Cyclocomputer: Difference between revisions
Fbibbhjcbhc (talk | contribs) |
Added an internal link. |
||
(49 intermediate revisions by 37 users not shown) | |||
Line 1: | Line 1: | ||
{{Update|reason=Most of this technology has moved on|date=July 2021}} |
|||
{{Refimprove|date=May 2009}} |
|||
⚫ | |||
⚫ | |||
{{short description|Bicycle device}} |
|||
⚫ | A '''cyclocomputer''' or ''cyclometer'' |
||
[[File:GPS_on_smartphone_cycling.JPG|thumb|right|[[Smart phone]] used as a cyclocomputer to present data]] |
|||
[[File:BCG_ios_screenshot.jpg|thumb|right|Smart phone used for electronic [[Global Positioning System|map navigation]]]] |
|||
⚫ | |||
⚫ | |||
⚫ | A '''cyclocomputer''', '''cycle computer''', '''cycling computer''' or '''cyclometer''' is a device mounted on a [[bicycle]] that calculates and displays trip information, similar to the instruments in the [[dashboard]] of a car. The computer with display, or ''head unit'', usually is attached to the [[Bicycle handlebar|handlebar]] for easy viewing. Some [[GPS watch]]es can also be used as display. |
||
==History== |
==History== |
||
⚫ | In 1895, Curtis H. Veeder invented the ''Cyclometer''.<ref>{{cite book |title=The Horseless Age |location=New York |publisher=The Horseless Age Company |volume= 40 |number=1 |year=1917 |page=58}}</ref><ref>{{cite web| url = http://www.ctheritage.org/encyclopedia/topicalsurveys/inventors.htm| title = Connecticut Inventors| author = Robert Asher| publisher = Connecticut Humanities Council| year = 2003| accessdate = March 1, 2011| url-status = dead| archiveurl = https://web.archive.org/web/20110518133818/http://www.ctheritage.org/encyclopedia/topicalsurveys/inventors.htm| archivedate = May 18, 2011}}</ref><ref>{{cite patent |country = US |number = 548482 |status = patent |title = Cyclometer |pubdate = April 27, 1895 |gdate = 1895-10-22 |fdate = YYYY-MM-DD |inventor = Veeder; Curtis H.}}</ref> The Cyclometer was a simple mechanical device that counted the number of rotations of a bicycle wheel.<ref>Veeder-Root, Inc., ''[http://www.veeder.com/page/vr_history Veeder Root History]''</ref><ref>{{cite web |url=http://www.foschc.org/chidsey/ |title=About the Chidsey Library Building |website=Friends of Sarasota County History Center |access-date=September 29, 2018 |archive-date=June 26, 2018 |archive-url=https://web.archive.org/web/20180626170720/https://www.foschc.org/chidsey/ |url-status=dead }}</ref> A cable transmitted the number of rotations of the wheel to an analog [[odometer]] visible to the rider, which converted the wheel rotations into the number of miles traveled according to a predetermined formula. After founding the Veeder Manufacturing Company, Veeder promoted the Cyclometer with the slogan, ''It's Nice to Know How Far You Go''.<ref>Veeder-Root Inc., ''Veeder-Root History''</ref> The ''Cyclometer'''s success led to many other competing types of mechanical computing devices. Eventually, cyclometers were developed that could measure speed as well as distance traveled. |
||
In 1895 Veeder invented the ''Cyclometer''.<ref>''The Horseless Age'', New York: The Horseless Age Company, Volume 40, No. 1, (1917), p. 58</ref><ref>{{cite web |
|||
| url = http://www.ctheritage.org/encyclopedia/topicalsurveys/inventors.htm |
|||
| title = Connecticut Inventors |
|||
| author = Robert Asher |
|||
| publisher = Connecticut Humanities Council |
|||
| year = 2003 |
|||
| accessdate = 2011-03-01}}</ref> |
|||
<ref>{{ cite patent |
|||
| country = US |
|||
| number = 548482 |
|||
| status = patent |
|||
| title = Cyclometer |
|||
| pubdate = 1895-04-27 |
|||
| gdate = 1895-10-22 |
|||
| fdate = YYYY-MM-DD |
|||
| inventor = Veeder; Curtis H. |
|||
⚫ | }} </ref> The |
||
==Basic operation== |
==Basic operation== |
||
===The head=== |
===The head=== |
||
A basic cyclocomputer may display the [[speedometer|current speed]], maximum speed, trip distance, trip time, [[odometer|total distance traveled]], and the current time. More advanced models |
A basic cyclocomputer with a wheel speed sensor may display the [[speedometer|current speed]], average speed, maximum speed, trip distance, trip time, [[odometer|total distance traveled]], and the current time. More advanced models with additional sensors and storage may display and record [[altitude]], incline ([[inclinometer]]), [[heart rate]], power output (measured in [[watt]]) and [[temperature]] as well as offer additional functions such as pedaling [[cadence (cycling)|cadence]], a [[stopwatch]] and even [[Global Positioning System|GPS]] navigation and video data overlay synchronization. They have become useful accessories in [[cycling|bicycling]] as a [[sport]] and as a [[recreational]] activity. |
