Uniform 5-polytope: Difference between revisions
Gamapamani (talk | contribs) m - extra tag |
|||
(130 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Five-dimensional geometric shape}} |
|||
{| align=right class=wikitable width=300 |
|||
{{-}} |
|||
|+ Graphs of [[List of regular polytopes#Five Dimensions|regular]] and [[uniform polytope]]s. |
|||
{| class="wikitable" width="300" align="right" style="margin-left:1em;" |
|||
| || || || || || || || || || || |
|||
|+Graphs of [[List of regular polytopes#Five Dimensions|regular]] and [[uniform polytope|uniform]] 5-polytopes. |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=4|[[Image:5-simplex t0.svg|100px]]<BR>[[5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node}} |
|||
|colspan=4|[[Image:5-simplex |
| colspan="4" |[[Image:5-simplex t0.svg|100px]]<BR>[[5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node}} |
||
|colspan=4|[[Image:5-simplex |
| colspan="4" |[[Image:5-simplex t1.svg|100px]]<BR>[[Rectified 5-simplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|3|node}} |
||
| colspan="4" |[[Image:5-simplex t01.svg|100px]]<BR>[[Truncated 5-simplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|3|node}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=4|[[File:5-simplex t02.svg|100px]]<BR>[[Cantellated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|3|node}} |
|||
|colspan=4|[[File:5-simplex |
| colspan="4" |[[File:5-simplex t02.svg|100px]]<BR>[[Cantellated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|3|node}} |
||
|colspan=4|[[File:5-simplex |
| colspan="4" |[[File:5-simplex t03.svg|100px]]<BR>[[Runcinated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|3|node}} |
||
| colspan="4" |[[File:5-simplex t04.svg|100px]]<BR>[[Stericated 5-simplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node_1}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=4|[[File:5-cube t4.svg|100px]]<BR>[[5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|4|node}} |
|||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t4.svg|100px]]<BR>[[5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|4|node}} |
||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t34.svg|100px]]<BR>[[Truncated 5-orthoplex]]<BR>{{CDD|node_1|3|node_1|3|node|3|node|4|node}} |
||
| colspan="4" |[[File:5-cube t3.svg|100px]]<BR>[[Rectified 5-orthoplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|4|node}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=6|[[File:5-cube t24.svg|150px]]<BR>[[Cantellated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|4|node}} |
|||
|colspan=6|[[File:5-cube |
| colspan="6" |[[File:5-cube t24.svg|150px]]<BR>[[Cantellated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node_1|3|node|4|node}} |
||
| colspan="6" |[[File:5-cube t14.svg|150px]]<BR>[[Runcinated 5-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node_1|4|node}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=4|[[File:5-cube t02.svg|100px]]<BR>[[Cantellated 5-cube]]<BR>{{CDD|node_1|4|node|3|node_1|3|node|3|node}} |
|||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t02.svg|100px]]<BR>[[Cantellated 5-cube]]<BR>{{CDD|node_1|4|node|3|node_1|3|node|3|node}} |
||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t03.svg|100px]]<BR>[[Runcinated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node_1|3|node}} |
||
| colspan="4" |[[File:5-cube t04.svg|100px]]<BR>[[Stericated 5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node_1}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=4|[[File:5-cube t0.svg|100px]]<BR>[[5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node}} |
|||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t0.svg|100px]]<BR>[[5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node}} |
||
|colspan=4|[[File:5-cube |
| colspan="4" |[[File:5-cube t01.svg|100px]]<BR>[[Truncated 5-cube]]<BR>{{CDD|node_1|4|node_1|3|node|3|node|3|node}} |
||
| colspan="4" |[[File:5-cube t1.svg|100px]]<BR>[[Rectified 5-cube]]<BR>{{CDD|node|4|node_1|3|node|3|node|3|node}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=6|[[File:5-demicube t0 D5.svg|150px]]<BR>[[5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node}} |
|||
|colspan=6|[[File:5-demicube |
| colspan="6" |[[File:5-demicube t0 D5.svg|150px]]<BR>[[5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node}} |
||
| colspan="6" |[[File:5-demicube t01 D5.svg|150px]]<BR>[[Truncated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node_1|3|node|3|node}} |
|||
|- align=center valign=top |
|||
|- valign="top" align="center" |
|||
|colspan=6|[[File:5-demicube t02 D5.svg|150px]]<BR>[[Cantellated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node_1|3|node}} |
|||
|colspan=6|[[File:5-demicube |
| colspan="6" |[[File:5-demicube t02 D5.svg|150px]]<BR>[[Cantellated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node_1|3|node}} |
||
| colspan="6" |[[File:5-demicube t03 D5.svg|150px]]<BR>[[Runcinated 5-demicube]]<BR>{{CDD|nodes_10ru|split2|node|3|node|3|node_1}} |
|||
|} |
|} |
||
