Jump to content

Silverleaf whitefly: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
typos
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (Лисан аль-Гаиб - 20529
 
(91 intermediate revisions by 64 users not shown)
Line 1: Line 1:
{{Short description|Species of true bug}}
{{Taxobox
{{Speciesbox
| name = Silverleaf whitefly
| name = Silverleaf whitefly
| image = Silverleaf whitefly.jpg
| image = Silverleaf whitefly.jpg
| taxon = Bemisia tabaci
| image_width =
| authority = ([[Gennadius (entomologist)|Gennadius]], 1889)
| regnum = [[Animal]]ia
| synonyms = ''Bemisia argentifolii'' <small>Bellows & Perring</small>
| phylum = [[Arthropod]]a
| synonyms_ref = <ref name="Fan & Pettit">{{Cite journal|author1=Fan, Yuqing Fan |author2=Petitt, Frederick |name-list-style=amp |year=1998|title=Dispersal of the broad mite, ''Polyphagotarsonemus latus'' (Acari: Tarsonemidae) on ''Bemisia tabaci'' (Homoptera: Aleyrodidae)|journal=Experimental and Applied Acarology|volume=22|issue=7|pages=411–415|doi=10.1023/A:1006045911286|s2cid=20767783 }}</ref>
| classis = [[Insect]]a
| ordo = [[Hemiptera]]
| subordo=[[Sternorrhyncha]]
| familia = [[Aleyrodidae]]
| genus = ''[[Bemisia]]''
| species = '''''B. tabaci'''''
| binomial = ''Bemisia tabaci''
| binomial_authority = ([[Gennadius (entomologist)|Gennadius]], 1889)
| synonyms = ''Bemisia argentifolii'' <small>Bellows &
Perring</small><ref name="Fan & Pettit">{{Cite journal|author=Fan, Yuqing Fan and Petitt, Frederick|year=1998|title=Dispersal of the broad mite, ''Polyphagotarsonemus latus'' (Acari: Tarsonemidae) on ''Bemisia tabaci'' (Homoptera: Aleyrodidae)|journal=Experimental and Applied Acarology|volume=22|issue=7|pages=411&ndash;415|accessdate= 2007-02-21]|doi=10.1023/A:1006045911286}}</ref>
}}
}}


The '''silverleaf whitefly''' (''Bemisia tabaci'', which is also informally referred to as the sweetpotato whitefly) is one of several [[whitefly|whiteflies]] that are currently important [[agriculture|agricultural]] [[pest (animal)|pests]].<ref name="Fan & Pettit" /> The silverleaf whitefly is classified in the family [[Aleyrodidae]], and is included in the large sub-order of insects, ''[[Sternorrhyncha]]''.<ref name="Brown & Rosell">{{Cite journal|author=Brown, J. K.; Frohlich, D. R. and Rosell, R. C.|year=1995|title=The Sweetpotato or SilverLeaf whiteflies: Biotypes of ''Bemisia tabaci'' or a species complex?|journal=Annual Review of Entomology|volume=40|issue=1|pages=511-534}}</ref>
The '''silverleaf whitefly''' ('''''Bemisia tabaci''''', also informally referred to as the '''sweet potato whitefly''') is one of several species of [[whitefly]] that are currently important [[agriculture|agricultural]] [[pest (animal)|pests]].<ref name="Fan & Pettit" /> A review in 2011 concluded that the silverleaf whitefly is actually a [[species complex]] containing at least 40 morphologically indistinguishable species.<ref name="Tang et al.">{{Cite journal|author1=Tang, Xiao-Tian |author2=Cai, Li |author3=Yuan, Shin |author4=Xu, Li–Li |author5=Du, Yu–Zhou |year=2019|title=Competitive Displacement between ''Bemisia tabaci'' MEAM1 and MED and Evidence for Multiple Invasions of MED|journal= Insects|volume=11|issue=1|pages=1–12|doi=10.3390/insects11010035 |pmid=31906186|pmc=7022974 |doi-access=free }}</ref>


The silverleaf whitefly thrives worldwide in tropical, subtropical, and less predominately in temperate habitats. Cold temperatures kill both the adults and the larvae of the species.<ref name="Greenberg">Greenberg, S., Legaspi, B., Jones, W. ''et al.'' (2000) Temperature Dependent Life History of ''Eretmocerus eremicus'' (Hymenoptera: Aphelinidae) on Two Whitefly Hosts (Homoptera: Aleyrodidae). ''Environmental Entomology''. 29: 851-860.</ref> The silverleaf whitefly can be confused with other insects such as the common [[Drosophila melanogaster|fruitfly]], but with close inspection, the whitefly is slightly smaller and has a distinct wing color that helps to differentiate it from other insects.
The silverleaf whitefly thrives worldwide in tropical, subtropical, and less predominately in temperate habitats. Cold temperatures kill both the adults and the nymphs of the species.<ref name="Greenberg">{{Cite journal | doi = 10.1603/0046-225X-29.4.851|url=https://www.researchgate.net/publication/233589603| title = Temperature-Dependent Life History of ''Eretmocerus eremicus'' (Hymenoptera: Aphelinidae) on Two Whitefly Hosts (Homoptera: Aleyrodidae)| journal = Environmental Entomology| volume = 29| issue = 4| pages = 851–860 | year = 2000| last1 = Greenberg | first1 = S. M.| last2 = Legaspi | first2 = B. C.| last3 = Jones | first3 = W. A.| last4 = Enkegaard | first4 = A.|s2cid=85854037}}</ref> The silverleaf whitefly can be confused with other insects such as the common [[Drosophila melanogaster|fruitfly]], but with close inspection, the whitefly is slightly smaller and has a distinct wing color that helps to differentiate it from other insects.

While the silverleaf whitefly had been known in the United States since 1896, in the mid-1980s an aggressive strain appeared in [[poinsettia]] crops in [[Florida]]. For convenience that strain was referred to as {{visible anchor|strain B}} (biotype B), to distinguish it from the milder infestation of the earlier known {{visible anchor|strain A}}. Less than a year after its identification, strain B was found to have moved to [[tomato]]es, and other fruit and vegetable crops. Within five years, the silverleaf whitefly had caused over [[United States dollar|$]]100 million in damage to agriculture [[agriculture in Texas|in Texas]] and [[Agriculture in California|in California]].<ref name="Fan & Pettit" />


While the silverleaf whitefly had been known in the United States since 1896, in the 1980s a virulent strain appeared in [[poinsettia]] crops in [[Florida]] during the mid-1980s. For convenience that strain was referred to as strain B (biotype B), to distinguish it from the milder infestation of the earlier known strain A. Less than a year after its identification, strain B was found to have moved to [[tomato]]es, and other fruit and vegetable crops. Within five years, the silverleaf whitefly had caused over [[United States dollar|$]]100 million in damage to [[Texas]] and [[California]] [[Agriculture in the United States|agriculture industries]].<ref name="Fan & Pettit" />
== Anatomy and life cycle ==
== Anatomy and life cycle ==
[[File:Bemisia argentifolii 1316008.jpg|thumb|''Bemisia tabaci'' molting on leaves. The silver empty structures depicted on the leaves are cast-off skins.]]
[[File:Bemisia argentifolii 1316008.jpg|thumb|''Bemisia tabaci'' molting on leaves. The silver empty structures on the leaves are cast-off skins.]]


During the adult stages of the silverleaf whitefly, the body expands up to 0.8mm in length and has a snow-white color, which is attributed by the secretion of wax across its wings and body.<ref name="Johnson">{{Cite book|author=Johnson, F. A.; Short, D. E. and Castner, J. L.|year=2005|title=Sweetpotato/Silverleaf Whitefly Life Stages and Damage|series=Entomology and Nematology Department special publication 90|edition=revised|location=Gainesville, Florida|publisher=Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida|url= http://edis.ifas.ufl.edu/pdffiles/IN/IN00400.pdf}}</ref> During feeding or resting stages the whitefly adult covers its body over with its wings. When depositing eggs, the females will lay 50 to 400 eggs ranging from 0.10mm-0.25mm on the under part of leaves. Female whiteflies are [[diploid]] and emerge from fertilized eggs whereas male whiteflies are [[haploid]] and emerge from unfertilized eggs. Eggs are laid in groups, being small in size with dimensions of 0.2&nbsp;mm wide and .1mm in height. Eggs are initially whitish in color and change to a brown color towards the time of hatching within 5 to 7 days. After the egg stage, the whitefly hatchling develops through four [[instar]] stages.
Female ''B. tabaci'' will lay 50 to 400 eggs ranging from {{convert|0.10 to 0.25|mm|frac=128}} on the under part of leaves. Female whiteflies are [[diploid]] and emerge from fertilized eggs whereas male whiteflies are [[haploid]] and emerge from unfertilized eggs. Eggs are laid in groups, being small in size with dimensions of {{convert|0.2|mm|frac=128}} wide and {{convert|0.1|mm|frac=128}} in height. Eggs are initially whitish in color and change to a brown color near hatching, within 5 to 7 days. After hatching, the whitefly nymph develops through four [[instar]] stages.[[File:Silverleaf Whitefly (Bemisia tabaci) adult.jpg|thumb|An adult Silverleaf Whitefly (''Bemisia tabaci'') on surface of Cotton leaf]]


