [[left-continuous]] generalized inverses<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition A.3 (properties of the generalized inverse)}}</ref> of the cumulative distribution functions ''F''<sub>''X''<sub>1</sub></sub>, ..., ''F<sub>X<sub>d</sub></sub>'', and ''U'' is a [[uniform distribution (continuous)|uniformly distributed random variable]] on the [[unit interval]]. More generally, a random vector is comonotonic if and only if it agrees in distribution with a random vector where all components are [[monotonic function|non-decreasing functions]] (or all are non-increasing functions) of the same random variable.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition&nbsp;6.15 and its proof}}</ref>
where {{math|{{=}}<sub>d</sub>}} stands for equality in distribution, on the right-hand side are the [[left-continuous]] generalized inverses<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition A.3 (properties of the generalized inverse)}}</ref> of the cumulative distribution functions {{math|<var>F</var><sub><var>X</var><sub>1</sub></sub>, . . . , <var>F<sub>X<sub>n</sub></sub></var>}}, and {{math|<var>U</var>}} is a [[uniform distribution (continuous)|uniformly distributed random variable]] on the [[unit interval]]. More generally, a random vector is comonotonic if and only if it agrees in distribution with a random vector where all components are [[monotonic function|non-decreasing functions]] (or all are non-increasing functions) of the same random variable.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Proposition&nbsp;5.16 and its proof}}</ref>


==Upper bounds==
==Upper bounds==

===Upper Fréchet–Hoeffding bound for cumulative distribution functions===
===Upper Fréchet–Hoeffding bound for cumulative distribution functions===


{{main|Fréchet–Hoeffding copula bounds}}
{{main|Fréchet–Hoeffding copula bounds}}


Let <math>X=(X_1,\ldots,X_d)</math> be an '''R'''<sup>''d''</sup>-valued random vector. Then, for every ''i''&nbsp;&nbsp;{1,2,...,''d''} and ''x<sub>i</sub>''&nbsp;∈&nbsp;'''R''',
Let {{math|<var>X</var> {{=}} (<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} be an {{math|'''R'''<sup><var>n</var></sup>}}-valued random vector. Then, for every {{math|<var>i</var> {1, 2, . . . , <var>n</var>}}},


:<math>{\mathbb P}(X_1\le x_1,\ldots,X_d\le x_d)\le{\mathbb P}(X_i\le x_i),</math>
:<math>\Pr(X_1\le x_1,\ldots,X_n\le x_n) \le \Pr(X_i\le x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n,</math>


hence
hence


:<math>{\mathbb P}(X_1\le x_1,\ldots,X_d\le x_d)\le\min_{i\in\{1,\ldots,d\}}{\mathbb P}(X_i\le x_i),\qquad (x_1,\ldots,x_d)\in{\mathbb R}^d,</math>
:<math>\Pr(X_1\le x_1,\ldots,X_n\le x_n)\le\min_{i\in\{1,\ldots,n\}} \Pr(X_i\le x_i),\qquad (x_1,\ldots,x_n)\in{\mathbb R}^n,</math>


with equality everywhere if and only if <math>(X_1,\ldots,X_d)</math> is comonotonic.
with equality everywhere if and only if {{math|(<var>X</var><sub>1</sub>, . . . , <var>X<sub>n</sub></var>)}} is comonotonic.


===Upper bound for the covariance===
===Upper bound for the covariance===
Let <math>(X,Y)</math> be a bivariate random vector such that the [[expected value]]s of <math>X</math>, <math>Y</math> and the product <math>XY</math> exist. Let <math>(X*,Y*)</math> be a comonotonic bivariate random vector with the same one-dimensional marginal distributions as <math>(X,Y)</math>.<ref group="note"><math>(X*,Y*)</math> always exists, take for example <math>\scriptstyle (F_X^{-1}(U),F_Y^{-1}(U))</math>, see section [[#Properties|Properties]] above.</ref> Then it follows from [[Höffding's formula for the covariance]]<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Lemma&nbsp;5.24}}</ref> and the upper Fréchet–Hoeffding bound that
Let {{math|(<var>X</var>, <var>Y</var>)}} be a bivariate random vector such that the [[expected value]]s of {{math|<var>X</var>}}, {{math|<var>Y</var>}} and the product {{math|<var>X</var><var>Y</var>}} exist. Let {{math|(<var>X</var><sup>*</sup>, <var>Y</var><sup>*</sup>)}} be a comonotonic bivariate random vector with the same one-dimensional marginal distributions as {{math|(<var>X</var>, <var>Y</var>)}}.<ref group="note">{{math|(<var>X</var><sup>*</sup>, <var>Y</var><sup>*</sup>)}} always exists, take for example {{math|(<var>F<sub>X</sub></var><sup>−1</sup>(<var>U</var>), <var>F<sub>Y </sub></var><sup>−1</sup>(<var>U</var>))}}, see section [[#Properties|Properties]] above.</ref> Then it follows from [[Höffding's formula for the covariance]]<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Lemma&nbsp;5.24}}</ref> and the upper Fréchet–Hoeffding bound that


