Jump to content

Muscarinic acetylcholine receptor M1: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Agonists: Add itameline, arecoline.
 
(129 intermediate revisions by 64 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{cs1 config|name-list-style=vanc|display-authors=6}}
{{DISPLAYTITLE:Muscarinic acetylcholine receptor M<sub>1</sub>}}
{{DISPLAYTITLE:Muscarinic acetylcholine receptor M<sub>1</sub>}}
{{Use dmy dates|date=September 2020}}
{{PBB|geneid=1128}}
{{Infobox_gene}}
The '''muscarinic acetylcholine receptor M<sub>1</sub>''', also known as the '''cholinergic receptor, muscarinic 1''', is a [[muscarinic receptor]].
<!--Structure {{cite journal | pmid = 26958838 | doi=10.1038/nature17188 | volume=531 | title=Crystal structures of the M1 and M4 muscarinic acetylcholine receptors | year=2016 | journal=Nature | pages=335–40 | vauthors=Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A }}-->
The '''muscarinic acetylcholine receptor M<sub>1</sub>''', also known as the '''cholinergic receptor, muscarinic 1''', is a [[muscarinic receptor]] that in humans is encoded by the ''CHRM1'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: CHRM1 cholinergic receptor, muscarinic 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1128}}</ref> It is localized to 11q13.<ref name="entrez"/>


This receptor is found mediating slow [[excitatory postsynaptic potential|EPSP]] at the ganglion in the postganglionic nerve{{citationneeded}}, is common in [[exocrine gland]]s and in the CNS.<ref name="isbn1-55009-109-3">{{cite book | author = Johnson, Gordon | title = PDQ Pharmacology | publisher = BC Decker Inc | location = Hamilton, Ontario | year = 2002 | edition = 2nd | pages = 311 pages | isbn = 1-55009-109-3 | oclc = | doi = }}</ref><ref name="Richelson_2000">{{cite web |url= http://www.acnp.org/g4/GN401000011/Default.htm |title= Cholinergic Transduction, Psychopharmacology - The Fourth Generation of Progress |accessdate=2007-10-27 |author = Richelson, Elliott | date= 2000 |publisher= American College of Neuropsychopharmacology }}</ref>
This receptor is found mediating slow [[excitatory postsynaptic potential|EPSP]] at the ganglion in the postganglionic nerve,<ref name="Messer_2000">{{cite web|url=http://www.neurosci.pharm.utoledo.edu/MBC3320/acetylcholine.htm |title=Acetylcholine |access-date=2007-10-27 |vauthors=Messer WS |date=2000-01-20 |publisher=University of Toledo |url-status=dead |archive-url=https://web.archive.org/web/20071014020222/http://www.neurosci.pharm.utoledo.edu/MBC3320/acetylcholine.htm |archive-date=14 October 2007 }}</ref> is common in [[exocrine gland]]s and in the CNS.<ref name="isbn1-55009-109-3">{{cite book | vauthors = Johnson G | title = PDQ Pharmacology | publisher = BC Decker Inc | location = Hamilton, Ontario | year = 2002 | edition = 2nd | pages = 311 pages | isbn = 1-55009-109-3 }}</ref><ref name="Richelson_2000">{{cite book | veditors = Bloom FE, Kupfer DJ | title = Psychopharmacology: the fourth generation of progress: an official publication of the American College of Neuropsychopharmacology | vauthors = Richelson E | chapter = Cholinergic Transduction | chapter-url = http://www.acnp.org/g4/GN401000011/Default.htm | access-date = 2007-10-27 | date = 1995 | publisher = Lippincott Williams & Wilkins | location = New York | isbn = 978-0781701662 | edition = Fourth }}</ref>


It is predominantly found bound to G proteins of class [[Gq alpha subunit|G<sub>q</sub>]]<ref name="Kou Qin">{{Cite journal | author = Kou Qin, Chunmin Dong, Guangyu Wu & Nevin A Lambert|date=August 2011 | title = Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers| journal = Nature Chemical Biology | volume = 7 | issue = 11 | pages =740–747 | doi=10.1038/nchembio.642 | pmid=21873996 | url = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177959/ }}</ref><ref name="pmid8645172">{{cite journal | author = Burford NT, Nahorski SR | title = Muscarinic m1 receptor-stimulated adenylate cyclase activity in Chinese hamster ovary cells is mediated by Gs alpha and is not a consequence of phosphoinositidase C activation | journal = Biochem. J. | volume = 315 | issue =Pt 3 | pages = 883–8 | year = 1996 | pmid = 8645172 | doi = | issn = | url = http://www.biochemj.org/bj/315/bj3150883.htm | pmc = 1217289 }}</ref> that use upregulation of [[phospholipase]] C and, therefore, [[inositol trisphosphate]] and intracellular calcium as a signalling pathway. A receptor so bound would not be susceptible to [[Cholera toxin|CTX]] or [[Pertussis toxin|PTX]]. However, G<sub>i</sub> (causing a downstream decrease in [[Cyclic adenosine monophosphate|cAMP]]) and G<sub>s</sub> (causing an increase in cAMP) have also been shown to be involved in interactions in certain tissues, and so would be susceptible to PTX and CTX respectively.
It is predominantly found bound to G proteins of class [[Gq alpha subunit|G<sub>q</sub>]]<ref name="Kou Qin">{{cite journal | vauthors = Qin K, Dong C, Wu G, Lambert NA | title = Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers | journal = Nature Chemical Biology | volume = 7 | issue = 10 | pages = 740–747 | date = August 2011 | pmid = 21873996 | pmc = 3177959 | doi = 10.1038/nchembio.642 }}</ref><ref name="pmid8645172">{{cite journal | vauthors = Burford NT, Nahorski SR | title = Muscarinic m1 receptor-stimulated adenylate cyclase activity in Chinese hamster ovary cells is mediated by Gs alpha and is not a consequence of phosphoinositidase C activation | journal = The Biochemical Journal | volume = 315 | issue = Pt 3 | pages = 883–888 | date = May 1996 | pmid = 8645172 | pmc = 1217289 | doi = 10.1042/bj3150883 }}</ref> that use upregulation of [[phospholipase C]] and, therefore, [[inositol trisphosphate]] and intracellular calcium as a signalling pathway. A receptor so bound would not be susceptible to [[Cholera toxin|CTX]] or [[Pertussis toxin|PTX]]. However, G<sub>i</sub> (causing a downstream decrease in [[Cyclic adenosine monophosphate|cAMP]]) and G<sub>s</sub> (causing an increase in cAMP) have also been shown to be involved in interactions in certain tissues, and so would be susceptible to PTX and CTX respectively.


