Jump to content

Uniform 5-polytope: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Gigopler (talk | contribs)
m - extra tag
 
(130 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{Short description|Five-dimensional geometric shape}}
{| align=right class=wikitable width=300
{{-}}
|+ Graphs of [[List of regular polytopes#Five Dimensions|regular]] and [[uniform polytope]]s.
{| class="wikitable" width="300" align="right" style="margin-left:1em;"
| || || || || || || || || || ||
|+Graphs of [[List of regular polytopes#Five Dimensions|regular]] and [[uniform polytope|uniform]] 5-polytopes.
|- align=center valign=top
|- valign="top" align="center"
|colspan=4|[[Image:5-simplex t0.svg|100px]]<BR>[[5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node}}
|colspan=4|[[Image:5-simplex t1.svg|100px]]<BR>[[Rectified 5-simplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|3|node}}
| colspan="4" |[[Image:5-simplex t0.svg|100px]]<BR>[[5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node}}
|colspan=4|[[Image:5-simplex t01.svg|100px]]<BR>[[Truncated 5-simplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|3|node}}
| colspan="4" |[[Image:5-simplex t1.svg|100px]]<BR>[[Rectified 5-simplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|3|node}}
| colspan="4" |[[Image:5-simplex t01.svg|100px]]<BR>[[Truncated 5-simplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|3|node}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=4|[[File:5-simplex t02.svg|100px]]<BR>[[Cantellated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|3|node}}
|colspan=4|[[File:5-simplex t03.svg|100px]]<BR>[[Runcinated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|3|node}}
| colspan="4" |[[File:5-simplex t02.svg|100px]]<BR>[[Cantellated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|3|node}}
|colspan=4|[[File:5-simplex t04.svg|100px]]<BR>[[Stericated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node_1}}
| colspan="4" |[[File:5-simplex t03.svg|100px]]<BR>[[Runcinated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|3|node}}
| colspan="4" |[[File:5-simplex t04.svg|100px]]<BR>[[Stericated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node_1}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=4|[[File:5-cube t4.svg|100px]]<BR>[[5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|4|node}}
|colspan=4|[[File:5-cube t34.svg|100px]]<BR>[[Truncated 5-orthoplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|4|node}}
| colspan="4" |[[File:5-cube t4.svg|100px]]<BR>[[5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|4|node}}
|colspan=4|[[File:5-cube t3.svg|100px]]<BR>[[Rectified 5-orthoplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|4|node}}
| colspan="4" |[[File:5-cube t34.svg|100px]]<BR>[[Truncated 5-orthoplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|4|node}}
| colspan="4" |[[File:5-cube t3.svg|100px]]<BR>[[Rectified 5-orthoplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|4|node}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=6|[[File:5-cube t24.svg|150px]]<BR>[[Cantellated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|4|node}}
|colspan=6|[[File:5-cube t14.svg|150px]]<BR>[[Runcinated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|4|node}}
| colspan="6" |[[File:5-cube t24.svg|150px]]<BR>[[Cantellated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|4|node}}
| colspan="6" |[[File:5-cube t14.svg|150px]]<BR>[[Runcinated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|4|node}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=4|[[File:5-cube t02.svg|100px]]<BR>[[Cantellated 5-cube]]<BR>{{CDD|node_1|4|node|3|node_1|3|node|3|node}}
|colspan=4|[[File:5-cube t03.svg|100px]]<BR>[[Runcinated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node_1|3|node}}
| colspan="4" |[[File:5-cube t02.svg|100px]]<BR>[[Cantellated 5-cube]]<BR>{{CDD|node_1|4|node|3|node_1|3|node|3|node}}
|colspan=4|[[File:5-cube t04.svg|100px]]<BR>[[Stericated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node_1}}
| colspan="4" |[[File:5-cube t03.svg|100px]]<BR>[[Runcinated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node_1|3|node}}
| colspan="4" |[[File:5-cube t04.svg|100px]]<BR>[[Stericated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node_1}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=4|[[File:5-cube t0.svg|100px]]<BR>[[5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node}}
|colspan=4|[[File:5-cube t01.svg|100px]]<BR>[[Truncated 5-cube]]<BR>{{CDD|node_1|4|node_1|3|node|3|node|3|node}}
| colspan="4" |[[File:5-cube t0.svg|100px]]<BR>[[5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node}}
|colspan=4|[[File:5-cube t1.svg|100px]]<BR>[[Rectified 5-cube]]<BR>{{CDD|node|4|node_1|3|node|3|node|3|node}}
| colspan="4" |[[File:5-cube t01.svg|100px]]<BR>[[Truncated 5-cube]]<BR>{{CDD|node_1|4|node_1|3|node|3|node|3|node}}
| colspan="4" |[[File:5-cube t1.svg|100px]]<BR>[[Rectified 5-cube]]<BR>{{CDD|node|4|node_1|3|node|3|node|3|node}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=6|[[File:5-demicube t0 D5.svg|150px]]<BR>[[5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node}}
|colspan=6|[[File:5-demicube t01 D5.svg|150px]]<BR>[[Truncated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node_1|3|node|3|node}}
| colspan="6" |[[File:5-demicube t0 D5.svg|150px]]<BR>[[5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node}}
| colspan="6" |[[File:5-demicube t01 D5.svg|150px]]<BR>[[Truncated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node_1|3|node|3|node}}
|- align=center valign=top
|- valign="top" align="center"
|colspan=6|[[File:5-demicube t02 D5.svg|150px]]<BR>[[Cantellated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node_1|3|node}}
|colspan=6|[[File:5-demicube t03 D5.svg|150px]]<BR>[[Runcinated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node_1}}
| colspan="6" |[[File:5-demicube t02 D5.svg|150px]]<BR>[[Cantellated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node_1|3|node}}
| colspan="6" |[[File:5-demicube t03 D5.svg|150px]]<BR>[[Runcinated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node_1}}
|}
|}

In [[geometry]], a '''uniform [[5-polytope]]''' is a five-dimensional [[uniform polytope]]. By definition, a uniform 5-polytope is [[vertex-transitive]] and constructed from [[uniform 4-polytope]] [[Facet (geometry)|facets]].
In [[geometry]], a '''uniform [[5-polytope]]''' is a five-dimensional [[uniform polytope]]. By definition, a uniform 5-polytope is [[vertex-transitive]] and constructed from [[uniform 4-polytope]] [[Facet (geometry)|facets]].


The complete set of '''convex uniform 5-polytopes''' has not been determined, but most can be made as [[Wythoff construction]]s from a small set of [[Coxeter groups|symmetry groups]]. These construction operations are represented by the permutations of rings of the [[Coxeter diagram]]s.
The complete set of '''convex uniform 5-polytopes''' has not been determined, but many can be made as [[Wythoff construction]]s from a small set of [[Coxeter groups|symmetry groups]]. These construction operations are represented by the permutations of rings of the [[Coxeter diagram]]s.


== History of discovery ==
== History of discovery ==

* '''[[Regular polytope]]s''': (convex faces)
*'''[[Regular polytope]]s''': (convex faces)
** '''1852''': [[Ludwig Schläfli]] proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more [[dimension]]s.
**'''1852''': [[Ludwig Schläfli]] proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more [[dimension]]s.
* '''Convex [[semiregular polytope]]s''': (Various definitions before Coxeter's '''uniform''' category)
*'''Convex [[semiregular polytope]]s''': (Various definitions before Coxeter's '''uniform''' category)
** '''1900''': [[Thorold Gosset]] enumerated the list of nonprismatic semiregular convex polytopes with regular facets ([[convex regular polychoron|convex regular polychora]]) in his publication ''On the Regular and Semi-Regular Figures in Space of n Dimensions''.<ref>[[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900</ref>
**'''1900''': [[Thorold Gosset]] enumerated the list of nonprismatic semiregular convex polytopes with regular facets ([[convex regular 4-polytope]]s) in his publication ''On the Regular and Semi-Regular Figures in Space of n Dimensions''.<ref>[[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900</ref>
* '''Convex uniform polytopes''':
*'''Convex uniform polytopes''':
** '''1940-1988''': The search was expanded systematically by [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]] in his publication ''Regular and Semi-Regular Polytopes I, II, and III''.
**'''1940-1988''': The search was expanded systematically by [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]] in his publication ''Regular and Semi-Regular Polytopes I, II, and III''.
** '''1966''': [[Norman W. Johnson]] completed his Ph.D. Dissertation under Coxeter, ''The Theory of Uniform Polytopes and Honeycombs'', University of Toronto
**'''1966''': [[Norman W. Johnson]] completed his Ph.D. Dissertation under Coxeter, ''The Theory of Uniform Polytopes and Honeycombs'', University of Toronto
* '''Non-convex uniform polytopes''':
**'''1966''': Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.<ref>[https://web.archive.org/web/20070207021813/http://members.aol.com/Polycell/glossary.html Multidimensional Glossary], George Olshevsky</ref>
**'''2000-2024''': Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,<ref>{{cite conference |url=https://archive.bridgesmathart.org/2000/bridges2000-239.pdf |title=Uniform Polychora |last1=Bowers |first1=Jonathan |author-link1= |last2= |first2= |author-link2= |date=2000 |publisher= |editor=Reza Sarhagi |book-title=Bridges 2000 |pages=239–246 |location= |conference=Bridges Conference |id=}}</ref> with a current count of 1348 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.<ref>[http://www.polytope.net/hedrondude/polytera.htm Uniform Polytera], Jonathan Bowers</ref><ref>[https://polytope.miraheze.org/wiki/Uniform_polytope Uniform polytope]</ref>


== Regular 5-polytopes ==
== Regular 5-polytopes ==
{{Main|List of regular polytopes#Five Dimensions}}
{{Main|List of regular polytopes#Five Dimensions}}
Regular 5-polytopes can be represented by the [[Schläfli symbol]] {p,q,r,s}, with '''s''' {p,q,r} polychoral [[Facet (mathematics)|facets]] around each [[Face (geometry)|face]]. There are exactly three such regular polytopes, all convex:
Regular 5-polytopes can be represented by the [[Schläfli symbol]] {p,q,r,s}, with '''s''' {p,q,r} 4-polytope [[Facet (mathematics)|facets]] around each [[Face (geometry)|face]]. There are exactly three such regular polytopes, all convex:

*{3,3,3,3} - [[5-simplex]]
*{3,3,3,3} - [[5-simplex]]
*{4,3,3,3} - [[5-cube]]
*{4,3,3,3} - [[5-cube]]
*{3,3,3,4} - [[5-orthoplex]]
*{3,3,3,4} - [[5-orthoplex]]


There are no nonconvex regular polytopes in 5 or more dimensions.
There are no nonconvex regular polytopes in 5 dimensions or above.


== Convex uniform 5-polytopes ==
== Convex uniform 5-polytopes ==
{{unsolved|mathematics|What is the complete set of convex uniform 5-polytopes?<ref>{{citation|url=http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|work=Open Problem Garden|title=Convex uniform 5-polytopes|access-date=2016-10-04|date=May 24, 2012|author=ACW|archive-url=https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|archive-date=October 5, 2016|url-status=live}}</ref>}}
There are 104 known convex uniform 5-polytopes, plus a number of infinite families of [[duoprism]] prisms, and polygon-polyhedron duoprisms. All except the ''grand antiprism prism'' are based on [[Wythoff construction]]s, reflection symmetry generated with [[Coxeter group]]s.{{fact|date=February 2015|reason=all these need sourcing}}
=== Symmetry of uniform 5-polytopes in four dimensions===
The [[5-simplex]] is the regular form in the A<sub>5</sub> family. The [[5-cube]] and [[5-orthoplex]] are the regular forms in the B<sub>5</sub> family. The bifurcating graph of the D<sub>5</sub> family contains the [[5-orthoplex]], as well as a [[5-demicube]] which is an [[alternation (geometry)|alternated]] [[5-cube]].


Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a [[Wythoff construction]], represented by rings around permutations of nodes in a [[Coxeter diagram]]. Mirror [[hyperplane]]s can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, <nowiki>[[</nowiki>a,b,b,a]], like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry.
There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the ''grand antiprism prism'' are based on [[Wythoff construction]]s, reflection symmetry generated with [[Coxeter group]]s.{{fact|date=February 2015|reason=all these need sourcing}}


If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an [[alternation (geometry)|alternation]] operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.[[File:Coxeter diagram finite rank5 correspondence.png|320px|thumb|Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.]]
{{-}}

=== Reflection families ===
;Fundamental families<ref>Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions</ref>
{| class=wikitable width=480 align=right

|[[File:Coxeter diagram finite rank5 correspondence.png|480px]]<BR>Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.
{| class="wikitable sortable"
!Group<BR>symbol || data-sort-type="number" |[[Order (group theory)|Order]]|| colspan="2" |[[Coxeter-Dynkin diagram|Coxeter<BR>graph]]||[[Coxeter notation|Bracket<BR>notation]]||[[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]]|| data-sort-type="number" |[[Coxeter number|Coxeter<BR>number]]<BR>(h)|| colspan="2" data-sort-type="number" |Reflections<BR>''m''=5/2 ''h''<ref>[[Coxeter]], ''Regular polytopes'', §12.6 The number of reflections, equation 12.61</ref>
|- align="center"
!A<sub>5</sub>
|| 720||{{CDD|node|3|node|3|node|3|node|3|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|3|node_c1}}|| [3,3,3,3]||[3,3,3,3]<sup>+</sup>||6 || || 15 {{CDD|node_c1}}
|- align="center"
!D<sub>5</sub>
|| 1920||{{CDD|nodes|split2|node|3|node|3|node}}||{{CDD|nodeab_c1|split2|node_c1|3|node_c1|3|node_c1}}|| [3,3,3<sup>1,1</sup>]|| rowspan="2" |[3,3,3<sup>1,1</sup>]<sup>+</sup>||8 || || 20 {{CDD|node_c1}}
|- align="center"
!B<sub>5</sub>
|| 3840||{{CDD|node|4|node|3|node|3|node|3|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|3|node_c1}}|| [4,3,3,3] || 10 || 5 {{CDD|node_c2}}||20 {{CDD|node_c1}}
|}
|}


;Uniform prisms
The [[5-simplex]] is the regular form in the A<sub>5</sub> family. The [[5-cube]] and [[5-orthoplex]] are the regular forms in the B<sub>5</sub> family. The bifurcating graph of the D<sub>6</sub> family contains the pentacross, as well as a [[5-demicube]] which is an [[alternation (geometry)|alternated]] 5-cube.

'''Fundamental families'''<ref>Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions</ref>


There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic [[uniform 4-polytope]]s. There is one infinite family of 5-polytopes based on prisms of the uniform [[duoprism]]s {p}×{q}×{&nbsp;}.
{| class=wikitable
{| class=wikitable
|- valign=top
!#
!colspan=2|[[Coxeter group]]
![[Coxeter group|Coxeter<BR>group]]
![[Coxeter diagram]]
![[Group order|Order]]
!colspan=2|[[Coxeter-Dynkin diagram|Coxeter<BR>diagram]]
|-
![[Coxeter notation|Coxeter<BR>notation]]
|1||A<sub>5</sub>|| [3<sup>4</sup>]||{{CDD|node|3|node|3|node|3|node|3|node}}
![[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]]
!colspan=5|Reflections
|- align=center
!A<sub>4</sub>A<sub>1</sub>
|| 120|| {{CDD|node|3|node|3|node|3|node|2|node}}|| {{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [3,3,3,2] = [3,3,3]×[ ] || [3,3,3]<sup>+</sup> || || || 10 {{CDD|node_c1}}|| || 1 {{CDD|node_c5}}
|- align=center
!D<sub>4</sub>A<sub>1</sub>
||384|| {{CDD|nodes|split2|node|3|node|2|node}}||{{CDD|nodeab_c1|split2|node_c1|3|node_c1|2|node_c5}}|| [3<sup>1,1,1</sup>,2] = [3<sup>1,1,1</sup>]×[ ] ||rowspan=2| [3<sup>1,1,1</sup>]<sup>+</sup> || || ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}
|- align=center
!B<sub>4</sub>A<sub>1</sub>
|| 768 || {{CDD|node|4|node|3|node|3|node|2|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [4,3,3,2] = [4,3,3]×[ ] || ||4 {{CDD|node_c2}} ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}
|- align=center
!F<sub>4</sub>A<sub>1</sub>
|| 2304|| {{CDD|node|3|node|4|node|3|node|2|node}}||{{CDD|node_c2|3|node_c2|4|node_c1|3|node_c1|2|node_c5}}|| [3,4,3,2] = [3,4,3]×[ ] ||[3<sup>+</sup>,4,3<sup>+</sup>] || ||12 {{CDD|node_c2}} ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}
|- align=center
!H<sub>4</sub>A<sub>1</sub>
||28800|| {{CDD|node|5|node|3|node|3|node|2|node}}||{{CDD|node_c1|5|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [5,3,3,2] = [3,4,3]×[ ] || [5,3,3]<sup>+</sup>|| || ||60 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}
|-
|-
!colspan=12|Duoprismatic prisms (use 2p and 2q for evens)
|2||B<sub>5</sub>||[4,3<sup>3</sup>]||{{CDD|node|4|node|3|node|3|node|3|node}}
|- align=center
|-
!I<sub>2</sub>(''p'')I<sub>2</sub>(''q'')A<sub>1</sub>
|3||D<sub>5</sub>||[3<sup>2,1,1</sup>]||{{CDD|nodes|split2|node|3|node|3|node}}
||8''pq''|| {{CDD|node|p|node|2|node|q|node|2|node}}||{{CDD|node_c2|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}|| [p,2,q,2] = [p]×[q]×[ ] ||rowspan=3|[p<sup>+</sup>,2,q<sup>+</sup>] || || ''p'' {{CDD|node_c2}} ||''q'' {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}
|}


|- align=center
'''Uniform prisms'''
!I<sub>2</sub>(2''p'')I<sub>2</sub>(''q'')A<sub>1</sub>
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s:
||16''pq''|| {{CDD|node|2x|p|node|2|node|q|node|2|node}}||{{CDD|node_c3|2x|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}|| [2p,2,q,2] = [2p]×[q]×[ ] ||p {{CDD|node_c3}}||''p'' {{CDD|node_c2}} || ''q'' {{CDD|node_c1}} |||| 1 {{CDD|node_c5}}


|- align=center
{| class=wikitable
!I<sub>2</sub>(2''p'')I<sub>2</sub>(2''q'')A<sub>1</sub>
!#
||32''pq''|| {{CDD|node|2x|p|node|2|node|2x|q|node|2|node}}||{{CDD|node_c3|2x|p|node_c2|2|node_c1|2x|q|node_c4|2|node_c5}}|| [2p,2,2q,2] = [2p]×[2q]×[ ] ||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c2}}|| ''q'' {{CDD|node_c1}}|| ''q'' {{CDD|node_c4}}|| 1 {{CDD|node_c5}}
!colspan=2|[[Coxeter group]]s
![[Coxeter diagram]]
|- style="height:25px;"
| 1
| A<sub>4</sub> × A<sub>1</sub>
| [3,3,3,2]
| {{CDD|node|3|node|3|node|3|node|2|node}}
|- style="height:25px;"
| 2
| B<sub>4</sub> × A<sub>1</sub>
| [4,3,3,2]
| {{CDD|node|4|node|3|node|3|node|2|node}}
|- style="height:25px;"
| 3
| F<sub>4</sub> × A<sub>1</sub>
| [3,4,3,2]
| {{CDD|node|3|node|4|node|3|node|2|node}}
|- style="height:25px;"
| 4
| H<sub>4</sub> × A<sub>1</sub>
| [5,3,3,2]
| {{CDD|node|5|node|3|node|3|node|2|node}}
|- style="height:25px;"
| 5
| D<sub>4</sub> × A<sub>1</sub>
| [3<sup>1,1,1</sup>,2]
| {{CDD|nodes|split2|node|3|node|2|node}}
|}
|}


