Jump to content

Basal body: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
fix edits made by Aks852322
Citation bot (talk | contribs)
Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
 
(42 intermediate revisions by 28 users not shown)
Line 1: Line 1:
{{short description|Protein structure found at the base of cilium or flagellum).}}
[[Image:Eukarya Flagella.svg|thumb|right|Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar Transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body.]]
{{about|the basal body of eukaryotic flagellum|structure at the base of bacterial flagellum|Flagellum#Bacterial}}
[[Image:Eukarya Flagella.svg|thumb|right|Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT ([[Intraflagellar transport]]), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body.]]
[[Image:Chlamydomonas TEM 09.jpg|thumb|right|Longitudinal section through the flagella area in ''[[Chlamydomonas reinhardtii]]''. In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image).]]
[[Image:Chlamydomonas TEM 09.jpg|thumb|right|Longitudinal section through the flagella area in ''[[Chlamydomonas reinhardtii]]''. In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image).]]


A '''basal body''' (synonymous with '''basal granule''', '''kinetosome''', and in older cytological literature with '''blepharoplast''') is an [[organelle]] formed from a [[centriole]], and a short [[cylindrical]] array of [[microtubules]]. It is found at the base of a [[eukaryotic]] [[undulipodium]] ([[cilium]] or [[flagellum]]) and serves as a nucleation site for the growth of the [[axoneme]] microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor microtubules within [[centrosomes]], and are known as the [[microtubule organizing center]] (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells. The term, basal body is, however, reserved specifically for the base structures of eukaryote cilia and flagella which extend out from the cell.
A '''basal body''' (synonymous with '''basal granule''', '''kinetosome''', and in older cytological literature with '''blepharoplast''') is a protein structure found at the base of a [[eukaryotic]] [[undulipodium]] ([[cilium]] or [[flagellum]]). The basal body was named by [[Theodor Wilhelm Engelmann]] in 1880.<ref>Engelmann, T. W. (1880). Zur Anatomie und Physiologie der Flimmerzellen. Pflugers Arch. 23, 505–535.</ref><ref>{{cite book|pmid=20362083 |date=2009 |last1=Bloodgood |first1=R. A. |title=Primary Cilia |chapter=From Central to Rudimentary to Primary: The History of an Underappreciated Organelle Whose Time Has Come.The Primary Cilium |series=Methods in Cell Biology |volume=94 |pages=3–52 |doi=10.1016/S0091-679X(08)94001-2 |isbn=9780123750242 }}</ref> It is formed from a [[centriole]] and several additional protein structures, and is, essentially, a modified centriole.<ref>{{Cite journal |doi=10.1242/jcs.085852 |title=EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms |date=2011 |last1=Schrøder |first1=Jacob M. |last2=Larsen |first2=Jesper |last3=Komarova |first3=Yulia |last4=Akhmanova |first4=Anna |last5=Thorsteinsson |first5=Rikke I. |last6=Grigoriev |first6=Ilya |last7=Manguso |first7=Robert |last8=Christensen |first8=Søren T. |last9=Pedersen |first9=Stine F. |last10=Geimer |first10=Stefan |last11=Pedersen |first11=Lotte B. |journal=Journal of Cell Science |volume=124 |issue=15 |pages=2539–2551 |pmid=21768326 |pmc=3138699 }}</ref><ref name=Lewin>{{cite book|author=Benjamin Lewin|title=Cells|url=https://books.google.com/books?id=2VEGC8j9g9wC&pg=PA359|access-date=28 July 2019|year=2007|publisher=Jones & Bartlett Learning|isbn=978-0-7637-3905-8|pages=359}}</ref> The basal body serves as a nucleation site for the growth of the [[axoneme]] microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor [[microtubule]]s, and are known as the [[microtubule organizing center]] (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells.


== Assembly, structure ==
Basal bodies are derived from centrioles through a largely mysterious process. They are structurally the same, each containing a microtubule triplet 9*3 helicoidal configuration forming a hollow cylinder. The overlying axoneme, however, consists of a 9*2 + 2 structure.