==Effects==
==Effects==
*[[excitatory postsynaptic potential|EPSP]] in [[autonomic ganglia]]{{citationneeded}}
* [[excitatory postsynaptic potential|EPSP]] in [[autonomic ganglia]]{{citation needed|date=October 2014}}
* Secretion from [[salivary gland]]s
* Secretion from [[salivary gland]]s
* [[Gastric acid]] secretion from [[stomach]]<ref name="entrez"/>
* [[Gastric acid]] secretion from [[stomach]]<ref name="entrez"/>
* Via the [[central nervous system]] (especially within the brain); mediating certain core aspects of [[perception]], attention, cognitive functioning and likely; [[memory consolidation]].<ref>{{cite journal | vauthors = Dawson AH, Buckley NA | title = Pharmacological management of anticholinergic delirium - theory, evidence and practice | journal = British Journal of Clinical Pharmacology | volume = 81 | issue = 3 | pages = 516–524 | date = March 2016 | pmid = 26589572 | pmc = 4767198 | doi = 10.1111/bcp.12839 | quote = Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated }}</ref><ref name="Rang"/> This is a notable component in regards to the M<sub>1</sub> receptor since it helps explain how pharmacological compounds which [[Receptor antagonist|antagonize]] the receptor site can consistently produce mental states like [[delirium]] (a major disruption in attention and decrease in baseline-level cognitive functioning), as well as the perceptual alterations and conspicuous [[hallucinations]] experienced with ''[[deliriant]]'' drugs like ''[[Datura]]''. As of 2015, the M<sub>1</sub> receptor remains the only known muscarinic receptor to have this effect of hallucinogenic delirium when its functionality is inhibited or antagonized.<ref>{{cite journal | vauthors = Dawson AH, Buckley NA | title = Pharmacological management of anticholinergic delirium - theory, evidence and practice | journal = British Journal of Clinical Pharmacology | volume = 81 | issue = 3 | pages = 516–524 | date = March 2016 | pmid = 26589572 | pmc = 4767198 | doi = 10.1111/bcp.12839 | quote = Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated }}</ref>
* In [[central nervous system|CNS]] (memory?)<ref name="Rang"/>
* [[Cognitive flexibility]]
* [[Synaptic plasticity]] modulation
* Anxiety-like behavior and spontaneous working memory
* Salivation
* Task switching
* Vagally-induced [[bronchoconstriction]]<ref name="entrez"/>
* Vagally-induced [[bronchoconstriction]]<ref name="entrez"/>
* Mediating [[Olfaction|olfactory]] behaviors and detection of "social odors" which have implications (for rodents) in [[aggression]], [[mating]], and [[social behavior]].<ref>{{cite journal | vauthors = Smith RS, Hu R, DeSouza A, Eberly CL, Krahe K, Chan W, Araneda RC | title = Differential Muscarinic Modulation in the Olfactory Bulb | journal = The Journal of Neuroscience | volume = 35 | issue = 30 | pages = 10773–10785 | date = July 2015 | pmid = 26224860 | pmc = 4518052 | doi = 10.1523/JNEUROSCI.0099-15.2015 }}</ref>


== Occurrence in free living amoebae ==
==Mechanism==
A structural but not sequential [[homolog]] of the human M1 receptor has been reported in ''[[Acanthamoeba|Acanthamoeba castellanii]]''<ref name="pmid27601178">{{cite journal | vauthors = Baig AM, Ahmad HR | title = Evidence of a M<sub>1</sub>-muscarinic GPCR homolog in unicellular eukaryotes: featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations | journal = Journal of Receptor and Signal Transduction Research | volume = 37 | issue = 3 | pages = 267–275 | date = June 2017 | pmid = 27601178 | doi = 10.1080/10799893.2016.1217884 | s2cid = 5234123 | url = https://figshare.com/articles/journal_contribution/3807918 }}</ref> and ''[[Naegleria fowleri]]''.<ref name="pmid27447543">{{cite journal | vauthors = Baig AM | title = Primary Amoebic Meningoencephalitis: Neurochemotaxis and Neurotropic Preferences of Naegleria fowleri | journal = ACS Chemical Neuroscience | volume = 7 | issue = 8 | pages = 1026–1029 | date = August 2016 | pmid = 27447543 | doi = 10.1021/acschemneuro.6b00197 | doi-access = free }}</ref> Antagonists of human M1 receptors (e.g. [[atropine]], [[diphenhydramine]]) have been shown to exert anti-proliferative effects on these pathogens.
It couples to [[Gq alpha subunit|G<sub>q</sub>]], and, to a small extent, [[Gi alpha subunit|G<sub>i</sub>]] and [[Gs alpha subunit|G<sub>s</sub>]]. This results in slow [[EPSP]] and decreased [[potassium|K<sup>+</sup>]] conductance<ref name="Rang"/><ref>{{cite journal |author=Uchimura N, North RA |title=Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones |journal=J. Physiol. (Lond.) |volume=422 |pages=369–80 |date=1 March 1990|pmid=1693682 |pmc=1190137 |url=http://www.jphysiol.org/cgi/pmidlookup?view=long&pmid=1693682 |issue=1 }}</ref> It is preassembled to the Gq heterotrimer through a polybasic c-terminal domain.<ref name="Kou Qin"/>