||
The display is usually implemented with a [[liquid crystal display]], and it may show one or more values at once. Many current models display one value, such as current speed, with large numbers, and another number that the user may select, such as time, distance, average speed, etc., with small numbers. |
The display is usually implemented with a [[liquid crystal display]], and it may show one or more values at once. Many current models display one value, such as current speed, with large numbers, and another number that the user may select, such as time, distance, average speed, etc., with small numbers. |
||
The head usually has one or more [[Button (control)|buttons]] that the user can push to switch the value(s) displayed, reset values such as time and trip distance, [[ |
The head usually has one or more [[Button (control)|buttons]] that the user can push to switch the value(s) displayed, reset values such as time and trip distance, [[#Calibration|calibrate]] the unit, and on some units, turn on a back light for the display. Most displays are navigated by pressing buttons and high-end models use a capacitive touch screen to navigate screens and maps. |
||
===The wheel sensor=== |
===The wheel sensor=== |
||
The older, traditional sensors have a magnet attached to a [[spoke]] of either the front or rear [[bicycle wheel|wheel]]. A sensor based either on the [[Hall effect]], or on a magnetic [[reed switch]], is attached to the [[bicycle fork|fork]] or the rear of the [[bicycle frame|frame]]. The sensor detects when the magnet passes once per rotation of the wheel. Alternatively, a sensor may be attached to the wheel hub. Distance is determined by counting the number of rotations, which translates into the number of wheel circumferences passed. Speed is calculated from distance against lapsed time period. |
The older, traditional [[sensors]] have a magnet attached to a [[spoke]] of either the front or rear [[bicycle wheel|wheel]]. A sensor based either on the [[Hall effect]], or on a magnetic [[reed switch]], is attached to the [[bicycle fork|fork]] or the rear of the [[bicycle frame|frame]]. The sensor detects when the magnet passes once per rotation of the wheel and time stamps or time codes the revolution count. Alternatively, a sensor may be attached to the wheel hub. [[Distance]] is determined by counting the number of rotations, which translates into the number of wheel circumferences passed. [[Speed]] is calculated from distance against lapsed time period using the circumference of the wheel and the time it took to make one rotation. |
||
===The cadence sensor=== |
===The cadence sensor=== |
||
To measure cadence, a magnet is mounted to the [[crankset|crankarm]], and a sensor mounted to the frame. |
To measure cadence (revolutions per minute of the crankarm), a magnet is mounted to the [[crankset|crankarm]], and a sensor mounted to the frame. This works on the same principle as the speedometer function and measures the turning of the cranks and front chain ring. |
||
===Transmission=== |
===Transmission=== |
||
Some models use a wired connection between the sensor and the head unit. Other |
Some models use a wired connection between the sensor and the head unit. Other models transmit the data wirelessly from the sensor/transmitter to the head unit. Data can be exported to a SD card, computer, or phone and uploaded to an internet web service. Wireless cadence and speed sensors use wireless communication standards ANT + and Bluetooth Low Energy and can directly communicate with a smartphone application that also uses the phone's GPS, barometer, temperature, clock, and other sensors to create a more detailed picture, record, or map. [[File:Bicycle speed in KPH.png|thumb|Bicycle speed in km/h]] |
||
==Calibration== |
==Calibration== |
||
[[File:STOPLightSignGraph.png|thumb|Bicycle speed graph showing calibration error]] |
|||
Once a new computer is installed, it usually requires proper configuration. This normally includes selecting distance units (kilometers vs. miles) and the circumference of the wheel. Since the sensor measures wheel rotation, different wheel sizes will translate to different measures of speed and distance for a given number of rotations. |