Cilia and basal bodies form during quiescence or the [[G1 phase]] of the [[cell cycle]]. Before the cell enters G1 phase, i.e. before the formation of the cilium, the mother centriole serves as a component of the [[centrosome]].
Regulation of basal body production and spatial orientation is a function of the nucleotide-binding [[Protein domain|domain]] of [[γ-tubulin]].<ref>Y. Shang, C.-C. Tsao, and M. A. Gorovsky. 2005. Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. ''J. Cell Biol.'' '''171'''(6):1035-44. PMID 16344310 </ref>


In cells that are destined to have only one primary cilium, the mother centriole differentiates into the basal body upon entry into G1 or quiescence. Thus, the basal body in such a cell is derived from the centriole.
Plants lack centrioles and only lower plants (such as mosses and ferns) with motile sperm have flagella and basal bodies. <ref> Philip E. Pack, Ph.D., Cliff's Notes: AP Biology 4th edition. </ref>
The basal body differs from the mother centriole in at least 2 aspects. First, basal bodies have basal feet, which are anchored to cytoplasmic microtubules and are necessary for polarized alignment of the cilium. Second, basal bodies have pinwheel-shaped transition fibers that originate from the appendages of mother centriole.<ref>{{cite journal | pmid=23747070 | date=2013 | last1=Kim | first1=S. | last2=Dynlacht | first2=B. D. | title=Assembling a primary cilium | journal=Current Opinion in Cell Biology | volume=25 | issue=4 | pages=506–511 | doi=10.1016/j.ceb.2013.04.011 | pmc=3729615 }}</ref>

In multiciliated cells, however, in many cases basal bodies are not made from centrioles but are generated ''de novo'' from a special protein structure called the [[deuterosome]].<ref>{{cite journal | pmid=24075808 | date=2013 | last1=Klos Dehring | first1=D. A. | last2=Vladar | first2=E. K. | last3=Werner | first3=M. E. | last4=Mitchell | first4=J. W. | last5=Hwang | first5=P. | last6=Mitchell | first6=B. J. | title=Deuterosome-mediated centriole biogenesis | journal=Developmental Cell | volume=27 | issue=1 | pages=103–112 | doi=10.1016/j.devcel.2013.08.021 | pmc=3816757 }}</ref>

== Function ==

During cell cycle dormancy, basal bodies organize primary cilia and reside at the cell cortex in proximity to plasma membrane. On cell cycle entry, cilia resorb and the basal body migrates to the nucleus where it functions to organize centrosomes. Centrioles, basal bodies, and cilia are important for mitosis, polarity, cell division, protein trafficking, signaling, motility and sensation.<ref>{{cite journal | pmid=19056680 | date=2009 | last1=Pearson | first1=C. G. | last2=Giddings Jr | first2=T. H. | last3=Winey | first3=M. | title=Basal body components exhibit differential protein dynamics during nascent basal body assembly | journal=Molecular Biology of the Cell | volume=20 | issue=3 | pages=904–914 | doi=10.1091/mbc.e08-08-0835 | pmc=2633379 }}</ref>