== Mechanism ==

It couples to [[Gq alpha subunit|G<sub>q</sub>]], and, to a small extent, [[Gi alpha subunit|G<sub>i</sub>]] and [[Gs alpha subunit|G<sub>s</sub>]]. This results in slow [[Excitatory postsynaptic potential|EPSP]] and decreased [[potassium|K<sup>+</sup>]] conductance.<ref name="Rang"/><ref>{{cite journal | vauthors = Uchimura N, North RA | title = Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones | journal = The Journal of Physiology | volume = 422 | issue = 1 | pages = 369–380 | date = March 1990 | pmid = 1693682 | pmc = 1190137 | doi = 10.1113/jphysiol.1990.sp017989 }}{{Dead link|date=October 2022 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> It is preassembled to the G<sub>q</sub> heterotrimer through a polybasic [[C-terminus|c-terminal domain]].<ref name="Kou Qin"/>


==Ligands==
==Ligands==

===Agonists===
===Agonists===
{{div col|colwidth=20em}}
* [[acetylcholine]]
* [[Acetylcholine]]
* [[carbachol]]<ref name="Rang">{{cite book |author=Rang HP, Dale MM, Ritter JM, Moore PK |year=2003 |title= Pharmacology | chapter =10 | editor = | others = | edition = 5th |page=139 | publisher = Elsevier Churchill Livingstone | location = | isbn=0-443-07145-4}}</ref>
* [[CDD-0097]]
* [[Arecoline]]
* [[Carbachol]]<ref name="Rang">{{cite book |vauthors=Rang HP, Dale MM, Ritter JM, Moore PK |year=2003 |title= Pharmacology |url=https://archive.org/details/clinicalpharmaco00frcp |url-access=limited | chapter =10 | edition = 5th |page=[https://archive.org/details/clinicalpharmaco00frcp/page/n154 139] | publisher = Elsevier Churchill Livingstone | isbn=0-443-07145-4}}</ref>
* [[Cevimeline]]
* [[Cevimeline]]
* [[McN-A-343]] - mixed M1/M4 agonist<ref name="Rang"/>
* [[Itameline]]
* [[L-689,660]] - mixed M1/M3 agonist
* [[Muscarine]]
* [[Oxotremorine]]
* [[Oxotremorine]]
* [[Pilocarpine]]<ref name="pmid9371842">{{cite journal | vauthors = Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM | title = Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 94 | issue = 24 | pages = 13311–13316 | date = November 1997 | pmid = 9371842 | pmc = 24305 | doi = 10.1073/pnas.94.24.13311 | doi-access = free | bibcode = 1997PNAS...9413311H }}</ref>
* [[Vedaclidine]]
* [[Vedaclidine]]
* [[Xanomeline]]
* [[Xanomeline]]
* [[Muscarine]]
* [[77-LH-28-1]] - brain penetrant selective M<sub>1</sub> allosteric agonist
* [[77-LH-28-1]] - brain penetrant selective M<sub>1</sub> allosteric agonist
* [[CDD-0097]]
* [[McN-A-343]] - mixed M1/M4 agonist<ref name="Rang"/>
* [[L-689]], [[L-660]] - mixed M1/M3 agonist
{{Div col end}}


===Allosteric modulators===
===Allosteric modulators===
*benzylquinolone carboxylic acid<ref name="pmid19906975">{{cite journal | author = Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ | title = A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning | journal = J. Neurosci. | volume = 29 | issue = 45 | pages = 14271–86 |date=November 2009 | pmid = 19906975 | doi = 10.1523/JNEUROSCI.3930-09.2009 | url = | issn = | pmc = 2811323 }}</ref>
* [[benzylquinolone carboxylic acid]]<ref name="pmid19906975">{{cite journal | vauthors = Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ | title = A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning | journal = The Journal of Neuroscience | volume = 29 | issue = 45 | pages = 14271–14286 | date = November 2009 | pmid = 19906975 | pmc = 2811323 | doi = 10.1523/JNEUROSCI.3930-09.2009 }}</ref>
*VU-0090157<ref name="pmid19047481">{{cite journal |author=Marlo JE, Niswender CM, Days EL, et al. |title=Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity |journal=Mol. Pharmacol. |volume= 75|issue= 3|pages= 577–88|year=2008 |pmid=19047481 |doi=10.1124/mol.108.052886 |pmc=2684909 }}</ref>
* [[BQZ-12]]<ref name="pmid27991860">{{cite journal | vauthors = Bradley SJ, Bourgognon JM, Sanger HE, Verity N, Mogg AJ, White DJ, Butcher AJ, Moreno JA, Molloy C, Macedo-Hatch T, Edwards JM, Wess J, Pawlak R, Read DJ, Sexton PM, Broad LM, Steinert JR, Mallucci GR, Christopoulos A, Felder CC, Tobin AB | title = M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss | journal = The Journal of Clinical Investigation | volume = 127 | issue = 2 | pages = 487–499 | date = February 2017 | pmid = 27991860 | pmc = 5272187 | doi = 10.1172/JCI87526 }}</ref>
* [[VU-0090157]]<ref name="pmid19047481">{{cite journal | vauthors = Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsley CW, Weaver CD, Conn PJ | title = Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity | journal = Molecular Pharmacology | volume = 75 | issue = 3 | pages = 577–588 | date = March 2009 | pmid = 19047481 | pmc = 2684909 | doi = 10.1124/mol.108.052886 }}</ref>
*VU-0029767<ref name="pmid19047481"/>
* [[VU-0029767]]<ref name="pmid19047481"/>
* VU0467319<ref>{{ClinicalTrialsGov|NCT04051801|Multiple Ascending Dose Phase I Study of the M1 Positive Allosteric Modulator VU0467319}}</ref>
* [<sup>3</sup>H]PT-1284- M1-selective PAM Radioligand<ref>{{cite journal | vauthors = Smith DL, Davoren JE, Edgerton JR, Lazzaro JT, Lee CW, Neal S, Zhang L, Grimwood S | title = Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284 | journal = Molecular Pharmacology | volume = 90 | issue = 3 | pages = 177–187 | date = September 2016 | pmid = 27382013 | doi = 10.1124/mol.116.104737 | doi-access = free }}</ref>