[[File:Bemisia argentifolii 5194038.jpg|thumb|left|''Bemisia tabaci'' nymph instars on green leaf]]
[[File:Bemisia argentifolii 5194038.jpg|thumb|left|''Bemisia tabaci'' adult whiteflies on green leaf]]
In the first [[instar]], commonly called the crawler, the nymph is 0.3mm in size and grows to be 0.6&nbsp;mm till the fourth instar stage. During the first instar stage the body is greenish in color and flat in body structure.<ref name="Johnson"/> The mobile whitefly nymph walks to find a suitable area on the leaf with adequate nutrients and [[ecdysis|molts]] into four other [[instar]] or [[nymphal]] stages over the span of 40–50 days until it reaches adulthood.<ref name="Brown & Rosell"/> During molting, the flies shed silver skins, which are left on the leaves. During the instar phases, the whitefly maintains an [[Opacity (optics)|opaque]] white appearance and does not move from the feeding site the crawler originally chooses. At the feeding site the nymphs use parts of their mouth to stab into the plant and consume the plant’s juices.<ref name="Johnson"/> The stage following the nymph stages is the [[pupa|pupal stage]] when the eyes become a deep red color, the body color becomes yellow, and the body structure thickens. After development is completed, adult whiteflies are approximately four times the size of the egg, with light yellow bodies and white wings.<ref name="Brown & Rosell" />
The first [[instar]], commonly called a crawler, is the only mobile nymphal stage. The first instar nymph can grow to about {{convert|0.3|mm|frac=128}} and is greenish in color and flat in body structure.<ref name="Johnson">{{Cite book|url=http://edis.ifas.ufl.edu/pdffiles/IN/IN00400.pdf|title=Sweetpotato/Silverleaf Whitefly Life Stages and Damage|author1=Johnson, F. A.|author2=Short, D. E.|author3=Castner, J. L.|publisher=Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida|year=2005|edition=revised|series=Entomology and Nematology Department special publication 90|location=Gainesville, Florida|name-list-style=amp|access-date=2011-04-22|archive-date=2012-09-25|archive-url=https://web.archive.org/web/20120925194421/http://edis.ifas.ufl.edu/pdffiles/IN/IN00400.pdf|url-status=dead}}</ref><ref name="UFl-Entomo">{{Cite web|url=http://entnemdept.ufl.edu/creatures/veg/leaf/silverleaf_whitefly.htm|title=''Bemisia tabaci'' (Gennadius) or ''Bemisia argentifolii'' Bellows & Perring|website=entnemdept.ufl.edu|access-date=2017-12-06}}</ref> The mobile nymph walks to find a suitable area on the leaf with adequate nutrients and [[ecdysis|molts]] into an immobile stage. The next three [[instar]]s remain in place for 40–50 days, until molting into an adult.<ref name="Brown & Rosell">{{Cite journal|author1=Brown, J. K.|author2=Frohlich, D. R.|author3=Rosell, R. C.|name-list-style=amp|year=1995|title=The Sweetpotato or Silverleaf whiteflies: Biotypes of ''Bemisia tabaci'' or a species complex?|journal=Annual Review of Entomology|volume=40|issue=1|pages=511–534|doi=10.1146/annurev.en.40.010195.002455}}</ref> Silver [[Exuviae|exuvia]], or shed skins are left on the leaves. The immobile instars appear opaquely white. Nymphs feed by stabbing into the plant with their mouth-parts and sucking up plant juices.<ref name="Johnson"/> After the fourth instar, the nymph transforms into a [[pupa|pupal stage]] where the eyes become a deep red color, the body color becomes yellow, and the body structure thickens. This is not a true pupal stage, as is found in the [[Holometabola]], but is similar in function. Adult whiteflies are approximately four times the size of the egg, with light yellow bodies and white wings, which is attributed by the secretion of wax across its wings and body.<ref name="Brown & Rosell" /> Adult silverleaf whiteflies can reach up to {{convert|0.9|mm|frac=128}} in length. While feeding or resting the whitefly adult folds its wings tent-like over its body.<ref name="UFl-Entomo" />


== Distribution ==
== Native/original community ==
=== Native/original community ===


[[Image:Weihnachtsstern - groß.jpg|thumb|right|Poinsettia is one of the silverleaf whitefly's preferred hosts.]]
[[Image:Weihnachtsstern - groß.jpg|thumb|right|Poinsettia is one of the silverleaf whitefly's preferred hosts.]]


Research indicates that the silverleaf whitefly likely came from India. Since the whitefly is predominately associated with areas exhibiting [[tropical]]/[[subtropical]] climates, the focus shifts to how these insects attained access to crops in habitats with [[temperate]] climates.<ref name="Brown & Rosell"/> One [[hypothesis]] suggests that the transfer of decorative plants from tropical regions may have aided in the spread of the silverleaf whiteflies to temperate environments. The ability of the whitefly to adapt to various plants facilitates the spread of dangerous plant viruses, which these insects are notorious for transmitting.<ref name="Azab">Azab AK, Megahed MM, EI-Mirsawi, HD. 1971. On the biology of Bemisia tabaci (Genn.). ''Bull. Soc. Entomol''. Egypt 55: 305-15.</ref> Plants which are affected by the whitefly include: [[tomato]]es, [[squash (plant)|squash]], [[poinsettia]], [[cucumber]], [[eggplant]]s, [[okra]], [[beans]], and [[cotton]].<ref name="Johnson"/> Other common plant damages of whitefly include: removing plant sap, breakdown of the leaves of the plant, and leaf shedding.<ref name="Johnson"/>
Research indicates that the silverleaf whitefly likely came from India. Since the whitefly is predominately associated with areas exhibiting [[tropical]]/[[subtropical]] climates, the focus shifts to how these insects attained access to crops in habitats with [[temperate]] climates.<ref name="Brown & Rosell"/> One [[hypothesis]] suggests that the transfer of decorative plants from tropical regions may have aided in the spread of the silverleaf whiteflies to temperate environments. The ability of the whitefly to adapt to various plants facilitates the spread of dangerous plant viruses, which these insects are notorious for transmitting.<ref name="Azab">{{cite journal|author1=Azab AK|author2= Megahed MM|author3= EI-Mirsawi, HD|year= 1971|title= On the biology of ''Bemisia tabaci'' (Genn.) Hemiptera, Homoptera: Aleyrodidae |journal=Bulletin de la Société entomologique d'Égypte |volume=55|pages= 305–15}}</ref> Plants which are affected by the whitefly include: [[tomato]]es, [[squash (plant)|squash]], [[poinsettia]], [[cucumber]], [[eggplant]]s, [[okra]], [[beans]], and [[cotton]].<ref name="Johnson"/> Other common plant damages of whitefly include: removing plant sap, breakdown of the leaves of the plant, and leaf shedding.<ref name="Johnson"/>


== Ecological impact ==
=== Introduced range ===
The silverleaf whitefly is an [[invasive agricultural pest]] in many locations around the world, including [[Agriculture in Florida|in Florida]]<ref name="UFl-Entomo" /> and [[Agriculture in California|in California]].<ref name="UCR-CISR">{{cite web | first1=Timothy | last1=Paine | first2=Thomas | last2=Bellows | first3=Mark | last3=Hoddle | title=Silverleaf Whitefly | website=UCR [[Center for Invasive Species Research]] | date=2019-12-27 | url=https://cisr.ucr.edu/invasive-species/silverleaf-whitefly | access-date=2022-07-09}}</ref>


== Commercial impact ==
The silverleaf whitefly is considered an [[invasive species]] in all areas it inhabits in the [[United States]] as well as [[Australia]] and several European countries. It was classified as an agricultural pest in [[Greece]] around 1889 and had a significant impact on tobacco crops there. The first whitefly found in the United States dates back to 1897, and was found on a crop of sweet potatoes.


The silverleaf whitefly is considered an [[invasive species]] in the [[United States]] as well as [[Australia]], [[Africa]], and several European countries. It was classified as an agricultural pest in [[Greece]] around 1889 and had a significant impact on tobacco crops there. The first silverleaf whitefly was found in the United States in 1897 on a crop of sweet potatoes.<ref>{{cite web |title=Biological Control: A Grower's Guide to Using Biological Control for Silverleaf Whitefly on Poinsettias in the Northeast United States |url=https://ag.umass.edu/greenhouse-floriculture/fact-sheets/biological-control-growers-guide-to-using-biological-control-for |website=Center for Agriculture, Food and the Environment |access-date=25 March 2020 |language=en |date=6 March 2015}}</ref><ref>{{cite web |title=Silverleaf Whitefly {{!}} National Invasive Species Information Center {{!}} USDA |url=https://www.invasivespeciesinfo.gov/profile/silverleaf-whitefly |website=www.invasivespeciesinfo.gov |access-date=25 March 2020}}</ref>
This tiny insect wreaks havoc in two simple ways. First, the silverleaf whitefly, a parasite, feeds off of its host plants by piercing the [[phloem]] or lower leaf surfaces with its mouth and removing nutrients. Affected areas of the plant may develop [[chlorosis|chlorotic]] spots, whither, or lose leaves. Whiteflies also produce a sticky substance called [[honeydew (secretion)|honeydew]], which is left behind on the host.<ref name="Brown & Rosell"/> Honeydew can induce the growth of [[sooty mold]]s, which can then reduce the plants ability to absorb light. This results in less growth, lower yield, and poor quality plants. It also requires that crops be thoroughly washed after harvesting, which raises processing costs for the grower.


This tiny insect causes damage to plants through feeding and transmitting plant diseases. The silverleaf whitefly feeds on its host plants by piercing the [[phloem]] or lower leaf surfaces with its mouth and removing nutrients. Affected areas of the plant may develop [[chlorosis|chlorotic]] spots, whither, or drop leaves. Whiteflies also produce a sticky substance called [[honeydew (secretion)|honeydew]], which is left behind on the host.<ref name="Brown & Rosell"/> Honeydew can induce the growth of [[sooty mold]]s, which can then reduce the plants ability to absorb light. This results in slower growth, lower yield, and poor quality plants. It also requires that crops be thoroughly washed after harvesting, which raises processing costs for the grower.{{cn|date=December 2022}}
The second problem with the silverleaf whitefly is its notorious status as a vector for plant disease. It has been transmitting [[Geminiviridae|gemniviruses]] such as [[lettuce infectious yellows virus]], [[tomato yellow leaf curl virus]], and [[African cassava mosaic virus]] for years and over many continents<ref name="Brown & Rosell"/> and is now a vector for [[cassava brown streak virus disease]].<ref name="Legg">{{cite web | url = http://c3project.iita.org/Doc/A25-CBSDbriefMay6.pdf | title = New Spread of Cassava Brown Streak Virus Disease and its Implications for the Movement of Cassava Germplasm in the East and Central African Region | date = May 2007 | author = Pheneas Ntawuruhunga and James Legg}}</ref>


The silverleaf whitefly is also a notorious vector for plant disease. It has transmitted [[Geminiviridae|gemniviruses]] including [[lettuce infectious yellows virus]], [[tomato yellow leaf curl virus]], and [[African cassava mosaic virus]] for years and over many continents<ref name="Brown & Rosell"/> and is now a vector for [[cassava brown streak virus disease]].<ref name="Legg">{{cite web | url = http://c3project.iita.org/Doc/A25-CBSDbriefMay6.pdf | title = New Spread of Cassava Brown Streak Virus Disease and its Implications for the Movement of Cassava Germplasm in the East and Central African Region | date = May 2007 | author1 = Pheneas Ntawuruhunga | author2 = James Legg | name-list-style = amp | access-date = 2012-08-12 | archive-date = 2007-12-15 | archive-url = https://web.archive.org/web/20071215000729/http://c3project.iita.org/Doc/A25-CBSDbriefMay6.pdf | url-status = dead }}</ref>
Bemisia tabacia became a serious issue in crops across the southwestern United States and [[Mexico]] in the 1980s. Scientists speculate that this pest was introduced via infested ornamental plants brought into the United States at this time. Florida’s poinsettia greenhouses were crippled by the pest beginning in 1986, and by 1991, the whitefly infestation had spread through Georgia, Louisiana, Texas, New Mexico, and Arizona to plague crop growers in California. California, the state that produces approximately 90% of the United States’ winter vegetable crop, has incurred an estimated $500 million in crop damage due to silverleaf whitefly populations.<ref name="Service"/> Across the plant industry, this is thought to cost the state $774 million in private sector plant sales, 12,540 jobs, and $112.5 million in personal income. On a national scale, the United States has suffered crop and ornamental plant damages in excess of $1 billion.<ref name="Service"/>