Mutations in proteins that localize to basal bodies are associated with several human ciliary diseases, including [[Bardet–Biedl syndrome]],<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/14520415/ | pmid=14520415 | date=2003 | last1=Ansley | first1=S. J. | last2=Badano | first2=J. L. | last3=Blacque | first3=O. E. | last4=Hill | first4=J. | last5=Hoskins | first5=B. E. | last6=Leitch | first6=C. C. | last7=Kim | first7=J. C. | last8=Ross | first8=A. J. | last9=Eichers | first9=E. R. | last10=Teslovich | first10=T. M. | last11=Mah | first11=A. K. | last12=Johnsen | first12=R. C. | last13=Cavender | first13=J. C. | last14=Lewis | first14=R. A. | last15=Leroux | first15=M. R. | last16=Beales | first16=P. L. | last17=Katsanis | first17=N. | title=Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome | journal=Nature | volume=425 | issue=6958 | pages=628–633 | doi=10.1038/nature02030 | bibcode=2003Natur.425..628A | s2cid=4310157 }}</ref> [[Orofaciodigital syndrome 1|orofaciodigital syndrome]],<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/16311594/ | pmid=16311594 | date=2006 | last1=Ferrante | first1=M. I. | last2=Zullo | first2=A. | last3=Barra | first3=A. | last4=Bimonte | first4=S. | last5=Messaddeq | first5=N. | last6=Studer | first6=M. | last7=Dollé | first7=P. | last8=Franco | first8=B. | title=Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification | journal=Nature Genetics | volume=38 | issue=1 | pages=112–117 | doi=10.1038/ng1684 | s2cid=2441702 }}</ref><ref>{{cite journal | pmid=15466260 | date=2004 | last1=Romio | first1=L. | last2=Fry | first2=A. M. | last3=Winyard | first3=P. J. | last4=Malcolm | first4=S. | last5=Woolf | first5=A. S. | last6=Feather | first6=S. A. | title=OFD1 is a centrosomal/Basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis | journal=Journal of the American Society of Nephrology | volume=15 | issue=10 | pages=2556–2568 | doi=10.1097/01.ASN.0000140220.46477.5C | s2cid=22088755 | doi-access=free }}</ref> [[Joubert syndrome]],<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/17558407/ | pmid=17558407 | date=2007 | last1=Arts | first1=H. H. | last2=Doherty | first2=D. | last3=Van Beersum | first3=S. E. | last4=Parisi | first4=M. A. | last5=Letteboer | first5=S. J. | last6=Gorden | first6=N. T. | last7=Peters | first7=T. A. | last8=Märker | first8=T. | last9=Voesenek | first9=K. | last10=Kartono | first10=A. | last11=Ozyurek | first11=H. | last12=Farin | first12=F. M. | last13=Kroes | first13=H. Y. | last14=Wolfrum | first14=U. | last15=Brunner | first15=H. G. | last16=Cremers | first16=F. P. | last17=Glass | first17=I. A. | last18=Knoers | first18=N. V. | last19=Roepman | first19=R. | title=Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome | journal=Nature Genetics | volume=39 | issue=7 | pages=882–888 | doi=10.1038/ng2069 | s2cid=12910768 }}</ref> [[Cone dystrophy|cone-rod dystrophy]],<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/11006213/ | pmid=11006213 | date=2000 | last1=Kobayashi | first1=A. | last2=Higashide | first2=T. | last3=Hamasaki | first3=D. | last4=Kubota | first4=S. | last5=Sakuma | first5=H. | last6=An | first6=W. | last7=Fujimaki | first7=T. | last8=McLaren | first8=M. J. | last9=Weleber | first9=R. G. | last10=Inana | first10=G. | title=HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model | journal=Investigative Ophthalmology & Visual Science | volume=41 | issue=11 | pages=3268–3277 }}</ref><ref>{{cite journal | pmid=15772089 | date=2005 | last1=Shu | first1=X. | last2=Fry | first2=A. M. | last3=Tulloch | first3=B. | last4=Manson | first4=F. D. | last5=Crabb | first5=J. W. | last6=Khanna | first6=H. | last7=Faragher | first7=A. J. | last8=Lennon | first8=A. | last9=He | first9=S. | last10=Trojan | first10=P. | last11=Giessl | first11=A. | last12=Wolfrum | first12=U. | last13=Vervoort | first13=R. | last14=Swaroop | first14=A. | last15=Wright | first15=A. F. | title=RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin | journal=Human Molecular Genetics | volume=14 | issue=9 | pages=1183–1197 | doi=10.1093/hmg/ddi129 | doi-access=free }}</ref> [[Meckel syndrome]],<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/16415886/ | pmid=16415886 | date=2006 | last1=Kyttälä | first1=M. | last2=Tallila | first2=J. | last3=Salonen | first3=R. | last4=Kopra | first4=O. | last5=Kohlschmidt | first5=N. | last6=Paavola-Sakki | first6=P. | last7=Peltonen | first7=L. | last8=Kestilä | first8=M. | title=MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome | journal=Nature Genetics | volume=38 | issue=2 | pages=155–157 | doi=10.1038/ng1714 | s2cid=10676530 }}</ref> and [[nephronophthisis]].<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/16291722/ | pmid=16291722 | date=2005 | last1=Winkelbauer | first1=M. E. | last2=Schafer | first2=J. C. | last3=Haycraft | first3=C. J. | last4=Swoboda | first4=P. | last5=Yoder | first5=B. K. | title=The C. Elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception | journal=Journal of Cell Science | volume=118 | issue=Pt 23 | pages=5575–5587 | doi=10.1242/jcs.02665 | s2cid=16717895 }}</ref>

Regulation of basal body production and spatial orientation is a function of the nucleotide-binding [[Protein domain|domain]] of [[γ-tubulin]].<ref>{{Cite journal |pmid=16344310 |date=2005 |last1=Shang |first1=Y. |last2=Tsao |first2=C. C. |last3=Gorovsky |first3=M. A. |title=Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis |journal=The Journal of Cell Biology |volume=171 |issue=6 |pages=1035–1044 |doi=10.1083/jcb.200508184 |pmc=2171320 }}</ref>