In [[geometry]], a '''uniform [[5-polytope]]''' is a five-dimensional [[uniform polytope]]. By definition, a uniform 5-polytope is [[vertex-transitive]] and constructed from [[uniform 4-polytope]] [[Facet (geometry)|facets]]. |
In [[geometry]], a '''uniform [[5-polytope]]''' is a five-dimensional [[uniform polytope]]. By definition, a uniform 5-polytope is [[vertex-transitive]] and constructed from [[uniform 4-polytope]] [[Facet (geometry)|facets]]. |
||
The complete set of '''convex uniform 5-polytopes''' has not been determined, but |
The complete set of '''convex uniform 5-polytopes''' has not been determined, but many can be made as [[Wythoff construction]]s from a small set of [[Coxeter groups|symmetry groups]]. These construction operations are represented by the permutations of rings of the [[Coxeter diagram]]s. |
||
== History of discovery == |
== History of discovery == |
||
* '''[[Regular polytope]]s''': (convex faces) |
|||
*'''[[Regular polytope]]s''': (convex faces) |
|||
** '''1852''': [[Ludwig Schläfli]] proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more [[dimension]]s. |
|||
**'''1852''': [[Ludwig Schläfli]] proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more [[dimension]]s. |
|||
* '''Convex [[semiregular polytope]]s''': (Various definitions before Coxeter's '''uniform''' category) |
|||
*'''Convex [[semiregular polytope]]s''': (Various definitions before Coxeter's '''uniform''' category) |
|||
** '''1900''': [[Thorold Gosset]] enumerated the list of nonprismatic semiregular convex polytopes with regular facets ([[convex regular polychoron|convex regular polychora]]) in his publication ''On the Regular and Semi-Regular Figures in Space of n Dimensions''.<ref>[[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900</ref> |
|||
**'''1900''': [[Thorold Gosset]] enumerated the list of nonprismatic semiregular convex polytopes with regular facets ([[convex regular 4-polytope]]s) in his publication ''On the Regular and Semi-Regular Figures in Space of n Dimensions''.<ref>[[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900</ref> |
|||
* '''Convex uniform polytopes''': |
|||
*'''Convex uniform polytopes''': |
|||
** '''1940-1988''': The search was expanded systematically by [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]] in his publication ''Regular and Semi-Regular Polytopes I, II, and III''. |
|||
**'''1940-1988''': The search was expanded systematically by [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]] in his publication ''Regular and Semi-Regular Polytopes I, II, and III''. |
|||
** '''1966''': [[Norman W. Johnson]] completed his Ph.D. Dissertation under Coxeter, ''The Theory of Uniform Polytopes and Honeycombs'', University of Toronto |
|||
**'''1966''': [[Norman W. Johnson]] completed his Ph.D. Dissertation under Coxeter, ''The Theory of Uniform Polytopes and Honeycombs'', University of Toronto |
|||
* '''Non-convex uniform polytopes''': |
|||
**'''1966''': Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.<ref>[https://web.archive.org/web/20070207021813/http://members.aol.com/Polycell/glossary.html Multidimensional Glossary], George Olshevsky</ref> |
|||
**'''2000-2024''': Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,<ref>{{cite conference |url=https://archive.bridgesmathart.org/2000/bridges2000-239.pdf |title=Uniform Polychora |last1=Bowers |first1=Jonathan |author-link1= |last2= |first2= |author-link2= |date=2000 |publisher= |editor=Reza Sarhagi |book-title=Bridges 2000 |pages=239–246 |location= |conference=Bridges Conference |id=}}</ref> with a current count of 1348 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.<ref>[http://www.polytope.net/hedrondude/polytera.htm Uniform Polytera], Jonathan Bowers</ref><ref>[https://polytope.miraheze.org/wiki/Uniform_polytope Uniform polytope]</ref> |
|||
== Regular 5-polytopes == |
== Regular 5-polytopes == |
||
{{Main|List of regular polytopes#Five Dimensions}} |
{{Main|List of regular polytopes#Five Dimensions}} |
||
Regular 5-polytopes can be represented by the [[Schläfli symbol]] {p,q,r,s}, with '''s''' {p,q,r} |
Regular 5-polytopes can be represented by the [[Schläfli symbol]] {p,q,r,s}, with '''s''' {p,q,r} 4-polytope [[Facet (mathematics)|facets]] around each [[Face (geometry)|face]]. There are exactly three such regular polytopes, all convex: |
||
*{3,3,3,3} - [[5-simplex]] |
*{3,3,3,3} - [[5-simplex]] |
||
*{4,3,3,3} - [[5-cube]] |
*{4,3,3,3} - [[5-cube]] |
||
*{3,3,3,4} - [[5-orthoplex]] |
*{3,3,3,4} - [[5-orthoplex]] |
||
There are no nonconvex regular polytopes in 5 or |
There are no nonconvex regular polytopes in 5 dimensions or above. |
||
== Convex uniform 5-polytopes == |
== Convex uniform 5-polytopes == |
||
{{unsolved|mathematics|What is the complete set of convex uniform 5-polytopes?<ref>{{citation|url=http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|work=Open Problem Garden|title=Convex uniform 5-polytopes|access-date=2016-10-04|date=May 24, 2012|author=ACW|archive-url=https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|archive-date=October 5, 2016|url-status=live}}</ref>}} |