''Bemisia tabaci'' became a serious issue in crops across the southwestern United States and [[Mexico]] in the 1980s. Scientists speculate that this pest was introduced via infested ornamental plants brought into the United States at this time. Florida's poinsettia greenhouses were crippled by the pest beginning in 1986, and by 1991, the infestation had spread through Georgia, Louisiana, Texas, New Mexico, and Arizona to plague growers in California. California produces approximately 90% of the United States’ winter vegetable crop, and has incurred an estimated $500 million in crop damage due to silverleaf whitefly populations.<ref name="Service"/> Across the agricultural industry, this pest is thought to cost the state $774 million in private sector plant sales, 12,540 jobs, and $112.5 million in personal income.{{Clarify|reason=|date=December 2017}} On a national scale, the United States has suffered crop and ornamental plant damages in excess of $1 billion.<ref name="Service"/>
In particular, the whitefly is a devastating pest simply because it feeds on over 500 hosts. Included in its host domain are agricultural crops such as tomatoes, squash, broccoli, cauliflower, cabbage, melons, cotton, carrots, sweet potato, cucumber, and pumpkin, and ornamental plants such as [[poinsettia]], [[crepe myrtle]], [[garden roses]], [[lantana]], and [[lilies]]. It can cause specific damage to certain host plants, like "silverleaf" on squash, irregular ripening of tomatoes, whitestalk in broccoli and cauliflower, white stem in poinsettia, and light root in carrots.<ref name="Service">Service, A. R. National Invasive Species Information Center: Silverleaf Whitefly. ''United States Department of Agriculture''.</ref>


This species of whitefly is a particularly devastating pest because it feeds on over 500 plant species. Common hosts are agricultural crops including tomatoes, squash, broccoli, cauliflower, cabbage, melons, cotton, carrots, sweet potato, cucumber, and pumpkin, and ornamental plants such as [[poinsettia]], [[crepe myrtle]], [[garden roses]], [[lantana]], and [[lilies]]. It can cause specific damage to certain host plants, like "silverleaf" on squash, irregular ripening of tomatoes, whitestalk in broccoli and cauliflower, white stem in poinsettia, and light root in carrots.<ref name="Service">Service, A. R. National Invasive Species Information Center: [https://www.invasivespeciesinfo.gov/profile/silverleaf-whitefly Silverleaf Whitefly]. ''United States Department of Agriculture''.</ref>
The whitefly has many natural predators including [[parasitoid]]s and various [[arthropod]]s. More on this subject can be found below in the section titled natural enemies.

==Nuclear receptors==
''B. tabaci'' like all arthropods has [[ecdysone receptor]]s (EcRs) which may be useful for [[insecticide development]].<ref name="Dawson-Xia-2021">{{cite journal | last1=Dawson | first1=Marcia I. | last2=Xia | first2=Zebin | title=The Retinoid X Receptors and Their Ligands | journal=Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | publisher=[[Elsevier]] | volume=1821 | issue=1 | date=2021-06-02 | pmid=22020178 | doi=10.1016/j.bbalip.2011.09.014 | pmc=4097889 | pages=21–56 | id=[[NIH Manuscript Submission|NIHMSID]] 341742}}</ref> Carmichael ''et al.'', 2005 presents the [[X-ray crystal structure]] for the 1Z5X [[ligand-binding domain]] of the ''B. tabaci'' EcR.<ref name="Dawson-Xia-2021" />


== Integrated pest management ==
== Integrated pest management ==
The silverleaf whitefly is a very costly and common pest to the agricultural world. It destroys crops and causes the transfer of a variety of viruses that affect agricultural plants in harmful ways such as the earlier ripening of tomatoes through the [[tomato yellow leaf curl virus]]. As silverleaf whiteflies continue to destroy crops, scientists are trying to find ways to combat these agricultural pests. Some major controls for this pest have come from the development of oils from agricultural wastes, usage of natural enemies such as the four species of ''[[Eretmocerus]]'' (''Eretmocerus sp,'' ''Eretmocerus mundus,'' ''Eretmocerus hayati,'' and ''Eretmocerus emiratus''),<ref name="Goolsby">Goolsby, John A., DeBarro, Paul J., Kirk, Alan A., Sutherst, Robert W., Canas, Luis, Ciomperlik, Matthew A., . . . Vacek, Don C. (2005). Post-release evaluation of biological control of Bemisia tabaci biotype "B" in the USA and the development of predictive tools to guide introductions for other countries. ''Biological Control'', 32(1), 70-77. Retrieved from, http://www.sciencedirect.com/science/article/B6WBP-4DBJHR0-1/2/c1cfefe6cbc3ce3317e6e20dba2d004e doi:10.1016/j.</ref> employment of [[trap crops]], release of insect growth regulators, and implementation of the [[Light-Emitting Diode Equipped CC trap (LED-CC)]].


Multiple methods of control can be used to combat these prevalent agricultural pests. Some major control methods include, application of oils, use of natural enemies such as [[Aphelinidae]] [[parasitoid]]s, employment of [[trap crop]]s, release of insect growth regulators, and implementation of traps.{{cn|date=December 2022}}
Most of the control tools that have been created affect the plant and soil properties at a minimal level. Scientists are currently focusing on targeting the whitefly through mechanisms that do not cause pollution or contamination (i.e., mechanisms other than insecticides). It is important to be able to reduce the number of ''B. tabaci'' individuals that settle on plants to decrease plant damages such as those caused by viral transmissions. This pest can be hindered by reducing settling, decreasing [[oviposition]], and abating its population development.<ref name="Schuster & Thompson">Schuster, D. J., Thompson, S., Ortega, L. D., & Polston, J. E. (2009). Laboratory Evaluation of Products to Reduce Settling of Sweetpotato Whitefly Adults. ''Journal of Economic Entomology'', 102(4), 1482-1489. Retrieved from http://dx.doi.org/10.1603/029.102.0412 {{doi|10.1603/029.102.0412}}.</ref>

Most of these control tools have a minimal effect on plant and soil properties. Scientists are currently focusing on targeting the whitefly through mechanisms that do not cause pollution or contamination (i.e., mechanisms other than insecticides). It is important to be able to reduce the number of ''B. tabaci'' individuals that settle on plants to decrease plant damages such as those caused by viral transmissions. This can be accomplished by reducing settling, decreasing [[oviposition]], and abating population development.<ref name="Schuster & Thompson">{{Cite journal | doi = 10.1603/029.102.0412| pmid = 19736760| title = Laboratory Evaluation of Products to Reduce Settling of Sweetpotato Whitefly Adults| journal = Journal of Economic Entomology| volume = 102| issue = 4| pages = 1482–1489| year = 2009| last1 = Schuster | first1 = D. J.| last2 = Thompson | first2 = S.| last3 = Ortega | first3 = L. D.| last4 = Polston | first4 = J. E.| s2cid = 45206625}}</ref>


=== Biological controls ===
=== Biological controls ===


[[Biological pest control|Classical biological control]] has been the best long-term, sustainable solution to controlling these exotic pests. However, success of this method can be unpredictable.<ref name="Goolsby">{{Cite journal|last1=Goolsby|first1=J. A.|last2=Debarro|first2=P. J.|last3=Kirk|first3=A. A.|last4=Sutherst|first4=R. W.|last5=Canas|first5=L.|last6=Ciomperlik|first6=M. A.|last7=Ellsworth|first7=P. C.|last8=Gould|first8=J. R.|last9=Hartley|first9=D. M.|year=2005|title=Post-release evaluation of biological control of ''Bemisia tabaci'' biotype "B" in the USA and the development of predictive tools to guide introductions for other countries|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1353&context=usdaarsfacpub|journal=Biological Control|volume=32|pages=70–77|doi=10.1016/j.biocontrol.2004.07.012|last10=Hoelmer|first10=K. A.|last11=Naranjo|first11=S. E.|last12=Rose|first12=M.|last13=Roltsch|first13=W. J.|last14=Ruiz|first14=R. A.|last15=Pickett|first15=C. H.|last16=Vacek|first16=D. C.|issue=1 |bibcode=2005BiolC..32...70G }}</ref>
Classical biological control tends to be the only long-term sustainable solution to controlling exotic pests.<ref name="Goolsby"/> One of the main key issues of this type of control is its lack of predictability of success and establishment of the controlling agents.<ref name="Goolsby"/> The solution to this problem is finding a way to transition biological control as an empirical method to a more reliable, predictive science.


Entomologists with the U.S. Arid-Land Agricultural Research Center identified the most common causes of death of the whitefly which included predatory insects, parasites, and weather induced dislodgement.<ref name="USDA">United States Department of Agriculture: Beyond Insecticides: Improved Methods of Whitefly Control. Retrieved March 15, 2011, from http://www.ars.usda.gov/is/AR/archive/apr06/whitefly0406.htm.</ref> They emphasize the importance of exploiting the use of natural predators and have identified predators by the use of enzyme-linked immune sorbent assay (ELISA). Through experimentation it was found that the use of the biological controls and [[insect growth regulators]] produces a higher predator-to-prey ratio.<ref name="McGinnis">McGinnis, L. Alternate Methods of Whitefly Control (2006 April 5) Retrieved March 15, 2011, from http://www.ars.usda.gov/is/pr/2006/060405.htm.</ref> Therefore, insect growth regulators, such as [[buprofezin]] and [[pyriproxyfen]], conserve natural predators, as opposed to conventional [[insecticides]], which can indiscriminately kill both predator and prey populations.<ref name="McGinnis"/>
Entomologists with the U.S. Arid-Land Agricultural Research Center identified the most common causes of death of the whitefly as predation by other insects, parasitism, and weather induced dislodgement.<ref name="USDA">United States Department of Agriculture: [http://www.ars.usda.gov/is/AR/archive/apr06/whitefly0406.htm Beyond Insecticides: Improved Methods of Whitefly Control]. Retrieved March 15, 2011.</ref> They emphasize the importance of exploiting the use of natural predators and have identified predators by the use of enzyme-linked immune sorbent assay ([[ELISA]]). It was found that the use of the biological controls and [[insect growth regulators]] produces a higher predator-to-prey ratio.<ref name="McGinnis">McGinnis, L. (April 5, 2006) [http://www.ars.usda.gov/is/pr/2006/060405.htm Alternate Methods of Whitefly Control]. usda.gov</ref> Insect growth regulators, such as [[buprofezin]] and [[pyriproxyfen]], conserve natural predators compared to conventional [[insecticides]], which can indiscriminately kill both predator and pest populations.<ref name="McGinnis"/>