===Antagonists===
===Antagonists===
{{div col|colwidth=20em}}
*[[atropine]]<ref name="Rang"/>
*[[Hyoscyamine]]<ref> {{Citation
* [[atropine]]<ref name="Rang"/>
* [[diphenhydramine]]
| last = Edwards Pharmaceuticals, Inc. | first =
* [[scopolamine]]<ref>{{cite journal | vauthors = Dawson AH, Buckley NA | title = Pharmacological management of anticholinergic delirium - theory, evidence and practice | journal = British Journal of Clinical Pharmacology | volume = 81 | issue = 3 | pages = 516–524 | date = March 2016 | pmid = 26589572 | pmc = 4767198 | doi = 10.1111/bcp.12839 | quote = Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated }}</ref>
| author-link =
* [[tramadol]]<ref>{{cite journal | vauthors = Hennies HH, Friderichs E, Schneider J | title = Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids | journal = Arzneimittel-Forschung | volume = 38 | issue = 7 | pages = 877–880 | date = July 1988 | pmid = 2849950 | url = https://pubmed.ncbi.nlm.nih.gov/2849950/ }}</ref>
| last2 = Belcher Pharmaceuticals, Inc.
* [[dicycloverine]]<ref name="Rang"/>
| first2 =
* [[fluoxetine]]
| author2-link =
* [[hyoscyamine]]<ref>{{cite web | author1 = Edwards Pharmaceuticals, Inc. | author2 = Belcher Pharmaceuticals, Inc. | title = ED-SPAZ- hyoscyamine sulfate tablet, orally disintegrating | work = DailyMed | publisher = U.S. National Library of Medicine | date = May 2010 | url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=f33a4774-9fbb-4782-a7e1-068e83b7504d | access-date = 13 January 2013}}</ref>
| title = DailyMed
* [[ipratropium]]<ref name="Rang"/>
| publisher = U.S. National Library of Medicine
* [[mamba toxin]] [[muscarinic toxin 7]] (MT7)<ref name="Rang"/>
| date = May 2010
* Many antipsychotics like [[olanzapine]], [[quetiapine]], [[clozapine]], [[chlorpromazine]]
| year = 2010
* [[pirenzepine]]
| url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=f33a4774-9fbb-4782-a7e1-068e83b7504d
* [[oxybutynin]]<ref name="Rang"/>
| accessdate = January 13, 2013}}
* [[Benzatropine]]
</ref>
* [[telenzepine]]
*[[dicycloverine]]<ref name="Rang"/>
* [[paroxetine]]
*[[tolterodine]]<ref name="Rang"/>
* Tricyclic and tetracyclic antidepressants like [[clomipramine]], [[imipramine]], [[mirtazapine]], [[amitriptyline]]
*[[oxybutynin]]<ref name="Rang"/>
*[[ipratropium]]<ref name="Rang"/>
* [[tolterodine]]<ref name="Rang"/>
* [[Biperiden]]<ref>{{cite journal | vauthors = Eltze M, Figala V | title = Affinity and selectivity of biperiden enantiomers for muscarinic receptor subtypes | journal = European Journal of Pharmacology | volume = 158 | issue = 1–2 | pages = 11–19 | date = December 1988 | pmid = 3220113 | doi = 10.1016/0014-2999(88)90247-6 }}</ref>
*[[mamba toxin]] [[muscarinic toxin 7]] (MT7)<ref name="Rang"/>
{{Div col end}}
*[[olanzapine]]
*[[pirenzepine]]
*[[telenzepine]]


==Gene==
== See also ==
The receptor is encoded by human [[gene]] '''CHRM1'''.<ref name="entrez">{{cite web | title = Entrez Gene: CHRM1 cholinergic receptor, muscarinic 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1128| accessdate = }}</ref> It is localized to [[11q13]].<ref name="entrez"/>

==See also==
* [[Muscarinic acetylcholine receptor]]
* [[Muscarinic acetylcholine receptor]]


==References==
== References ==
{{Reflist|30em}}
{{Reflist|33em}}

==External links==
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2139 | title = Acetylcholine receptors (muscarinic): M<sub>1</sub> | accessdate = | author = | authorlink = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | language = | archiveurl = | archivedate = | quote = }}