|||
There are 104 known convex uniform 5-polytopes, plus a number of infinite families of [[duoprism]] prisms, and polygon-polyhedron duoprisms. All except the ''grand antiprism prism'' are based on [[Wythoff construction]]s, reflection symmetry generated with [[Coxeter group]]s.{{fact|date=February 2015|reason=all these need sourcing}} |
|||
=== Symmetry of uniform 5-polytopes in four dimensions=== |
|||
The [[5-simplex]] is the regular form in the A<sub>5</sub> family. The [[5-cube]] and [[5-orthoplex]] are the regular forms in the B<sub>5</sub> family. The bifurcating graph of the D<sub>5</sub> family contains the [[5-orthoplex]], as well as a [[5-demicube]] which is an [[alternation (geometry)|alternated]] [[5-cube]]. |
|||
Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a [[Wythoff construction]], represented by rings around permutations of nodes in a [[Coxeter diagram]]. Mirror [[hyperplane]]s can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, <nowiki>[[</nowiki>a,b,b,a]], like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry. |
|||
There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the ''grand antiprism prism'' are based on [[Wythoff construction]]s, reflection symmetry generated with [[Coxeter group]]s.{{fact|date=February 2015|reason=all these need sourcing}} |
|||
If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an [[alternation (geometry)|alternation]] operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.[[File:Coxeter diagram finite rank5 correspondence.png|320px|thumb|Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.]] |
|||
{{-}} |
|||
=== Reflection families === |
|||
;Fundamental families<ref>Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions</ref> |
|||
{| class=wikitable width=480 align=right |
|||
|[[File:Coxeter diagram finite rank5 correspondence.png|480px]]<BR>Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence. |
|||
{| class="wikitable sortable" |
|||
!Group<BR>symbol || data-sort-type="number" |[[Order (group theory)|Order]]|| colspan="2" |[[Coxeter-Dynkin diagram|Coxeter<BR>graph]]||[[Coxeter notation|Bracket<BR>notation]]||[[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]]|| data-sort-type="number" |[[Coxeter number|Coxeter<BR>number]]<BR>(h)|| colspan="2" data-sort-type="number" |Reflections<BR>''m''=5/2 ''h''<ref>[[Coxeter]], ''Regular polytopes'', §12.6 The number of reflections, equation 12.61</ref> |
|||
|- align="center" |
|||
!A<sub>5</sub> |
|||
|| 720||{{CDD|node|3|node|3|node|3|node|3|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|3|node_c1}}|| [3,3,3,3]||[3,3,3,3]<sup>+</sup>||6 || || 15 {{CDD|node_c1}} |
|||
|- align="center" |
|||
!D<sub>5</sub> |
|||
|| 1920||{{CDD|nodes|split2|node|3|node|3|node}}||{{CDD|nodeab_c1|split2|node_c1|3|node_c1|3|node_c1}}|| [3,3,3<sup>1,1</sup>]|| rowspan="2" |[3,3,3<sup>1,1</sup>]<sup>+</sup>||8 || || 20 {{CDD|node_c1}} |
|||
|- align="center" |
|||
!B<sub>5</sub> |
|||
|| 3840||{{CDD|node|4|node|3|node|3|node|3|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|3|node_c1}}|| [4,3,3,3] || 10 || 5 {{CDD|node_c2}}||20 {{CDD|node_c1}} |
|||
|} |
|} |
||
;Uniform prisms |
|||
The [[5-simplex]] is the regular form in the A<sub>5</sub> family. The [[5-cube]] and [[5-orthoplex]] are the regular forms in the B<sub>5</sub> family. The bifurcating graph of the D<sub>6</sub> family contains the pentacross, as well as a [[5-demicube]] which is an [[alternation (geometry)|alternated]] 5-cube. |
|||
'''Fundamental families'''<ref>Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions</ref> |
|||
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic [[uniform 4-polytope]]s. There is one infinite family of 5-polytopes based on prisms of the uniform [[duoprism]]s {p}×{q}×{ }. |
|||
{| class=wikitable |
{| class=wikitable |
||
|- valign=top |
|||
!# |
|||
! |
![[Coxeter group|Coxeter<BR>group]] |
||
![[ |
![[Group order|Order]] |
||
!colspan=2|[[Coxeter-Dynkin diagram|Coxeter<BR>diagram]] |
|||
|- |
|||
![[Coxeter notation|Coxeter<BR>notation]] |
|||
|1||A<sub>5</sub>|| [3<sup>4</sup>]||{{CDD|node|3|node|3|node|3|node|3|node}} |
|||
![[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]] |
|||
!colspan=5|Reflections |
|||
|- align=center |
|||
!A<sub>4</sub>A<sub>1</sub> |
|||
|| 120|| {{CDD|node|3|node|3|node|3|node|2|node}}|| {{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [3,3,3,2] = [3,3,3]×[ ] || [3,3,3]<sup>+</sup> || || || 10 {{CDD|node_c1}}|| || 1 {{CDD|node_c5}} |
|||
|- align=center |
|||
!D<sub>4</sub>A<sub>1</sub> |
|||
||384|| {{CDD|nodes|split2|node|3|node|2|node}}||{{CDD|nodeab_c1|split2|node_c1|3|node_c1|2|node_c5}}|| [3<sup>1,1,1</sup>,2] = [3<sup>1,1,1</sup>]×[ ] ||rowspan=2| [3<sup>1,1,1</sup>]<sup>+</sup> || || ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|- align=center |
|||
!B<sub>4</sub>A<sub>1</sub> |
|||
|| 768 || {{CDD|node|4|node|3|node|3|node|2|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [4,3,3,2] = [4,3,3]×[ ] || ||4 {{CDD|node_c2}} ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|- align=center |