==== Natural enemies ====
==== Natural enemies ====


[[Predation|Predators]], [[parasitoid]]s, and [[pathogens]] specific to whiteflies can keep populations under control.
Natural enemies are highly effective as biological controls. Species of [[parasitoids]], [[predator]]s, and [[pathogens]] specific to the whitefly keep populations under control. The four Old World species of ''Eretmocerus'' (''[[Eretmocerus mundus]]'', ''[[Eretmocerus hayati]]'' and ''[[Eretmocerus emiratus]]'') established in the Western United States are a group of genetic individuals of related taxa that are [[parasitoid]]s of ''B. tabaci'' and serve as biological control agents. Scientists are considering the idea of releasing these [[parasite]]s in order to be able to control their host’s population growth and save the destruction of important crops.<ref name="Goolsby"/> However, not all ''Eretmocerus'' can be successfully transplanted into areas where the whiteflies are present due to differences in climate preference.<ref name="Goolsby"/> For example, the species ''[[Eretmocerus melanoscutus]]'' failed to establish in the western United States due to climate issues. Goolsby (2005) mentions that different species of ''Eretmocerus'' are matched with the climate they are able to survive in. The success of the species of ''Eretmocerus'' in the USA can be contributed to the smaller host range, better climatic adaptation, and higher attack rate. Other natural predators of the ''B. tabaci'' include several species of wasps, [[bigeyed bugs]], [[lacewing]] larvae, and [[Coccinellidae|lady beetle]] larvae, which all prey on the nymphs of the whitefly.


There are eight different arthropod orders that attack ''B. tabaci.'' These include members of the families [[Phytoseiidae]], [[Coccinellidae]], [[Syrphidae]], [[Anthocoridae]], [[Nabidae]], and [[Miridae]], [[Chrysopidae]] and [[Coniopterygidae]].<ref name="Hoddle">Hoddle, Mark S. (1999). The Biology and Management of the Silverleaf Whitefly, ''Bemisia argentifolii'' Bellows and Perring (Homoptera: Aleyrodidae) on Greenhouse Grown Ornamentals Retrieved April 18, 2011, from http://www.biocontrol.ucr.edu/bemisia.html.</ref> There are currently four species that are commercially available; they include ''[[Delphastus pusillus]],'' ''[[Macrolophus caliginosus]],'' ''[[Chrysoperla carnea]],'' and ''[[Chrysoperla rufilabris|C. rufilabris]]''.<ref name="Hoddle"/> ''D. pusillus'' are a small, shiny, black beetle species that suck out the contents of the silverleaf whitefly by piercing its shell. Adult and larval stages of this beetle feed at all life stages of the pest.<ref name="Hoddle"/> ''C. rufilabris'' is only able to feed on the immature stages or the larval stages of ''B. tabaci''.<ref name="Hoddle"/>
Species in eight arthropod orders are known to be predators of ''B. tabaci.'' These include members of the families [[Phytoseiidae]], [[Coccinellidae]], [[Syrphidae]], [[Anthocoridae]], [[Nabidae]], and [[Miridae]], [[Chrysopidae]] and [[Coniopterygidae]].<ref name="Hoddle">Hoddle, Mark S. (1999). [http://www.biocontrol.ucr.edu/bemisia.html The Biology and Management of the Silverleaf Whitefly, ''Bemisia argentifolii'' Bellows and Perring (Homoptera: Aleyrodidae) on Greenhouse Grown Ornamentals] {{Webarchive|url=https://web.archive.org/web/20200526034725/https://biocontrol.ucr.edu/bemisia.html |date=2020-05-26 }}. biocontrol.ucr.edu</ref> There are currently four species of predators that are commercially available for control of ''B. tabaci:'' ''[[Delphastus pusillus]],'' ''[[Macrolophus caliginosus]],'' ''[[Chrysoperla carnea]],'' and ''[[Chrysoperla rufilabris|C. rufilabris]]''.<ref name="Hoddle"/> ''D. pusillus'' is a species of small, shiny, black beetle which sucks out the contents of the silverleaf whitefly by piercing its exoskeleton. Adult and larval stages of this beetle feed on all life stages of the pest.<ref name="Hoddle"/> ''C. rufilabris'' is only able to feed on the immature stages or the larval stages of ''B. tabaci''.<ref name="Hoddle"/>


Another natural enemy of the whitefly are [[parasitoids]], which kill their host once their development has been completed. Parasitoids in the families [[Platygasteridae]], [[Aphelinidae]], and [[Eulophidae]] are known to attack whiteflies.<ref name="Hoddle" /> Establishment of several [[Old World]] species of ''[[Eretmocerus]]'' wasps has been attempted in the Western United States to control ''B. tabaci''.<ref name="Goolsby" /> However, differences in climate preference by these wasps reduced their effect. The best studied of these whitefly parasitoids are ''[[Encarsia formosa]]'' and ''[[Eretmocerus eremicus]]'', both of which are commercially available. The ''Encarsia formosa'' "Beltsville Strain", however, has been unsuccessful in control ''B. tabaci'' biotype B in commercial greenhouses; it is only able to control the species in small experimental greenhouses.<ref name="Hoddle" /> The species ''Encarsia formosa'' works much better at controlling the whitefly species ''[[Trialeurodes vaporariorum]]'' than it does ''B. tabaci''. ''Eretmocerus sp.'' has been found more successful at ''B. tabaci'' than the ''E. formosa'' "Beltsville Strain". The wasps are faster at searching for patches of host nymphs are consistent at controlling the population.<ref name="Hoddle" /> A variable release strategy of parasitoids has been found successfully able to control populations of ''B. tabaci''. This was done by releasing six female parasitoids per week for the first half of the growing season, and only one female per week for the remaining of the season. This improved the effectiveness of the parasitoid wasps by ensuring they were continuously available to attack the pests, but in numbers that reflected the shrinking population of pests.<ref name="Hoddle" /> If natural enemies are not able to control the pest population at low levels due to a significant increase in pest, an insecticide compatible with the biological control agent could be used to assist in reducing the pest population to low levels again.<ref name="Hoddle" />
Another natural mechanism of controlling the population of ''B. tabaci'' is the use of fungal pathogens. The most commonly known pathogens to the whitefly pest are ''[[Paecilomyces fumosoroseus]]'', ''[[Aschersonia aleyrodis]]'', ''[[Verticillium lecanii]]'', and ''[[Beauveria bassiana]]''.<ref name="Hoddle"/> When spore solutions of ''V. lecanii'' are sprayed on eggs, first, second, and third instar nymphs of ''B. tabaci'' approximately 89% to 90% of these eggs are killed.<ref name="Hoddle"/> Strains of whitefly have developed resistance to its fungal pathogens. For example, whitefly pests have grown resistant to infection by ''V. lecanii''.

Another natural mechanism of controlling the population of ''B. tabaci'' is the use of fungal pathogens. The most commonly known pathogens to the whitefly pest are ''[[Paecilomyces fumosoroseus]]'', ''[[Aschersonia aleyrodis]]'', ''[[Verticillium lecanii]]'', and ''[[Beauveria bassiana]]''.<ref name="Hoddle" /> When spore solutions of ''V. lecanii'' are sprayed on eggs of ''B. tabaci'' approximately 89% to 90% of these eggs are killed.<ref name="Hoddle" /> Some strains of whitefly have developed resistance to its fungal pathogens including ''V. lecanii''.


[[File:Beauveria bassiana.jpg|thumb|left|A technician is applying ''Beauveria bassiana'', a fungus that is a natural enemy to silverleaf whiteflies to a plot of vegetables near Weslaco, Texas.]]
[[File:Beauveria bassiana.jpg|thumb|left|A technician is applying ''Beauveria bassiana'', a fungus that is a natural enemy to silverleaf whiteflies to a plot of vegetables near Weslaco, Texas.]]
''B. bassiana'' is only an effective biological control agent at a maximum temperature of 20°C and a humidity level greater than 96%.<ref name="Hoddle"/> Not enough studies have been conducted to show the productiveness of fungal pathogen in the real world environment. Much of the success of this biological control on ''B. tabaci'' has been conducted in the laboratory.<ref name="Hoddle"/> However, it can be concluded though that when the fungal pathogen is combined with an insecticide, the synergistic effect of the two will induce a higher mortality rate of the whitefly. ''P. fumosoroseus'' has a broad host range but can attack silverleaf whiteflies at a variety of life stages and these include eggs, nymphs, pupae, and adults stages.<ref name="Hoddle"/> On the other hand, ''A. aleyrodis'' only infects and destroys nymphs and pupae.<ref name="Hoddle"/>
''B. bassiana'' is only an effective biological control agent in conditions of low temperatures (maximum of {{convert|20|C}}) and a humidity level greater than 96%.<ref name="Hoddle"/> Not enough studies have been conducted to show the productiveness of fungal pathogen in the real world environment. Much of the success of this biological control on ''B. tabaci'' has been conducted in the laboratory.<ref name="Hoddle"/> However, it can be concluded though that when the fungal pathogen is combined with an insecticide, the synergistic effect of the two will induce a higher mortality rate of the whitefly. ''P. fumosoroseus'' has a broad host range but can attack silverleaf whiteflies at a variety of life stages and these include eggs, nymphs, pupae, and adults stages.<ref name="Hoddle"/> On the other hand, ''A. aleyrodis'' only infects and destroys nymphs and pupae.<ref name="Hoddle"/>