==Further reading==
== Further reading ==
{{Refbegin | 2}}
{{Refbegin|35em}}
*{{cite journal | author=Goyal RK | last2=Underhill | first2=Lisa H. | last3=Goyal | first3=Raj K. |title=Muscarinic receptor subtypes. Physiology and clinical implications. |journal=N. Engl. J. Med. |volume=321 |issue= 15 |pages= 1022–9 |year= 1989 |pmid= 2674717 |doi=10.1056/NEJM198910123211506 }}
* {{cite journal | vauthors = Goyal RK | title = Muscarinic receptor subtypes. Physiology and clinical implications | journal = The New England Journal of Medicine | volume = 321 | issue = 15 | pages = 1022–1029 | date = October 1989 | pmid = 2674717 | doi = 10.1056/NEJM198910123211506 }}
*{{cite journal | author=Brann MR, Ellis J, Jørgensen H, et al. |title=Muscarinic acetylcholine receptor subtypes: localization and structure/function. |journal=Prog. Brain Res. |volume=98 |issue= |pages= 121–7 |year= 1994 |pmid= 8248499 |doi=10.1016/S0079-6123(08)62388-2 }}
* {{cite book | vauthors = Brann MR, Ellis J, Jørgensen H, Hill-Eubanks D, Jones SV | chapter = Chapter 12: Muscarinic acetylcholine receptor subtypes: Localization and structure/Function | title = Cholinergic Function and Dysfunction | series = Progress in Brain Research | date = 1993 | volume = 98 | pages = 121–7 | pmid = 8248499 | doi = 10.1016/S0079-6123(08)62388-2 | isbn = 9780444897176 }}
*{{cite journal | author=Nitsch RM, Slack BE, Wurtman RJ, Growdon JH |title=Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. |journal=Science |volume=258 |issue= 5080 |pages= 304–7 |year= 1992 |pmid= 1411529 |doi=10.1126/science.1411529 }}
* {{cite journal | vauthors = Nitsch RM, Slack BE, Wurtman RJ, Growdon JH | title = Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors | journal = Science | volume = 258 | issue = 5080 | pages = 304–307 | date = October 1992 | pmid = 1411529 | doi = 10.1126/science.1411529 | bibcode = 1992Sci...258..304N }}
*{{cite journal | author=Arden JR, Nagata O, Shockley MS, et al. |title=Mutational analysis of third cytoplasmic loop domains in G-protein coupling of the HM1 muscarinic receptor. |journal=Biochem. Biophys. Res. Commun. |volume=188 |issue= 3 |pages= 1111–5 |year= 1992 |pmid= 1445347 |doi=10.1016/0006-291X(92)91346-R }}
* {{cite journal | vauthors = Arden JR, Nagata O, Shockley MS, Philip M, Lameh J, Sadée W | title = Mutational analysis of third cytoplasmic loop domains in G-protein coupling of the HM1 muscarinic receptor | journal = Biochemical and Biophysical Research Communications | volume = 188 | issue = 3 | pages = 1111–1115 | date = November 1992 | pmid = 1445347 | doi = 10.1016/0006-291X(92)91346-R }}
*{{cite journal | author=Gutkind JS, Novotny EA, Brann MR, Robbins KC |title=Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 11 |pages= 4703–7 |year= 1991 |pmid= 1905013 |doi=10.1073/pnas.88.11.4703 | pmc=51734 }}
* {{cite journal | vauthors = Gutkind JS, Novotny EA, Brann MR, Robbins KC | title = Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 88 | issue = 11 | pages = 4703–4707 | date = June 1991 | pmid = 1905013 | pmc = 51734 | doi = 10.1073/pnas.88.11.4703 | doi-access = free | bibcode = 1991PNAS...88.4703G }}
*{{cite journal | author=Chapman CG, Browne MJ |title=Isolation of the human ml (Hml) muscarinic acetylcholine receptor gene by PCR amplification. |journal=Nucleic Acids Res. |volume=18 |issue= 8 |pages= 2191 |year= 1990 |pmid= 2336407 |doi=10.1093/nar/18.8.2191 | pmc=330717 }}
* {{cite journal | vauthors = Chapman CG, Browne MJ | title = Isolation of the human ml (Hml) muscarinic acetylcholine receptor gene by PCR amplification | journal = Nucleic Acids Research | volume = 18 | issue = 8 | pages = 2191 | date = April 1990 | pmid = 2336407 | pmc = 330717 | doi = 10.1093/nar/18.8.2191 }}
*{{cite journal | author=Ashkenazi A, Ramachandran J, Capon DJ |title=Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. |journal=Nature |volume=340 |issue= 6229 |pages= 146–50 |year= 1989 |pmid= 2739737 |doi= 10.1038/340146a0 }}
* {{cite journal | vauthors = Ashkenazi A, Ramachandran J, Capon DJ | title = Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes | journal = Nature | volume = 340 | issue = 6229 | pages = 146–150 | date = July 1989 | pmid = 2739737 | doi = 10.1038/340146a0 | s2cid = 4312544 | bibcode = 1989Natur.340..146A }}
*{{cite journal | author=Bonner TI, Buckley NJ, Young AC, Brann MR |title=Identification of a family of muscarinic acetylcholine receptor genes. |journal=Science |volume=237 |issue= 4814 |pages= 527–32 |year= 1987 |pmid= 3037705 |doi=10.1126/science.3037705 }}
* {{cite journal | vauthors = Bonner TI, Buckley NJ, Young AC, Brann MR | title = Identification of a family of muscarinic acetylcholine receptor genes | journal = Science | volume = 237 | issue = 4814 | pages = 527–532 | date = July 1987 | pmid = 3037705 | doi = 10.1126/science.3037705 | bibcode = 1987Sci...237..527B | url = https://zenodo.org/record/1231199 }}
*{{cite journal | author=Peralta EG, Ashkenazi A, Winslow JW, et al. |title=Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. |journal=EMBO J. |volume=6 |issue= 13 |pages= 3923–9 |year= 1988 |pmid= 3443095 |doi= | pmc=553870 }}
* {{cite journal | vauthors = Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ | title = Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors | journal = The EMBO Journal | volume = 6 | issue = 13 | pages = 3923–3929 | date = December 1987 | pmid = 3443095 | pmc = 553870 | doi = 10.1002/j.1460-2075.1987.tb02733.x }}
*{{cite journal | author=Allard WJ, Sigal IS, Dixon RA |title=Sequence of the gene encoding the human M1 muscarinic acetylcholine receptor. |journal=Nucleic Acids Res. |volume=15 |issue= 24 |pages= 10604 |year= 1988 |pmid= 3697105 |doi=10.1093/nar/15.24.10604 | pmc=339984 }}