|||
!F<sub>4</sub>A<sub>1</sub> |
|||
|| 2304|| {{CDD|node|3|node|4|node|3|node|2|node}}||{{CDD|node_c2|3|node_c2|4|node_c1|3|node_c1|2|node_c5}}|| [3,4,3,2] = [3,4,3]×[ ] ||[3<sup>+</sup>,4,3<sup>+</sup>] || ||12 {{CDD|node_c2}} ||12 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|- align=center |
|||
!H<sub>4</sub>A<sub>1</sub> |
|||
||28800|| {{CDD|node|5|node|3|node|3|node|2|node}}||{{CDD|node_c1|5|node_c1|3|node_c1|3|node_c1|2|node_c5}}|| [5,3,3,2] = [3,4,3]×[ ] || [5,3,3]<sup>+</sup>|| || ||60 {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|- |
|- |
||
!colspan=12|Duoprismatic prisms (use 2p and 2q for evens) |
|||
|2||B<sub>5</sub>||[4,3<sup>3</sup>]||{{CDD|node|4|node|3|node|3|node|3|node}} |
|||
|- align=center |
|||
|- |
|||
!I<sub>2</sub>(''p'')I<sub>2</sub>(''q'')A<sub>1</sub> |
|||
|3||D<sub>5</sub>||[3<sup>2,1,1</sup>]||{{CDD|nodes|split2|node|3|node|3|node}} |
|||
||8''pq''|| {{CDD|node|p|node|2|node|q|node|2|node}}||{{CDD|node_c2|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}|| [p,2,q,2] = [p]×[q]×[ ] ||rowspan=3|[p<sup>+</sup>,2,q<sup>+</sup>] || || ''p'' {{CDD|node_c2}} ||''q'' {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|} |
|||
|- align=center |
|||
'''Uniform prisms''' |
|||
!I<sub>2</sub>(2''p'')I<sub>2</sub>(''q'')A<sub>1</sub> |
|||
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s: |
|||
||16''pq''|| {{CDD|node|2x|p|node|2|node|q|node|2|node}}||{{CDD|node_c3|2x|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}|| [2p,2,q,2] = [2p]×[q]×[ ] ||p {{CDD|node_c3}}||''p'' {{CDD|node_c2}} || ''q'' {{CDD|node_c1}} |||| 1 {{CDD|node_c5}} |
|||
|- align=center |
|||
{| class=wikitable |
|||
!I<sub>2</sub>(2''p'')I<sub>2</sub>(2''q'')A<sub>1</sub> |
|||
!# |
|||
||32''pq''|| {{CDD|node|2x|p|node|2|node|2x|q|node|2|node}}||{{CDD|node_c3|2x|p|node_c2|2|node_c1|2x|q|node_c4|2|node_c5}}|| [2p,2,2q,2] = [2p]×[2q]×[ ] ||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c2}}|| ''q'' {{CDD|node_c1}}|| ''q'' {{CDD|node_c4}}|| 1 {{CDD|node_c5}} |
|||
!colspan=2|[[Coxeter group]]s |
|||
![[Coxeter diagram]] |
|||
|- style="height:25px;" |
|||
| 1 |
|||
| A<sub>4</sub> × A<sub>1</sub> |
|||
| [3,3,3,2] |
|||
| {{CDD|node|3|node|3|node|3|node|2|node}} |
|||
|- style="height:25px;" |
|||
| 2 |
|||
| B<sub>4</sub> × A<sub>1</sub> |
|||
| [4,3,3,2] |
|||
| {{CDD|node|4|node|3|node|3|node|2|node}} |
|||
|- style="height:25px;" |
|||
| 3 |
|||
| F<sub>4</sub> × A<sub>1</sub> |
|||
| [3,4,3,2] |
|||
| {{CDD|node|3|node|4|node|3|node|2|node}} |
|||
|- style="height:25px;" |
|||
| 4 |
|||
| H<sub>4</sub> × A<sub>1</sub> |
|||
| [5,3,3,2] |
|||
| {{CDD|node|5|node|3|node|3|node|2|node}} |
|||
|- style="height:25px;" |
|||
| 5 |
|||
| D<sub>4</sub> × A<sub>1</sub> |
|||
| [3<sup>1,1,1</sup>,2] |
|||
| {{CDD|nodes|split2|node|3|node|2|node}} |
|||
|} |
|} |
||
;Uniform duoprisms |
|||
There is one infinite family of 5-polytopes based on prisms of the uniform [[duoprism]]s {p}×{q}×{ }: |
|||
{| class=wikitable |
|||
!colspan=2|[[Coxeter group]]s |
|||
![[Coxeter diagram]] |
|||
|- style="height:25px;" |
|||
| I<sub>2</sub>(p) × I<sub>2</sub>(q) × A<sub>1</sub> |
|||
| [p,2,q,2] |
|||
| {{CDD|node|p|node|2|node|q|node|2|node}} |
|||
|} |
|||
There are 3 categorical [[Uniform polytope|uniform]] [[duoprism]]atic families of polytopes based on [[Cartesian product]]s of the [[uniform polyhedron|uniform polyhedra]] and [[regular polygon]]s: {''q'',''r''}×{''p''}. |
|||
'''Uniform duoprisms''' |
|||
There are 3 categorical [[Uniform polytope|uniform]] [[duoprism]]atic families of polytopes based on [[Cartesian product]]s of the [[uniform polyhedron|uniform polyhedra]] and [[regular polygon]]s: {q,r}×{p}: |
|||
{| class=wikitable |
{| class=wikitable |
||
|- valign=top |
|||
!# |
|||
! |
![[Coxeter group|Coxeter<BR>group]] |
||
![[ |
![[Group order|Order]] |
||
!colspan=2|[[Coxeter-Dynkin diagram|Coxeter<BR>diagram]] |
|||
|- style="height:25px;" |
|||
![[Coxeter notation|Coxeter<BR>notation]] |
|||
| 1 |
|||
![[Coxeter_notation#Commutator_subgroups|Commutator<BR>subgroup]] |
|||
| A<sub>3</sub> × I<sub>2</sub>(p) |
|||
!colspan=4|Reflections |
|||
| [3,3,2,p] |
|||
|- |
|||
| {{CDD|node|3|node|3|node|2|node|p|node}} |
|||
!colspan=12|Prismatic groups (use 2p for even) |
|||
|- style="height:25px;" |
|||
|- align=center |
|||
| 2 |
|||
!A<sub>3</sub>''I''<sub>2</sub>(''p'') |
|||
|| 48''p''|| {{CDD|node|3|node|3|node|2|node|p|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [3,3,2,''p''] = [3,3]×[''p''] ||rowspan=4|[(3,3)<sup>+</sup>,2,''p''<sup>+</sup>] ||||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}|| |
|||
| [4,3,2,p] |
|||
|- align=center |
|||
| {{CDD|node|4|node|3|node|2|node|p|node}} |
|||
!A<sub>3</sub>''I''<sub>2</sub>(''2p'') |
|||
|- style="height:25px;" |
|||
|| 96''p''|| {{CDD|node|3|node|3|node|2|node|2x|p|node}}||{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [3,3,2,2''p''] = [3,3]×[2''p''] ||||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}} |