Another natural enemy of the whitefly are [[parasitoids]], which kill their host once their development has been completed. Whitefly parasitoids are affiliated with three hymenopterous families. These families are [[Platygasteridae]], [[Aphelinidae]], and the [[Eulophidae]].<ref name="Hoddle"/> The best studied of these whitefly parasitoids are ''[[Encarsia formosa]]'' and ''[[Eretmocerus eremicus]]'', both of which are commercially available. The ''Encarsia formosa'' "Beltsville Strain", however, has been unable to control ''Bemisia tabaci'' biotype B in commercial greenhouses; it is only able to control the species in small experimental greenhouses. In an experiment done by the Hoddle laboratory, the release of three or more ''E. formosa'' on ''B. tabaci'' per week failed to control the pure population of the species on poinsettia plants because wasps that are reared in the ''B. tabaci'' are less fecund, have a slower development, and fail to allow immature parasitoids to survive and develop.<ref name="Hoddle"/> The species ''Encarsia formosa'' works much better at controlling the whitefly species ''[[Trialeurodes vaporariorum]]'' than it does ''Bemisia tabaci''. On the other hand, ''Eretmocerus sp'' is much better at controlling silverleaf whitefly than is the ''Encarsia formosa'' "Beltsville Strain." In an experiment done again by the Hoddle laboratory, the release of three female wasps of an ''Eretmocerus'' species were able to effectively eliminate patches of the fly nymphs right after their discovery. The wasps are faster at searching for patches of nymphs of their host species and are consistent at controlling the population.<ref name="Hoddle" /> ''Eretmocerus'' are bi-parental ecto-endoparasites, meaning that parents lay their eggs on the outside of the fly. As the wasp larvae grow they penetrate the fly and continue their growth and development inside the host.<ref name="Hoddle" /> Plant growers today have been successfully able to control the population of ''Bemisia tabaci'' by using a variable release strategy. In the variable release strategy employed, six female parasitoids were released per week for the first half of the growing season, while only one female was released per week for the remaining of the season. The effectiveness of the parasitoid wasps was improved by releasing varying amounts of them per week so that they are continuously available. the number released deceases as the number of hosts decreases due to the wasps effectiveness.<ref name="Hoddle" /> If natural enemies are not able to control the pest population at low levels due to a significant increase in pest, an insecticide compatible with the biological control agent could be used to assist in reducing the pest population to low levels again.<ref name="Hoddle" />


=== Chemical controls ===
=== Chemical controls ===

==== Natural oils ====
==== Natural oils ====


[[File:Sugar apple on tree.jpg|thumb|The [[sugar apple]] seed oil is an effective chemical control against the whitefly.]]
[[File:Sugar apple on tree.jpg|thumb|The [[sugar apple]] seed oil is an effective chemical control against the whitefly.]]
One of the important tools for controlling the silverleaf whitefly population is through the usage of natural oils. Currently, the most effective oil in the market is the [[ultra-fine oil]], which is a [[Alkane|paraffin]]ic oil product that reduces the settlement of the adult flies, decreases [[oviposition]], and abates the transmission of the [[tomato yellow leaf curl virus]].<ref name="Schuster & Thompson"/> Ultra-fine oil’s effect can be strengthened through the combination with oils such as [[limonene]] or [[citronellal]]. On the other hand, olive oil is highly effective in controlling the number of flies that infect the leaves of their host plants and virus transfer. Other oils such as cottonseed, castor, peanut, soybean, and sunflower can also be used to reduce the settling and oviposition of ''B. tabaci'' adults. Out of this group of oil, peanut was the most effective in reducing the population. All of these oils cause direct mortality to all immature life stages of the silverleaf whitefly once the life stages come into contact with the oils that have been sprayed on the leaves. The oil extracted from the seeds of sugar apple is as effective against the whitefly as the use of insecticides.<ref name="Chien-Yih">Chien-Yih. Control of Silverleaf Whitefly, Cotton Aphid and Kanazawa Spider Mite with Oil And Extracts from Seeds of Sugar Apple, from http://apps.isiknowledge.com www.library.gatech.edu:2048/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=4BkCOJBjK2IPk5CGoaM&page=2&doc=18.</ref> The seed oil causes the silverleaf whitefly nymph to shrink in size and therefore detach from the tomato plant leading to starvation, as nymphs require close contact to the leaf to properly feed. In addition, the fourth nymphal stage is the most vulnerable to predation. Spraying a strong concentration on possible areas of nymph habitation can make oil a high-quality treatment.<ref name="Chien-Yih"/> Sugar apple seed oil is not [[phytotoxic]] to tomato plants of any concentrations and reduces the survival rate of the pest.<ref name="Chien-Yih"/> Spraying oil on leaves that have been infested or can be potentially infested will help reduce the number of silverleaf whiteflies that will reach the adult stage. The reduction of settling through various mechanisms can also help limit the amount of plants that become infected with viruses transmitted by these pests.
Natural oils are another important tool in the control of ''B. tabaci.'' Currently, the most effective oil in the market is the [[ultra-fine oil]], which is a [[Alkane|paraffin]]ic oil product that reduces the settlement of the adult flies, decreases [[oviposition]], and abates the transmission of the [[tomato yellow leaf curl virus]].<ref name="Schuster & Thompson"/> The effect of ultra-fine oil can be strengthened through the combination with oils such as [[limonene]] or [[citronellal]]. Olive oil is also highly effective in controlling the number of whiteflies. Other natural oils such as cottonseed, castor, peanut, soybean, and sunflower can be effective. Peanut oil was the most effective out of this group in reducing the population. All of these oils cause direct mortality to immature life stages of the silverleaf whitefly on contact and reduce settling and ovipositon by adults when sprayed on plant leaves. The oil extracted from the seeds of sugar apple has also been found effective against the whitefly.<ref name="Chien-Yih">{{Cite journal
| pmid = 19768275|doi=10.1590/S1519-566X2009000400016
| year = 2009
| last1 = Lin
| first1 = C. Y.
| title = Control of silverleaf whitefly, cotton aphid and kanzawa spider mite with oil and extracts from seeds of sugar apple
| journal = Neotropical Entomology
| volume = 38
| issue = 4
| pages = 531–6
| last2 = Wu
| first2 = D. C.
| last3 = Yu
| first3 = J. Z.
| last4 = Chen
| first4 = B. H.
| last5 = Wang
| first5 = C. L.
| last6 = Ko
| first6 = W. H.
| doi-access = free
}}</ref> This oil causes the silverleaf whitefly nymph to shrink in size and therefore detach from the tomato plant, leading to starvation. Sugar apple seed oil is not [[phytotoxic]] to tomato plants of any concentrations and reduces the survival rate of the pest.<ref name="Chien-Yih"/>


==== Insect growth regulators ====
==== Insect growth regulators ====


Insecticides are known to be costly, and there is also an increasing resistance of the whitefly to insecticides. In a study of the silverleaf whitefly, a pest of other [[curcurbits]] family plants including [[zucchini squash]], cucumber, and pumpkin was examined.<ref name="Qureshi">Qureshi, M. , Midmore, D. , Syeda, S. , & Playford, C. (2007). Floating Row Covers and Pyriproxyfen Help Control Silverleaf Whitefly Bemisia Tabaci (Gennadius) Biotype B (Homoptera: Aleyrodidae) in Zucchini. ''Australian Journal of Entomology'', 46(Part 4), 313-319.</ref> In particular squash is infected with Squash silverleaf, which is a serious physiological disorder that involves silvering of the surface of leaves, reduction in [[chlorophyll]] concentrations and higher reflectance. To combat this disease, [[insect growth regulator]] (IGR), [[pyriproxyfen]] has been used. This hormone is a [[juvenile hormone analogue]], which affects hormonal balance and [[chitin]] in premature insects, which causes deformation and death during molting and [[pupation]] stages. Therefore making pyriproxyfen effective in reducing the whitefly populations. It reduces the fruit damages, and increases the size, weight, and quality of fruit. Effectively, IGR does not kill adult whiteflies, but instead sterilizes the eggs of those adults that are treated. It is also a potent inhibitor of [[embryogenesis]], adult formation and [[metamorphosis]]. It kills larva and keeps adults from completing the last nymphal stage. The IGR has low toxicity to mammals, fish, birds and bumblebees.
Insecticides can be costly, and have an increasing risk of resistance by whiteflies. However, the [[insect growth regulator]] [[pyriproxyfen]] has been found successful in reducing whitefly populations on c[[Cucurbitaceae|urbit]] plants including zucchini squash, cucumber, and pumpkin.<ref name="Qureshi">{{Cite journal | doi = 10.1111/j.1440-6055.2007.00600.x| title = Floating row covers and pyriproxyfen help control silverleaf whitefly ''Bemisia tabaci'' (Gennadius) Biotype B (Homoptera: Aleyrodidae) in zucchini| journal = Australian Journal of Entomology| volume = 46| issue = 4| pages = 313–319| year = 2007| last1 = Qureshi | first1 = M. S. | last2 = Midmore | first2 = D. J. | last3 = Syeda | first3 = S. S. | last4 = Playford | first4 = C. L. }}</ref> This hormone is a [[juvenile hormone analogue]], which affects hormonal balance and [[chitin]] in immature insects, and causes deformation and death during molting and [[pupation]]. This insect growth regulator does not kill adult whiteflies, and has low toxicity to mammals, fish, birds and bumblebees.{{cn|date=December 2022}}


=== Mechanical controls ===
=== Mechanical controls ===

==== Man-made traps and covers ====
==== Man-made traps and covers ====


In addition, the Light-Emitting Diode Equipped CC trap (LED-CC) was developed by plant [[physiologist]] Chang-Chi Chu and Thomas Henneberry.<ref name="Elstein">Elstein, David. New Trap To Control Silverleaf Whiteflies. (2002 May 30). Retrieved March 13, 2011, from http://www.ars.usda.gov/is/pr/2002/020530.htm.</ref> Originally, the trap was used to monitor population of silverleaf whitefly populations, but as the trap improved in its effectiveness it was used in control programs to limit whitefly pest populations. The trap itself includes a green LED light that attracts and traps the whiteflies. The LED device works best at night,and is inexpensive and durable. In addition, the LED is parasite friendly and therefore does not harm predators of the whitefly. The trap also does not utilize pesticides.<ref name="Elstein"/>
Traps offer a pesticide free method of control of ''B. tabaci.'' The Light-Emitting Diode Equipped CC trap (LED-CC) was developed by plant [[physiologist]] Chang-Chi Chu and Thomas Henneberry.<ref name="Elstein">Elstein, David (May 30, 2002). [http://www.ars.usda.gov/is/pr/2002/020530.htm New Trap To Control Silverleaf Whiteflies]. usda.gov.</ref> Originally, the trap was used to monitor population of silverleaf whitefly populations, but as the trap was improved it was used in control programs to limit whitefly pest populations. The trap itself includes a green [[LED]] light that attracts and traps the whiteflies. The LED device works best at night, and is inexpensive and durable. In addition, the LED does not harm predators and parasitoids of the whitefly.<ref name="Elstein"/>


Another technique used to reduce virus damage include the use of FRC known as [[floating row covers]], which are covers used to keep plants from exposure from pests. Field studies have been conducted in Australia and have shown that the use of FRCs and IGR increase the yield of harvested fruit and quality. The row covers have been known to reduce virus damage to ''cucurbits.''
Another technique used to reduce virus damage include the use of floating row covers, which are covers used to keep plants from exposure from pests. Field studies conducted in Australia have shown that the use of floating row covers coupled with insect growth regulators increase the yield of harvested fruit and quality and reduce virus damage to cucurbits.{{Citation needed|date=November 2018}}