;Uniform duoprisms
There is one infinite family of 5-polytopes based on prisms of the uniform [[duoprism]]s {p}×{q}×{&nbsp;}:
{| class=wikitable
!colspan=2|[[Coxeter group]]s
![[Coxeter diagram]]
|- style="height:25px;"
| I<sub>2</sub>(p) × I<sub>2</sub>(q) × A<sub>1</sub>
| [p,2,q,2]
| {{CDD|node|p|node|2|node|q|node|2|node}}
|}


There are 3 categorical [[Uniform polytope|uniform]] [[duoprism]]atic families of polytopes based on [[Cartesian product]]s of the [[uniform polyhedron|uniform polyhedra]] and [[regular polygon]]s: {''q'',''r''}×{''p''}.
'''Uniform duoprisms'''


There are 3 categorical [[Uniform polytope|uniform]] [[duoprism]]atic families of polytopes based on [[Cartesian product]]s of the [[uniform polyhedron|uniform polyhedra]] and [[regular polygon]]s: {q,r}×{p}:
{| class=wikitable
{| class=wikitable
|- valign=top
!#
!colspan=2|[[Coxeter group]]s
![[Coxeter group|Coxeter<BR>group]]
![[Coxeter diagram]]
![[Group order|Order]]
!colspan=2|[[Coxeter-Dynkin diagram|Coxeter<BR>diagram]]
|- style="height:25px;"
![[Coxeter notation|Coxeter<BR>notation]]
| 1
![[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]]
| A<sub>3</sub> × I<sub>2</sub>(p)
!colspan=4|Reflections
| [3,3,2,p]
|-
| {{CDD|node|3|node|3|node|2|node|p|node}}
!colspan=12|Prismatic groups (use 2p for even)
|- style="height:25px;"
|- align=center
| 2
| B<sub>3</sub> × I<sub>2</sub>(p)
!A<sub>3</sub>''I''<sub>2</sub>(''p'')
|| 48''p''|| {{CDD|node|3|node|3|node|2|node|p|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [3,3,2,''p''] = [3,3]×[''p''] ||rowspan=4|[(3,3)<sup>+</sup>,2,''p''<sup>+</sup>] ||||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||
| [4,3,2,p]
|- align=center
| {{CDD|node|4|node|3|node|2|node|p|node}}
!A<sub>3</sub>''I''<sub>2</sub>(''2p'')
|- style="height:25px;"
|| 96''p''|| {{CDD|node|3|node|3|node|2|node|2x|p|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [3,3,2,2''p''] = [3,3]×[2''p''] ||||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}}
| 3.
|- align=center
| H<sub>3</sub> × I<sub>2</sub>(p)
!B<sub>3</sub>''I''<sub>2</sub>(''p'')
| [5,3,2,p]
| {{CDD|node|5|node|3|node|2|node|p|node}}
||96''p''|| {{CDD|node|4|node|3|node|2|node|p|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [4,3,2,''p''] = [4,3]×[''p''] ||3 {{CDD|node_c2}}||6{{CDD|node_c1}}||''p'' {{CDD|node_c3}}
|- align=center
!B<sub>3</sub>''I''<sub>2</sub>(''2p'')
||192''p''|| {{CDD|node|4|node|3|node|2|node|2x|p|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [4,3,2,2''p''] = [4,3]×[2''p''] ||3 {{CDD|node_c2}}||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}}
|- align=center
!H<sub>3</sub>''I''<sub>2</sub>(''p'')
||240''p''|| {{CDD|node|5|node|3|node|2|node|p|node}}|| {{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [5,3,2,''p''] = [5,3]×[''p''] ||rowspan=2|[(5,3)<sup>+</sup>,2,''p''<sup>+</sup>] || ||15 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}
|- align=center
!H<sub>3</sub>''I''<sub>2</sub>(''2p'')
||480''p''|| {{CDD|node|5|node|3|node|2|node|2x|p|node}}|| {{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [5,3,2,2''p''] = [5,3]×[2''p''] || ||15 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}}
|}
|}


Line 151: Line 164:
* [[Simplex]] family: A<sub>5</sub> [3<sup>4</sup>]
* [[Simplex]] family: A<sub>5</sub> [3<sup>4</sup>]
** 19 uniform 5-polytopes
** 19 uniform 5-polytopes
* [[Hypercube]]/[[Orthoplex]] family: BC<sub>5</sub> [4,3<sup>3</sup>]
* [[Hypercube]]/[[Orthoplex]] family: B<sub>5</sub> [4,3<sup>3</sup>]
** 31 uniform 5-polytopes
** 31 uniform 5-polytopes
* [[Demihypercube]] D<sub>5</sub>/E<sub>5</sub> family: [3<sup>2,1,1</sup>]
* [[Demihypercube]] D<sub>5</sub>/E<sub>5</sub> family: [3<sup>2,1,1</sup>]
** 23 uniform 5-polytopes (8 unique)
** 23 uniform 5-polytopes (8 unique)
* Polychoral prisms:
* Prisms and duoprisms:
** 56 uniform 5-polytope (46 unique) constructions based on prismatic families: [3,3,3]×[&nbsp;], [4,3,3]×[&nbsp;], [5,3,3]×[&nbsp;], [3<sup>1,1,1</sup>]×[&nbsp;].
** 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[&nbsp;], [4,3,3]×[&nbsp;], [5,3,3]×[&nbsp;], [3<sup>1,1,1</sup>]×[&nbsp;].
** One [[non-Wythoffian]] - The [[grand antiprism prism]] is the only known non-Wythoffian convex uniform 5-polytope, constructed from two [[grand antiprism]]s connected by polyhedral prisms.
** One [[non-Wythoffian]] - The [[grand antiprism prism]] is the only known non-Wythoffian convex uniform 5-polytope, constructed from two [[grand antiprism]]s connected by polyhedral prisms.


That brings the tally to: 19+31+8+46+1=105
That brings the tally to: 19+31+8+45+1=104


In addition there are:
In addition there are:
* Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[&nbsp;].
* Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [''p'']×[''q'']×[&nbsp;].
* Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p].
* Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[''p''], [4,3]×[''p''], [5,3]×[''p''].


=== The A<sub>5</sub> family ===
=== The A<sub>5</sub> family ===
{{See|A5 polytope}}


There are 19 forms based on all permutations of the [[Coxeter diagram]]s with one or more rings. (16+4-1 cases)
There are 19 forms based on all permutations of the [[Coxeter diagram]]s with one or more rings. (16+4-1 cases)
Line 174: Line 188:


The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).
The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).

See symmetry graphs: [[List of A5 polytopes]]


{| class="wikitable"
{| class="wikitable"
Line 183: Line 195:
!colspan=5|k-face element counts
!colspan=5|k-face element counts
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!colspan=5 |Facet counts by location: [3,3,3,3]
!colspan=6 |Facet counts by location: [3,3,3,3]
|-
|-
! 4
! 4
Line 195: Line 207:
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15)
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6)
! Alt
|-
|-
!1
!1
Line 205: Line 218:
| 6
| 6
| [[File:5-simplex verf.png|60px]]<BR>[[5-cell|{3,3,3}]]
| [[File:5-simplex verf.png|60px]]<BR>[[5-cell|{3,3,3}]]
|(5)<BR>[[File:4-simplex t0.svg|50px]]<BR>[[5-cell|{3,3,3}]]
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
| -
| -
| -
| -
| -
| -
| -
| -
|
|-
|-
!2
!2
Line 220: Line 234:
| 15
| 15
| [[File:Rectified 5-simplex verf.png|60px]]<BR>[[Truncated tetrahedral prism|t{3,3}×{&nbsp;}]]
| [[File:Rectified 5-simplex verf.png|60px]]<BR>[[Truncated tetrahedral prism|t{3,3}×{&nbsp;}]]
|(4)<BR>[[File:4-simplex t1.svg|50px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
| -
| -
| -
| -
| -
| -
|(2)<BR>[[File:4-simplex t0.svg|50px]]<BR>[[5-cell|{3,3,3}]]
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|-
|-
!3
!3
Line 235: Line 249:
| 30
| 30
| [[File:Truncated 5-simplex verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]
| [[File:Truncated 5-simplex verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]
|(4)<BR>[[File:4-simplex t01.svg|50px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
| -
| -
| -
| -
| -
| -
|(1)<BR>[[File:4-simplex t0.svg|50px]]<BR>[[5-cell|{3,3,3}]]
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|
|-
|-
!4
!4
Line 251: Line 266:
| 60
| 60
|[[File:Cantellated hexateron verf.png|60px]]<BR>prism-wedge
|[[File:Cantellated hexateron verf.png|60px]]<BR>prism-wedge
|(3)<BR>[[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| -
| -
| -
| -
|(1)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t0.svg|30px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|(1)<BR>[[File:4-simplex t1.svg|50px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|
|-
|-
!5
!5
Line 267: Line 283:
| 60
| 60
| [[File:Bitruncated 5-simplex verf.png|60px]]
| [[File:Bitruncated 5-simplex verf.png|60px]]
|(3)<BR>[[File:4-simplex t12.svg|50px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
|[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
| -
| -
| -
| -
| -
| -
|(2)<BR>[[File:4-simplex t01.svg|50px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
|
|-
|-
!6
!6
Line 283: Line 300:
| 120
| 120
|[[File:Canitruncated 5-simplex verf.png|60px]]
|[[File:Canitruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t012.svg|50px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
| -
| -
| -
| -
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t0.svg|30px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
| [[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
| [[File:4-simplex t01.svg|50px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
|
|-
|-
!7
!7
Line 298: Line 316:
| 60
| 60
| [[File:Runcinated 5-simplex verf.png|60px]]
| [[File:Runcinated 5-simplex verf.png|60px]]
|(2)<BR>[[File:4-simplex t03.svg|50px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
|[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
| -
| -
|(3)<BR>[[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|(3)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t1.svg|30px]]<BR>[[Octahedral prism|{&nbsp;}×r{3,3}]]
|[[File:Octahedral prism.png|60px]]<BR>[[Octahedral prism|{&nbsp;}×r{3,3}]]
|(1)<BR>[[File:4-simplex t1.svg|50px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|
|-
|-
!8
!8
Line 313: Line 332:
| 180
| 180
|[[File:Runcitruncated 5-simplex verf.png|60px]]
|[[File:Runcitruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t013.svg|50px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| -
| -
| [[File:2-simplex t0.svg|30px]]×[[File:2-simplex t01.svg|30px]]<BR>[[3-6 duoprism|{6}×{3}]]
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{6}×{3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t1.svg|30px]]<BR>[[Octahedral prism|{&nbsp;}×r{3,3}]]
| [[File:Octahedral prism.png|60px]]<BR>[[Octahedral prism|{&nbsp;}×r{3,3}]]
| [[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|
|-
|-
!9
!9
Line 328: Line 348:
| 180
| 180
|[[File:Runcicantellated 5-simplex verf.png|60px]]
|[[File:Runcicantellated 5-simplex verf.png|60px]]
| [[File:4-simplex t03.svg|50px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| -
| -
| [[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| [[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:4-simplex t01.svg|30px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:4-simplex t12.svg|50px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
| [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
|
|-
|-
!10
!10
Line 343: Line 364:
| 360
| 360
|[[File:Runcicantitruncated 5-simplex verf.png|60px]]<BR>Irr.[[5-cell]]
|[[File:Runcicantitruncated 5-simplex verf.png|60px]]<BR>Irr.[[5-cell]]
| [[File:4-simplex t0123.svg|50px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
| -
| -
| [[File:2-simplex t0.svg|30px]]×[[File:2-simplex t01.svg|30px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:1-simplex t0.svg|30px]]×[[File:4-simplex t01.svg|30px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
|
|-
|-
!11
!11
Line 358: Line 380:
| 120
| 120
|[[File:Steritruncated 5-simplex verf.png|60px]]
|[[File:Steritruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t01.svg|50px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:4-simplex t01.svg|30px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:2-simplex t0.svg|30px]]×[[File:2-simplex t01.svg|30px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t0.svg|30px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]
| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]
| [[File:4-simplex t03.svg|50px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
|
|-
|-
!12
!12
Line 373: Line 396:
| 360
| 360
|[[File:Stericanitruncated 5-simplex verf.png|60px]]
|[[File:Stericanitruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t012.svg|50px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t012.svg|30px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
| [[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
| [[File:2-simplex t0.svg|30px]]×[[File:2-simplex t01.svg|30px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t02.svg|30px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:4-simplex t013.svg|50px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|}
|

{| class="wikitable"
!rowspan=2|#
!rowspan=2|Base point
!rowspan=2|[[Norman Johnson (mathematician)|Johnson]] naming system<BR>Bowers name and (acronym)<BR>[[Coxeter diagram]]
!colspan=5|k-face element counts
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!colspan=5 |Facet counts by location: [3,3,3,3]
|-
! 4
! 3
! 2
! 1
! 0
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6)
! {{CDD|node|3|node|3|node|2|node}}<BR>[3,3,2]<BR>(15)
! {{CDD|node|3|node|2|node|3|node}}<BR>[3,2,3]<BR>(20)
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6)

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!13
!13
Line 409: Line 412:
| 20
| 20
| [[File:Birectified hexateron verf.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| [[File:Birectified hexateron verf.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|(3)<BR>[[File:4-simplex t1.svg|50px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
| -
| -
| -
| -
| -
| -
|(3)<BR>[[File:4-simplex t1.svg|50px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!14
!14
Line 425: Line 428:
| 90
| 90
|[[File:Bicantellated 5-simplex verf.png|60px]]
|[[File:Bicantellated 5-simplex verf.png|60px]]
|(2)<BR>[[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| -
| -
|(8)<BR>[[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| -
| -
|(2)<BR>[[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!15
!15
Line 441: Line 444:
| 180
| 180
|[[File:Bicanitruncated 5-simplex verf.png|60px]]
|[[File:Bicanitruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t012.svg|50px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
| -
| -
| [[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| -
| -
| [[File:4-simplex t012.svg|50px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
|

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!16
!16
Line 457: Line 460:
| 30
| 30
| [[File:Stericated hexateron verf.png|60px]]<BR>Irr.[[16-cell]]
| [[File:Stericated hexateron verf.png|60px]]<BR>Irr.[[16-cell]]
|(1)<BR>[[File:4-simplex t0.svg|50px]]<BR>[[5-cell|{3,3,3}]]
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|(4)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t0.svg|30px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|(6)<BR>[[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
|(4)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t0.svg|30px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{&nbsp;}×{3,3}]]
|(1)<BR>[[File:4-simplex t0.svg|50px]]<BR>[[5-cell|{3,3,3}]]
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!17
!17
Line 473: Line 476:
| 180
| 180
|[[File:Stericantellated 5-simplex verf.png|60px]]
|[[File:Stericantellated 5-simplex verf.png|60px]]
| [[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t02.svg|30px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:3-3 duoprism ortho-skew.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| [[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:3-simplex t02.svg|30px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{&nbsp;}×rr{3,3}]]
| [[File:4-simplex t02.svg|50px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|

|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!18
!18
Line 489: Line 492:
| 360
| 360
|[[File:Steriruncitruncated 5-simplex verf.png|60px]]
|[[File:Steriruncitruncated 5-simplex verf.png|60px]]
| [[File:4-simplex t013.svg|50px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:1-simplex t0.svg|30px]]×[[File:4-simplex t01.svg|30px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:Tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:6-6 duoprism ortho-3.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]]
| [[File:6-6 duoprism.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]]
| [[File:1-simplex t0.svg|30px]]×[[File:4-simplex t01.svg|30px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:Tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]
| [[File:4-simplex t013.svg|50px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!19
!19
Line 504: Line 508:
| 720
| 720
|[[File:Omnitruncated 5-simplex verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]
|[[File:Omnitruncated 5-simplex verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]
|(1)<BR>[[File:4-simplex t0123.svg|50px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|(1)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t012.svg|30px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
|[[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
|(1)<BR>[[File:6-6 duoprism ortho-3.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]]
|[[File:6-6 duoprism.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]]
|(1)<BR>[[File:1-simplex t0.svg|30px]]×[[File:3-simplex t012.svg|30px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
|[[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]
|(1)<BR>[[File:4-simplex t0123.svg|50px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|
|- BGCOLOR="#d0f0f0"
!Nonuniform
|
|[[Stericated 5-simplexes#Full snub 5-simplex|Omnisnub 5-simplex]]<br>snub dodecateron (snod)<br>snub hexateron (snix)<br>{{CDD|node_h|3|node_h|3|node_h|3|node_h|3|node_h}}
| 422
| 2340
| 4080
| 2520
| 360
|
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]]
|[[Duoprism#Duoantiprism|ht<sub>0,1,2,3</sub>{3,2,3}]]
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]]
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|(360)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]]
|}
|}


=== The B<sub>5</sub> family ===
=== The B<sub>5</sub> family ===
{{See|B5 polytope}}

The [[Coxeter group#Finite Coxeter groups|B<sub>5</sub> family]] has symmetry of order 3840 (5!&times;2<sup>5</sup>).
The [[Coxeter group#Finite Coxeter groups|B<sub>5</sub> family]] has symmetry of order 3840 (5!&times;2<sup>5</sup>).