Once a new computer is installed, it usually requires proper configuration. This normally includes selecting distance units (kilometers vs. miles) and the circumference of the wheel. Since the sensor measures wheel rotation, different wheel sizes will translate to different measures of speed and distance for a given number of rotations. |
||
Line 47: | Line 37: | ||
==Additional information== |
==Additional information== |
||
[[File:Komputer rowerowy 4 ubt |
[[File:Komputer rowerowy 4 ubt.JPG|thumb|right|250px|A cyclocomputer displaying speed and time]] |
||
Besides variables calculated from the rotating wheels or crank, cyclocomputers can display other information. |
Besides variables calculated from the rotating wheels or crank, cyclocomputers can display other information. |
||
=== |
===Gear=== |
||
For integrated [[shifter (bicycle part)|shifters]] on [[racing bicycle]]s, the gear can be read by the computer: Shimano's Flight Deck and Campagnolo's ErgoBrain work with their respective systems to detect the gearing. This allows indirect measurement of cadence. These systems do not have sensors on the crankset or cassette to determine what gear the bicycle is in. They work exclusively with the shifters, which may result in misleading information. Instead of knowing what gear the bicycle is in, they rely on sensing when the cyclist changes gears using sensors in the shifters. If the gear change doesn't actually happen, or the computer's sensors are too sensitive (e.g.: when braking with STI-style shifters), the information displayed is not accurate. |
For integrated [[shifter (bicycle part)|shifters]] on [[racing bicycle]]s, the gear can be read by the computer: Shimano's Flight Deck and Campagnolo's ErgoBrain work with their respective systems to detect the gearing. This allows indirect measurement of cadence. These systems do not have sensors on the crankset or cassette to determine what gear the bicycle is in. They work exclusively with the shifters, which may result in misleading information. Instead of knowing what gear the bicycle is in, they rely on sensing when the cyclist changes gears using sensors in the shifters. If the gear change doesn't actually happen, or the computer's sensors are too sensitive (e.g.: when braking with STI-style shifters), the information displayed is not accurate. |
||
Line 56: | Line 46: | ||
With additional sensors, other performance measurements are available: |
With additional sensors, other performance measurements are available: |
||
* A [[heart rate monitor]] can be integrated into the computer, using a chest strap sensor. |
* A [[heart rate monitor]] can be integrated into the computer, using a chest strap sensor. |
||
* A [[Cycling power meter|power meter]] measures [[power (physics)|power]] output in watts, using a torque sensor in the bottom bracket or rear hub. |
* A [[Cycling power meter|power meter]] measures [[power (physics)|power]] output in watts, using a torque sensor in the bottom bracket, pedals, or rear hub. |
||
===Environment=== |
===Environment=== |
||
Line 64: | Line 54: | ||
{{Main|Cycling power meter}} |
{{Main|Cycling power meter}} |
||
Some more sophisticated models are able to measure the rider's power in terms of watts. These units incorporate elements that measure torque at the crank, or rear wheel hub,<ref>{{cite web|url=http://autobus.cyclingnews.com/tech/?id=2002/reviews/powertap |title=Power Tap by Grabar Inc. |accessdate= |
Some more sophisticated models are able to measure the rider's power in terms of watts. These units incorporate elements that measure torque at the crank, or rear wheel hub,<ref>{{cite web|url=http://autobus.cyclingnews.com/tech/?id=2002/reviews/powertap |title=Power Tap by Grabar Inc. |accessdate=May 15, 2009 }}</ref> or tension on the chain.<ref>{{cite web|url=http://www.u.arizona.edu/~sandiway/bike/s710/index.html |title=Polar S-710 |accessdate=May 15, 2009 }}</ref> This technology began in the late 1980s. (See [[Team Strawberry]] for the early development and testing stages of this technology.) |
||
===Maps=== |
|||
Some cyclocomputers (such as the Garmin Edge, trimm One, [[Wahoo Fitness|Wahoo]] Elemnt Bolt or Hammerhead Karoo) can be loaded with maps and can thus show the rider's position on the map, or provide turn-by-turn directions for a pre-determined route. |
|||
===Electric bicycles=== |
|||