* {{cite journal | vauthors = Allard WJ, Sigal IS, Dixon RA | title = Sequence of the gene encoding the human M1 muscarinic acetylcholine receptor | journal = Nucleic Acids Research | volume = 15 | issue = 24 | pages = 10604 | date = December 1987 | pmid = 3697105 | pmc = 339984 | doi = 10.1093/nar/15.24.10604 }}
*{{cite journal | author=Svoboda P, Milligan G |title=Agonist-induced transfer of the alpha subunits of the guanine-nucleotide-binding regulatory proteins Gq and G11 and of muscarinic m1 acetylcholine receptors from plasma membranes to a light-vesicular membrane fraction. |journal=Eur. J. Biochem. |volume=224 |issue= 2 |pages= 455–62 |year= 1994 |pmid= 7925360 |doi=10.1111/j.1432-1033.1994.00455.x }}
* {{cite journal | vauthors = Svoboda P, Milligan G | title = Agonist-induced transfer of the alpha subunits of the guanine-nucleotide-binding regulatory proteins Gq and G11 and of muscarinic m1 acetylcholine receptors from plasma membranes to a light-vesicular membrane fraction | journal = European Journal of Biochemistry | volume = 224 | issue = 2 | pages = 455–462 | date = September 1994 | pmid = 7925360 | doi = 10.1111/j.1432-1033.1994.00455.x | doi-access = free }}
*{{cite journal | author=Crespo P, Xu N, Daniotti JL, et al. |title=Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. |journal=J. Biol. Chem. |volume=269 |issue= 33 |pages= 21103–9 |year= 1994 |pmid= 8063729 |doi= }}
* {{cite journal | vauthors = Crespo P, Xu N, Daniotti JL, Troppmair J, Rapp UR, Gutkind JS | title = Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway | journal = The Journal of Biological Chemistry | volume = 269 | issue = 33 | pages = 21103–21109 | date = August 1994 | pmid = 8063729 | doi = 10.1016/S0021-9258(17)31935-X | doi-access = free }}
*{{cite journal | author=Russell M, Winitz S, Johnson GL |title=Acetylcholine muscarinic m1 receptor regulation of cyclic AMP synthesis controls growth factor stimulation of Raf activity. |journal=Mol. Cell. Biol. |volume=14 |issue= 4 |pages= 2343–51 |year= 1994 |pmid= 8139539 |doi= 10.1128/mcb.14.4.2343| pmc=358601 }}
* {{cite journal | vauthors = Russell M, Winitz S, Johnson GL | title = Acetylcholine muscarinic m1 receptor regulation of cyclic AMP synthesis controls growth factor stimulation of Raf activity | journal = Molecular and Cellular Biology | volume = 14 | issue = 4 | pages = 2343–2351 | date = April 1994 | pmid = 8139539 | pmc = 358601 | doi = 10.1128/mcb.14.4.2343 }}
*{{cite journal | author=Offermanns S, Wieland T, Homann D, et al. |title=Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. |journal=Mol. Pharmacol. |volume=45 |issue= 5 |pages= 890–8 |year= 1994 |pmid= 8190105 |doi= }}
* {{cite journal | vauthors = Offermanns S, Wieland T, Homann D, Sandmann J, Bombien E, Spicher K, Schultz G, Jakobs KH | title = Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11 | journal = Molecular Pharmacology | volume = 45 | issue = 5 | pages = 890–898 | date = May 1994 | pmid = 8190105 }}
*{{cite journal | author=Mullaney I, Mitchell FM, McCallum JF, et al. |title=The human muscarinic M1 acetylcholine receptor, when express in CHO cells, activates and downregulates both Gq alpha and G11 alpha equally and non-selectively. |journal=FEBS Lett. |volume=324 |issue= 2 |pages= 241–5 |year= 1993 |pmid= 8508928 |doi=10.1016/0014-5793(93)81401-K }}
* {{cite journal | vauthors = Mullaney I, Mitchell FM, McCallum JF, Buckley NJ, Milligan G | title = The human muscarinic M1 acetylcholine receptor, when express in CHO cells, activates and downregulates both Gq alpha and G11 alpha equally and non-selectively | journal = FEBS Letters | volume = 324 | issue = 2 | pages = 241–245 | date = June 1993 | pmid = 8508928 | doi = 10.1016/0014-5793(93)81401-K | s2cid = 84364768 | doi-access = free | bibcode = 1993FEBSL.324..241M }}
*{{cite journal | author=Courseaux A, Grosgeorge J, Gaudray P, et al. |title=Definition of the minimal MEN1 candidate area based on a 5-Mb integrated map of proximal 11q13. The European Consortium on Men1, (GENEM 1; Groupe d'Etude des Néoplasies Endocriniennes Multiples de type 1). |journal=Genomics |volume=37 |issue= 3 |pages= 354–65 |year= 1997 |pmid= 8938448 |doi= }}
* {{cite journal | vauthors = Courseaux A, Grosgeorge J, Gaudray P, Pannett AA, Forbes SA, Williamson C, Bassett D, Thakker RV, Teh BT, Farnebo F, Shepherd J, Skogseid B, Larsson C, Giraud S, Zhang CX, Salandre J, Calender A | title = Definition of the minimal MEN1 candidate area based on a 5-Mb integrated map of proximal 11q13. The European Consortium on Men1, (GENEM 1; Groupe d'Etude des Néoplasies Endocriniennes Multiples de type 1) | journal = Genomics | volume = 37 | issue = 3 | pages = 354–365 | date = November 1996 | pmid = 8938448 | doi = 10.1006/geno.1996.0570 }}
*{{cite journal | author=Ishiyama A, López I, Wackym PA |title=Molecular characterization of muscarinic receptors in the human vestibular periphery. Implications for pharmacotherapy. |journal=The American journal of otology |volume=18 |issue= 5 |pages= 648–54 |year= 1998 |pmid= 9303164 |doi= }}
* {{cite journal | vauthors = Ishiyama A, López I, Wackym PA | title = Molecular characterization of muscarinic receptors in the human vestibular periphery. Implications for pharmacotherapy | journal = The American Journal of Otology | volume = 18 | issue = 5 | pages = 648–654 | date = September 1997 | pmid = 9303164 }}
*{{cite journal | author=Ishizaka N, Noda M, Yokoyama S, et al. |title=Muscarinic acetylcholine receptor subtypes in the human iris. |journal=Brain Res. |volume=787 |issue= 2 |pages= 344–7 |year= 1998 |pmid= 9518684 |doi=10.1016/S0006-8993(97)01554-0 }}
* {{cite journal | vauthors = Ishizaka N, Noda M, Yokoyama S, Kawasaki K, Yamamoto M, Higashida H | title = Muscarinic acetylcholine receptor subtypes in the human iris | journal = Brain Research | volume = 787 | issue = 2 | pages = 344–347 | date = March 1998 | pmid = 9518684 | doi = 10.1016/S0006-8993(97)01554-0 | s2cid = 22664866 }}
{{Refend}}
{{Refend}}