This family has 2<sup>5</sup>&minus;1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the [[Coxeter diagram]].
This family has 2<sup>5</sup>&minus;1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the [[Coxeter diagram]]. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D<sub>5</sub> family as {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}..... (There are more alternations that are not listed because they produce only repetitions, as {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}.... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.)


For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.
For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.


The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.
The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.

See symmetry graph: [[List of B5 polytopes]]


{|class="wikitable"
{|class="wikitable"
Line 529: Line 548:
!colspan=5|Element counts
!colspan=5|Element counts
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!colspan=5 |Facet counts by location: [4,3,3,3]
!colspan=6 |Facet counts by location: [4,3,3,3]
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!4||3||2||1||0
!4||3||2||1||0
Line 537: Line 556:
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(80)
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(80)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(32)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(32)
! Alt
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!20
!20
||(0,0,0,0,1)√2||[[5-orthoplex]] (tac)<BR>{{CDD||node|4|node|3|node|3|node|3|node_1}}||32||80||80||40||10
||(0,0,0,0,1)√2||[[5-orthoplex]]<br>triacontaditeron (tac)<BR>{{CDD||node|4|node|3|node|3|node|3|node_1}}||32||80||80||40||10
||[[File:pentacross verf.png|60px]]<BR>[[16-cell|{3,3,4}]]||[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]|| - || - || - || -
||[[File:pentacross verf.png|60px]]<BR>[[16-cell|{3,3,4}]]|| - || - || - || - ||[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!21
!21
||(0,0,0,1,1)√2||[[Rectified 5-orthoplex]] (rat)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node}}||42||240||400||240||40
||(0,0,0,1,1)√2||[[Rectified 5-orthoplex]]<br>rectified triacontaditeron (rat)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node}}||42||240||400||240||40
||[[File:Rectified pentacross verf.png|60px]]<BR>[[Octahedral prism|{&nbsp;}×{3,4}]]|| [[File:Schlegel wireframe 16-cell.png|60px]]<BR><BR>[[16-cell|{3,3,4}]] || - || - || - ||[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
||[[File:Rectified pentacross verf.png|60px]]<BR>[[Octahedral prism|{&nbsp;}×{3,4}]]|| [[File:Schlegel wireframe 16-cell.png|60px]]<BR>[[16-cell|{3,3,4}]] || - || - || - ||[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!22
!22
||(0,0,0,1,2)√2||[[Truncated 5-orthoplex]] (tot)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node_1}}||42||240||400||280||80
||(0,0,0,1,2)√2||[[Truncated 5-orthoplex]]<br>truncated triacontaditeron (tot)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node_1}}||42||240||400||280||80
||[[File:Truncated pentacross.png|60px]]<BR>(Octah.pyr)||[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]||[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] || - || - || -
||[[File:Truncated pentacross.png|60px]]<BR>(Octah.pyr)||[[File:Schlegel wireframe 16-cell.png|60px]]<BR>[[16-cell|{3,3,4}]] || - || - || - ||[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!23
!23
||(0,0,1,1,1)√2||[[Birectified 5-cube]] (nit)<BR>(Birectified 5-orthoplex)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node}}||42||280||640||480||80
||(0,0,1,1,1)√2||[[Birectified 5-cube]]<br>penteractitriacontaditeron (nit)<BR>(Birectified 5-orthoplex)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node}}||42||280||640||480||80
||[[File:Birectified penteract verf.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[Rectified 16-cell|r{3,3,4}]] || - || - || - || [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
||[[File:Birectified penteract verf.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[24-cell|r{3,3,4}]] || - || - || - || [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] ||
|-BGCOLOR="#f0e0e0"
|-BGCOLOR="#f0e0e0"
!24
!24
||(0,0,1,1,2)√2||[[Cantellated 5-orthoplex]] (sart)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node_1}}||82||640||1520||1200||240
||(0,0,1,1,2)√2||[[Cantellated 5-orthoplex]]<br>small rhombated triacontaditeron (sart)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node_1}}||82||640||1520||1200||240
||[[File:Cantellated pentacross verf.png|60px]]<BR>Prism-wedge|| r{3,3,4}|| {&nbsp;}×{3,4} || - || - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
||[[File:Cantellated pentacross verf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[24-cell|r{3,3,4}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{&nbsp;}×{3,4}]] || - || - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!25
!25
||(0,0,1,2,2)√2||[[Bitruncated 5-orthoplex]] (bittit)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node}}||42||280||720||720||240
||(0,0,1,2,2)√2||[[Bitruncated 5-orthoplex]]<br>bitruncated triacontaditeron (bittit)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node}}||42||280||720||720||240
||[[File:Bitruncated pentacross verf.png|60px]]|| t{3,3,4} || - || - || - || [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
||[[File:Bitruncated pentacross verf.png|60px]]|| [[File:Schlegel half-solid truncated 16-cell.png|60px]]<BR>[[Truncated 16-cell|t{3,3,4}]] || - || - || - || [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!26
!26
||(0,0,1,2,3)√2||[[Cantitruncated 5-orthoplex]] (gart)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node_1}}||82||640||1520||1440||480
||(0,0,1,2,3)√2||[[Cantitruncated 5-orthoplex]]<br>great rhombated triacontaditeron (gart)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node_1}}||82||640||1520||1440||480
||[[File:Canitruncated 5-orthoplex verf.png|60px]]||rr{3,3,4} || {&nbsp;}×r{3,4} || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Canitruncated 5-orthoplex verf.png|60px]]||[[File:Schlegel half-solid truncated 16-cell.png|60px]]<BR>[[Truncated 16-cell|t{3,3,4}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{&nbsp;}×{3,4}]] || -|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!27
!27
||(0,1,1,1,1)√2||[[Rectified 5-cube]] (rin)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node}}||42||200||400||320||80
||(0,1,1,1,1)√2||[[Rectified 5-cube]]<br>rectified penteract (rin)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node}}||42||200||400||320||80
|| [[File:Rectified 5-cube verf.png|60px]]<BR>[[Tetrahedral prism|{3,3}×{&nbsp;}]]|| [[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|| [[File:Rectified 5-cube verf.png|60px]]<BR>[[Tetrahedral prism|{3,3}×{&nbsp;}]]|| [[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] ||
|-BGCOLOR="#f0e0e0"
|-BGCOLOR="#f0e0e0"
!28
!28
||(0,1,1,1,2)√2||[[Runcinated 5-orthoplex]] (spat)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node_1}}||162||1200||2160||1440||320
||(0,1,1,1,2)√2||[[Runcinated 5-orthoplex]]<br>small prismated triacontaditeron (spat)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node_1}}||162||1200||2160||1440||320
||[[File:Runcinated pentacross verf.png|60px]]|| r{4,3,3} || - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]]|| || [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
|| [[File:Runcinated pentacross verf.png|60px]]||[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]] || [[File:Cuboctahedral prism.png|60px]]<br>[[Cuboctahedral prism|{&nbsp;}×r{3,4}]] || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]]|| || [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!29
!29
||(0,1,1,2,2)√2||[[Bicantellated 5-cube]] (sibrant)<BR>(Bicantellated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node}}||122||840||2160||1920||480
||(0,1,1,2,2)√2||[[Bicantellated 5-cube]]<br>small birhombated penteractitriacontaditeron (sibrant)<BR>(Bicantellated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node}}||122||840||2160||1920||480
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantellated 16-cell.png|60px]]<BR>[[Rectified 24-cell|rr{3,3,4}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!30
!30
||(0,1,1,2,3)√2||[[Runcitruncated 5-orthoplex]] (pattit)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node_1}}||162||1440||3680||3360||960
||(0,1,1,2,3)√2||[[Runcitruncated 5-orthoplex]]<br>prismatotruncated triacontaditeron (pattit)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node_1}}||162||1440||3680||3360||960
||[[File:Runcitruncated 5-orthoplex verf.png|60px]]|| rr{3,3,4} || {&nbsp;}×r{3,4} || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Runcitruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 16-cell.png|60px]]<BR>[[Rectified 24-cell|rr{3,3,4}]] || [[File:Cuboctahedral prism.png|60px]]<br>[[Cuboctahedral prism|{&nbsp;}×r{3,4}]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!31
!31
||(0,1,2,2,2)√2||[[Bitruncated 5-cube]] (tan)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node}}||42||280||720||800||320
||(0,1,2,2,2)√2||[[Bitruncated 5-cube]]<br>bitruncated penteract (bittin)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node}}||42||280||720||800||320
|| [[File:Bitruncated penteract verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]|| - || - || - || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
|| [[File:Bitruncated penteract verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]|| - || - || - || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!32
!32
||(0,1,2,2,3)√2||[[Runcicantellated 5-orthoplex]] (pirt)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node_1}}||162||1200||2960||2880||960
||(0,1,2,2,3)√2||[[Runcicantellated 5-orthoplex]]<br>prismatorhombated triacontaditeron (pirt)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node_1}}||162||1200||2960||2880||960
||[[File:Runcicantellated 5-orthoplex verf.png|60px]]|| {&nbsp;}×t{3,4}|| 2t{3,3,4} || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]] || - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Runcicantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]||[[File:Truncated octahedral prism.png|60px]]<br>[[Truncated octahedral prism|{&nbsp;}×t{3,4}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]] || - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!33
!33
||(0,1,2,3,3)√2||[[Bicantitruncated 5-cube]] (gibrant)<BR>(Bicantitruncated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node}}||122||840||2160||2400||960
||(0,1,2,3,3)√2||[[Bicantitruncated 5-cube]]<br>great birhombated triacontaditeron (gibrant)<BR>(Bicantitruncated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node}}||122||840||2160||2400||960
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 16-cell.png|60px]]<BR>[[Truncated 24-cell|tr{3,3,4}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!34
!34
||(0,1,2,3,4)√2||[[Runcicantitruncated 5-orthoplex]] (gippit)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node_1}}||162||1440||4160||4800||1920
||(0,1,2,3,4)√2||[[Runcicantitruncated 5-orthoplex]]<br>great prismated triacontaditeron (gippit)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node_1}}||162||1440||4160||4800||1920
||[[File:Runcicantitruncated 5-orthoplex verf.png|60px]]|| tr{3,3,4} || {&nbsp;}×t{3,4} || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
||[[File:Runcicantitruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 16-cell.png|60px]]<BR>[[Truncated 24-cell|tr{3,3,4}]] || [[File:Truncated octahedral prism.png|60px]]<br>[[Truncated octahedral prism|{&nbsp;}×t{3,4}]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!35
!35
||(1,1,1,1,1)||[[5-cube]] (pent)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node}}||10||40||80||80||32
||(1,1,1,1,1)||[[5-cube]]<br>penteract (pent)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node}}||10||40||80||80||32
||[[File:5-cube verf.png|60px]]<BR>[[5-cell|{3,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3,3}]]|| - || - || - || -
||[[File:5-cube verf.svg|60px]]<BR>[[5-cell|{3,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3,3}]]|| - || - || - || - ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!36
!36
||(1,1,1,1,1)<BR>+ (0,0,0,0,1)√2||[[Stericated 5-cube]] (scant)<BR>(Stericated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node_1}}||242||800||1040||640||160
||(1,1,1,1,1)<BR>+ (0,0,0,0,1)√2||[[Stericated 5-cube]]<br>small cellated penteractitriacontaditeron (scant)<BR>(Stericated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node_1}}||242||800||1040||640||160
|| [[File:Stericated penteract verf.png|60px]]<BR>Tetr.antiprm|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[tesseract|{4,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{&nbsp;}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|| [[File:Stericated penteract verf.png|60px]]<BR>Tetr.antiprm|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[tesseract|{4,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{&nbsp;}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!37
!37
||(1,1,1,1,1)<BR>+ (0,0,0,1,1)√2||[[Runcinated 5-cube]] (span)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node}}||202||1240||2160||1440||320
||(1,1,1,1,1)<BR>+ (0,0,0,1,1)√2||[[Runcinated 5-cube]]<br>small prismated penteract (span)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node}}||202||1240||2160||1440||320
|| [[File:Runcinated penteract verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Octahedral prism.png|60px]]<BR>[[Rectified tetrahedral prism|{&nbsp;}×r{3,3}]]|| [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|| [[File:Runcinated penteract verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Octahedral prism.png|60px]]<BR>[[Rectified tetrahedral prism|{&nbsp;}×r{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!38
!38
||(1,1,1,1,1)<BR>+ (0,0,0,1,2)√2||[[Steritruncated 5-orthoplex]] (cappin)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node_1}}||242||1520||2880||2240||640
||(1,1,1,1,1)<BR>+ (0,0,0,1,2)√2||[[Steritruncated 5-orthoplex]]<br>celliprismated triacontaditeron (cappin)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node_1}}||242||1520||2880||2240||640
||[[File:Steritruncated 5-orthoplex verf.png|60px]]|| t<sub>0,3</sub>{3,3,4} || {&nbsp;}×{4,3} || - || - || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
||[[File:Steritruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]] || [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{&nbsp;}]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]] || [[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]] || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!39
!39
||(1,1,1,1,1)<BR>+ (0,0,1,1,1)√2||[[Cantellated 5-cube]] (sirn)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node}}||122||680||1520||1280||320
||(1,1,1,1,1)<BR>+ (0,0,1,1,1)√2||[[Cantellated 5-cube]]<br>small rhombated penteract (sirn)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node}}||122||680||1520||1280||320
|| [[File:Cantellated 5-cube vertf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|| [[File:Cantellated 5-cube vertf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!40
!40
||(1,1,1,1,1)<BR>+ (0,0,1,1,2)√2||[[Stericantellated 5-cube]] (carnit)<BR>(Stericantellated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node_1}}||242||2080||4720||3840||960
||(1,1,1,1,1)<BR>+ (0,0,1,1,2)√2||[[Stericantellated 5-cube]]<br>cellirhombated penteractitriacontaditeron (carnit)<BR>(Stericantellated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node_1}}||242||2080||4720||3840||960
||[[File:Stericantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{&nbsp;}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{&nbsp;}×rr{3,3}]]|| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
||[[File:Stericantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{&nbsp;}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{&nbsp;}×rr{3,3}]]|| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!41
!41
||(1,1,1,1,1)<BR>+ (0,0,1,2,2)√2||[[Runcicantellated 5-cube]] (prin)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node}}||202||1240||2960||2880||960
||(1,1,1,1,1)<BR>+ (0,0,1,2,2)√2||[[Runcicantellated 5-cube]]<br>prismatorhombated penteract (prin)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node}}||202||1240||2960||2880||960
||[[File:Runcicantellated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
||[[File:Runcicantellated 5-cube verf.png|60px]]|| [[File:Runcitruncated 16-cell.png|60px]]<BR>[[Runcitruncated 16-cell|t<sub>0,2,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] ||
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
!42
!42
||(1,1,1,1,1)<BR>+ (0,0,1,2,3)√2||[[Stericantitruncated 5-orthoplex]] (cogart)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node_1}}||242||2320||5920||5760||1920
||(1,1,1,1,1)<BR>+ (0,0,1,2,3)√2||[[Stericantitruncated 5-orthoplex]]<br>celligreatorhombated triacontaditeron (cogart)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node_1}}||242||2320||5920||5760||1920
||[[File:Stericanitruncated 5-orthoplex verf.png|60px]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|{&nbsp;}×rr{3,4}]]|| [[File:Runcitruncated 16-cell.png|60px]]<BR>[[Runcitruncated 16-cell|t<sub>0,1,3</sub>{3,3,4}]]|| [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
||[[File:Stericanitruncated 5-orthoplex verf.png|60px]]|| [[File:Runcitruncated 16-cell.png|60px]]<BR>[[Runcitruncated 16-cell|t<sub>0,2,3</sub>{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{&nbsp;}]]|| [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{&nbsp;}×tr{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!43
!43
||(1,1,1,1,1)<BR>+ (0,1,1,1,1)√2||[[Truncated 5-cube]] (tan)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node}}||42||200||400||400||160
||(1,1,1,1,1)<BR>+ (0,1,1,1,1)√2||[[Truncated 5-cube]]<br>truncated penteract (tan)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node}}||42||200||400||400||160
|| [[File:Truncated 5-cube verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|| [[File:Truncated 5-cube verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!44
!44
||(1,1,1,1,1)<BR>+ (0,1,1,1,2)√2||[[Steritruncated 5-cube]] (capt)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node_1}}||242||1600||2960||2240||640
||(1,1,1,1,1)<BR>+ (0,1,1,1,2)√2||[[Steritruncated 5-cube]]<br>celliprismated triacontaditeron (capt)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node_1}}||242||1600||2960||2240||640
||[[File:Steritruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{&nbsp;}]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
||[[File:Steritruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{&nbsp;}]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!45
!45
||(1,1,1,1,1)<BR>+ (0,1,1,2,2)√2||[[Runcitruncated 5-cube]] (pattin)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node}}||202||1560||3760||3360||960
||(1,1,1,1,1)<BR>+ (0,1,1,2,2)√2||[[Runcitruncated 5-cube]]<br>prismatotruncated penteract (pattin)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node}}||202||1560||3760||3360||960
||[[File:Runcitruncated 5-cube verf.png|60px]]||[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{4,3,3}]] || {&nbsp;}×t{4,3} || [[File:6-8 duoprism.png|60px]]<BR>[[6-8 duoprism|{6}×{8}]]|| {&nbsp;}×t{3,3} || t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Runcitruncated 5-cube verf.png|60px]]||[[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]] || - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{&nbsp;}×r{3,3}]] || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!46
!46
||(1,1,1,1,1)<BR>+ (0,1,1,2,3)√2||[[Steriruncitruncated 5-cube]] (captint)<BR>(Steriruncitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node_1}}||242||2160||5760||5760||1920
||(1,1,1,1,1)<BR>+ (0,1,1,2,3)√2||[[Steriruncitruncated 5-cube]]<br>celliprismatotruncated penteractitriacontaditeron (captint)<BR>(Steriruncitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node_1}}||242||2160||5760||5760||1920
||[[File:Steriruncitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{&nbsp;}]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Steriruncitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{&nbsp;}]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!47
!47
||(1,1,1,1,1)<BR>+ (0,1,2,2,2)√2||[[Cantitruncated 5-cube]] (girn)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node}}||122||680||1520||1600||640
||(1,1,1,1,1)<BR>+ (0,1,2,2,2)√2||[[Cantitruncated 5-cube]]<br>great rhombated penteract (girn)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node}}||122||680||1520||1600||640
||[[File:Canitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR>[[Cantitruncated tesseract|tr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]
||[[File:Canitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR>[[Cantitruncated tesseract|tr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{&nbsp;}×{3,3}]]|| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!48
!48
||(1,1,1,1,1)<BR>+ (0,1,2,2,3)√2||[[Stericantitruncated 5-cube]] (cogrin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node_1}}||242||2400||6000||5760||1920
||(1,1,1,1,1)<BR>+ (0,1,2,2,3)√2||[[Stericantitruncated 5-cube]]<br>celligreatorhombated penteract (cogrin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node_1}}||242||2400||6000||5760||1920
||[[File:Stericanitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR> [[Cantitruncated tesseract|tr{4,3,3}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{&nbsp;}×t<sub>0,2</sub>{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
||[[File:Stericanitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR> [[Cantitruncated tesseract|tr{4,3,3}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{&nbsp;}×rr{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] ||
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
!49
!49
||(1,1,1,1,1)<BR>+ (0,1,2,3,3)√2||[[Runcicantitruncated 5-cube]] (gippin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node}}||202||1560||4240||4800||1920
||(1,1,1,1,1)<BR>+ (0,1,2,3,3)√2||[[Runcicantitruncated 5-cube]]<br>great prismated penteract (gippin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node}}||202||1560||4240||4800||1920
||[[File:Runcicantitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[Omnitruncated tesseract|t<sub>0,1,2,3</sub>{4,3,3}]]|| - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]]
||[[File:Runcicantitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[Omnitruncated tesseract|t<sub>0,1,2,3</sub>{4,3,3}]]|| - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{&nbsp;}×t{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] ||
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
!50
!50
||(1,1,1,1,1)<BR>+ (0,1,2,3,4)√2||[[Omnitruncated 5-cube]] (gacnet)<BR>(omnitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node_1}}||242||2640||8160||9600||3840
||(1,1,1,1,1)<BR>+ (0,1,2,3,4)√2||[[Omnitruncated 5-cube]]<br>great cellated penteractitriacontaditeron (gacnet)<BR>(omnitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node_1}}||242||2640||8160||9600||3840
|| [[File:Omnitruncated 5-cube verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Omnitruncated tetrahedral prism|{&nbsp;}×tr{3,3}]]|| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|| [[File:Omnitruncated 5-cube verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{&nbsp;}]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Omnitruncated tetrahedral prism|{&nbsp;}×tr{3,3}]]|| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] ||
|- BGCOLOR="#d0f0f0"
!51
|
|[[5-demicube]]<br>hemipenteract (hin)<br>{{CDD|node_h1|4|node|3|node|3|node|3|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node}}
|26
|120
|160
|80
|16
|[[File:Demipenteract verf.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]]
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]]
| -
| -
| -
| -
|(16)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!52
|
|[[Cantic 5-cube]]<br>Truncated hemipenteract (thin)<br>{{CDD|node_h1|4|node|3|node_1|3|node|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node}}
|42
|280
|640
|560
|160
|[[File:Truncated 5-demicube verf.png|60px]]
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]]
| -
| -
| -
|(16)<br>[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!53
|
| [[Runcic 5-cube]]<br>Small rhombated hemipenteract (sirhin)<br>{{CDD|node_h1|4|node|3|node|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node}}
|42
|360
|880
|720
|160
|
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]]
| -
| -
| -
|(16)<br>[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!54
|
| [[Steric 5-cube]]<br>Small prismated hemipenteract (siphin)<br>{{CDD|node_h1|4|node|3|node|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node|3|node_1}}
|82
|480
|720
|400
|80
|
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]]
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]]
| -
| -
|(16)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!55
|
| [[Runcicantic 5-cube]]<br>Great rhombated hemipenteract (girhin)<br>{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}}
|42
|360
|1040
|1200
|480
|
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]]
| -
| -
| -
|(16)<br>[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!56
|
| [[Stericantic 5-cube]]<br>Prismatotruncated hemipenteract (pithin)<br>{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}}
|82
|720
|1840
|1680
|480
|
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]]
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]]
| -
| -
|(16)<br>[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|rr{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!57
|
|[[Steriruncic 5-cube]]<br>Prismatorhombated hemipenteract (pirhin)<br>{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}}
|82
|560
|1280
|1120
|320
|
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]]
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]]
| -
| -
|(16)<br>[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!58
|
|[[Steriruncicantic 5-cube]]<br>Great prismated hemipenteract (giphin)<br>{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}}
|82
|720
|2080
|2400
|960
|
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]]
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]]
| -
| -
|(16)<br>[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]]
|(16)<br>[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<br>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|- BGCOLOR="#d0f0f0"
!Nonuniform
|
|Alternated runcicantitruncated 5-orthoplex<br>Snub prismatotriacontaditeron (snippit)<BR>Snub hemipenteract (snahin)<BR>{{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}} = {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}}
|1122
|6240
|10880
|6720
|960
|
|[[File:Schlegel half-solid alternated cantitruncated 16-cell.png|60px]]<br>[[Snub 24-cell|sr{3,3,4}]]
|[[Truncated octahedral prism#Related polytopes|sr{2,3,4}]]
|[[Duoprism#Duoantiprism|sr{3,2,4}]]
| -
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|(960)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]]
|- BGCOLOR="#d0f0f0"
!Nonuniform
|
|Edge-snub 5-orthoplex<br>Pyritosnub penteract (pysnan)<BR>{{CDD|node_1|4|node_h|3|node_h|3|node_h|3|node_h}}
|1202
|7920
|15360
|10560
|1920
|
|sr<sub>3</sub>{3,3,4}
|[[Truncated_cuboctahedral_prism#Related_polytopes|sr<sub>3</sub>{2,3,4}]]
|sr<sub>3</sub>{3,2,4}
|[[File:Icosahedral prism.png|60px]]<br>[[Icosahedral prism|s{3,3}×{&nbsp;}]]
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|(960)<br>[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|Irr. {3,3}×{&nbsp;}]]
|- BGCOLOR="#d0f0f0"
!Nonuniform
|
|Snub 5-cube<br>Snub penteract (snan)<BR>{{CDD|node_h|4|node_h|3|node_h|3|node_h|3|node_h}}
|2162
|12240
|21600
|13440
|960
|
|[[Runcinated_tesseracts#Full_snub_tesseract|ht<sub>0,1,2,3</sub>{3,3,4}]]
|[[Truncated_cuboctahedral_prism#Related_polytopes|ht<sub>0,1,2,3</sub>{2,3,4}]]
|[[Duoprism#Duoantiprism|ht<sub>0,1,2,3</sub>{3,2,4}]]
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]]
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|(1920)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]]
|}
|}