Most [[electric bicycle]]s have a microcontroller in the motor controller to calculate input cadence or torque, adjust amperage, control the motors and send the display screen information. Often cyclists can select the level of power assist provided using the computer. The computer also monitors the speed and can deactivate the motor for braking or if required by law (for example, in many countries [[pedelec]] bikes cannot use motor assist above 25 km/h). |
|||
==See also== |
|||
* [[Outline of cycling]] |
|||
==References== |
==References== |
||
{{reflist}} |
|||
<references/> |
|||
{{Bike equipment}} |
{{Bike equipment}} |
||
{{commons category|Cyclocomputers}} |
{{commons category|Cyclocomputers}} |
||
[[Category:American inventions]] |
[[Category:American inventions]] |
||
[[Category:Bicycle parts|Computer]] |
[[Category:Bicycle parts|Computer]] |
||
[[Category:Computers]] |
|||
[[Category:Consumer electronics]] |
|||
[[ca:Ciclocomputador]] |
|||
[[Category:Electronics industry]] |
|||
[[cs:Cyklistický počítač]] |
|||
[[de:Fahrradcomputer]] |
|||
[[es:Ciclocomputador]] |
|||
[[fr:Compteur de bicyclette]] |
|||
[[it:Ciclocomputer]] |
|||
[[nl:Fietscomputer]] |
|||
[[ja:サイクルコンピュータ]] |
|||
[[pl:Licznik rowerowy]] |
|||
[[pt:Ciclocomputador]] |
|||
[[ro:Ciclocomputer]] |
|||
[[ru:Велокомпьютер]] |
|||
[[fi:Polkupyörän ajotietokone]] |
|||
[[sv:Cykeldator]] |
|||
[[uk:Велокомп’ютер]] |
Latest revision as of 21:52, 13 May 2024
This article needs to be updated. The reason given is: Most of this technology has moved on.(July 2021) |
A cyclocomputer, cycle computer, cycling computer or cyclometer is a device mounted on a bicycle that calculates and displays trip information, similar to the instruments in the dashboard of a car. The computer with display, or head unit, usually is attached to the handlebar for easy viewing. Some GPS watches can also be used as display.
History
[edit]In 1895, Curtis H. Veeder invented the Cyclometer.[1][2][3] The Cyclometer was a simple mechanical device that counted the number of rotations of a bicycle wheel.[4][5] A cable transmitted the number of rotations of the wheel to an analog odometer visible to the rider, which converted the wheel rotations into the number of miles traveled according to a predetermined formula. After founding the Veeder Manufacturing Company, Veeder promoted the Cyclometer with the slogan, It's Nice to Know How Far You Go.[6] The Cyclometer's success led to many other competing types of mechanical computing devices. Eventually, cyclometers were developed that could measure speed as well as distance traveled.
Basic operation
[edit]The head
[edit]A basic cyclocomputer with a wheel speed sensor may display the current speed, average speed, maximum speed, trip distance, trip time, total distance traveled, and the current time. More advanced models with additional sensors and storage may display and record altitude, incline (inclinometer), heart rate, power output (measured in watt) and temperature as well as offer additional functions such as pedaling cadence, a stopwatch and even GPS navigation and video data overlay synchronization. They have become useful accessories in bicycling as a sport and as a recreational activity.
The display is usually implemented with a liquid crystal display, and it may show one or more values at once. Many current models display one value, such as current speed, with large numbers, and another number that the user may select, such as time, distance, average speed, etc., with small numbers.
The head usually has one or more buttons that the user can push to switch the value(s) displayed, reset values such as time and trip distance, calibrate the unit, and on some units, turn on a back light for the display. Most displays are navigated by pressing buttons and high-end models use a capacitive touch screen to navigate screens and maps.
The wheel sensor
[edit]The older, traditional sensors have a magnet attached to a spoke of either the front or rear wheel. A sensor based either on the Hall effect, or on a magnetic reed switch, is attached to the fork or the rear of the frame. The sensor detects when the magnet passes once per rotation of the wheel and time stamps or time codes the revolution count. Alternatively, a sensor may be attached to the wheel hub. Distance is determined by counting the number of rotations, which translates into the number of wheel circumferences passed. Speed is calculated from distance against lapsed time period using the circumference of the wheel and the time it took to make one rotation.