Plants lack centrioles and only lower plants (such as mosses and ferns) with motile sperm have flagella and basal bodies.<ref>Philip E. Pack, Ph.D., Cliff's Notes: AP Biology 4th edition.</ref>


==References==
==References==
{{reflist}}
{{Reflist}}


==External links==
==External links==
* {{BUHistology|21804loa}} - "Ultrastructure of the Cell: ciliated epithelium, cilia and basal bodies"
* {{BUHistology|21804loa}} - "Ultrastructure of the Cell: ciliated epithelium, cilia and basal bodies"


{{Organelles}}
{{Authority control}}


[[Category:Organelles]]
[[Category:Organelles]]

{{Cell-biology-stub}}
{{Organelles}}

Latest revision as of 14:44, 23 August 2023

Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body.
Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image).

A basal body (synonymous with basal granule, kinetosome, and in older cytological literature with blepharoplast) is a protein structure found at the base of a eukaryotic undulipodium (cilium or flagellum). The basal body was named by Theodor Wilhelm Engelmann in 1880.[1][2] It is formed from a centriole and several additional protein structures, and is, essentially, a modified centriole.[3][4] The basal body serves as a nucleation site for the growth of the axoneme microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor microtubules, and are known as the microtubule organizing center (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells.

Assembly, structure

[edit]

Cilia and basal bodies form during quiescence or the G1 phase of the cell cycle. Before the cell enters G1 phase, i.e. before the formation of the cilium, the mother centriole serves as a component of the centrosome.

In cells that are destined to have only one primary cilium, the mother centriole differentiates into the basal body upon entry into G1 or quiescence. Thus, the basal body in such a cell is derived from the centriole. The basal body differs from the mother centriole in at least 2 aspects. First, basal bodies have basal feet, which are anchored to cytoplasmic microtubules and are necessary for polarized alignment of the cilium. Second, basal bodies have pinwheel-shaped transition fibers that originate from the appendages of mother centriole.[5]

In multiciliated cells, however, in many cases basal bodies are not made from centrioles but are generated de novo from a special protein structure called the deuterosome.[6]

Function

[edit]

During cell cycle dormancy, basal bodies organize primary cilia and reside at the cell cortex in proximity to plasma membrane. On cell cycle entry, cilia resorb and the basal body migrates to the nucleus where it functions to organize centrosomes. Centrioles, basal bodies, and cilia are important for mitosis, polarity, cell division, protein trafficking, signaling, motility and sensation.[7]

Mutations in proteins that localize to basal bodies are associated with several human ciliary diseases, including Bardet–Biedl syndrome,[8] orofaciodigital syndrome,[9][10] Joubert syndrome,[11] cone-rod dystrophy,[12][13] Meckel syndrome,[14] and nephronophthisis.[15]

Regulation of basal body production and spatial orientation is a function of the nucleotide-binding domain of γ-tubulin.[16]

Plants lack centrioles and only lower plants (such as mosses and ferns) with motile sperm have flagella and basal bodies.[17]