=== The D<sub>5</sub> family ===
=== The D<sub>5</sub> family ===
{{See|D5 polytope}}

The [[Coxeter group#Finite Coxeter groups|D<sub>5</sub> family]] has symmetry of order 1920 (5! x 2<sup>4</sup>).
The [[Coxeter group#Finite Coxeter groups|D<sub>5</sub> family]] has symmetry of order 1920 (5! x 2<sup>4</sup>).


This family has 23 Wythoffian uniform polyhedra, from ''3x8-1'' permutations of the D<sub>5</sub> [[Coxeter diagram]] with one or more rings. 15 (2x8-1) are repeated from the B<sub>5</sub> family and 8 are unique to this family.
This family has 23 Wythoffian uniform polytopes, from ''3×8-1'' permutations of the D<sub>5</sub> [[Coxeter diagram]] with one or more rings. 15 (2×8-1) are repeated from the B<sub>5</sub> family and 8 are unique to this family, though even those 8 duplicate the alternations from the B<sub>5</sub> family.


In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of {{CDD|node|3|node|3|node|3|node}} element are identical and the symmetry doubles: the relations are {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}... duplicating uniform 5-polytopes 51 through 58 above.
See symmetry graphs: [[List of D5 polytopes]]


{| class="wikitable"
{| class="wikitable"
Line 676: Line 872:
!colspan=5|Element counts
!colspan=5|Element counts
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!rowspan=2|[[Vertex figure|Vertex<BR>figure]]
!colspan=5 |Facets by location: [[File:CD B5 nodes.png]] [3<sup>1,2,1</sup>]
!colspan=6 |Facets by location: [[File:CD B5 nodes.png]] [3<sup>1,2,1</sup>]
|-
|-
!4
!4
Line 688: Line 884:
! {{CDD|node|2|node|3|node|2|node}}<BR>[&nbsp;]×[3]×[&nbsp;]<BR>(80)
! {{CDD|node|2|node|3|node|2|node}}<BR>[&nbsp;]×[3]×[&nbsp;]<BR>(80)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(16)
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(16)
! Alt
|-
|-
!51
![51]
| {{CDD|nodes_10ru|split2|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node}}<BR>h{4,3,3,3}, [[5-demicube]]<BR>Hemipenteract (hin)
| {{CDD|nodes_10ru|split2|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node}}<BR>h{4,3,3,3}, [[5-demicube]]<BR>Hemipenteract (hin)
| 26
| 26
Line 696: Line 893:
| 80
| 80
| 16
| 16
| [[File:Demipenteract verf.png|50px]]<BR>[[rectified 5-cell|t<sub>1</sub>{3,3,3}]]
| [[File:Demipenteract verf.png|50px]]<BR>[[rectified 5-cell|r{3,3,3}]]
| [[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|{3,3,3}]]
| {3,3,3}
| [[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]]
| t<sub>0</sub>(1<sub>11</sub>)
| -
| -
| -
| -
| -
| -
|
|-
|-
!52
![52]
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node}}<BR>h<sub>2</sub>{4,3,3,3}, [[cantic 5-cube]]<BR>Truncated hemipenteract (thin)
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node}}<BR>h<sub>2</sub>{4,3,3,3}, [[cantic 5-cube]]<BR>Truncated hemipenteract (thin)
| 42
| 42
Line 711: Line 909:
| 160
| 160
|[[File:Truncated 5-demicube verf.png|60px]]
|[[File:Truncated 5-demicube verf.png|60px]]
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]]
|
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]]
|
|
| -
|
| -
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]]
|
|
|-
|-
!53
![53]
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node}}<BR>h<sub>3</sub>{4,3,3,3}, [[runcic 5-cube]]<BR>Small rhombated hemipenteract (sirhin)
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node}}<BR>h<sub>3</sub>{4,3,3,3}, [[runcic 5-cube]]<BR>Small rhombated hemipenteract (sirhin)
| 42
| 42
Line 725: Line 924:
| 160
| 160
|
|
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]]
|
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]]
|
|
| -
|
| -
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]]
|
|
|-
|-
!54
![54]
| {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1}}<BR>h<sub>4</sub>{4,3,3,3}, [[steric 5-cube]]<BR>Small prismated hemipenteract (siphin)
| {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1}}<BR>h<sub>4</sub>{4,3,3,3}, [[steric 5-cube]]<BR>Small prismated hemipenteract (siphin)
| 82
| 82
Line 739: Line 939:
| 80
| 80
|
|
|[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]]
|
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]]
|
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]]
| -
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]
|
|
|
|
|-
|-
!55
![55]
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}}<BR>h<sub>2,3</sub>{4,3,3,3}, [[runcicantic 5-cube]]<BR>Great rhombated hemipenteract (girhin)
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}}<BR>h<sub>2,3</sub>{4,3,3,3}, [[runcicantic 5-cube]]<BR>Great rhombated hemipenteract (girhin)
| 42
| 42
Line 753: Line 954:
| 480
| 480
|
|
|[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]]
|
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]]
| -
| -
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]]
|
|
|
|
|
|-
|-
!56
![56]
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}<BR>h<sub>2,4</sub>{4,3,3,3}, [[stericantic 5-cube]]<BR>Prismatotruncated hemipenteract (pithin)
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}<BR>h<sub>2,4</sub>{4,3,3,3}, [[stericantic 5-cube]]<BR>Prismatotruncated hemipenteract (pithin)
| 82
| 82
Line 767: Line 969:
| 480
| 480
|
|
|[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]]
|
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]]
| -
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|rr{3,3,3}]]
|
|
|
|
|-
|-
!57
![57]
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}<BR>h<sub>3,4</sub>{4,3,3,3}, [[steriruncic 5-cube]]<BR>Prismatorhombated hemipenteract (pirhin)
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}<BR>h<sub>3,4</sub>{4,3,3,3}, [[steriruncic 5-cube]]<BR>Prismatorhombated hemipenteract (pirhin)
| 82
| 82
Line 781: Line 984:
| 320
| 320
|
|
|[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]]
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]]
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]]
| -
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]]
|
|
|
|
|
|
|-
|-
!58
![58]
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}<BR>h<sub>2,3,4</sub>{4,3,3,3}, [[steriruncicantic 5-cube]]<BR>Great prismated hemipenteract (giphin)
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}<BR>h<sub>2,3,4</sub>{4,3,3,3}, [[steriruncicantic 5-cube]]<BR>Great prismated hemipenteract (giphin)
| 82
| 82
Line 795: Line 999:
| 960
| 960
|
|
| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<br>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]]
|
| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]]
| [[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]]
| -
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]]
|
|
|- bgcolor="#D0F0F0"
! Nonuniform
| {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} = {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}}<BR>ht<sub>0,1,2,3</sub>{3,3,3,4}, alternated runcicantitruncated 5-orthoplex<br>Snub hemipenteract (snahin)
|1122
|6240
|10880
|6720
|960
|
|
| [[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
|
| [[File:Schlegel half-solid alternated cantitruncated 16-cell.png|60px]]<br>[[Snub 24-cell|sr{3,3,4}]]
|
| [[Truncated octahedral prism#Related polytopes|sr{2,3,4}]]
| [[Duoprism#Duoantiprism|sr{3,2,4}]]
| [[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]]
| (960)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]]
|}
|}


=== Uniform prismatic forms ===
=== Uniform prismatic forms ===


There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s:
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s. For simplicity, most alternations are not shown.


==== A<sub>4</sub> × A<sub>1</sub> ====
==== A<sub>4</sub> × A<sub>1</sub> ====


This prismatic family has [[Uniform polychoron#The A4 .5B3.2C3.2C3.5D family - .285-cell.29|9 forms]]:
This prismatic family has [[Uniform 4-polytope#The A4 .5B3.2C3.2C3.5D family - .285-cell.29|9 forms]]:


The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x A<sub>4</sub> family]] has symmetry of order 240 (2*5!).
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x A<sub>4</sub> family]] has symmetry of order 240 (2*5!).
Line 820: Line 1,040:
|-
|-
|59
|59
|{{CDD|node_1|3|node|3|node|3|node|2|node_1}} = {3,3,3}×{&nbsp;}<BR>[[5-cell prism]]
|{{CDD|node_1|3|node|3|node|3|node|2|node_1}} = {3,3,3}×{&nbsp;}<BR>[[5-cell prism]] (penp)
|7||20||30||25||10
|7||20||30||25||10
|-
|-
|60
|60
|{{CDD|node|3|node_1|3|node|3|node|2|node_1}} = r{3,3,3}×{&nbsp;}<BR>[[Rectified 5-cell prism]]
|{{CDD|node|3|node_1|3|node|3|node|2|node_1}} = r{3,3,3}×{&nbsp;}<BR>[[Rectified 5-cell prism]] (rappip)
|12||50||90||70||20
|12||50||90||70||20
|-
|-
|61
|61
|{{CDD|node_1|3|node_1|3|node|3|node|2|node_1}} = t{3,3,3}×{&nbsp;}<BR>[[Truncated 5-cell prism]]
|{{CDD|node_1|3|node_1|3|node|3|node|2|node_1}} = t{3,3,3}×{&nbsp;}<BR>[[Truncated 5-cell prism]] (tippip)
|12||50||100||100||40
|12||50||100||100||40
|-
|-
|62
|62
|{{CDD|node_1|3|node|3|node_1|3|node|2|node_1}} = rr{3,3,3}×{&nbsp;}<BR>[[Cantellated 5-cell prism]]
|{{CDD|node_1|3|node|3|node_1|3|node|2|node_1}} = rr{3,3,3}×{&nbsp;}<BR>[[Cantellated 5-cell prism]] (srippip)
|22||120||250||210||60
|22||120||250||210||60
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|63
|63
|{{CDD|node_1|3|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,3,3}×{&nbsp;}<BR>[[Runcinated 5-cell prism]]
|{{CDD|node_1|3|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,3,3}×{&nbsp;}<BR>[[Runcinated 5-cell prism]] (spiddip)
|32||130||200||140||40
|32||130||200||140||40
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|64
|64
|{{CDD|node|3|node_1|3|node_1|3|node|2|node_1}} = 2t{3,3,3}×{&nbsp;}<BR>[[Bitruncated 5-cell prism]]
|{{CDD|node|3|node_1|3|node_1|3|node|2|node_1}} = 2t{3,3,3}×{&nbsp;}<BR>[[Bitruncated 5-cell prism]] (decap)
|12||60||140||150||60
|12||60||140||150||60
|-
|-
|65
|65
|{{CDD|node_1|3|node_1|3|node_1|3|node|2|node_1}} = tr{3,3,3}×{&nbsp;}<BR>[[Cantitruncated 5-cell prism]]
|{{CDD|node_1|3|node_1|3|node_1|3|node|2|node_1}} = tr{3,3,3}×{&nbsp;}<BR>[[Cantitruncated 5-cell prism]] (grippip)
|22||120||280||300||120
|22||120||280||300||120
|-
|-
|66
|66
|{{CDD|node_1|3|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,3}×{&nbsp;}<BR>[[Runcitruncated 5-cell prism]]
|{{CDD|node_1|3|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,3}×{&nbsp;}<BR>[[Runcitruncated 5-cell prism]] (prippip)
|32||180||390||360||120
|32||180||390||360||120
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|67
|67
|{{CDD|node_1|3|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,3,3}×{&nbsp;}<BR>[[Omnitruncated 5-cell prism]]
|{{CDD|node_1|3|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,3,3}×{&nbsp;}<BR>[[Omnitruncated 5-cell prism]] (gippiddip)
|32||210||540||600||240
|32||210||540||600||240
|}
|}
Line 858: Line 1,078:
==== B<sub>4</sub> × A<sub>1</sub> ====
==== B<sub>4</sub> × A<sub>1</sub> ====


This prismatic family has [[Uniform polychoron#The B.2FC4 .5B4.2C3.2C3.5D family - .28tesseract.2F16-cell.29|16 forms]]. (Three are shared with [3,4,3]×[&nbsp;] family)
This prismatic family has [[Uniform 4-polytope#The B.2FC4 .5B4.2C3.2C3.5D family - .28tesseract.2F16-cell.29|16 forms]]. (Three are shared with [3,4,3]×[&nbsp;] family)


The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub>×B<sub>4</sub> family]] has symmetry of order 768 (2<sup>5</sup>4!).
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub>×B<sub>4</sub> family]] has symmetry of order 768 (2<sup>5</sup>4!).