==== Trap crops ====
==== Trap crops ====
[[File:Starr 080812-9704 Cucurbita pepo.jpg|thumb|Squash crops are effectively used as trap crops for attracting silverleaf whitefly.]]
[[File:Starr 080812-9704 Cucurbita pepo.jpg|thumb|Squash crops are effectively used as trap crops for attracting silverleaf whitefly.]]
Another important control is the use of other crops as a source of trap crops. Squashes can act as trap crops for the silverleaf whitefly due to the flies’ attractiveness to these crops.<ref name="Schuster">Schuster, D. 2004. Squash as a trap crop to protect tomato from whitefly-vectored tomato yellow leaf curl. Pages 281-284. ''International Journal of Pest Management''. Taylor & Francis Ltd.</ref> Silverleaf whiteflies are actually more attracted to the squash crop than they are to the tomato plant.<ref name="Schuster"/> When squash serves as a trap crop, the tomato yellow curl leaf virus can be controlled and limited. Scientific experiments show in the fields that growing squash crops around the areas where tomato plants can be found is a useful manipulation in regulating the silverleaf whitefly population as well as the transmission of TYLCV. Other plants that can serve as trap crops include cantaloupe and cucumber.<ref name="Schuster"/>
Another important control is the use of other crops as a source of trap crops. Squashes can act as trap crops for the silverleaf whitefly due to the flies’ attraction to these crops.<ref name="Schuster">{{Cite journal | doi = 10.1080/09670870412331284591| title = Squash as a trap crop to protect tomato from whitefly-vectored tomato yellow leaf curl| journal = International Journal of Pest Management| volume = 50| issue = 4| pages = 281–284| year = 2004| last1 = Schuster | first1 = D. J. | s2cid = 84016262}}</ref> Silverleaf whiteflies are actually more attracted to the squash crop than they are to the tomato plant.<ref name="Schuster"/> When squash serves as a trap crop, the tomato yellow curl leaf virus can be controlled and limited. Scientific experiments show in the fields that growing squash crops around the areas where tomato plants can be found is a useful manipulation in regulating the silverleaf whitefly population as well as the transmission of TYLCV. Other plants that can serve as trap crops include cantaloupe and cucumber.<ref name="Schuster"/>


=== Cultural controls ===
=== Cultural controls ===


Through a [[cultural control method]], different planting areas can limit the amount of ''B. tabaci'' infected plants. Planting different host crops away from each other will decrease the number of plants the flies will be able to infect. Thus, the best control is to maximize the distance and time interval between host crops.<ref name="UC IPM">UC IPM Pest Management Guidelines: Peppers. (2009, December 2009). Retrieved March 17, 2011, from http://www.ipm.ucdavis.edu/PMG/r604300811.html.</ref> Good sanitation in winter and spring crops is also required for the maintenance and control of the fly population.<ref name="UC IPM"/> Weeds and host crop residues must be removed immediately to avoid infestation. Silver/aluminum cover mulches can repel the adult silverleaf whitefly. Thus, when planting seeds, placing a reflective polyethylene mulch on planting beds will significantly reduce the rate of colonization.<ref name="UC IPM"/>
Through a [[cultural control method]], different planting areas can limit the amount of ''B. tabaci'' infected plants. Planting different host crops away from each other will decrease the number of plants the flies will be able to infect. Thus, the best control is to maximize the distance and time interval between host crops.<ref name="UC IPM">[http://www.ipm.ucdavis.edu/PMG/r604300811.html UC IPM Pest Management Guidelines: Peppers]. ipm.ucdavis.edu. December 2009.</ref> Good sanitation in winter and spring crops is also required for the maintenance and control of the fly population.<ref name="UC IPM"/> Weeds and host crop residues must be removed immediately to avoid infestation. Silver/aluminum cover mulches can repel the adult silverleaf whitefly. Thus, when planting seeds, placing a reflective polyethylene mulch on planting beds will significantly reduce the rate of colonization.<ref name="UC IPM"/>


Cultural controls are very important to crops such as vegetables and fruit. For example, in the family of Cucurbitaceae family, vegetables such as watermelon and squash contract [[squash vein yellowing virus]] (SqVYV) by the silverleaf whitefly.<ref name="Flores">Flores, A. (2007). On the Guard Against Watermelon Vine Decline. Pages 10-11 ''Agricultural Research''.</ref> The SqVYV virus<ref name="Flores"/> discovered by plant pathologist Benny Bruton and Shaker Kousik is essentially a crippling disease of the watermelon, which leads to the vine of the watermelon to collapse, causing the death of the watermelon before harvest. Kousik and pathologist [[Scott Adkins]] at ARS Subtropical Plant Pathology Research Unit worked together in screening the watermelon germplasm for resistance to SqVYV as to search for potential sources of resistance in wild-type watermelon. Kousik examined different combinations of insecticides and silver plastic mulch that could be used to reduce the whitefly populations.<ref name="Flores"/>
Cultural controls are very important to crops such as vegetables and fruit. For example, in the family Cucurbitaceae, vegetables such as watermelon and squash contract [[squash vein yellowing virus]] (SqVYV) by the silverleaf whitefly.<ref name="Flores">Flores, A. (2007). [http://www.ars.usda.gov/is/AR/archive/nov07/vine1107.htm On the Guard Against Watermelon Vine Decline]. pp. 10–11 ''Agricultural Research''.</ref> The SqVYV virus<ref name="Flores"/> discovered by plant pathologist Benny Bruton and Shaker Kousik is essentially a crippling disease of the watermelon, which leads to the vine of the watermelon to collapse, causing the death of the watermelon before harvest. Kousik and pathologist [[Scott Adkins]] at ARS Subtropical Plant Pathology Research Unit worked together in screening the watermelon germplasm for resistance to SqVYV as to search for potential sources of resistance in wild-type watermelon. Kousik examined different combinations of insecticides and silver plastic mulch that could be used to reduce the whitefly populations.<ref name="Flores"/>

=== Summary ===
Under the integrated pest management plan, there are several different ways to control and manage the pest population of ''B. tabaci''. The mechanical control used to control the species population is through the use of natural oils such as sugar apple<ref name="Chien-Yih"/> and the more common type of insecticides. From experimentation, scientists have seen that the sugar apple oil<ref name="Chien-Yih"/> (and other natural oils) has the same strength as insecticides but with the benefit of not causing pollution.<ref name="Schuster & Thompson"/> Through cultural control methods, the flies are regulated through the process of trap crops and man-made traps, such as the Light-emitting diode. The most important and pollution free method of controlling the amount of damage down by the silverleaf whitefly annually is the usage of natural enemies (i.e. pathogens, parasites, and predators). There are a variety of predators and several different pathogens and parasites that can effectively keep the pest population under a minimal level. The most common parasitoid of the silverleaf is ''Eretmocerus'', a wasp species that finishes its development inside the host, killing the host once it reaches adulthood.<ref name="Hoddle"/> Most of the predators of ''B. tabaci'' tend to just eat out the insides of the pest, while pathogens transfer deadly viruses.<ref name="Hoddle"/>


==References==
==References==
{{reflist}}
{{Reflist|35em}}


==External links==
==External links==
*[http://entomology.ifas.ufl.edu/creatures/veg/leaf/silverleaf_whitefly.htm silverleaf whitefly] on the [[University of Florida]] / [[Institute of Food and Agricultural Sciences]] ''Featured Creatures''
* [http://entomology.ifas.ufl.edu/creatures/veg/leaf/silverleaf_whitefly.htm silverleaf whitefly] on the [[University of Florida]] / [[Institute of Food and Agricultural Sciences]] ''Featured Creatures''
* [http://entomology.ifas.ufl.edu/fasulo/whiteflies/wfly0002.htm? USDA Whitefly Knowledgebase]
* [https://web.archive.org/web/20090218081553/http://entomology.ifas.ufl.edu/fasulo/whiteflies/wfly0002.htm? USDA Whitefly Knowledgebase]
* [http://cisr.ucr.edu/silverleaf_whitefly.html CISR – Silverleaf Whitefly] Center for Invasive Species Research summary on Silverleaf Whitefly
* [http://cisr.ucr.edu/silverleaf_whitefly.html CISR – Silverleaf Whitefly] Center for Invasive Species Research summary on Silverleaf Whitefly
* [http://www.invasivespeciesinfo.gov/animals/sla.shtml Species Profile – Silverleaf Whitefly (''Bemisia argentifolii'')], National Invasive Species Information Center, [[United States National Agricultural Library]]. Lists general information and resources for Silverleaf Whitefly.
* [https://www.invasivespeciesinfo.gov/profile/silverleaf-whitefly Species Profile – Silverleaf Whitefly (''Bemisia argentifolii'')], National Invasive Species Information Center, [[United States National Agricultural Library]]. Lists general information and resources for Silverleaf Whitefly.

{{Taxonbar|from=Q1303946}}


{{DEFAULTSORT:Silverleaf Whitefly}}
{{DEFAULTSORT:Silverleaf Whitefly}}
Line 120: Line 139:
[[Category:Agricultural pest insects]]
[[Category:Agricultural pest insects]]
[[Category:Insect vectors of plant pathogens]]
[[Category:Insect vectors of plant pathogens]]
[[Category:Animals described in 1889]]
[[Category:Insects described in 1889]]
[[Category:Insects of India]]

Latest revision as of 04:34, 17 July 2024

Silverleaf whitefly
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hemiptera
Suborder: Sternorrhyncha
Family: Aleyrodidae
Genus: Bemisia
Species:
B. tabaci
Binomial name
Bemisia tabaci
(Gennadius, 1889)
Synonyms[1]

Bemisia argentifolii Bellows & Perring

The silverleaf whitefly (Bemisia tabaci, also informally referred to as the sweet potato whitefly) is one of several species of whitefly that are currently important agricultural pests.[1] A review in 2011 concluded that the silverleaf whitefly is actually a species complex containing at least 40 morphologically indistinguishable species.[2]

The silverleaf whitefly thrives worldwide in tropical, subtropical, and less predominately in temperate habitats. Cold temperatures kill both the adults and the nymphs of the species.[3] The silverleaf whitefly can be confused with other insects such as the common fruitfly, but with close inspection, the whitefly is slightly smaller and has a distinct wing color that helps to differentiate it from other insects.

While the silverleaf whitefly had been known in the United States since 1896, in the mid-1980s an aggressive strain appeared in poinsettia crops in Florida. For convenience that strain was referred to as strain B (biotype B), to distinguish it from the milder infestation of the earlier known strain A. Less than a year after its identification, strain B was found to have moved to tomatoes, and other fruit and vegetable crops. Within five years, the silverleaf whitefly had caused over $100 million in damage to agriculture in Texas and in California.[1]

Anatomy and life cycle

[edit]
Bemisia tabaci molting on leaves. The silver empty structures on the leaves are cast-off skins.