|||
| 3. |
|||
|- align=center |
|||
| H<sub>3</sub> × I<sub>2</sub>(p) |
|||
!B<sub>3</sub>''I''<sub>2</sub>(''p'') |
|||
| [5,3,2,p] |
|||
| {{CDD|node| |
||96''p''|| {{CDD|node|4|node|3|node|2|node|p|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [4,3,2,''p''] = [4,3]×[''p''] ||3 {{CDD|node_c2}}||6{{CDD|node_c1}}||''p'' {{CDD|node_c3}} |
||
|- align=center |
|||
!B<sub>3</sub>''I''<sub>2</sub>(''2p'') |
|||
||192''p''|| {{CDD|node|4|node|3|node|2|node|2x|p|node}}||{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [4,3,2,2''p''] = [4,3]×[2''p''] ||3 {{CDD|node_c2}}||6 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}} |
|||
|- align=center |
|||
!H<sub>3</sub>''I''<sub>2</sub>(''p'') |
|||
||240''p''|| {{CDD|node|5|node|3|node|2|node|p|node}}|| {{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|p|node_c3}}|| [5,3,2,''p''] = [5,3]×[''p''] ||rowspan=2|[(5,3)<sup>+</sup>,2,''p''<sup>+</sup>] || ||15 {{CDD|node_c1}}||''p'' {{CDD|node_c3}} |
|||
|- align=center |
|||
!H<sub>3</sub>''I''<sub>2</sub>(''2p'') |
|||
||480''p''|| {{CDD|node|5|node|3|node|2|node|2x|p|node}}|| {{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}|| [5,3,2,2''p''] = [5,3]×[2''p''] || ||15 {{CDD|node_c1}}||''p'' {{CDD|node_c3}}||''p'' {{CDD|node_c4}} |
|||
|} |
|} |
||
Line 151: | Line 164: | ||
* [[Simplex]] family: A<sub>5</sub> [3<sup>4</sup>] |
* [[Simplex]] family: A<sub>5</sub> [3<sup>4</sup>] |
||
** 19 uniform 5-polytopes |
** 19 uniform 5-polytopes |
||
* [[Hypercube]]/[[Orthoplex]] family: |
* [[Hypercube]]/[[Orthoplex]] family: B<sub>5</sub> [4,3<sup>3</sup>] |
||
** 31 uniform 5-polytopes |
** 31 uniform 5-polytopes |
||
* [[Demihypercube]] D<sub>5</sub>/E<sub>5</sub> family: [3<sup>2,1,1</sup>] |
* [[Demihypercube]] D<sub>5</sub>/E<sub>5</sub> family: [3<sup>2,1,1</sup>] |
||
** 23 uniform 5-polytopes (8 unique) |
** 23 uniform 5-polytopes (8 unique) |
||
* Polychoral prisms: |
|||
* Prisms and duoprisms: |
|||
** 56 uniform 5-polytope ( |
** 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[ ], [4,3,3]×[ ], [5,3,3]×[ ], [3<sup>1,1,1</sup>]×[ ]. |
||
** One [[non-Wythoffian]] - The [[grand antiprism prism]] is the only known non-Wythoffian convex uniform 5-polytope, constructed from two [[grand antiprism]]s connected by polyhedral prisms. |
** One [[non-Wythoffian]] - The [[grand antiprism prism]] is the only known non-Wythoffian convex uniform 5-polytope, constructed from two [[grand antiprism]]s connected by polyhedral prisms. |
||
That brings the tally to: 19+31+8+ |
That brings the tally to: 19+31+8+45+1=104 |
||
In addition there are: |
In addition there are: |
||
* Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[ ]. |
* Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [''p'']×[''q'']×[ ]. |
||
* Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p]. |
* Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[''p''], [4,3]×[''p''], [5,3]×[''p'']. |
||
=== The A<sub>5</sub> family === |
=== The A<sub>5</sub> family === |
||
{{See|A5 polytope}} |
|||
There are 19 forms based on all permutations of the [[Coxeter diagram]]s with one or more rings. (16+4-1 cases) |
There are 19 forms based on all permutations of the [[Coxeter diagram]]s with one or more rings. (16+4-1 cases) |
||
Line 174: | Line 188: | ||
The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1). |
The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1). |
||
See symmetry graphs: [[List of A5 polytopes]] |
|||
{| class="wikitable" |
{| class="wikitable" |
||
Line 183: | Line 195: | ||
!colspan=5|k-face element counts |
!colspan=5|k-face element counts |
||
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
||
!colspan= |
!colspan=6 |Facet counts by location: [3,3,3,3] |
||
|- |
|- |
||
! 4 |
! 4 |
||
Line 195: | Line 207: | ||
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15) |
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15) |
||
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6) |
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6) |
||
! Alt |
|||
|- |
|- |
||
!1 |
!1 |
||
Line 205: | Line 218: | ||
| 6 |
| 6 |
||
| [[File:5-simplex verf.png|60px]]<BR>[[5-cell|{3,3,3}]] |
| [[File:5-simplex verf.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
| |
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|||
|- |
|- |
||
!2 |
!2 |
||
Line 220: | Line 234: | ||
| 15 |
| 15 |
||
| [[File:Rectified 5-simplex verf.png|60px]]<BR>[[Truncated tetrahedral prism|t{3,3}×{ }]] |
| [[File:Rectified 5-simplex verf.png|60px]]<BR>[[Truncated tetrahedral prism|t{3,3}×{ }]] |
||
| |
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
|- |
|- |
||
!3 |
!3 |
||
Line 235: | Line 249: | ||
| 30 |
| 30 |
||
| [[File:Truncated 5-simplex verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]] |
| [[File:Truncated 5-simplex verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]] |
||
| |
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!4 |
!4 |
||
Line 251: | Line 266: | ||
| 60 |
| 60 |
||