The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes.


{| class="wikitable"
{| class="wikitable"
Line 869: Line 1,091:
! Facets|| Cells|| Faces|| Edges|| Vertices
! Facets|| Cells|| Faces|| Edges|| Vertices
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''[16]'''||{{CDD|node_1|4|node|3|node|3|node|2|node_1}} = {4,3,3}×{&nbsp;}<BR>Tesseractic prism<BR>(Same as [[5-cube]])
|'''[16]'''||{{CDD|node_1|4|node|3|node|3|node|2|node_1}} = {4,3,3}×{&nbsp;}<BR>Tesseractic prism (pent)<BR>(Same as [[5-cube]])
|10||40||80||80||32
|10||40||80||80||32
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''68'''||{{CDD|node|4|node_1|3|node|3|node|2|node_1}} = r{4,3,3}×{&nbsp;}<BR>[[Rectified tesseractic prism]]
|'''68'''||{{CDD|node|4|node_1|3|node|3|node|2|node_1}} = r{4,3,3}×{&nbsp;}<BR>[[Rectified tesseractic prism]] (rittip)
|26||136||272||224||64
|26||136||272||224||64
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''69'''||{{CDD|node_1|4|node_1|3|node|3|node|2|node_1}} = t{4,3,3}×{&nbsp;}<BR>[[Truncated tesseractic prism]]
|'''69'''||{{CDD|node_1|4|node_1|3|node|3|node|2|node_1}} = t{4,3,3}×{&nbsp;}<BR>[[Truncated tesseractic prism]] (tattip)
|26||136||304||320||128
|26||136||304||320||128
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''70'''||{{CDD|node_1|4|node|3|node_1|3|node|2|node_1}} = rr{4,3,3}×{&nbsp;}<BR>[[Cantellated tesseractic prism]]
|'''70'''||{{CDD|node_1|4|node|3|node_1|3|node|2|node_1}} = rr{4,3,3}×{&nbsp;}<BR>[[Cantellated tesseractic prism]] (srittip)
|58||360||784||672||192
|58||360||784||672||192
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''71'''||{{CDD|node_1|4|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{4,3,3}×{&nbsp;}<BR>[[Runcinated tesseractic prism]]
|'''71'''||{{CDD|node_1|4|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{4,3,3}×{&nbsp;}<BR>[[Runcinated tesseractic prism]] (sidpithip)
|82||368||608||448||128
|82||368||608||448||128
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''72'''||{{CDD|node|4|node_1|3|node_1|3|node|2|node_1}} = 2t{4,3,3}×{&nbsp;}<BR>[[Bitruncated tesseractic prism]]
|'''72'''||{{CDD|node|4|node_1|3|node_1|3|node|2|node_1}} = 2t{4,3,3}×{&nbsp;}<BR>[[Bitruncated tesseractic prism]] (tahp)
|26||168||432||480||192
|26||168||432||480||192
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''73'''||{{CDD|node_1|4|node_1|3|node_1|3|node|2|node_1}} = tr{4,3,3}×{&nbsp;}<BR>[[Cantitruncated tesseractic prism]]
|'''73'''||{{CDD|node_1|4|node_1|3|node_1|3|node|2|node_1}} = tr{4,3,3}×{&nbsp;}<BR>[[Cantitruncated tesseractic prism]] (grittip)
|58||360||880||960||384
|58||360||880||960||384
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''74'''||{{CDD|node_1|4|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{4,3,3}×{&nbsp;}<BR>[[Runcitruncated tesseractic prism]]
|'''74'''||{{CDD|node_1|4|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{4,3,3}×{&nbsp;}<BR>[[Runcitruncated tesseractic prism]] (prohp)
|82||528||1216||1152||384
|82||528||1216||1152||384
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''75'''||{{CDD|node_1|4|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{4,3,3}×{&nbsp;}<BR>[[Omnitruncated tesseractic prism]]
|'''75'''||{{CDD|node_1|4|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{4,3,3}×{&nbsp;}<BR>[[Omnitruncated tesseractic prism]] (gidpithip)
|82||624||1696||1920||768
|82||624||1696||1920||768
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''76'''||{{CDD|node|4|node|3|node|3|node_1|2|node_1}} = {3,3,4}×{&nbsp;}<BR>[[16-cell prism]]
|'''76'''||{{CDD|node|4|node|3|node|3|node_1|2|node_1}} = {3,3,4}×{&nbsp;}<BR>[[16-cell prism]] (hexip)
|18||64||88||56||16
|18||64||88||56||16
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''77'''||{{CDD|node|4|node|3|node_1|3|node|2|node_1}} = r{3,3,4}×{&nbsp;}<BR>[[Rectified 16-cell prism]]<BR>(Same as '''24-cell prism''')
|'''77'''||{{CDD|node|4|node|3|node_1|3|node|2|node_1}} = r{3,3,4}×{&nbsp;}<BR>[[Rectified 16-cell prism]] (icope)<BR>(Same as '''24-cell prism''')
|26||144||288||216||48
|26||144||288||216||48
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''78'''||{{CDD|node|4|node|3|node_1|3|node_1|2|node_1}} = t{3,3,4}×{&nbsp;}<BR>[[Truncated 16-cell prism]]
|'''78'''||{{CDD|node|4|node|3|node_1|3|node_1|2|node_1}} = t{3,3,4}×{&nbsp;}<BR>[[Truncated 16-cell prism]] (thexip)
|26||144||312||288||96
|26||144||312||288||96
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''79'''||{{CDD|node|4|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,4}×{&nbsp;}<BR>[[Cantellated 16-cell prism]]<BR>(Same as '''rectified 24-cell prism''')
|'''79'''||{{CDD|node|4|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,4}×{&nbsp;}<BR>[[Cantellated 16-cell prism]] (ricope)<BR>(Same as '''rectified 24-cell prism''')
|50||336||768||672||192
|50||336||768||672||192
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''80'''||{{CDD|node|4|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,4}×{&nbsp;}<BR>[[Cantitruncated 16-cell prism]]<BR>(Same as '''truncated 24-cell prism''')
|'''80'''||{{CDD|node|4|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,4}×{&nbsp;}<BR>[[Cantitruncated 16-cell prism]] (ticope)<BR>(Same as '''truncated 24-cell prism''')
|50||336||864||960||384
|50||336||864||960||384
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''81'''||{{CDD|node_1|4|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,4}×{&nbsp;}<BR>[[Runcitruncated 16-cell prism]]
|'''81'''||{{CDD|node_1|4|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,4}×{&nbsp;}<BR>[[Runcitruncated 16-cell prism]] (prittip)
|82||528||1216||1152||384
|82||528||1216||1152||384
|- BGCOLOR="#a0e0f0"
|- BGCOLOR="#a0e0f0"
|'''82'''||{{CDD|node_h|3|node_h|3|node_h|4|node|2|node_1}} = sr{3,3,4}×{&nbsp;}<BR>[[snub 24-cell prism]]
|'''82'''||{{CDD|node_h|3|node_h|3|node_h|4|node|2|node_1}} = sr{3,3,4}×{&nbsp;}<BR>[[snub 24-cell prism]] (sadip)
|146||768||1392||960||192
|146||768||1392||960||192
|- BGCOLOR="#a0e0f0"
|Nonuniform||{{CDD|node_h|2x|node_1|3|node|3|node|4|node_h}}<br>rectified tesseractic alterprism (rita)
|50||288||464||288||64
|- BGCOLOR="#a0e0f0"
|Nonuniform||{{CDD|node_h|2x|node|3|node_1|3|node|4|node_h}}<br>truncated 16-cell alterprism (thexa)
|26||168||384||336||96
|- BGCOLOR="#a0e0f0"
|Nonuniform||{{CDD|node_h|2x|node_1|3|node_1|3|node|4|node_h}}<br>bitruncated tesseractic alterprism (taha)
|50||288||624||576||192
|}
|}


==== F<sub>4</sub> × A<sub>1</sub> ====
==== F<sub>4</sub> × A<sub>1</sub> ====


This prismatic family has [[Uniform polychoron#The F4 .5B3.2C4.2C3.5D family - .2824-cell.29|10 forms]].
This prismatic family has [[Uniform 4-polytope#The F4 .5B3.2C4.2C3.5D family - .2824-cell.29|10 forms]].


The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x F<sub>4</sub> family]] has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3<sup>+</sup>,4,3,2] symmetry, order 1152.
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x F<sub>4</sub> family]] has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3<sup>+</sup>,4,3,2] symmetry, order 1152.
Line 931: Line 1,162:
! Facets|| Cells|| Faces|| Edges|| Vertices
! Facets|| Cells|| Faces|| Edges|| Vertices
|-
|-
|[77]||{{CDD|node_1|3|node|4|node|3|node|2|node_1}} = {3,4,3}×{&nbsp;}<BR>[[24-cell prism]]
|[77]||{{CDD|node_1|3|node|4|node|3|node|2|node_1}} = {3,4,3}×{&nbsp;}<BR>[[24-cell prism]] (icope)
|26||144||288||216||48
|26||144||288||216||48
|-
|-
|[79]||{{CDD|node|3|node_1|4|node|3|node|2|node_1}} = r{3,4,3}×{&nbsp;}<BR>[[rectified 24-cell prism]]
|[79]||{{CDD|node|3|node_1|4|node|3|node|2|node_1}} = r{3,4,3}×{&nbsp;}<BR>[[rectified 24-cell prism]] (ricope)
|50||336||768||672||192
|50||336||768||672||192
|-
|-
|[80]||{{CDD|node_1|3|node_1|4|node|3|node|2|node_1}} = t{3,4,3}×{&nbsp;}<BR>[[truncated 24-cell prism]]
|[80]||{{CDD|node_1|3|node_1|4|node|3|node|2|node_1}} = t{3,4,3}×{&nbsp;}<BR>[[truncated 24-cell prism]] (ticope)
|50||336||864||960||384
|50||336||864||960||384
|-
|-
|'''83'''||{{CDD|node_1|3|node|4|node_1|3|node|2|node_1}} = rr{3,4,3}×{&nbsp;}<BR>[[cantellated 24-cell prism]]
|'''83'''||{{CDD|node_1|3|node|4|node_1|3|node|2|node_1}} = rr{3,4,3}×{&nbsp;}<BR>[[cantellated 24-cell prism]] (sricope)
|146||1008||2304||2016||576
|146||1008||2304||2016||576
|- BGCOLOR="#b0f0b0"
|- BGCOLOR="#b0f0b0"
|'''84'''||{{CDD|node_1|3|node|4|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,4,3}×{&nbsp;}<BR>[[runcinated 24-cell prism]]
|'''84'''||{{CDD|node_1|3|node|4|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,4,3}×{&nbsp;}<BR>[[runcinated 24-cell prism]] (spiccup)
|242||1152||1920||1296||288
|242||1152||1920||1296||288
|- BGCOLOR="#b0f0b0"
|- BGCOLOR="#b0f0b0"
|'''85'''||{{CDD|node|3|node_1|4|node_1|3|node|2|node_1}} = 2t{3,4,3}×{&nbsp;}<BR> [[bitruncated 24-cell prism]]
|'''85'''||{{CDD|node|3|node_1|4|node_1|3|node|2|node_1}} = 2t{3,4,3}×{&nbsp;}<BR> [[bitruncated 24-cell prism]] (contip)
|50||432||1248||1440||576
|50||432||1248||1440||576
|-
|-
|'''86'''||{{CDD|node_1|3|node_1|4|node_1|3|node|2|node_1}} = tr{3,4,3}×{&nbsp;}<BR>[[cantitruncated 24-cell prism]]
|'''86'''||{{CDD|node_1|3|node_1|4|node_1|3|node|2|node_1}} = tr{3,4,3}×{&nbsp;}<BR>[[cantitruncated 24-cell prism]] (gricope)
|146||1008||2592||2880||1152
|146||1008||2592||2880||1152
|-
|-
|'''87'''||{{CDD|node_1|3|node_1|4|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,4,3}×{&nbsp;}<BR>[[runcitruncated 24-cell prism]]
|'''87'''||{{CDD|node_1|3|node_1|4|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,4,3}×{&nbsp;}<BR>[[runcitruncated 24-cell prism]] (pricope)
|242||1584||3648||3456||1152
|242||1584||3648||3456||1152
|- BGCOLOR="#b0f0b0"
|- BGCOLOR="#b0f0b0"
|'''88'''||{{CDD|node_1|3|node_1|4|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,4,3}×{&nbsp;}<BR> [[omnitruncated 24-cell prism]]
|'''88'''||{{CDD|node_1|3|node_1|4|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,4,3}×{&nbsp;}<BR> [[omnitruncated 24-cell prism]] (gippiccup)
|242||1872||5088||5760||2304
|242||1872||5088||5760||2304
|- BGCOLOR="#b0e0f0"
|- BGCOLOR="#b0e0f0"
|[82]||{{CDD|node_h|3|node_h|4|node|3|node|2|node_1}} = s{3,4,3}×{&nbsp;}<BR>[[snub 24-cell prism]]
|[82]||{{CDD|node_h|3|node_h|4|node|3|node|2|node_1}} = s{3,4,3}×{&nbsp;}<BR>[[snub 24-cell prism]] (sadip)
|146||768||1392||960||192
|146||768||1392||960||192
|}
|}
Line 964: Line 1,195:
==== H<sub>4</sub> × A<sub>1</sub> ====
==== H<sub>4</sub> × A<sub>1</sub> ====


This prismatic family has [[Uniform polychoron#The H4 .5B5.2C3.2C3.5D family .E2.80.94 .28120-cell.2F600-cell.29|15 forms]]:
This prismatic family has [[Uniform 4-polytope#The H4 .5B5.2C3.2C3.5D family .E2.80.94 .28120-cell.2F600-cell.29|15 forms]]:


The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x H<sub>4</sub> family]] has symmetry of order 28800 (2*14400).
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x H<sub>4</sub> family]] has symmetry of order 28800 (2*14400).
Line 975: Line 1,206:
! Facets|| Cells|| Faces|| Edges|| Vertices
! Facets|| Cells|| Faces|| Edges|| Vertices
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''89'''||{{CDD|node_1|5|node|3|node|3|node|2|node_1}} = {5,3,3}×{&nbsp;}<BR>[[120-cell prism]]
|'''89'''||{{CDD|node_1|5|node|3|node|3|node|2|node_1}} = {5,3,3}×{&nbsp;}<BR>[[120-cell prism]] (hipe)
|122||960||2640||3000||1200
|122||960||2640||3000||1200
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''90'''||{{CDD|node|5|node_1|3|node|3|node|2|node_1}} = r{5,3,3}×{&nbsp;}<BR>[[Rectified 120-cell prism]]
|'''90'''||{{CDD|node|5|node_1|3|node|3|node|2|node_1}} = r{5,3,3}×{&nbsp;}<BR>[[Rectified 120-cell prism]] (rahipe)
|722||4560||9840||8400||2400
|722||4560||9840||8400||2400
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''91'''||{{CDD|node_1|5|node_1|3|node|3|node|2|node_1}} = t{5,3,3}×{&nbsp;}<BR>[[Truncated 120-cell prism]]
|'''91'''||{{CDD|node_1|5|node_1|3|node|3|node|2|node_1}} = t{5,3,3}×{&nbsp;}<BR>[[Truncated 120-cell prism]] (thipe)
|722||4560||11040||12000||4800
|722||4560||11040||12000||4800
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''92'''||{{CDD|node_1|5|node|3|node_1|3|node|2|node_1}} = rr{5,3,3}×{&nbsp;}<BR>[[Cantellated 120-cell prism]]
|'''92'''||{{CDD|node_1|5|node|3|node_1|3|node|2|node_1}} = rr{5,3,3}×{&nbsp;}<BR>[[Cantellated 120-cell prism]] (srahip)
|1922||12960||29040||25200||7200
|1922||12960||29040||25200||7200
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''93'''||{{CDD|node_1|5|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{5,3,3}×{&nbsp;}<BR>[[Runcinated 120-cell prism]]
|'''93'''||{{CDD|node_1|5|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{5,3,3}×{&nbsp;}<BR>[[Runcinated 120-cell prism]] (sidpixhip)
|2642||12720||22080||16800||4800
|2642||12720||22080||16800||4800
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''94'''||{{CDD|node|5|node_1|3|node_1|3|node|2|node_1}} = 2t{5,3,3}×{&nbsp;}<BR>[[Bitruncated 120-cell prism]]
|'''94'''||{{CDD|node|5|node_1|3|node_1|3|node|2|node_1}} = 2t{5,3,3}×{&nbsp;}<BR>[[Bitruncated 120-cell prism]] (xhip)
|722||5760||15840||18000||7200
|722||5760||15840||18000||7200
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''95'''||{{CDD|node_1|5|node_1|3|node_1|3|node|2|node_1}} = tr{5,3,3}×{&nbsp;}<BR>[[Cantitruncated 120-cell prism]]
|'''95'''||{{CDD|node_1|5|node_1|3|node_1|3|node|2|node_1}} = tr{5,3,3}×{&nbsp;}<BR>[[Cantitruncated 120-cell prism]] (grahip)
|1922||12960||32640||36000||14400
|1922||12960||32640||36000||14400
|- BGCOLOR="#f0e0e0"
|- BGCOLOR="#f0e0e0"
|'''96'''||{{CDD|node_1|5|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{5,3,3}×{&nbsp;}<BR>[[Runcitruncated 120-cell prism]]
|'''96'''||{{CDD|node_1|5|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{5,3,3}×{&nbsp;}<BR>[[Runcitruncated 120-cell prism]] (prixip)
|2642||18720||44880||43200||14400
|2642||18720||44880||43200||14400
|- BGCOLOR="#e0f0e0"
|- BGCOLOR="#e0f0e0"
|'''97'''||{{CDD|node_1|5|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{5,3,3}×{&nbsp;}<BR>[[Omnitruncated 120-cell prism]]
|'''97'''||{{CDD|node_1|5|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{5,3,3}×{&nbsp;}<BR>[[Omnitruncated 120-cell prism]] (gidpixhip)
|2642||22320||62880||72000||28800
|2642||22320||62880||72000||28800
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''98'''||{{CDD|node|5|node|3|node|3|node_1|2|node_1}} = {3,3,5}×{&nbsp;}<BR>[[600-cell prism]]
|'''98'''||{{CDD|node|5|node|3|node|3|node_1|2|node_1}} = {3,3,5}×{&nbsp;}<BR>[[600-cell prism]] (exip)
|602||2400||3120||1560||240
|602||2400||3120||1560||240
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''99'''||{{CDD|node|5|node|3|node_1|3|node|2|node_1}} = r{3,3,5}×{&nbsp;}<BR>[[Rectified 600-cell prism]]
|'''99'''||{{CDD|node|5|node|3|node_1|3|node|2|node_1}} = r{3,3,5}×{&nbsp;}<BR>[[Rectified 600-cell prism]] (roxip)
|722||5040||10800||7920||1440
|722||5040||10800||7920||1440
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''100'''||{{CDD|node|5|node|3|node_1|3|node_1|2|node_1}} = t{3,3,5}×{&nbsp;}<BR>[[Truncated 600-cell prism]]
|'''100'''||{{CDD|node|5|node|3|node_1|3|node_1|2|node_1}} = t{3,3,5}×{&nbsp;}<BR>[[Truncated 600-cell prism]] (texip)
|722||5040||11520||10080||2880
|722||5040||11520||10080||2880
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''101'''||{{CDD|node|5|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,5}×{&nbsp;}<BR>[[Cantellated 600-cell prism]]
|'''101'''||{{CDD|node|5|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,5}×{&nbsp;}<BR>[[Cantellated 600-cell prism]] (srixip)
|1442||11520||28080||25200||7200
|1442||11520||28080||25200||7200
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''102'''||{{CDD|node|5|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,5}×{&nbsp;}<BR>[[Cantitruncated 600-cell prism]]
|'''102'''||{{CDD|node|5|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,5}×{&nbsp;}<BR>[[Cantitruncated 600-cell prism]] (grixip)
|1442||11520||31680||36000||14400
|1442||11520||31680||36000||14400
|- BGCOLOR="#e0e0f0"
|- BGCOLOR="#e0e0f0"
|'''103'''||{{CDD|node_1|5|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,5}×{&nbsp;}<BR>[[Runcitruncated 600-cell prism]]
|'''103'''||{{CDD|node_1|5|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,5}×{&nbsp;}<BR>[[Runcitruncated 600-cell prism]] (prahip)
|2642||18720||44880||43200||14400
|2642||18720||44880||43200||14400
|}
==== Duoprism prisms ====
Uniform duoprism prisms, {''p''}×{''q''}×{ }, form an infinite class for all integers ''p'',''q''>2. {4}×{4}×{ } makes a lower symmetry form of the [[5-cube]].