Female B. tabaci will lay 50 to 400 eggs ranging from 0.10 to 0.25 millimetres (1128 to 1128 in) on the under part of leaves. Female whiteflies are diploid and emerge from fertilized eggs whereas male whiteflies are haploid and emerge from unfertilized eggs. Eggs are laid in groups, being small in size with dimensions of 0.2 millimetres (1128 in) wide and 0.1 millimetres (1128 in) in height. Eggs are initially whitish in color and change to a brown color near hatching, within 5 to 7 days. After hatching, the whitefly nymph develops through four instar stages.

An adult Silverleaf Whitefly (Bemisia tabaci) on surface of Cotton leaf
Bemisia tabaci adult whiteflies on green leaf

The first instar, commonly called a crawler, is the only mobile nymphal stage. The first instar nymph can grow to about 0.3 millimetres (164 in) and is greenish in color and flat in body structure.[4][5] The mobile nymph walks to find a suitable area on the leaf with adequate nutrients and molts into an immobile stage. The next three instars remain in place for 40–50 days, until molting into an adult.[6] Silver exuvia, or shed skins are left on the leaves. The immobile instars appear opaquely white. Nymphs feed by stabbing into the plant with their mouth-parts and sucking up plant juices.[4] After the fourth instar, the nymph transforms into a pupal stage where the eyes become a deep red color, the body color becomes yellow, and the body structure thickens. This is not a true pupal stage, as is found in the Holometabola, but is similar in function. Adult whiteflies are approximately four times the size of the egg, with light yellow bodies and white wings, which is attributed by the secretion of wax across its wings and body.[6] Adult silverleaf whiteflies can reach up to 0.9 millimetres (5128 in) in length. While feeding or resting the whitefly adult folds its wings tent-like over its body.[5]

Distribution

[edit]

Native/original community

[edit]
Poinsettia is one of the silverleaf whitefly's preferred hosts.

Research indicates that the silverleaf whitefly likely came from India. Since the whitefly is predominately associated with areas exhibiting tropical/subtropical climates, the focus shifts to how these insects attained access to crops in habitats with temperate climates.[6] One hypothesis suggests that the transfer of decorative plants from tropical regions may have aided in the spread of the silverleaf whiteflies to temperate environments. The ability of the whitefly to adapt to various plants facilitates the spread of dangerous plant viruses, which these insects are notorious for transmitting.[7] Plants which are affected by the whitefly include: tomatoes, squash, poinsettia, cucumber, eggplants, okra, beans, and cotton.[4] Other common plant damages of whitefly include: removing plant sap, breakdown of the leaves of the plant, and leaf shedding.[4]

Introduced range

[edit]

The silverleaf whitefly is an invasive agricultural pest in many locations around the world, including in Florida[5] and in California.[8]

Commercial impact

[edit]

The silverleaf whitefly is considered an invasive species in the United States as well as Australia, Africa, and several European countries. It was classified as an agricultural pest in Greece around 1889 and had a significant impact on tobacco crops there. The first silverleaf whitefly was found in the United States in 1897 on a crop of sweet potatoes.[9][10]

This tiny insect causes damage to plants through feeding and transmitting plant diseases. The silverleaf whitefly feeds on its host plants by piercing the phloem or lower leaf surfaces with its mouth and removing nutrients. Affected areas of the plant may develop chlorotic spots, whither, or drop leaves. Whiteflies also produce a sticky substance called honeydew, which is left behind on the host.[6] Honeydew can induce the growth of sooty molds, which can then reduce the plants ability to absorb light. This results in slower growth, lower yield, and poor quality plants. It also requires that crops be thoroughly washed after harvesting, which raises processing costs for the grower.[citation needed]

The silverleaf whitefly is also a notorious vector for plant disease. It has transmitted gemniviruses including lettuce infectious yellows virus, tomato yellow leaf curl virus, and African cassava mosaic virus for years and over many continents[6] and is now a vector for cassava brown streak virus disease.[11]

Bemisia tabaci became a serious issue in crops across the southwestern United States and Mexico in the 1980s. Scientists speculate that this pest was introduced via infested ornamental plants brought into the United States at this time. Florida's poinsettia greenhouses were crippled by the pest beginning in 1986, and by 1991, the infestation had spread through Georgia, Louisiana, Texas, New Mexico, and Arizona to plague growers in California. California produces approximately 90% of the United States’ winter vegetable crop, and has incurred an estimated $500 million in crop damage due to silverleaf whitefly populations.[12] Across the agricultural industry, this pest is thought to cost the state $774 million in private sector plant sales, 12,540 jobs, and $112.5 million in personal income.[clarification needed] On a national scale, the United States has suffered crop and ornamental plant damages in excess of $1 billion.[12]

This species of whitefly is a particularly devastating pest because it feeds on over 500 plant species. Common hosts are agricultural crops including tomatoes, squash, broccoli, cauliflower, cabbage, melons, cotton, carrots, sweet potato, cucumber, and pumpkin, and ornamental plants such as poinsettia, crepe myrtle, garden roses, lantana, and lilies. It can cause specific damage to certain host plants, like "silverleaf" on squash, irregular ripening of tomatoes, whitestalk in broccoli and cauliflower, white stem in poinsettia, and light root in carrots.[12]

Nuclear receptors

[edit]

B. tabaci like all arthropods has ecdysone receptors (EcRs) which may be useful for insecticide development.[13] Carmichael et al., 2005 presents the X-ray crystal structure for the 1Z5X ligand-binding domain of the B. tabaci EcR.[13]

Integrated pest management

[edit]

Multiple methods of control can be used to combat these prevalent agricultural pests. Some major control methods include, application of oils, use of natural enemies such as Aphelinidae parasitoids, employment of trap crops, release of insect growth regulators, and implementation of traps.[citation needed]

Most of these control tools have a minimal effect on plant and soil properties. Scientists are currently focusing on targeting the whitefly through mechanisms that do not cause pollution or contamination (i.e., mechanisms other than insecticides). It is important to be able to reduce the number of B. tabaci individuals that settle on plants to decrease plant damages such as those caused by viral transmissions. This can be accomplished by reducing settling, decreasing oviposition, and abating population development.[14]

Biological controls

[edit]

Classical biological control has been the best long-term, sustainable solution to controlling these exotic pests. However, success of this method can be unpredictable.[15]

Entomologists with the U.S. Arid-Land Agricultural Research Center identified the most common causes of death of the whitefly as predation by other insects, parasitism, and weather induced dislodgement.[16] They emphasize the importance of exploiting the use of natural predators and have identified predators by the use of enzyme-linked immune sorbent assay (ELISA). It was found that the use of the biological controls and insect growth regulators produces a higher predator-to-prey ratio.[17] Insect growth regulators, such as buprofezin and pyriproxyfen, conserve natural predators compared to conventional insecticides, which can indiscriminately kill both predator and pest populations.[17]

Natural enemies

[edit]

Predators, parasitoids, and pathogens specific to whiteflies can keep populations under control.

Species in eight arthropod orders are known to be predators of B. tabaci. These include members of the families Phytoseiidae, Coccinellidae, Syrphidae, Anthocoridae, Nabidae, and Miridae, Chrysopidae and Coniopterygidae.[18] There are currently four species of predators that are commercially available for control of B. tabaci: Delphastus pusillus, Macrolophus caliginosus, Chrysoperla carnea, and C. rufilabris.[18] D. pusillus is a species of small, shiny, black beetle which sucks out the contents of the silverleaf whitefly by piercing its exoskeleton. Adult and larval stages of this beetle feed on all life stages of the pest.[18] C. rufilabris is only able to feed on the immature stages or the larval stages of B. tabaci.[18]

Another natural enemy of the whitefly are parasitoids, which kill their host once their development has been completed. Parasitoids in the families Platygasteridae, Aphelinidae, and Eulophidae are known to attack whiteflies.[18] Establishment of several Old World species of Eretmocerus wasps has been attempted in the Western United States to control B. tabaci.[15] However, differences in climate preference by these wasps reduced their effect. The best studied of these whitefly parasitoids are Encarsia formosa and Eretmocerus eremicus, both of which are commercially available. The Encarsia formosa "Beltsville Strain", however, has been unsuccessful in control B. tabaci biotype B in commercial greenhouses; it is only able to control the species in small experimental greenhouses.[18] The species Encarsia formosa works much better at controlling the whitefly species Trialeurodes vaporariorum than it does B. tabaci. Eretmocerus sp. has been found more successful at B. tabaci than the E. formosa "Beltsville Strain". The wasps are faster at searching for patches of host nymphs are consistent at controlling the population.[18] A variable release strategy of parasitoids has been found successfully able to control populations of B. tabaci. This was done by releasing six female parasitoids per week for the first half of the growing season, and only one female per week for the remaining of the season. This improved the effectiveness of the parasitoid wasps by ensuring they were continuously available to attack the pests, but in numbers that reflected the shrinking population of pests.[18] If natural enemies are not able to control the pest population at low levels due to a significant increase in pest, an insecticide compatible with the biological control agent could be used to assist in reducing the pest population to low levels again.[18]

Another natural mechanism of controlling the population of B. tabaci is the use of fungal pathogens. The most commonly known pathogens to the whitefly pest are Paecilomyces fumosoroseus, Aschersonia aleyrodis, Verticillium lecanii, and Beauveria bassiana.[18] When spore solutions of V. lecanii are sprayed on eggs of B. tabaci approximately 89% to 90% of these eggs are killed.[18] Some strains of whitefly have developed resistance to its fungal pathogens including V. lecanii.

A technician is applying Beauveria bassiana, a fungus that is a natural enemy to silverleaf whiteflies to a plot of vegetables near Weslaco, Texas.

B. bassiana is only an effective biological control agent in conditions of low temperatures (maximum of 20 °C (68 °F)) and a humidity level greater than 96%.[18] Not enough studies have been conducted to show the productiveness of fungal pathogen in the real world environment. Much of the success of this biological control on B. tabaci has been conducted in the laboratory.[18] However, it can be concluded though that when the fungal pathogen is combined with an insecticide, the synergistic effect of the two will induce a higher mortality rate of the whitefly. P. fumosoroseus has a broad host range but can attack silverleaf whiteflies at a variety of life stages and these include eggs, nymphs, pupae, and adults stages.[18] On the other hand, A. aleyrodis only infects and destroys nymphs and pupae.[18]

Chemical controls

[edit]

Natural oils

[edit]
The sugar apple seed oil is an effective chemical control against the whitefly.