:<math>\text{Cov}(X,Y)\le\text{Cov}(X^*,Y^*)</math>
:<math>\text{Cov}(X,Y)\le\text{Cov}(X^*,Y^*)</math>
Line 62: Line 64:
and, correspondingly,
and, correspondingly,


:<math>{\mathbb E}[XY]\le{\mathbb E}[X^*Y^*]</math>
:<math> \operatorname E[XY]\le \operatorname E[X^*Y^*]</math>


with equality if and only if <math>(X,Y)</math> is comonotonic.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Theorem&nbsp;5.25(2)}}</ref>
with equality if and only if {{math|(<var>X</var>, <var>Y</var>)}} is comonotonic.<ref>{{harv|McNeil|Frey|Embrechts|2005|loc=Theorem&nbsp;5.25(2)}}</ref>

Note that this result generalizes the [[rearrangement inequality]] and [[Chebyshev's sum inequality]].


==See also==
==See also==
* [[Copula (probability theory)|Copula]]
* [[Copula (probability theory)]]


==Notes==
==Notes==
Line 90: Line 94:
| issue = 1
| issue = 1
| pages = 3–33
| pages = 3–33
| year = 2002
| year = 2002a
| url = http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf}}
| url = http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf
| mr = 1956509
| zbl = 1051.62107
| doi = 10.1016/s0167-6687(02)00134-8
| access-date = 2012-08-28
| archive-url = https://web.archive.org/web/20081209024033/http://www.econ.kuleuven.be/insurance/pdfs/DdgkvTh.pdf
| archive-date = 2008-12-09
| url-status = dead
}}
* {{Citation
* {{Citation
| last1 = Dhaene
| last1 = Dhaene
Line 106: Line 118:
| issue = 2
| issue = 2
| pages = 133–161
| pages = 133–161
| year = 2002
| year = 2002b
| url = http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf}}
| url = http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf
| mr = 1932751
| zbl = 1037.62107
| doi = 10.1016/s0167-6687(02)00135-x
| citeseerx = 10.1.1.10.789
| access-date = 2012-08-28
| archive-url = https://web.archive.org/web/20081209023502/http://www.econ.kuleuven.be/insurance/pdfs/DDGKVapp.pdf
| archive-date = 2008-12-09
| url-status = dead
}}
* {{Citation
* {{Citation
| last = Jouini
| last = Jouini
Line 122: Line 143:
| url = http://www.ceremade.dauphine.fr/~jouini/DEF180RR.pdf
| url = http://www.ceremade.dauphine.fr/~jouini/DEF180RR.pdf
| mr = 2104639
| mr = 2104639
| zbl = 1063.60002}}
| zbl = 1063.60002
| doi=10.1007/s10203-004-0049-y}}
* {{Citation
* {{Citation
| last = Kaas
| last = Kaas
Line 142: Line 164:
| url = http://www.casact.org/library/astin/vol32no1/71.pdf
| url = http://www.casact.org/library/astin/vol32no1/71.pdf
| mr = 1928014
| mr = 1928014
| zbl = 1061.62511}}
| zbl = 1061.62511
| doi=10.2143/ast.32.1.1015| doi-access = free
}}
* {{Citation
* {{Citation
| last = McNeil
| last = McNeil
Line 155: Line 179:
| series = Princeton Series in Finance
| series = Princeton Series in Finance
| year = 2005
| year = 2005
| url = http://books.google.com/books?id=f5J_OZPeq50C
| url = https://books.google.com/books?id=f5J_OZPeq50C
| isbn = 0-691-12255-5
| isbn = 978-0-691-12255-7
| mr = 2175089
| mr = 2175089
| zbl = 1089.91037}}
| zbl = 1089.91037}}
Line 169: Line 193:
| edition = second
| edition = second
| pages = xiv+269
| pages = xiv+269
| id =
| id = {{ISBN-10|0-387-28659-4}}, {{ISBN-13|978-0387-28659-4}}
| mr = 2197664
| mr = 2197664
| zbl = 1152.62030}}
| zbl = 1152.62030| isbn = 978-0-387-28659-4
}}
* {{Citation
* {{Citation
| last = Puccetti
| last = Puccetti
Line 186: Line 211:
| issn = 0047-259X
| issn = 0047-259X
| mr = 2557634
| mr = 2557634
| zbl = 1184.62081}}
| zbl = 1184.62081
| doi=10.1016/j.jmva.2009.08.003}}
* {{Citation
* {{Citation
| last = Sriboonchitta
| last = Sriboonchitta
Line 200: Line 226:
| publisher = Chapman & Hall/CRC Press
| publisher = Chapman & Hall/CRC Press
| year = 2010
| year = 2010
| url = http://books.google.com/books?id=omxatN4lVCkC
| url = https://books.google.com/books?id=omxatN4lVCkC
| isbn = 978-1-4200-8266-1
| isbn = 978-1-4200-8266-1
| mr = 2590381
| mr = 2590381
Line 206: Line 232:


[[Category:Theory of probability distributions]]
[[Category:Theory of probability distributions]]
[[Category:Statistical dependence]]
[[Category:Independence (probability theory)]]
[[Category:Covariance and correlation]]
[[Category:Covariance and correlation]]

Latest revision as of 10:16, 13 March 2024

In probability theory, comonotonicity mainly refers to the perfect positive dependence between the components of a random vector, essentially saying that they can be represented as increasing functions of a single random variable. In two dimensions it is also possible to consider perfect negative dependence, which is called countermonotonicity.