The extended [[f-vector]] of {''p''}×{''q''}×{&nbsp;} is computed as (''p'',''p'','''1''')*(''q'',''q'','''1''')*(2,'''1''') = (2''pq'',5''pq'',4''pq''+2''p''+2''q'',3''pq''+3''p''+3''q'',''p''+''q''+2,'''1''').
{| class="wikitable"
|-
!rowspan=2|[[Coxeter diagram]]
!rowspan=2|Names
!colspan=6|Element counts
|-
! 4-faces
! Cells
! Faces
! Edges
! Vertices
|- align=center
|{{CDD|branch_10|labelp|2|branch_10|labelq|2|node_1}}||{''p''}×{''q''}×{&nbsp;}<ref>{{cite web | url=https://bendwavy.org/klitzing/incmats/n-m-dippip.htm | title=N,k-dippip }}</ref>||''p''+''q''+2||3''pq''+3''p''+3''q''||4''pq''+2''p''+2''q''||5''pq''||2''pq''
|- align=center
|{{CDD|branch_10|labelp|2|branch_10|labelp|2|node_1}}||{''p''}<sup>2</sup>×{&nbsp;}||2(''p''+1)||3''p''(''p''+1)||4''p''(''p''+1)||5''p''<sup>2</sup>||2''p''<sup>2</sup>
|- align=center
|{{CDD|branch_10|2|branch_10|2|node_1}}||{3}<sup>2</sup>×{&nbsp;}||8||36||48||45||18
|- align=center
|{{CDD|branch_10|label4|2|branch_10|label4|2|node_1}}||{4}<sup>2</sup>×{ } = [[5-cube]]||10||40||80||80||32
|}
|}


Line 1,032: Line 1,287:
! Facets|| Cells|| Faces|| Edges|| Vertices
! Facets|| Cells|| Faces|| Edges|| Vertices
|-
|-
|'''104'''|| [[grand antiprism prism]]<BR>Gappip|| 322|| 1360|| 1940|| 1100|| 200
|'''104'''|| [[grand antiprism prism]] (gappip)<ref>{{cite web | url=https://bendwavy.org/klitzing/incmats/gappip.htm | title=Gappip }}</ref>|| 322|| 1360|| 1940|| 1100|| 200
|}
|}


Line 1,041: Line 1,296:
Here are the primary operators available for constructing and naming the uniform 5-polytopes.
Here are the primary operators available for constructing and naming the uniform 5-polytopes.


The last operation, the snub, and more generally the alternation, are the operation that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.
The last operation, the snub, and more generally the alternation, are the operations that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.


The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
Line 1,128: Line 1,383:
|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node_1}}
|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node_1}}
|- align=center
|- align=center
!Steriruncic
!Runcisteric
|colspan=2|h<sub>3,4</sub>{2p,3,q,r}
|colspan=2|h<sub>3,4</sub>{2p,3,q,r}
|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node_1}}
|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node_1}}
Line 1,237: Line 1,492:
|}
|}


===Compact Regular tessellations of hyperbolic 4-space===
=== Regular and uniform hyperbolic honeycombs ===
;Hyperbolic compact groups

There are 5 [[Coxeter-Dynkin diagram#Compact|compact hyperbolic Coxeter groups]] of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams.

{| class="wikitable"
| valign=top align=right|
<math>{\widehat{AF}}_4</math> = [(3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|split2|node}}
| valign=top align=right|
<math>{\bar{DH}}_4</math> = [5,3,3<sup>1,1</sup>]: {{CDD|node|5|node|3|node|split1|nodes}}
| valign=top align=right|<math>{\bar{H}}_4</math> = [3,3,3,5]: {{CDD|node|3|node|3|node|3|node|5|node}}<BR>
<math>{\bar{BH}}_4</math> = [4,3,3,5]: {{CDD|node|4|node|3|node|3|node|5|node}}<BR>
<math>{\bar{K}}_4</math> = [5,3,3,5]: {{CDD|node|5|node|3|node|3|node|5|node}}
|}


There are five kinds of convex regular [[Honeycomb (geometry)|honeycombs]] and four kinds of star-honeycombs in H<sup>4</sup> space:<ref>Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213</ref>
There are 5 regular compact convex hyperbolic honeycombs in H<sup>4</sup> space:<ref>Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213</ref>
{| class="wikitable"
{| class="wikitable"
|+ Compact regular convex hyperbolic honeycombs
|-
|-
!Honeycomb name
!Honeycomb name
Line 1,253: Line 1,522:
![[dual polyhedron|Dual]]
![[dual polyhedron|Dual]]
|- BGCOLOR="#ffe0e0" align=center
|- BGCOLOR="#ffe0e0" align=center
|[[Order-5 5-cell honeycomb|Order-5 5-cell]]||{3,3,3,5}||{{CDD|node|5|node|3|node|3|node|3|node_1}}||{3,3,3}||{3,3}||{3}||{5}||{3,5}||{3,3,5}||{5,3,3,3}
|[[Order-5 5-cell honeycomb|Order-5 5-cell]] (pente)||{3,3,3,5}||{{CDD|node|5|node|3|node|3|node|3|node_1}}||{3,3,3}||{3,3}||{3}||{5}||{3,5}||{3,3,5}||{5,3,3,3}
|- BGCOLOR="#e0e0ff" align=center
|- BGCOLOR="#e0e0ff" align=center
|[[Order-3 120-cell honeycomb|Order-3 120-cell]]||{5,3,3,3}||{{CDD|node_1|5|node|3|node|3|node|3|node}}||{5,3,3}||{5,3}||{5}||{3}||{3,3}||{3,3,3}||{3,3,3,5}
|[[Order-3 120-cell honeycomb|Order-3 120-cell]] (hitte)||{5,3,3,3}||{{CDD|node_1|5|node|3|node|3|node|3|node}}||{5,3,3}||{5,3}||{5}||{3}||{3,3}||{3,3,3}||{3,3,3,5}
|- BGCOLOR="#ffe0e0" align=center
|- BGCOLOR="#ffe0e0" align=center
|[[Order-5 tesseractic honeycomb|Order-5 tesseractic]]||{4,3,3,5}||{{CDD|node|5|node|3|node|3|node|4|node_1}}||{4,3,3}||{4,3}||{4}||{5}||{3,5}||{3,3,5}||{5,3,3,4}
|[[Order-5 tesseractic honeycomb|Order-5 tesseractic]] (pitest)||{4,3,3,5}||{{CDD|node|5|node|3|node|3|node|4|node_1}}||{4,3,3}||{4,3}||{4}||{5}||{3,5}||{3,3,5}||{5,3,3,4}
|- BGCOLOR="#e0e0ff" align=center
|- BGCOLOR="#e0e0ff" align=center
|[[Order-4 120-cell honeycomb|Order-4 120-cell]]||{5,3,3,4}||{{CDD|node_1|5|node|3|node|3|node|4|node}}||{5,3,3}||{5,3}||{5}||{4}||{3,4}||{3,3,4}||{4,3,3,5}
|[[Order-4 120-cell honeycomb|Order-4 120-cell]] (shitte)||{5,3,3,4}||{{CDD|node_1|5|node|3|node|3|node|4|node}}||{5,3,3}||{5,3}||{5}||{4}||{3,4}||{3,3,4}||{4,3,3,5}
|- BGCOLOR="#e0ffe0" align=center
|- BGCOLOR="#e0ffe0" align=center
|[[Order-5 120-cell honeycomb|Order-5 120-cell]]||{5,3,3,5}||{{CDD|node_1|5|node|3|node|3|node|5|node}}||{5,3,3}||{5,3}||{5}||{5}||{3,5}||{3,3,5}||Self-dual
|[[Order-5 120-cell honeycomb|Order-5 120-cell]] (phitte)||{5,3,3,5}||{{CDD|node_1|5|node|3|node|3|node|5|node}}||{5,3,3}||{5,3}||{5}||{5}||{3,5}||{3,3,5}||Self-dual
|}
|}


There are four regular star-honeycombs in H<sup>4</sup> space:
There are also 4 regular compact hyperbolic star-honeycombs in H<sup>4</sup> space:
{| class="wikitable"
{| class="wikitable"
|+ Compact regular hyperbolic star-honeycombs
|-
|-
!Honeycomb name
!Honeycomb name
Line 1,287: Line 1,557:
|}
|}


;Hyperbolic paracompact groups
=== Regular and uniform hyperbolic honeycombs ===


There are 5 [[Coxeter-Dynkin diagram#Compact|compact hyperbolic Coxeter groups]] of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams. There are also 9 [[Coxeter-Dynkin diagram#Rank 4 to 10|paracompact hyperbolic Coxeter groups of rank 5]], each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite [[Facet (geometry)|facets]] or [[vertex figure]]s.
There are 9 [[Coxeter-Dynkin diagram#Rank 4 to 10|paracompact hyperbolic Coxeter groups of rank 5]], each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite [[Facet (geometry)|facets]] or [[vertex figure]]s.


{| class="wikitable"
|+ Compact hyperbolic groups
| valign=top align=right|
<math>{\widehat{AF}}_4</math> = [(3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|split2|node}}
| valign=top align=right|
<math>{\bar{DH}}_4</math> = [5,3,3<sup>1,1</sup>]: {{CDD|node|5|node|3|node|split1|nodes}}
| valign=top align=right|<math>{\bar{H}}_4</math> = [3,3,3,5]: {{CDD|node|3|node|3|node|3|node|5|node}}<BR>
<math>{\bar{BH}}_4</math> = [4,3,3,5]: {{CDD|node|4|node|3|node|3|node|5|node}}<BR>
<math>{\bar{K}}_4</math> = [5,3,3,5]: {{CDD|node|5|node|3|node|3|node|5|node}}
|}
{| class=wikitable
{| class=wikitable
|+ Paracompact hyperbolic groups
|align=right|
|align=right|
<math>{\bar{P}}_4</math> = [3,3<sup>[4]</sup>]: {{CDD|node|split1|nodes|split2|node|3|node}}
<math>{\bar{P}}_4</math> = [3,3<sup>[4]</sup>]: {{CDD|node|split1|nodes|split2|node|3|node}}
Line 1,330: Line 1,589:
** [[Coxeter|H.S.M. Coxeter]], ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 (p.&nbsp;297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
** [[Coxeter|H.S.M. Coxeter]], ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 (p.&nbsp;297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
** [[Coxeter|H.S.M. Coxeter]], ''The Beauty of Geometry: Twelve Essays'' (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
** [[Coxeter|H.S.M. Coxeter]], ''The Beauty of Geometry: Twelve Essays'' (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] (p.&nbsp;287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] (p.&nbsp;287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
* James E. Humphreys, ''Reflection Groups and Coxeter Groups'', Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [http://books.google.com/books?id=ODfjmOeNLMUC&lpg=PP1&ots=AX5SYxPQ9S&dq=%22Reflection%20groups%20and%20Coxeter%20groups%22&pg=PA141]
* James E. Humphreys, ''Reflection Groups and Coxeter Groups'', Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [https://books.google.com/books?id=ODfjmOeNLMUC&dq=%22Reflection%20groups%20and%20Coxeter%20groups%22&pg=PA141]


== External links ==
== External links ==
* {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}}
* {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} – includes nonconvex forms as well as the duplicate constructions from the B<sub>5</sub> and D<sub>5</sub> families


{{Polytopes}}
{{Polytopes}}

Latest revision as of 02:24, 28 October 2024

Graphs of regular and uniform 5-polytopes.

5-simplex

Rectified 5-simplex

Truncated 5-simplex

Cantellated 5-simplex

Runcinated 5-simplex

Stericated 5-simplex

5-orthoplex

Truncated 5-orthoplex

Rectified 5-orthoplex

Cantellated 5-orthoplex

Runcinated 5-orthoplex

Cantellated 5-cube

Runcinated 5-cube

Stericated 5-cube

5-cube

Truncated 5-cube

Rectified 5-cube

5-demicube

Truncated 5-demicube

Cantellated 5-demicube

Runcinated 5-demicube

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams.

History of discovery

[edit]
  • Regular polytopes: (convex faces)
    • 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
  • Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
    • 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular 4-polytopes) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.[1]
  • Convex uniform polytopes:
    • 1940-1988: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes I, II, and III.
    • 1966: Norman W. Johnson completed his Ph.D. Dissertation under Coxeter, The Theory of Uniform Polytopes and Honeycombs, University of Toronto
  • Non-convex uniform polytopes:
    • 1966: Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.[2]
    • 2000-2024: Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,[3] with a current count of 1348 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.[4][5]

Regular 5-polytopes

[edit]

Regular 5-polytopes can be represented by the Schläfli symbol {p,q,r,s}, with s {p,q,r} 4-polytope facets around each face. There are exactly three such regular polytopes, all convex:

There are no nonconvex regular polytopes in 5 dimensions or above.

Convex uniform 5-polytopes

[edit]
Unsolved problem in mathematics:
What is the complete set of convex uniform 5-polytopes?[6]

There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the grand antiprism prism are based on Wythoff constructions, reflection symmetry generated with Coxeter groups.[citation needed]

Symmetry of uniform 5-polytopes in four dimensions

[edit]

The 5-simplex is the regular form in the A5 family. The 5-cube and 5-orthoplex are the regular forms in the B5 family. The bifurcating graph of the D5 family contains the 5-orthoplex, as well as a 5-demicube which is an alternated 5-cube.

Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, [[a,b,b,a]], like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry.

If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.

Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.
Fundamental families[7]
Group
symbol
Order Coxeter
graph
Bracket
notation
Commutator
subgroup
Coxeter
number

(h)
Reflections
m=5/2 h[8]
A5 720 [3,3,3,3] [3,3,3,3]+ 6 15
D5 1920 [3,3,31,1] [3,3,31,1]+ 8 20
B5 3840 [4,3,3,3] 10 5 20
Uniform prisms

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. There is one infinite family of 5-polytopes based on prisms of the uniform duoprisms {p}×{q}×{ }.

Coxeter
group
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Reflections
A4A1 120 [3,3,3,2] = [3,3,3]×[ ] [3,3,3]+ 10 1
D4A1 384 [31,1,1,2] = [31,1,1]×[ ] [31,1,1]+ 12 1
B4A1 768 [4,3,3,2] = [4,3,3]×[ ] 4 12 1
F4A1 2304 [3,4,3,2] = [3,4,3]×[ ] [3+,4,3+] 12 12 1
H4A1 28800 [5,3,3,2] = [3,4,3]×[ ] [5,3,3]+ 60 1
Duoprismatic prisms (use 2p and 2q for evens)
I2(p)I2(q)A1 8pq [p,2,q,2] = [p]×[q]×[ ] [p+,2,q+] p q 1
I2(2p)I2(q)A1 16pq [2p,2,q,2] = [2p]×[q]×[ ] p p q 1
I2(2p)I2(2q)A1 32pq [2p,2,2q,2] = [2p]×[2q]×[ ] p p q q 1
Uniform duoprisms

There are 3 categorical uniform duoprismatic families of polytopes based on Cartesian products of the uniform polyhedra and regular polygons: {q,r}×{p}.