|[[File:Cantellated hexateron verf.png|60px]]<BR>prism-wedge |
|[[File:Cantellated hexateron verf.png|60px]]<BR>prism-wedge |
||
| |
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| |
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{ }×{3,3}]] |
||
| |
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!5 |
!5 |
||
Line 267: | Line 283: | ||
| 60 |
| 60 |
||
| [[File:Bitruncated 5-simplex verf.png|60px]] |
| [[File:Bitruncated 5-simplex verf.png|60px]] |
||
| |
|[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!6 |
!6 |
||
Line 283: | Line 300: | ||
| 120 |
| 120 |
||
|[[File:Canitruncated 5-simplex verf.png|60px]] |
|[[File:Canitruncated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| [[File: |
| [[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{ }×{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!7 |
!7 |
||
Line 298: | Line 316: | ||
| 60 |
| 60 |
||
| [[File:Runcinated 5-simplex verf.png|60px]] |
| [[File:Runcinated 5-simplex verf.png|60px]] |
||
| |
|[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] |
||
| - |
| - |
||
| |
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| |
|[[File:Octahedral prism.png|60px]]<BR>[[Octahedral prism|{ }×r{3,3}]] |
||
| |
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!8 |
!8 |
||
Line 313: | Line 332: | ||
| 180 |
| 180 |
||
|[[File:Runcitruncated 5-simplex verf.png|60px]] |
|[[File:Runcitruncated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||
| - |
| - |
||
| [[File: |
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{6}×{3}]] |
||
| [[File: |
| [[File:Octahedral prism.png|60px]]<BR>[[Octahedral prism|{ }×r{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!9 |
!9 |
||
Line 328: | Line 348: | ||
| 180 |
| 180 |
||
|[[File:Runcicantellated 5-simplex verf.png|60px]] |
|[[File:Runcicantellated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||
| - |
| - |
||
| [[File:3-3 duoprism |
| [[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| [[File: |
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!10 |
!10 |
||
Line 343: | Line 364: | ||
| 360 |
| 360 |
||
|[[File:Runcicantitruncated 5-simplex verf.png|60px]]<BR>Irr.[[5-cell]] |
|[[File:Runcicantitruncated 5-simplex verf.png|60px]]<BR>Irr.[[5-cell]] |
||
| [[File: |
| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
||
| - |
| - |
||
| [[File: |
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]] |
||
| [[File: |
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!11 |
!11 |
||
Line 358: | Line 380: | ||
| 120 |
| 120 |
||
|[[File:Steritruncated 5-simplex verf.png|60px]] |
|[[File:Steritruncated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
||
| [[File: |
| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]] |
||
| [[File: |
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]] |
||
| [[File: |
| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] |
||
| |
|||
|- |
|- |
||
!12 |
!12 |
||
Line 373: | Line 396: | ||
| 360 |
| 360 |
||
|[[File:Stericanitruncated 5-simplex verf.png|60px]] |
|[[File:Stericanitruncated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||
| [[File: |
| [[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{ }×tr{3,3}]] |
||
| [[File: |
| [[File:3-6 duoprism.png|60px]]<BR>[[3-6 duoprism|{3}×{6}]] |
||
| [[File: |
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{ }×rr{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||
| |
| |
||
{| class="wikitable" |
|||
!rowspan=2|# |
|||
!rowspan=2|Base point |
|||
!rowspan=2|[[Norman Johnson (mathematician)|Johnson]] naming system<BR>Bowers name and (acronym)<BR>[[Coxeter diagram]] |
|||
!colspan=5|k-face element counts |
|||
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
|||
!colspan=5 |Facet counts by location: [3,3,3,3] |
|||
|- |
|||
! 4 |
|||
! 3 |
|||
! 2 |
|||
! 1 |
|||
! 0 |
|||
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6) |
|||
! {{CDD|node|3|node|3|node|2|node}}<BR>[3,3,2]<BR>(15) |
|||
! {{CDD|node|3|node|2|node|3|node}}<BR>[3,2,3]<BR>(20) |
|||
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(15) |
|||
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(6) |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!13 |
!13 |
||
Line 409: | Line 412: | ||
| 20 |
| 20 |
||
| [[File:Birectified hexateron verf.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
| [[File:Birectified hexateron verf.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| |
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!14 |
!14 |
||
Line 425: | Line 428: | ||
| 90 |
| 90 |
||
|[[File:Bicantellated 5-simplex verf.png|60px]] |
|[[File:Bicantellated 5-simplex verf.png|60px]] |
||
| |
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| - |
| - |
||
| |
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| - |
| - |
||
| |
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!15 |
!15 |
||
Line 441: | Line 444: | ||
| 180 |
| 180 |
||
|[[File:Bicanitruncated 5-simplex verf.png|60px]] |
|[[File:Bicanitruncated 5-simplex verf.png|60px]] |
||
| |
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||