Comonotonicity is also related to the comonotonic additivity of the Choquet integral.[1]

The concept of comonotonicity has applications in financial risk management and actuarial science, see e.g. Dhaene et al. (2002a) and Dhaene et al. (2002b). In particular, the sum of the components X1 + X2 + · · · + Xn is the riskiest if the joint probability distribution of the random vector (X1, X2, . . . , Xn) is comonotonic.[2] Furthermore, the α-quantile of the sum equals the sum of the α-quantiles of its components, hence comonotonic random variables are quantile-additive.[3][4] In practical risk management terms it means that there is minimal (or eventually no) variance reduction from diversification.

For extensions of comonotonicity, see Jouini & Napp (2004) and Puccetti & Scarsini (2010).

Definitions

[edit]

Comonotonicity of subsets of Rn

[edit]

A subset S of Rn is called comonotonic[5] (sometimes also nondecreasing[6]) if, for all (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in S with xi < yi for some i ∈ {1, 2, . . . , n}, it follows that xjyj for all j ∈ {1, 2, . . . , n}.

This means that S is a totally ordered set.

Comonotonicity of probability measures on Rn

[edit]

Let μ be a probability measure on the n-dimensional Euclidean space Rn and let F denote its multivariate cumulative distribution function, that is

Furthermore, let F1, . . . , Fn denote the cumulative distribution functions of the n one-dimensional marginal distributions of μ, that means

for every i ∈ {1, 2, . . . , n}. Then μ is called comonotonic, if

Note that the probability measure μ is comonotonic if and only if its support S is comonotonic according to the above definition.[7]

Comonotonicity of Rn-valued random vectors

[edit]

An Rn-valued random vector X = (X1, . . . , Xn) is called comonotonic, if its multivariate distribution (the pushforward measure) is comonotonic, this means

Properties

[edit]

An Rn-valued random vector X = (X1, . . . , Xn) is comonotonic if and only if it can be represented as

where =d stands for equality in distribution, on the right-hand side are the left-continuous generalized inverses[8] of the cumulative distribution functions FX1, . . . , FXn, and U is a uniformly distributed random variable on the unit interval. More generally, a random vector is comonotonic if and only if it agrees in distribution with a random vector where all components are non-decreasing functions (or all are non-increasing functions) of the same random variable.[9]

Upper bounds

[edit]

Upper Fréchet–Hoeffding bound for cumulative distribution functions

[edit]

Let X = (X1, . . . , Xn) be an Rn-valued random vector. Then, for every i ∈ {1, 2, . . . , n},

hence

with equality everywhere if and only if (X1, . . . , Xn) is comonotonic.

Upper bound for the covariance

[edit]

Let (X, Y) be a bivariate random vector such that the expected values of X, Y and the product XY exist. Let (X*, Y*) be a comonotonic bivariate random vector with the same one-dimensional marginal distributions as (X, Y).[note 1] Then it follows from Höffding's formula for the covariance[10] and the upper Fréchet–Hoeffding bound that

and, correspondingly,

with equality if and only if (X, Y) is comonotonic.[11]

Note that this result generalizes the rearrangement inequality and Chebyshev's sum inequality.

See also

[edit]

Notes

[edit]
  1. ^ (X*, Y*) always exists, take for example (FX−1(U), FY −1(U)), see section Properties above.

Citations

[edit]
  1. ^ (Sriboonchitta et al. 2010, pp. 149–152)
  2. ^ (Kaas et al. 2002, Theorem 6)
  3. ^ (Kaas et al. 2002, Theorem 7)
  4. ^ (McNeil, Frey & Embrechts 2005, Proposition 6.15)
  5. ^ (Kaas et al. 2002, Definition 1)
  6. ^ See (Nelsen 2006, Definition 2.5.1) for the case n = 2
  7. ^ See (Nelsen 2006, Theorem 2.5.4) for the case n = 2
  8. ^ (McNeil, Frey & Embrechts 2005, Proposition A.3 (properties of the generalized inverse))
  9. ^ (McNeil, Frey & Embrechts 2005, Proposition 5.16 and its proof)
  10. ^ (McNeil, Frey & Embrechts 2005, Lemma 5.24)
  11. ^ (McNeil, Frey & Embrechts 2005, Theorem 5.25(2))

References

[edit]