== External links ==
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2139 | title = Acetylcholine receptors (muscarinic): M<sub>1</sub> | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | access-date = 25 November 2008 | archive-date = 2 January 2015 | archive-url = https://web.archive.org/web/20150102110245/http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2139 | url-status = dead }}


{{NLM content}}
{{NLM content}}
{{G protein-coupled receptors|g1}}
{{G protein-coupled receptors|g1}}
{{Muscarinic acetylcholine receptor modulators}}

{{Use dmy dates|date=February 2011}}


{{DEFAULTSORT:Muscarinic Acetylcholine Receptor M1}}
{{DEFAULTSORT:Muscarinic Acetylcholine Receptor M1}}
[[Category:G protein coupled receptors]]
[[Category:Muscarinic acetylcholine receptors]]
[[Category:Human proteins]]


{{transmembranereceptor-stub}}

Latest revision as of 08:51, 26 October 2024

CHRM1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCHRM1, HM1, M1, M1R, cholinergic receptor muscarinic 1
External IDsOMIM: 118510; MGI: 88396; HomoloGene: 20189; GeneCards: CHRM1; OMA:CHRM1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000738

NM_001112697
NM_007698

RefSeq (protein)

NP_000729

NP_001106167
NP_031724

Location (UCSC)Chr 11: 62.91 – 62.92 MbChr 19: 8.64 – 8.66 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The muscarinic acetylcholine receptor M1, also known as the cholinergic receptor, muscarinic 1, is a muscarinic receptor that in humans is encoded by the CHRM1 gene.[5] It is localized to 11q13.[5]

This receptor is found mediating slow EPSP at the ganglion in the postganglionic nerve,[6] is common in exocrine glands and in the CNS.[7][8]

It is predominantly found bound to G proteins of class Gq[9][10] that use upregulation of phospholipase C and, therefore, inositol trisphosphate and intracellular calcium as a signalling pathway. A receptor so bound would not be susceptible to CTX or PTX. However, Gi (causing a downstream decrease in cAMP) and Gs (causing an increase in cAMP) have also been shown to be involved in interactions in certain tissues, and so would be susceptible to PTX and CTX respectively.

Effects

[edit]

Occurrence in free living amoebae

[edit]

A structural but not sequential homolog of the human M1 receptor has been reported in Acanthamoeba castellanii[15] and Naegleria fowleri.[16] Antagonists of human M1 receptors (e.g. atropine, diphenhydramine) have been shown to exert anti-proliferative effects on these pathogens.