Coxeter
group
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Reflections
Prismatic groups (use 2p for even)
A3I2(p) 48p [3,3,2,p] = [3,3]×[p] [(3,3)+,2,p+] 6 p
A3I2(2p) 96p [3,3,2,2p] = [3,3]×[2p] 6 p p
B3I2(p) 96p [4,3,2,p] = [4,3]×[p] 3 6 p
B3I2(2p) 192p [4,3,2,2p] = [4,3]×[2p] 3 6 p p
H3I2(p) 240p [5,3,2,p] = [5,3]×[p] [(5,3)+,2,p+] 15 p
H3I2(2p) 480p [5,3,2,2p] = [5,3]×[2p] 15 p p

Enumerating the convex uniform 5-polytopes

[edit]
  • Simplex family: A5 [34]
    • 19 uniform 5-polytopes
  • Hypercube/Orthoplex family: B5 [4,33]
    • 31 uniform 5-polytopes
  • Demihypercube D5/E5 family: [32,1,1]
    • 23 uniform 5-polytopes (8 unique)
  • Polychoral prisms:
    • 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[ ], [4,3,3]×[ ], [5,3,3]×[ ], [31,1,1]×[ ].
    • One non-Wythoffian - The grand antiprism prism is the only known non-Wythoffian convex uniform 5-polytope, constructed from two grand antiprisms connected by polyhedral prisms.

That brings the tally to: 19+31+8+45+1=104

In addition there are:

  • Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[ ].
  • Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p].

The A5 family

[edit]

There are 19 forms based on all permutations of the Coxeter diagrams with one or more rings. (16+4-1 cases)

They are named by Norman Johnson from the Wythoff construction operations upon regular 5-simplex (hexateron).

The A5 family has symmetry of order 720 (6 factorial). 7 of the 19 figures, with symmetrically ringed Coxeter diagrams have doubled symmetry, order 1440.

The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).

# Base point Johnson naming system
Bowers name and (acronym)
Coxeter diagram
k-face element counts Vertex
figure
Facet counts by location: [3,3,3,3]
4 3 2 1 0
[3,3,3]
(6)

[3,3,2]
(15)

[3,2,3]
(20)

[2,3,3]
(15)

[3,3,3]
(6)
Alt
1 (0,0,0,0,0,1) or (0,1,1,1,1,1) 5-simplex
hexateron (hix)
6 15 20 15 6
{3,3,3}

{3,3,3}
- - - -
2 (0,0,0,0,1,1) or (0,0,1,1,1,1) Rectified 5-simplex
rectified hexateron (rix)
12 45 80 60 15
t{3,3}×{ }

r{3,3,3}
- - -
{3,3,3}
3 (0,0,0,0,1,2) or (0,1,2,2,2,2) Truncated 5-simplex
truncated hexateron (tix)
12 45 80 75 30
Tetrah.pyr

t{3,3,3}
- - -
{3,3,3}
4 (0,0,0,1,1,2) or (0,1,1,2,2,2) Cantellated 5-simplex
small rhombated hexateron (sarx)
27 135 290 240 60
prism-wedge

rr{3,3,3}
- -
{ }×{3,3}

r{3,3,3}
5 (0,0,0,1,2,2) or (0,0,1,2,2,2) Bitruncated 5-simplex
bitruncated hexateron (bittix)
12 60 140 150 60
2t{3,3,3}
- - -
t{3,3,3}
6 (0,0,0,1,2,3) or (0,1,2,3,3,3) Cantitruncated 5-simplex
great rhombated hexateron (garx)
27 135 290 300 120
tr{3,3,3}
- -
{ }×{3,3}

t{3,3,3}
7 (0,0,1,1,1,2) or (0,1,1,1,2,2) Runcinated 5-simplex
small prismated hexateron (spix)
47 255 420 270 60
t0,3{3,3,3}
-
{3}×{3}

{ }×r{3,3}

r{3,3,3}
8 (0,0,1,1,2,3) or (0,1,2,2,3,3) Runcitruncated 5-simplex
prismatotruncated hexateron (pattix)
47 315 720 630 180
t0,1,3{3,3,3}
-
{6}×{3}

{ }×r{3,3}

rr{3,3,3}
9 (0,0,1,2,2,3) or (0,1,1,2,3,3) Runcicantellated 5-simplex
prismatorhombated hexateron (pirx)
47 255 570 540 180
t0,1,3{3,3,3}
-
{3}×{3}

{ }×t{3,3}

2t{3,3,3}
10 (0,0,1,2,3,4) or (0,1,2,3,4,4) Runcicantitruncated 5-simplex
great prismated hexateron (gippix)
47 315 810 900 360
Irr.5-cell

t0,1,2,3{3,3,3}
-
{3}×{6}

{ }×t{3,3}

tr{3,3,3}
11 (0,1,1,1,2,3) or (0,1,2,2,2,3) Steritruncated 5-simplex
celliprismated hexateron (cappix)
62 330 570 420 120
t{3,3,3}

{ }×t{3,3}

{3}×{6}

{ }×{3,3}

t0,3{3,3,3}
12 (0,1,1,2,3,4) or (0,1,2,3,3,4) Stericantitruncated 5-simplex
celligreatorhombated hexateron (cograx)
62 480 1140 1080 360
tr{3,3,3}

{ }×tr{3,3}

{3}×{6}

{ }×rr{3,3}

t0,1,3{3,3,3}
13 (0,0,0,1,1,1) Birectified 5-simplex
dodecateron (dot)
12 60 120 90 20
{3}×{3}

r{3,3,3}
- - -
r{3,3,3}
14 (0,0,1,1,2,2) Bicantellated 5-simplex
small birhombated dodecateron (sibrid)
32 180 420 360 90
rr{3,3,3}
-
{3}×{3}
-
rr{3,3,3}
15 (0,0,1,2,3,3) Bicantitruncated 5-simplex
great birhombated dodecateron (gibrid)
32 180 420 450 180
tr{3,3,3}
-
{3}×{3}
-
tr{3,3,3}
16 (0,1,1,1,1,2) Stericated 5-simplex
small cellated dodecateron (scad)
62 180 210 120 30
Irr.16-cell

{3,3,3}

{ }×{3,3}

{3}×{3}

{ }×{3,3}

{3,3,3}
17 (0,1,1,2,2,3) Stericantellated 5-simplex
small cellirhombated dodecateron (card)
62 420 900 720 180
rr{3,3,3}

{ }×rr{3,3}

{3}×{3}

{ }×rr{3,3}

rr{3,3,3}
18 (0,1,2,2,3,4) Steriruncitruncated 5-simplex
celliprismatotruncated dodecateron (captid)
62 450 1110 1080 360
t0,1,3{3,3,3}

{ }×t{3,3}

{6}×{6}

{ }×t{3,3}

t0,1,3{3,3,3}
19 (0,1,2,3,4,5) Omnitruncated 5-simplex
great cellated dodecateron (gocad)
62 540 1560 1800 720
Irr. {3,3,3}

t0,1,2,3{3,3,3}

{ }×tr{3,3}

{6}×{6}

{ }×tr{3,3}

t0,1,2,3{3,3,3}
Nonuniform Omnisnub 5-simplex
snub dodecateron (snod)
snub hexateron (snix)
422 2340 4080 2520 360 ht0,1,2,3{3,3,3} ht0,1,2,3{3,3,2} ht0,1,2,3{3,2,3} ht0,1,2,3{3,3,2} ht0,1,2,3{3,3,3} (360)

Irr. {3,3,3}

The B5 family

[edit]

The B5 family has symmetry of order 3840 (5!×25).

This family has 25−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the Coxeter diagram. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D5 family as ... = ..... (There are more alternations that are not listed because they produce only repetitions, as ... = .... and ... = .... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.)

For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.

The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.

# Base point Name
Coxeter diagram
Element counts Vertex
figure
Facet counts by location: [4,3,3,3]
4 3 2 1 0
[4,3,3]
(10)

[4,3,2]
(40)

[4,2,3]
(80)

[2,3,3]
(80)

[3,3,3]
(32)
Alt
20 (0,0,0,0,1)√2 5-orthoplex
triacontaditeron (tac)
32 80 80 40 10
{3,3,4}
- - - -
{3,3,3}
21 (0,0,0,1,1)√2 Rectified 5-orthoplex
rectified triacontaditeron (rat)
42 240 400 240 40
{ }×{3,4}

{3,3,4}
- - -
r{3,3,3}
22 (0,0,0,1,2)√2 Truncated 5-orthoplex
truncated triacontaditeron (tot)
42 240 400 280 80
(Octah.pyr)

{3,3,4}
- - -
t{3,3,3}
23 (0,0,1,1,1)√2 Birectified 5-cube
penteractitriacontaditeron (nit)
(Birectified 5-orthoplex)
42 280 640 480 80
{4}×{3}

r{3,3,4}
- - -
r{3,3,3}
24 (0,0,1,1,2)√2 Cantellated 5-orthoplex
small rhombated triacontaditeron (sart)
82 640 1520 1200 240
Prism-wedge

r{3,3,4}

{ }×{3,4}
- -
rr{3,3,3}
25 (0,0,1,2,2)√2 Bitruncated 5-orthoplex
bitruncated triacontaditeron (bittit)
42 280 720 720 240
t{3,3,4}
- - -
2t{3,3,3}
26 (0,0,1,2,3)√2 Cantitruncated 5-orthoplex
great rhombated triacontaditeron (gart)
82 640 1520 1440 480
t{3,3,4}

{ }×{3,4}
- -
t0,1,3{3,3,3}
27 (0,1,1,1,1)√2 Rectified 5-cube
rectified penteract (rin)
42 200 400 320 80
{3,3}×{ }

r{4,3,3}
- - -
{3,3,3}
28 (0,1,1,1,2)√2 Runcinated 5-orthoplex
small prismated triacontaditeron (spat)
162 1200 2160 1440 320
r{4,3,3}

{ }×r{3,4}

{3}×{4}

t0,3{3,3,3}
29 (0,1,1,2,2)√2 Bicantellated 5-cube
small birhombated penteractitriacontaditeron (sibrant)
(Bicantellated 5-orthoplex)
122 840 2160 1920 480
rr{3,3,4}
-
{4}×{3}
-
rr{3,3,3}
30 (0,1,1,2,3)√2 Runcitruncated 5-orthoplex
prismatotruncated triacontaditeron (pattit)
162 1440 3680 3360 960
rr{3,3,4}

{ }×r{3,4}

{6}×{4}
-
t0,1,3{3,3,3}
31 (0,1,2,2,2)√2 Bitruncated 5-cube
bitruncated penteract (bittin)
42 280 720 800 320
2t{4,3,3}
- - -
t{3,3,3}
32 (0,1,2,2,3)√2 Runcicantellated 5-orthoplex
prismatorhombated triacontaditeron (pirt)
162 1200 2960 2880 960
2t{4,3,3}

{ }×t{3,4}

{3}×{4}
-
t0,1,3{3,3,3}
33 (0,1,2,3,3)√2 Bicantitruncated 5-cube
great birhombated triacontaditeron (gibrant)
(Bicantitruncated 5-orthoplex)
122 840 2160 2400 960
tr{3,3,4}
-
{4}×{3}
-
rr{3,3,3}
34 (0,1,2,3,4)√2 Runcicantitruncated 5-orthoplex
great prismated triacontaditeron (gippit)
162 1440 4160 4800 1920
tr{3,3,4}

{ }×t{3,4}

{6}×{4}
-
t0,1,2,3{3,3,3}
35 (1,1,1,1,1) 5-cube
penteract (pent)
10 40 80 80 32
{3,3,3}

{4,3,3}
- - - -
36 (1,1,1,1,1)
+ (0,0,0,0,1)√2
Stericated 5-cube
small cellated penteractitriacontaditeron (scant)
(Stericated 5-orthoplex)
242 800 1040 640 160
Tetr.antiprm

{4,3,3}

{4,3}×{ }

{4}×{3}

{ }×{3,3}

{3,3,3}
37 (1,1,1,1,1)
+ (0,0,0,1,1)√2
Runcinated 5-cube
small prismated penteract (span)
202 1240 2160 1440 320
t0,3{4,3,3}
-
{4}×{3}

{ }×r{3,3}

r{3,3,3}
38 (1,1,1,1,1)
+ (0,0,0,1,2)√2
Steritruncated 5-orthoplex
celliprismated triacontaditeron (cappin)
242 1520 2880 2240 640
t0,3{4,3,3}

{4,3}×{ }

{6}×{4}

{ }×t{3,3}

t{3,3,3}
39 (1,1,1,1,1)
+ (0,0,1,1,1)√2
Cantellated 5-cube
small rhombated penteract (sirn)
122 680 1520 1280 320
Prism-wedge

rr{4,3,3}
- -
{ }×{3,3}

r{3,3,3}
40 (1,1,1,1,1)
+ (0,0,1,1,2)√2
Stericantellated 5-cube
cellirhombated penteractitriacontaditeron (carnit)
(Stericantellated 5-orthoplex)
242 2080 4720 3840 960
rr{4,3,3}

rr{4,3}×{ }

{4}×{3}

{ }×rr{3,3}

rr{3,3,3}
41 (1,1,1,1,1)
+ (0,0,1,2,2)√2
Runcicantellated 5-cube
prismatorhombated penteract (prin)
202 1240 2960 2880 960
t0,2,3{4,3,3}
-
{4}×{3}

{ }×t{3,3}

2t{3,3,3}
42 (1,1,1,1,1)
+ (0,0,1,2,3)√2
Stericantitruncated 5-orthoplex
celligreatorhombated triacontaditeron (cogart)
242 2320 5920 5760 1920
t0,2,3{4,3,3}

rr{4,3}×{ }

{6}×{4}

{ }×tr{3,3}

tr{3,3,3}
43 (1,1,1,1,1)
+ (0,1,1,1,1)√2
Truncated 5-cube
truncated penteract (tan)
42 200 400 400 160
Tetrah.pyr

t{4,3,3}
- - -
{3,3,3}
44 (1,1,1,1,1)
+ (0,1,1,1,2)√2
Steritruncated 5-cube
celliprismated triacontaditeron (capt)
242 1600 2960 2240 640
t{4,3,3}

t{4,3}×{ }

{8}×{3}

{ }×{3,3}

t0,3{3,3,3}
45 (1,1,1,1,1)
+ (0,1,1,2,2)√2
Runcitruncated 5-cube
prismatotruncated penteract (pattin)
202 1560 3760 3360 960
t0,1,3{4,3,3}
-
{8}×{3}

{ }×r{3,3}

rr{3,3,3}
46 (1,1,1,1,1)
+ (0,1,1,2,3)√2
Steriruncitruncated 5-cube
celliprismatotruncated penteractitriacontaditeron (captint)
(Steriruncitruncated 5-orthoplex)
242 2160 5760 5760 1920
t0,1,3{4,3,3}

t{4,3}×{ }

{8}×{6}

{ }×t{3,3}

t0,1,3{3,3,3}
47 (1,1,1,1,1)
+ (0,1,2,2,2)√2
Cantitruncated 5-cube
great rhombated penteract (girn)
122 680 1520 1600 640
tr{4,3,3}
- -
{ }×{3,3}

t{3,3,3}
48 (1,1,1,1,1)
+ (0,1,2,2,3)√2
Stericantitruncated 5-cube
celligreatorhombated penteract (cogrin)
242 2400 6000 5760 1920
tr{4,3,3}

tr{4,3}×{ }

{8}×{3}

{ }×rr{3,3}

t0,1,3{3,3,3}
49 (1,1,1,1,1)
+ (0,1,2,3,3)√2
Runcicantitruncated 5-cube
great prismated penteract (gippin)
202 1560 4240 4800 1920
t0,1,2,3{4,3,3}
-
{8}×{3}

{ }×t{3,3}

tr{3,3,3}
50 (1,1,1,1,1)
+ (0,1,2,3,4)√2
Omnitruncated 5-cube
great cellated penteractitriacontaditeron (gacnet)
(omnitruncated 5-orthoplex)
242 2640 8160 9600 3840
Irr. {3,3,3}

tr{4,3}×{ }

tr{4,3}×{ }

{8}×{6}

{ }×tr{3,3}

t0,1,2,3{3,3,3}
51 5-demicube
hemipenteract (hin)
=
26 120 160 80 16
r{3,3,3}

h{4,3,3}
- - - - (16)

{3,3,3}
52 Cantic 5-cube
Truncated hemipenteract (thin)
=
42 280 640 560 160
h2{4,3,3}
- - - (16)

r{3,3,3}
(16)

t{3,3,3}
53 Runcic 5-cube
Small rhombated hemipenteract (sirhin)
=
42 360 880 720 160
h3{4,3,3}
- - - (16)

r{3,3,3}
(16)

rr{3,3,3}
54 Steric 5-cube
Small prismated hemipenteract (siphin)
=
82 480 720 400 80
h{4,3,3}

h{4,3}×{}
- - (16)

{3,3,3}
(16)

t0,3{3,3,3}
55 Runcicantic 5-cube
Great rhombated hemipenteract (girhin)
=
42 360 1040 1200 480
h2,3{4,3,3}
- - - (16)

2t{3,3,3}
(16)

tr{3,3,3}
56 Stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
=
82 720 1840 1680 480
h2{4,3,3}

h2{4,3}×{}
- - (16)

rr{3,3,3}
(16)

t0,1,3{3,3,3}
57 Steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
=
82 560 1280 1120 320
h3{4,3,3}

h{4,3}×{}
- - (16)

t{3,3,3}
(16)

t0,1,3{3,3,3}
58 Steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
=
82 720 2080 2400 960
h2,3{4,3,3}

h2{4,3}×{}
- - (16)

tr{3,3,3}
(16)

t0,1,2,3{3,3,3}
Nonuniform Alternated runcicantitruncated 5-orthoplex
Snub prismatotriacontaditeron (snippit)
Snub hemipenteract (snahin)
=
1122 6240 10880 6720 960
sr{3,3,4}
sr{2,3,4} sr{3,2,4} - ht0,1,2,3{3,3,3} (960)

Irr. {3,3,3}
Nonuniform Edge-snub 5-orthoplex
Pyritosnub penteract (pysnan)
1202 7920 15360 10560 1920 sr3{3,3,4} sr3{2,3,4} sr3{3,2,4}
s{3,3}×{ }
ht0,1,2,3{3,3,3} (960)

Irr. {3,3}×{ }
Nonuniform Snub 5-cube
Snub penteract (snan)
2162 12240 21600 13440 960 ht0,1,2,3{3,3,4} ht0,1,2,3{2,3,4} ht0,1,2,3{3,2,4} ht0,1,2,3{3,3,2} ht0,1,2,3{3,3,3} (1920)

Irr. {3,3,3}

The D5 family

[edit]

The D5 family has symmetry of order 1920 (5! x 24).