Natural oils are another important tool in the control of B. tabaci. Currently, the most effective oil in the market is the ultra-fine oil, which is a paraffinic oil product that reduces the settlement of the adult flies, decreases oviposition, and abates the transmission of the tomato yellow leaf curl virus.[14] The effect of ultra-fine oil can be strengthened through the combination with oils such as limonene or citronellal. Olive oil is also highly effective in controlling the number of whiteflies. Other natural oils such as cottonseed, castor, peanut, soybean, and sunflower can be effective. Peanut oil was the most effective out of this group in reducing the population. All of these oils cause direct mortality to immature life stages of the silverleaf whitefly on contact and reduce settling and ovipositon by adults when sprayed on plant leaves. The oil extracted from the seeds of sugar apple has also been found effective against the whitefly.[19] This oil causes the silverleaf whitefly nymph to shrink in size and therefore detach from the tomato plant, leading to starvation. Sugar apple seed oil is not phytotoxic to tomato plants of any concentrations and reduces the survival rate of the pest.[19]

Insect growth regulators

[edit]

Insecticides can be costly, and have an increasing risk of resistance by whiteflies. However, the insect growth regulator pyriproxyfen has been found successful in reducing whitefly populations on curbit plants including zucchini squash, cucumber, and pumpkin.[20] This hormone is a juvenile hormone analogue, which affects hormonal balance and chitin in immature insects, and causes deformation and death during molting and pupation. This insect growth regulator does not kill adult whiteflies, and has low toxicity to mammals, fish, birds and bumblebees.[citation needed]

Mechanical controls

[edit]

Man-made traps and covers

[edit]

Traps offer a pesticide free method of control of B. tabaci. The Light-Emitting Diode Equipped CC trap (LED-CC) was developed by plant physiologist Chang-Chi Chu and Thomas Henneberry.[21] Originally, the trap was used to monitor population of silverleaf whitefly populations, but as the trap was improved it was used in control programs to limit whitefly pest populations. The trap itself includes a green LED light that attracts and traps the whiteflies. The LED device works best at night, and is inexpensive and durable. In addition, the LED does not harm predators and parasitoids of the whitefly.[21]

Another technique used to reduce virus damage include the use of floating row covers, which are covers used to keep plants from exposure from pests. Field studies conducted in Australia have shown that the use of floating row covers coupled with insect growth regulators increase the yield of harvested fruit and quality and reduce virus damage to cucurbits.[citation needed]

Trap crops

[edit]
Squash crops are effectively used as trap crops for attracting silverleaf whitefly.

Another important control is the use of other crops as a source of trap crops. Squashes can act as trap crops for the silverleaf whitefly due to the flies’ attraction to these crops.[22] Silverleaf whiteflies are actually more attracted to the squash crop than they are to the tomato plant.[22] When squash serves as a trap crop, the tomato yellow curl leaf virus can be controlled and limited. Scientific experiments show in the fields that growing squash crops around the areas where tomato plants can be found is a useful manipulation in regulating the silverleaf whitefly population as well as the transmission of TYLCV. Other plants that can serve as trap crops include cantaloupe and cucumber.[22]

Cultural controls

[edit]

Through a cultural control method, different planting areas can limit the amount of B. tabaci infected plants. Planting different host crops away from each other will decrease the number of plants the flies will be able to infect. Thus, the best control is to maximize the distance and time interval between host crops.[23] Good sanitation in winter and spring crops is also required for the maintenance and control of the fly population.[23] Weeds and host crop residues must be removed immediately to avoid infestation. Silver/aluminum cover mulches can repel the adult silverleaf whitefly. Thus, when planting seeds, placing a reflective polyethylene mulch on planting beds will significantly reduce the rate of colonization.[23]

Cultural controls are very important to crops such as vegetables and fruit. For example, in the family Cucurbitaceae, vegetables such as watermelon and squash contract squash vein yellowing virus (SqVYV) by the silverleaf whitefly.[24] The SqVYV virus[24] discovered by plant pathologist Benny Bruton and Shaker Kousik is essentially a crippling disease of the watermelon, which leads to the vine of the watermelon to collapse, causing the death of the watermelon before harvest. Kousik and pathologist Scott Adkins at ARS Subtropical Plant Pathology Research Unit worked together in screening the watermelon germplasm for resistance to SqVYV as to search for potential sources of resistance in wild-type watermelon. Kousik examined different combinations of insecticides and silver plastic mulch that could be used to reduce the whitefly populations.[24]

References

[edit]
  1. ^ a b c Fan, Yuqing Fan & Petitt, Frederick (1998). "Dispersal of the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae) on Bemisia tabaci (Homoptera: Aleyrodidae)". Experimental and Applied Acarology. 22 (7): 411–415. doi:10.1023/A:1006045911286. S2CID 20767783.
  2. ^ Tang, Xiao-Tian; Cai, Li; Yuan, Shin; Xu, Li–Li; Du, Yu–Zhou (2019). "Competitive Displacement between Bemisia tabaci MEAM1 and MED and Evidence for Multiple Invasions of MED". Insects. 11 (1): 1–12. doi:10.3390/insects11010035. PMC 7022974. PMID 31906186.
  3. ^ Greenberg, S. M.; Legaspi, B. C.; Jones, W. A.; Enkegaard, A. (2000). "Temperature-Dependent Life History of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on Two Whitefly Hosts (Homoptera: Aleyrodidae)". Environmental Entomology. 29 (4): 851–860. doi:10.1603/0046-225X-29.4.851. S2CID 85854037.
  4. ^ a b c d Johnson, F. A.; Short, D. E. & Castner, J. L. (2005). Sweetpotato/Silverleaf Whitefly Life Stages and Damage (PDF). Entomology and Nematology Department special publication 90 (revised ed.). Gainesville, Florida: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Archived from the original (PDF) on 2012-09-25. Retrieved 2011-04-22.
  5. ^ a b c "Bemisia tabaci (Gennadius) or Bemisia argentifolii Bellows & Perring". entnemdept.ufl.edu. Retrieved 2017-12-06.
  6. ^ a b c d e Brown, J. K.; Frohlich, D. R. & Rosell, R. C. (1995). "The Sweetpotato or Silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex?". Annual Review of Entomology. 40 (1): 511–534. doi:10.1146/annurev.en.40.010195.002455.
  7. ^ Azab AK; Megahed MM; EI-Mirsawi, HD (1971). "On the biology of Bemisia tabaci (Genn.) Hemiptera, Homoptera: Aleyrodidae". Bulletin de la Société entomologique d'Égypte. 55: 305–15.
  8. ^ Paine, Timothy; Bellows, Thomas; Hoddle, Mark (2019-12-27). "Silverleaf Whitefly". UCR Center for Invasive Species Research. Retrieved 2022-07-09.
  9. ^ "Biological Control: A Grower's Guide to Using Biological Control for Silverleaf Whitefly on Poinsettias in the Northeast United States". Center for Agriculture, Food and the Environment. 6 March 2015. Retrieved 25 March 2020.
  10. ^ "Silverleaf Whitefly | National Invasive Species Information Center | USDA". www.invasivespeciesinfo.gov. Retrieved 25 March 2020.
  11. ^ Pheneas Ntawuruhunga & James Legg (May 2007). "New Spread of Cassava Brown Streak Virus Disease and its Implications for the Movement of Cassava Germplasm in the East and Central African Region" (PDF). Archived from the original (PDF) on 2007-12-15. Retrieved 2012-08-12.
  12. ^ a b c Service, A. R. National Invasive Species Information Center: Silverleaf Whitefly. United States Department of Agriculture.
  13. ^ a b Dawson, Marcia I.; Xia, Zebin (2021-06-02). "The Retinoid X Receptors and Their Ligands". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1821 (1). Elsevier: 21–56. doi:10.1016/j.bbalip.2011.09.014. PMC 4097889. PMID 22020178. NIHMSID 341742.
  14. ^ a b Schuster, D. J.; Thompson, S.; Ortega, L. D.; Polston, J. E. (2009). "Laboratory Evaluation of Products to Reduce Settling of Sweetpotato Whitefly Adults". Journal of Economic Entomology. 102 (4): 1482–1489. doi:10.1603/029.102.0412. PMID 19736760. S2CID 45206625.
  15. ^ a b Goolsby, J. A.; Debarro, P. J.; Kirk, A. A.; Sutherst, R. W.; Canas, L.; Ciomperlik, M. A.; Ellsworth, P. C.; Gould, J. R.; Hartley, D. M.; Hoelmer, K. A.; Naranjo, S. E.; Rose, M.; Roltsch, W. J.; Ruiz, R. A.; Pickett, C. H.; Vacek, D. C. (2005). "Post-release evaluation of biological control of Bemisia tabaci biotype "B" in the USA and the development of predictive tools to guide introductions for other countries". Biological Control. 32 (1): 70–77. Bibcode:2005BiolC..32...70G. doi:10.1016/j.biocontrol.2004.07.012.
  16. ^ United States Department of Agriculture: Beyond Insecticides: Improved Methods of Whitefly Control. Retrieved March 15, 2011.
  17. ^ a b McGinnis, L. (April 5, 2006) Alternate Methods of Whitefly Control. usda.gov
  18. ^ a b c d e f g h i j k l m n o Hoddle, Mark S. (1999). The Biology and Management of the Silverleaf Whitefly, Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) on Greenhouse Grown Ornamentals Archived 2020-05-26 at the Wayback Machine. biocontrol.ucr.edu
  19. ^ a b Lin, C. Y.; Wu, D. C.; Yu, J. Z.; Chen, B. H.; Wang, C. L.; Ko, W. H. (2009). "Control of silverleaf whitefly, cotton aphid and kanzawa spider mite with oil and extracts from seeds of sugar apple". Neotropical Entomology. 38 (4): 531–6. doi:10.1590/S1519-566X2009000400016. PMID 19768275.
  20. ^ Qureshi, M. S.; Midmore, D. J.; Syeda, S. S.; Playford, C. L. (2007). "Floating row covers and pyriproxyfen help control silverleaf whitefly Bemisia tabaci (Gennadius) Biotype B (Homoptera: Aleyrodidae) in zucchini". Australian Journal of Entomology. 46 (4): 313–319. doi:10.1111/j.1440-6055.2007.00600.x.
  21. ^ a b Elstein, David (May 30, 2002). New Trap To Control Silverleaf Whiteflies. usda.gov.
  22. ^ a b c Schuster, D. J. (2004). "Squash as a trap crop to protect tomato from whitefly-vectored tomato yellow leaf curl". International Journal of Pest Management. 50 (4): 281–284. doi:10.1080/09670870412331284591. S2CID 84016262.
  23. ^ a b c UC IPM Pest Management Guidelines: Peppers. ipm.ucdavis.edu. December 2009.
  24. ^ a b c Flores, A. (2007). On the Guard Against Watermelon Vine Decline. pp. 10–11 Agricultural Research.
[edit]