| - |
| - |
||
| |
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| - |
| - |
||
| |
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!16 |
!16 |
||
Line 457: | Line 460: | ||
| 30 |
| 30 |
||
| [[File:Stericated hexateron verf.png|60px]]<BR>Irr.[[16-cell]] |
| [[File:Stericated hexateron verf.png|60px]]<BR>Irr.[[16-cell]] |
||
| |
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
| |
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{ }×{3,3}]] |
||
| |
|[[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| |
|[[File:Tetrahedral prism.png|60px]]<BR>[[tetrahedral prism|{ }×{3,3}]] |
||
| |
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!17 |
!17 |
||
Line 473: | Line 476: | ||
| 180 |
| 180 |
||
|[[File:Stericantellated 5-simplex verf.png|60px]] |
|[[File:Stericantellated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| [[File: |
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{ }×rr{3,3}]] |
||
| [[File:3-3 duoprism |
| [[File:3-3 duoprism.png|60px]]<BR>[[3-3 duoprism|{3}×{3}]] |
||
| [[File: |
| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cuboctahedral prism|{ }×rr{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!18 |
!18 |
||
Line 489: | Line 492: | ||
| 360 |
| 360 |
||
|[[File:Steriruncitruncated 5-simplex verf.png|60px]] |
|[[File:Steriruncitruncated 5-simplex verf.png|60px]] |
||
| [[File: |
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||
| [[File: |
| [[File:Tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]] |
||
| [[File:6-6 duoprism |
| [[File:6-6 duoprism.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]] |
||
| [[File: |
| [[File:Tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]] |
||
| [[File: |
| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!19 |
!19 |
||
Line 504: | Line 508: | ||
| 720 |
| 720 |
||
|[[File:Omnitruncated 5-simplex verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]] |
|[[File:Omnitruncated 5-simplex verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]] |
||
| |
|[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
||
| |
|[[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{ }×tr{3,3}]] |
||
| |
|[[File:6-6 duoprism.png|60px]]<BR>[[6-6 duoprism|{6}×{6}]] |
||
| |
|[[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{ }×tr{3,3}]] |
||
| |
|[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
||
| |
|||
|- BGCOLOR="#d0f0f0" |
|||
!Nonuniform |
|||
| |
|||
|[[Stericated 5-simplexes#Full snub 5-simplex|Omnisnub 5-simplex]]<br>snub dodecateron (snod)<br>snub hexateron (snix)<br>{{CDD|node_h|3|node_h|3|node_h|3|node_h|3|node_h}} |
|||
| 422 |
|||
| 2340 |
|||
| 4080 |
|||
| 2520 |
|||
| 360 |
|||
| |
|||
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]] |
|||
|[[Duoprism#Duoantiprism|ht<sub>0,1,2,3</sub>{3,2,3}]] |
|||
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]] |
|||
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|(360)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]] |
|||
|} |
|} |
||
=== The B<sub>5</sub> family === |
=== The B<sub>5</sub> family === |
||
{{See|B5 polytope}} |
|||
The [[Coxeter group#Finite Coxeter groups|B<sub>5</sub> family]] has symmetry of order 3840 (5!×2<sup>5</sup>). |
The [[Coxeter group#Finite Coxeter groups|B<sub>5</sub> family]] has symmetry of order 3840 (5!×2<sup>5</sup>). |
||
This family has 2<sup>5</sup>−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the [[Coxeter diagram]]. |
This family has 2<sup>5</sup>−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the [[Coxeter diagram]]. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D<sub>5</sub> family as {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}..... (There are more alternations that are not listed because they produce only repetitions, as {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}.... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.) |
||
For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both. |
For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both. |
||
The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2. |
The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2. |
||
See symmetry graph: [[List of B5 polytopes]] |
|||
{|class="wikitable" |
{|class="wikitable" |
||
Line 529: | Line 548: | ||
!colspan=5|Element counts |
!colspan=5|Element counts |
||
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
||
!colspan= |
!colspan=6 |Facet counts by location: [4,3,3,3] |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!4||3||2||1||0 |
!4||3||2||1||0 |
||
Line 537: | Line 556: | ||
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(80) |
! {{CDD|node|2|node|3|node|3|node}}<BR>[2,3,3]<BR>(80) |
||
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(32) |
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(32) |
||
! Alt |
|||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!20 |
!20 |
||
||(0,0,0,0,1)√2||[[5-orthoplex]] (tac)<BR>{{CDD||node|4|node|3|node|3|node|3|node_1}}||32||80||80||40||10 |