This family has 23 Wythoffian uniform polytopes, from 3×8-1 permutations of the D5 Coxeter diagram with one or more rings. 15 (2×8-1) are repeated from the B5 family and 8 are unique to this family, though even those 8 duplicate the alternations from the B5 family.

In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of element are identical and the symmetry doubles: the relations are ... = .... and ... = ..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation ... = ... duplicating uniform 5-polytopes 51 through 58 above.

# Coxeter diagram
Schläfli symbol symbols
Johnson and Bowers names
Element counts Vertex
figure
Facets by location: [31,2,1]
4 3 2 1 0
[3,3,3]
(16)

[31,1,1]
(10)

[3,3]×[ ]
(40)

[ ]×[3]×[ ]
(80)

[3,3,3]
(16)
Alt
[51] =
h{4,3,3,3}, 5-demicube
Hemipenteract (hin)
26 120 160 80 16
r{3,3,3}

{3,3,3}

h{4,3,3}
- - -
[52] =
h2{4,3,3,3}, cantic 5-cube
Truncated hemipenteract (thin)
42 280 640 560 160
t{3,3,3}

h2{4,3,3}
- -
r{3,3,3}
[53] =
h3{4,3,3,3}, runcic 5-cube
Small rhombated hemipenteract (sirhin)
42 360 880 720 160
rr{3,3,3}

h3{4,3,3}
- -
r{3,3,3}
[54] =
h4{4,3,3,3}, steric 5-cube
Small prismated hemipenteract (siphin)
82 480 720 400 80
t0,3{3,3,3}

h{4,3,3}

h{4,3}×{}
-
{3,3,3}
[55] =
h2,3{4,3,3,3}, runcicantic 5-cube
Great rhombated hemipenteract (girhin)
42 360 1040 1200 480
2t{3,3,3}

h2,3{4,3,3}
- -
tr{3,3,3}
[56] =
h2,4{4,3,3,3}, stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
82 720 1840 1680 480
t0,1,3{3,3,3}

h2{4,3,3}

h2{4,3}×{}
-
rr{3,3,3}
[57] =
h3,4{4,3,3,3}, steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
82 560 1280 1120 320
t0,1,3{3,3,3}

h3{4,3,3}

h{4,3}×{}
-
t{3,3,3}
[58] =
h2,3,4{4,3,3,3}, steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
82 720 2080 2400 960
t0,1,2,3{3,3,3}

h2,3{4,3,3}

h2{4,3}×{}
-
tr{3,3,3}
Nonuniform =
ht0,1,2,3{3,3,3,4}, alternated runcicantitruncated 5-orthoplex
Snub hemipenteract (snahin)
1122 6240 10880 6720 960 ht0,1,2,3{3,3,3}
sr{3,3,4}
sr{2,3,4} sr{3,2,4} ht0,1,2,3{3,3,3} (960)

Irr. {3,3,3}

Uniform prismatic forms

[edit]

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. For simplicity, most alternations are not shown.

A4 × A1

[edit]

This prismatic family has 9 forms:

The A1 x A4 family has symmetry of order 240 (2*5!).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
59 = {3,3,3}×{ }
5-cell prism (penp)
7 20 30 25 10
60 = r{3,3,3}×{ }
Rectified 5-cell prism (rappip)
12 50 90 70 20
61 = t{3,3,3}×{ }
Truncated 5-cell prism (tippip)
12 50 100 100 40
62 = rr{3,3,3}×{ }
Cantellated 5-cell prism (srippip)
22 120 250 210 60
63 = t0,3{3,3,3}×{ }
Runcinated 5-cell prism (spiddip)
32 130 200 140 40
64 = 2t{3,3,3}×{ }
Bitruncated 5-cell prism (decap)
12 60 140 150 60
65 = tr{3,3,3}×{ }
Cantitruncated 5-cell prism (grippip)
22 120 280 300 120
66 = t0,1,3{3,3,3}×{ }
Runcitruncated 5-cell prism (prippip)
32 180 390 360 120
67 = t0,1,2,3{3,3,3}×{ }
Omnitruncated 5-cell prism (gippiddip)
32 210 540 600 240

B4 × A1

[edit]

This prismatic family has 16 forms. (Three are shared with [3,4,3]×[ ] family)

The A1×B4 family has symmetry of order 768 (254!).

The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes.

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[16] = {4,3,3}×{ }
Tesseractic prism (pent)
(Same as 5-cube)
10 40 80 80 32
68 = r{4,3,3}×{ }
Rectified tesseractic prism (rittip)
26 136 272 224 64
69 = t{4,3,3}×{ }
Truncated tesseractic prism (tattip)
26 136 304 320 128
70 = rr{4,3,3}×{ }
Cantellated tesseractic prism (srittip)
58 360 784 672 192
71 = t0,3{4,3,3}×{ }
Runcinated tesseractic prism (sidpithip)
82 368 608 448 128
72 = 2t{4,3,3}×{ }
Bitruncated tesseractic prism (tahp)
26 168 432 480 192
73 = tr{4,3,3}×{ }
Cantitruncated tesseractic prism (grittip)
58 360 880 960 384
74 = t0,1,3{4,3,3}×{ }
Runcitruncated tesseractic prism (prohp)
82 528 1216 1152 384
75 = t0,1,2,3{4,3,3}×{ }
Omnitruncated tesseractic prism (gidpithip)
82 624 1696 1920 768
76 = {3,3,4}×{ }
16-cell prism (hexip)
18 64 88 56 16
77 = r{3,3,4}×{ }
Rectified 16-cell prism (icope)
(Same as 24-cell prism)
26 144 288 216 48
78 = t{3,3,4}×{ }
Truncated 16-cell prism (thexip)
26 144 312 288 96
79 = rr{3,3,4}×{ }
Cantellated 16-cell prism (ricope)
(Same as rectified 24-cell prism)
50 336 768 672 192
80 = tr{3,3,4}×{ }
Cantitruncated 16-cell prism (ticope)
(Same as truncated 24-cell prism)
50 336 864 960 384
81 = t0,1,3{3,3,4}×{ }
Runcitruncated 16-cell prism (prittip)
82 528 1216 1152 384
82 = sr{3,3,4}×{ }
snub 24-cell prism (sadip)
146 768 1392 960 192
Nonuniform
rectified tesseractic alterprism (rita)
50 288 464 288 64
Nonuniform
truncated 16-cell alterprism (thexa)
26 168 384 336 96
Nonuniform
bitruncated tesseractic alterprism (taha)
50 288 624 576 192

F4 × A1

[edit]

This prismatic family has 10 forms.

The A1 x F4 family has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3+,4,3,2] symmetry, order 1152.

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[77] = {3,4,3}×{ }
24-cell prism (icope)
26 144 288 216 48
[79] = r{3,4,3}×{ }
rectified 24-cell prism (ricope)
50 336 768 672 192
[80] = t{3,4,3}×{ }
truncated 24-cell prism (ticope)
50 336 864 960 384
83 = rr{3,4,3}×{ }
cantellated 24-cell prism (sricope)
146 1008 2304 2016 576
84 = t0,3{3,4,3}×{ }
runcinated 24-cell prism (spiccup)
242 1152 1920 1296 288
85 = 2t{3,4,3}×{ }
bitruncated 24-cell prism (contip)
50 432 1248 1440 576
86 = tr{3,4,3}×{ }
cantitruncated 24-cell prism (gricope)
146 1008 2592 2880 1152
87 = t0,1,3{3,4,3}×{ }
runcitruncated 24-cell prism (pricope)
242 1584 3648 3456 1152
88 = t0,1,2,3{3,4,3}×{ }
omnitruncated 24-cell prism (gippiccup)
242 1872 5088 5760 2304
[82] = s{3,4,3}×{ }
snub 24-cell prism (sadip)
146 768 1392 960 192

H4 × A1

[edit]

This prismatic family has 15 forms:

The A1 x H4 family has symmetry of order 28800 (2*14400).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
89 = {5,3,3}×{ }
120-cell prism (hipe)
122 960 2640 3000 1200
90 = r{5,3,3}×{ }
Rectified 120-cell prism (rahipe)
722 4560 9840 8400 2400
91 = t{5,3,3}×{ }
Truncated 120-cell prism (thipe)
722 4560 11040 12000 4800
92 = rr{5,3,3}×{ }
Cantellated 120-cell prism (srahip)
1922 12960 29040 25200 7200
93 = t0,3{5,3,3}×{ }
Runcinated 120-cell prism (sidpixhip)
2642 12720 22080 16800 4800
94 = 2t{5,3,3}×{ }
Bitruncated 120-cell prism (xhip)
722 5760 15840 18000 7200
95 = tr{5,3,3}×{ }
Cantitruncated 120-cell prism (grahip)
1922 12960 32640 36000 14400
96 = t0,1,3{5,3,3}×{ }
Runcitruncated 120-cell prism (prixip)
2642 18720 44880 43200 14400
97 = t0,1,2,3{5,3,3}×{ }
Omnitruncated 120-cell prism (gidpixhip)
2642 22320 62880 72000 28800
98 = {3,3,5}×{ }
600-cell prism (exip)
602 2400 3120 1560 240
99 = r{3,3,5}×{ }
Rectified 600-cell prism (roxip)
722 5040 10800 7920 1440
100 = t{3,3,5}×{ }
Truncated 600-cell prism (texip)
722 5040 11520 10080 2880
101 = rr{3,3,5}×{ }
Cantellated 600-cell prism (srixip)
1442 11520 28080 25200 7200
102 = tr{3,3,5}×{ }
Cantitruncated 600-cell prism (grixip)
1442 11520 31680 36000 14400
103 = t0,1,3{3,3,5}×{ }
Runcitruncated 600-cell prism (prahip)
2642 18720 44880 43200 14400

Duoprism prisms

[edit]

Uniform duoprism prisms, {p}×{q}×{ }, form an infinite class for all integers p,q>2. {4}×{4}×{ } makes a lower symmetry form of the 5-cube.

The extended f-vector of {p}×{q}×{ } is computed as (p,p,1)*(q,q,1)*(2,1) = (2pq,5pq,4pq+2p+2q,3pq+3p+3q,p+q+2,1).

Coxeter diagram Names Element counts
4-faces Cells Faces Edges Vertices
{p}×{q}×{ }[9] p+q+2 3pq+3p+3q 4pq+2p+2q 5pq 2pq
{p}2×{ } 2(p+1) 3p(p+1) 4p(p+1) 5p2 2p2
{3}2×{ } 8 36 48 45 18
{4}2×{ } = 5-cube 10 40 80 80 32

Grand antiprism prism

[edit]

The grand antiprism prism is the only known convex non-Wythoffian uniform 5-polytope. It has 200 vertices, 1100 edges, 1940 faces (40 pentagons, 500 squares, 1400 triangles), 1360 cells (600 tetrahedra, 40 pentagonal antiprisms, 700 triangular prisms, 20 pentagonal prisms), and 322 hypercells (2 grand antiprisms , 20 pentagonal antiprism prisms , and 300 tetrahedral prisms ).

# Name Element counts
Facets Cells Faces Edges Vertices
104 grand antiprism prism (gappip)[10] 322 1360 1940 1100 200

Notes on the Wythoff construction for the uniform 5-polytopes

[edit]

Construction of the reflective 5-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 5-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.

Here are the primary operators available for constructing and naming the uniform 5-polytopes.

The last operation, the snub, and more generally the alternation, are the operations that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

Operation Extended
Schläfli symbol
Coxeter diagram Description
Parent t0{p,q,r,s} {p,q,r,s} Any regular 5-polytope
Rectified t1{p,q,r,s} r{p,q,r,s} The edges are fully truncated into single points. The 5-polytope now has the combined faces of the parent and dual.
Birectified t2{p,q,r,s} 2r{p,q,r,s} Birectification reduces faces to points, cells to their duals.
Trirectified t3{p,q,r,s} 3r{p,q,r,s} Trirectification reduces cells to points. (Dual rectification)
Quadrirectified t4{p,q,r,s} 4r{p,q,r,s} Quadrirectification reduces 4-faces to points. (Dual)
Truncated t0,1{p,q,r,s} t{p,q,r,s} Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 5-polytope. The 5-polytope has its original faces doubled in sides, and contains the faces of the dual.
Cantellated t0,2{p,q,r,s} rr{p,q,r,s} In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place.
Runcinated t0,3{p,q,r,s} Runcination reduces cells and creates new cells at the vertices and edges.
Stericated t0,4{p,q,r,s} 2r2r{p,q,r,s} Sterication reduces facets and creates new facets (hypercells) at the vertices and edges in the gaps. (Same as expansion operation for 5-polytopes.)
Omnitruncated t0,1,2,3,4{p,q,r,s} All four operators, truncation, cantellation, runcination, and sterication are applied.
Half h{2p,3,q,r} Alternation, same as
Cantic h2{2p,3,q,r} Same as
Runcic h3{2p,3,q,r} Same as
Runcicantic h2,3{2p,3,q,r} Same as
Steric h4{2p,3,q,r} Same as
Steriruncic h3,4{2p,3,q,r} Same as
Stericantic h2,4{2p,3,q,r} Same as
Steriruncicantic h2,3,4{2p,3,q,r} Same as
Snub s{p,2q,r,s} Alternated truncation
Snub rectified sr{p,q,2r,s} Alternated truncated rectification
ht0,1,2,3{p,q,r,s} Alternated runcicantitruncation
Full snub ht0,1,2,3,4{p,q,r,s} Alternated omnitruncation

Regular and uniform honeycombs

[edit]
Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups, and 13 prismatic groups that generate regular and uniform tessellations in Euclidean 4-space.[11][12]

Fundamental groups
# Coxeter group Coxeter diagram Forms
1 [3[5]] [(3,3,3,3,3)] 7
2 [4,3,3,4] 19
3 [4,3,31,1] [4,3,3,4,1+] = 23 (8 new)
4 [31,1,1,1] [1+,4,3,3,4,1+] = 9 (0 new)
5 [3,4,3,3] 31 (21 new)

There are three regular honeycombs of Euclidean 4-space:

Other families that generate uniform honeycombs:

Non-Wythoffian uniform tessellations in 4-space also exist by elongation (inserting layers), and gyration (rotating layers) from these reflective forms.

Prismatic groups
# Coxeter group Coxeter diagram
1 × [4,3,4,2,∞]
2 × [4,31,1,2,∞]
3 × [3[4],2,∞]
4 ×x [4,4,2,∞,2,∞]
5 ×x [6,3,2,∞,2,∞]
6 ×x [3[3],2,∞,2,∞]
7 ×xx [∞,2,∞,2,∞,2,∞]
8 x [3[3],2,3[3]]
9 × [3[3],2,4,4]
10 × [3[3],2,6,3]
11 × [4,4,2,4,4]
12 × [4,4,2,6,3]
13 × [6,3,2,6,3]

Regular and uniform hyperbolic honeycombs

[edit]
Hyperbolic compact groups

There are 5 compact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams.

= [(3,3,3,3,4)]:

= [5,3,31,1]:

= [3,3,3,5]:

= [4,3,3,5]:
= [5,3,3,5]:

There are 5 regular compact convex hyperbolic honeycombs in H4 space:[13]

Compact regular convex hyperbolic honeycombs
Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-5 5-cell (pente) {3,3,3,5} {3,3,3} {3,3} {3} {5} {3,5} {3,3,5} {5,3,3,3}
Order-3 120-cell (hitte) {5,3,3,3} {5,3,3} {5,3} {5} {3} {3,3} {3,3,3} {3,3,3,5}
Order-5 tesseractic (pitest) {4,3,3,5} {4,3,3} {4,3} {4} {5} {3,5} {3,3,5} {5,3,3,4}
Order-4 120-cell (shitte) {5,3,3,4} {5,3,3} {5,3} {5} {4} {3,4} {3,3,4} {4,3,3,5}
Order-5 120-cell (phitte) {5,3,3,5} {5,3,3} {5,3} {5} {5} {3,5} {3,3,5} Self-dual

There are also 4 regular compact hyperbolic star-honeycombs in H4 space:

Compact regular hyperbolic star-honeycombs
Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-3 small stellated 120-cell {5/2,5,3,3} {5/2,5,3} {5/2,5} {5} {5} {3,3} {5,3,3} {3,3,5,5/2}
Order-5/2 600-cell {3,3,5,5/2} {3,3,5} {3,3} {3} {5/2} {5,5/2} {3,5,5/2} {5/2,5,3,3}
Order-5 icosahedral 120-cell {3,5,5/2,5} {3,5,5/2} {3,5} {3} {5} {5/2,5} {5,5/2,5} {5,5/2,5,3}
Order-3 great 120-cell {5,5/2,5,3} {5,5/2,5} {5,5/2} {5} {3} {5,3} {5/2,5,3} {3,5,5/2,5}
Hyperbolic paracompact groups

There are 9 paracompact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite facets or vertex figures.

= [3,3[4]]:

= [4,3[4]]:
= [(3,3,4,3,4)]:
= [3[3]×[]]:

= [4,/3\,3,4]:
= [3,4,31,1]:
= [4,32,1]:
= [4,31,1,1]:

= [3,4,3,4]:

Notes

[edit]
  1. ^ T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  2. ^ Multidimensional Glossary, George Olshevsky
  3. ^ Bowers, Jonathan (2000). "Uniform Polychora" (PDF). In Reza Sarhagi (ed.). Bridges 2000. Bridges Conference. pp. 239–246.
  4. ^ Uniform Polytera, Jonathan Bowers
  5. ^ Uniform polytope
  6. ^ ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04
  7. ^ Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions
  8. ^ Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
  9. ^ "N,k-dippip".
  10. ^ "Gappip".
  11. ^ Regular polytopes, p.297. Table IV, Fundamental regions for irreducible groups generated by reflections.
  12. ^ Regular and Semiregular polytopes, II, pp.298-302 Four-dimensional honeycombs
  13. ^ Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213

References

[edit]
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900 (3 regular and one semiregular 4-polytope)
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
    • H.S.M. Coxeter, The Beauty of Geometry: Twelve Essays (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [2]
[edit]
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21