Mechanism

[edit]

It couples to Gq, and, to a small extent, Gi and Gs. This results in slow EPSP and decreased K+ conductance.[12][17] It is preassembled to the Gq heterotrimer through a polybasic c-terminal domain.[9]

Ligands

[edit]

Agonists

[edit]

Allosteric modulators

[edit]

Antagonists

[edit]

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000168539Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000032773Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d "Entrez Gene: CHRM1 cholinergic receptor, muscarinic 1".
  6. ^ Messer WS (20 January 2000). "Acetylcholine". University of Toledo. Archived from the original on 14 October 2007. Retrieved 27 October 2007.
  7. ^ Johnson G (2002). PDQ Pharmacology (2nd ed.). Hamilton, Ontario: BC Decker Inc. pp. 311 pages. ISBN 1-55009-109-3.
  8. ^ Richelson E (1995). "Cholinergic Transduction". In Bloom FE, Kupfer DJ (eds.). Psychopharmacology: the fourth generation of progress: an official publication of the American College of Neuropsychopharmacology (Fourth ed.). New York: Lippincott Williams & Wilkins. ISBN 978-0781701662. Retrieved 27 October 2007.
  9. ^ a b Qin K, Dong C, Wu G, Lambert NA (August 2011). "Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers". Nature Chemical Biology. 7 (10): 740–747. doi:10.1038/nchembio.642. PMC 3177959. PMID 21873996.
  10. ^ Burford NT, Nahorski SR (May 1996). "Muscarinic m1 receptor-stimulated adenylate cyclase activity in Chinese hamster ovary cells is mediated by Gs alpha and is not a consequence of phosphoinositidase C activation". The Biochemical Journal. 315 (Pt 3): 883–888. doi:10.1042/bj3150883. PMC 1217289. PMID 8645172.
  11. ^ Dawson AH, Buckley NA (March 2016). "Pharmacological management of anticholinergic delirium - theory, evidence and practice". British Journal of Clinical Pharmacology. 81 (3): 516–524. doi:10.1111/bcp.12839. PMC 4767198. PMID 26589572. Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated
  12. ^ a b c d e f g h i j Rang HP, Dale MM, Ritter JM, Moore PK (2003). "10". Pharmacology (5th ed.). Elsevier Churchill Livingstone. p. 139. ISBN 0-443-07145-4.
  13. ^ Dawson AH, Buckley NA (March 2016). "Pharmacological management of anticholinergic delirium - theory, evidence and practice". British Journal of Clinical Pharmacology. 81 (3): 516–524. doi:10.1111/bcp.12839. PMC 4767198. PMID 26589572. Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated
  14. ^ Smith RS, Hu R, DeSouza A, Eberly CL, Krahe K, Chan W, et al. (July 2015). "Differential Muscarinic Modulation in the Olfactory Bulb". The Journal of Neuroscience. 35 (30): 10773–10785. doi:10.1523/JNEUROSCI.0099-15.2015. PMC 4518052. PMID 26224860.
  15. ^ Baig AM, Ahmad HR (June 2017). "Evidence of a M1-muscarinic GPCR homolog in unicellular eukaryotes: featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations". Journal of Receptor and Signal Transduction Research. 37 (3): 267–275. doi:10.1080/10799893.2016.1217884. PMID 27601178. S2CID 5234123.
  16. ^ Baig AM (August 2016). "Primary Amoebic Meningoencephalitis: Neurochemotaxis and Neurotropic Preferences of Naegleria fowleri". ACS Chemical Neuroscience. 7 (8): 1026–1029. doi:10.1021/acschemneuro.6b00197. PMID 27447543.
  17. ^ Uchimura N, North RA (March 1990). "Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones". The Journal of Physiology. 422 (1): 369–380. doi:10.1113/jphysiol.1990.sp017989. PMC 1190137. PMID 1693682.[permanent dead link]
  18. ^ Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, et al. (November 1997). "Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice". Proceedings of the National Academy of Sciences of the United States of America. 94 (24): 13311–13316. Bibcode:1997PNAS...9413311H. doi:10.1073/pnas.94.24.13311. PMC 24305. PMID 9371842.
  19. ^ Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, et al. (November 2009). "A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning". The Journal of Neuroscience. 29 (45): 14271–14286. doi:10.1523/JNEUROSCI.3930-09.2009. PMC 2811323. PMID 19906975.
  20. ^ Bradley SJ, Bourgognon JM, Sanger HE, Verity N, Mogg AJ, White DJ, et al. (February 2017). "M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss". The Journal of Clinical Investigation. 127 (2): 487–499. doi:10.1172/JCI87526. PMC 5272187. PMID 27991860.
  21. ^ a b Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, et al. (March 2009). "Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity". Molecular Pharmacology. 75 (3): 577–588. doi:10.1124/mol.108.052886. PMC 2684909. PMID 19047481.
  22. ^ Clinical trial number NCT04051801 for "Multiple Ascending Dose Phase I Study of the M1 Positive Allosteric Modulator VU0467319" at ClinicalTrials.gov
  23. ^ Smith DL, Davoren JE, Edgerton JR, Lazzaro JT, Lee CW, Neal S, et al. (September 2016). "Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284". Molecular Pharmacology. 90 (3): 177–187. doi:10.1124/mol.116.104737. PMID 27382013.
  24. ^ Dawson AH, Buckley NA (March 2016). "Pharmacological management of anticholinergic delirium - theory, evidence and practice". British Journal of Clinical Pharmacology. 81 (3): 516–524. doi:10.1111/bcp.12839. PMC 4767198. PMID 26589572. Delirium is only associated with the antagonism of post‐synaptic M1 receptors and to date other receptor subtypes have not been implicated
  25. ^ Hennies HH, Friderichs E, Schneider J (July 1988). "Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids". Arzneimittel-Forschung. 38 (7): 877–880. PMID 2849950.
  26. ^ Edwards Pharmaceuticals, Inc., Belcher Pharmaceuticals, Inc. (May 2010). "ED-SPAZ- hyoscyamine sulfate tablet, orally disintegrating". DailyMed. U.S. National Library of Medicine. Retrieved 13 January 2013.
  27. ^ Eltze M, Figala V (December 1988). "Affinity and selectivity of biperiden enantiomers for muscarinic receptor subtypes". European Journal of Pharmacology. 158 (1–2): 11–19. doi:10.1016/0014-2999(88)90247-6. PMID 3220113.

Further reading

[edit]
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.