The cadence sensor
[edit]To measure cadence (revolutions per minute of the crankarm), a magnet is mounted to the crankarm, and a sensor mounted to the frame. This works on the same principle as the speedometer function and measures the turning of the cranks and front chain ring.
Transmission
[edit]Some models use a wired connection between the sensor and the head unit. Other models transmit the data wirelessly from the sensor/transmitter to the head unit. Data can be exported to a SD card, computer, or phone and uploaded to an internet web service. Wireless cadence and speed sensors use wireless communication standards ANT + and Bluetooth Low Energy and can directly communicate with a smartphone application that also uses the phone's GPS, barometer, temperature, clock, and other sensors to create a more detailed picture, record, or map.
Calibration
[edit]Once a new computer is installed, it usually requires proper configuration. This normally includes selecting distance units (kilometers vs. miles) and the circumference of the wheel. Since the sensor measures wheel rotation, different wheel sizes will translate to different measures of speed and distance for a given number of rotations.
For more accuracy the bicycle (with the set cyclocomputer) must be ridden by the intended rider over an accurately measured distance. The computer's reading is then compared with the known distance and any necessary corrections made.
Additional information
[edit]Besides variables calculated from the rotating wheels or crank, cyclocomputers can display other information.
Gear
[edit]For integrated shifters on racing bicycles, the gear can be read by the computer: Shimano's Flight Deck and Campagnolo's ErgoBrain work with their respective systems to detect the gearing. This allows indirect measurement of cadence. These systems do not have sensors on the crankset or cassette to determine what gear the bicycle is in. They work exclusively with the shifters, which may result in misleading information. Instead of knowing what gear the bicycle is in, they rely on sensing when the cyclist changes gears using sensors in the shifters. If the gear change doesn't actually happen, or the computer's sensors are too sensitive (e.g.: when braking with STI-style shifters), the information displayed is not accurate.
Performance
[edit]With additional sensors, other performance measurements are available:
- A heart rate monitor can be integrated into the computer, using a chest strap sensor.
- A power meter measures power output in watts, using a torque sensor in the bottom bracket, pedals, or rear hub.
Environment
[edit]Some models also have sensors built into the head that measure and display environmental parameters such as temperature and altitude.
Cyclist power measurement
[edit]Some more sophisticated models are able to measure the rider's power in terms of watts. These units incorporate elements that measure torque at the crank, or rear wheel hub,[7] or tension on the chain.[8] This technology began in the late 1980s. (See Team Strawberry for the early development and testing stages of this technology.)
Maps
[edit]Some cyclocomputers (such as the Garmin Edge, trimm One, Wahoo Elemnt Bolt or Hammerhead Karoo) can be loaded with maps and can thus show the rider's position on the map, or provide turn-by-turn directions for a pre-determined route.
Electric bicycles
[edit]Most electric bicycles have a microcontroller in the motor controller to calculate input cadence or torque, adjust amperage, control the motors and send the display screen information. Often cyclists can select the level of power assist provided using the computer. The computer also monitors the speed and can deactivate the motor for braking or if required by law (for example, in many countries pedelec bikes cannot use motor assist above 25 km/h).
See also
[edit]References
[edit]- ^ The Horseless Age. Vol. 40. New York: The Horseless Age Company. 1917. p. 58.
- ^ Robert Asher (2003). "Connecticut Inventors". Connecticut Humanities Council. Archived from the original on May 18, 2011. Retrieved March 1, 2011.
- ^ US patent 548482, Veeder; Curtis H., "Cyclometer", published April 27, 1895, issued 1895-10-22
- ^ Veeder-Root, Inc., Veeder Root History
- ^ "About the Chidsey Library Building". Friends of Sarasota County History Center. Archived from the original on June 26, 2018. Retrieved September 29, 2018.
- ^ Veeder-Root Inc., Veeder-Root History
- ^ "Power Tap by Grabar Inc". Retrieved May 15, 2009.
- ^ "Polar S-710". Retrieved May 15, 2009.