References

[edit]
  1. ^ Engelmann, T. W. (1880). Zur Anatomie und Physiologie der Flimmerzellen. Pflugers Arch. 23, 505–535.
  2. ^ Bloodgood, R. A. (2009). "From Central to Rudimentary to Primary: The History of an Underappreciated Organelle Whose Time Has Come.The Primary Cilium". Primary Cilia. Methods in Cell Biology. Vol. 94. pp. 3–52. doi:10.1016/S0091-679X(08)94001-2. ISBN 9780123750242. PMID 20362083.
  3. ^ Schrøder, Jacob M.; Larsen, Jesper; Komarova, Yulia; Akhmanova, Anna; Thorsteinsson, Rikke I.; Grigoriev, Ilya; Manguso, Robert; Christensen, Søren T.; Pedersen, Stine F.; Geimer, Stefan; Pedersen, Lotte B. (2011). "EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms". Journal of Cell Science. 124 (15): 2539–2551. doi:10.1242/jcs.085852. PMC 3138699. PMID 21768326.
  4. ^ Benjamin Lewin (2007). Cells. Jones & Bartlett Learning. p. 359. ISBN 978-0-7637-3905-8. Retrieved 28 July 2019.
  5. ^ Kim, S.; Dynlacht, B. D. (2013). "Assembling a primary cilium". Current Opinion in Cell Biology. 25 (4): 506–511. doi:10.1016/j.ceb.2013.04.011. PMC 3729615. PMID 23747070.
  6. ^ Klos Dehring, D. A.; Vladar, E. K.; Werner, M. E.; Mitchell, J. W.; Hwang, P.; Mitchell, B. J. (2013). "Deuterosome-mediated centriole biogenesis". Developmental Cell. 27 (1): 103–112. doi:10.1016/j.devcel.2013.08.021. PMC 3816757. PMID 24075808.
  7. ^ Pearson, C. G.; Giddings Jr, T. H.; Winey, M. (2009). "Basal body components exhibit differential protein dynamics during nascent basal body assembly". Molecular Biology of the Cell. 20 (3): 904–914. doi:10.1091/mbc.e08-08-0835. PMC 2633379. PMID 19056680.
  8. ^ Ansley, S. J.; Badano, J. L.; Blacque, O. E.; Hill, J.; Hoskins, B. E.; Leitch, C. C.; Kim, J. C.; Ross, A. J.; Eichers, E. R.; Teslovich, T. M.; Mah, A. K.; Johnsen, R. C.; Cavender, J. C.; Lewis, R. A.; Leroux, M. R.; Beales, P. L.; Katsanis, N. (2003). "Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome". Nature. 425 (6958): 628–633. Bibcode:2003Natur.425..628A. doi:10.1038/nature02030. PMID 14520415. S2CID 4310157.
  9. ^ Ferrante, M. I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dollé, P.; Franco, B. (2006). "Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification". Nature Genetics. 38 (1): 112–117. doi:10.1038/ng1684. PMID 16311594. S2CID 2441702.
  10. ^ Romio, L.; Fry, A. M.; Winyard, P. J.; Malcolm, S.; Woolf, A. S.; Feather, S. A. (2004). "OFD1 is a centrosomal/Basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis". Journal of the American Society of Nephrology. 15 (10): 2556–2568. doi:10.1097/01.ASN.0000140220.46477.5C. PMID 15466260. S2CID 22088755.
  11. ^ Arts, H. H.; Doherty, D.; Van Beersum, S. E.; Parisi, M. A.; Letteboer, S. J.; Gorden, N. T.; Peters, T. A.; Märker, T.; Voesenek, K.; Kartono, A.; Ozyurek, H.; Farin, F. M.; Kroes, H. Y.; Wolfrum, U.; Brunner, H. G.; Cremers, F. P.; Glass, I. A.; Knoers, N. V.; Roepman, R. (2007). "Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome". Nature Genetics. 39 (7): 882–888. doi:10.1038/ng2069. PMID 17558407. S2CID 12910768.
  12. ^ Kobayashi, A.; Higashide, T.; Hamasaki, D.; Kubota, S.; Sakuma, H.; An, W.; Fujimaki, T.; McLaren, M. J.; Weleber, R. G.; Inana, G. (2000). "HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model". Investigative Ophthalmology & Visual Science. 41 (11): 3268–3277. PMID 11006213.
  13. ^ Shu, X.; Fry, A. M.; Tulloch, B.; Manson, F. D.; Crabb, J. W.; Khanna, H.; Faragher, A. J.; Lennon, A.; He, S.; Trojan, P.; Giessl, A.; Wolfrum, U.; Vervoort, R.; Swaroop, A.; Wright, A. F. (2005). "RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin". Human Molecular Genetics. 14 (9): 1183–1197. doi:10.1093/hmg/ddi129. PMID 15772089.
  14. ^ Kyttälä, M.; Tallila, J.; Salonen, R.; Kopra, O.; Kohlschmidt, N.; Paavola-Sakki, P.; Peltonen, L.; Kestilä, M. (2006). "MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome". Nature Genetics. 38 (2): 155–157. doi:10.1038/ng1714. PMID 16415886. S2CID 10676530.
  15. ^ Winkelbauer, M. E.; Schafer, J. C.; Haycraft, C. J.; Swoboda, P.; Yoder, B. K. (2005). "The C. Elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception". Journal of Cell Science. 118 (Pt 23): 5575–5587. doi:10.1242/jcs.02665. PMID 16291722. S2CID 16717895.
  16. ^ Shang, Y.; Tsao, C. C.; Gorovsky, M. A. (2005). "Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis". The Journal of Cell Biology. 171 (6): 1035–1044. doi:10.1083/jcb.200508184. PMC 2171320. PMID 16344310.
  17. ^ Philip E. Pack, Ph.D., Cliff's Notes: AP Biology 4th edition.
[edit]
  • Histology image: 21804loa – Histology Learning System at Boston University - "Ultrastructure of the Cell: ciliated epithelium, cilia and basal bodies"