||(0,0,0,0,1)√2||[[5-orthoplex]]<br>triacontaditeron (tac)<BR>{{CDD||node|4|node|3|node|3|node|3|node_1}}||32||80||80||40||10 |
||
||[[File:pentacross verf.png|60px]]<BR>[[16-cell|{3,3,4}]]||[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]|| |
||[[File:pentacross verf.png|60px]]<BR>[[16-cell|{3,3,4}]]|| - || - || - || - ||[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]]|| |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!21 |
!21 |
||
||(0,0,0,1,1)√2||[[Rectified 5-orthoplex]] (rat)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node}}||42||240||400||240||40 |
||(0,0,0,1,1)√2||[[Rectified 5-orthoplex]]<br>rectified triacontaditeron (rat)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node}}||42||240||400||240||40 |
||
||[[File:Rectified pentacross verf.png|60px]]<BR>[[Octahedral prism|{ }×{3,4}]]|| [[File:Schlegel wireframe 16-cell.png|60px]] |
||[[File:Rectified pentacross verf.png|60px]]<BR>[[Octahedral prism|{ }×{3,4}]]|| [[File:Schlegel wireframe 16-cell.png|60px]]<BR>[[16-cell|{3,3,4}]] || - || - || - ||[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!22 |
!22 |
||
||(0,0,0,1,2)√2||[[Truncated 5-orthoplex]] (tot)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node_1}}||42||240||400||280||80 |
||(0,0,0,1,2)√2||[[Truncated 5-orthoplex]]<br>truncated triacontaditeron (tot)<BR>{{CDD||node|4|node|3|node|3|node_1|3|node_1}}||42||240||400||280||80 |
||
||[[File:Truncated pentacross.png|60px]]<BR>(Octah.pyr)||[[File:Schlegel |
||[[File:Truncated pentacross.png|60px]]<BR>(Octah.pyr)||[[File:Schlegel wireframe 16-cell.png|60px]]<BR>[[16-cell|{3,3,4}]] || - || - || - ||[[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]]|| |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!23 |
!23 |
||
||(0,0,1,1,1)√2||[[Birectified 5-cube]] (nit)<BR>(Birectified 5-orthoplex)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node}}||42||280||640||480||80 |
||(0,0,1,1,1)√2||[[Birectified 5-cube]]<br>penteractitriacontaditeron (nit)<BR>(Birectified 5-orthoplex)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node}}||42||280||640||480||80 |
||
||[[File:Birectified penteract verf.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[ |
||[[File:Birectified penteract verf.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[24-cell|r{3,3,4}]] || - || - || - || [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] || |
||
|-BGCOLOR="#f0e0e0" |
|-BGCOLOR="#f0e0e0" |
||
!24 |
!24 |
||
||(0,0,1,1,2)√2||[[Cantellated 5-orthoplex]] (sart)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node_1}}||82||640||1520||1200||240 |
||(0,0,1,1,2)√2||[[Cantellated 5-orthoplex]]<br>small rhombated triacontaditeron (sart)<BR>{{CDD||node|4|node|3|node_1|3|node|3|node_1}}||82||640||1520||1200||240 |
||
||[[File:Cantellated pentacross verf.png|60px]]<BR>Prism-wedge|| r{3,3,4}|| { }×{3,4} || - || - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||[[File:Cantellated pentacross verf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid rectified 16-cell.png|60px]]<BR>[[24-cell|r{3,3,4}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{ }×{3,4}]] || - || - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!25 |
!25 |
||
||(0,0,1,2,2)√2||[[Bitruncated 5-orthoplex]] (bittit)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node}}||42||280||720||720||240 |
||(0,0,1,2,2)√2||[[Bitruncated 5-orthoplex]]<br>bitruncated triacontaditeron (bittit)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node}}||42||280||720||720||240 |
||
||[[File:Bitruncated pentacross verf.png|60px]]|| t{3,3,4} || - || - || - || [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] |
||[[File:Bitruncated pentacross verf.png|60px]]|| [[File:Schlegel half-solid truncated 16-cell.png|60px]]<BR>[[Truncated 16-cell|t{3,3,4}]] || - || - || - || [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!26 |
!26 |
||
||(0,0,1,2,3)√2||[[Cantitruncated 5-orthoplex]] (gart)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node_1}}||82||640||1520||1440||480 |
||(0,0,1,2,3)√2||[[Cantitruncated 5-orthoplex]]<br>great rhombated triacontaditeron (gart)<BR>{{CDD||node|4|node|3|node_1|3|node_1|3|node_1}}||82||640||1520||1440||480 |
||
||[[File:Canitruncated 5-orthoplex verf.png|60px]]|| |
||[[File:Canitruncated 5-orthoplex verf.png|60px]]||[[File:Schlegel half-solid truncated 16-cell.png|60px]]<BR>[[Truncated 16-cell|t{3,3,4}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{ }×{3,4}]] || -|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!27 |
!27 |
||
||(0,1,1,1,1)√2||[[Rectified 5-cube]] (rin)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node}}||42||200||400||320||80 |
||(0,1,1,1,1)√2||[[Rectified 5-cube]]<br>rectified penteract (rin)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node}}||42||200||400||320||80 |
||
|| [[File:Rectified 5-cube verf.png|60px]]<BR>[[Tetrahedral prism|{3,3}×{ }]]|| [[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
|| [[File:Rectified 5-cube verf.png|60px]]<BR>[[Tetrahedral prism|{3,3}×{ }]]|| [[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] || |
||
|-BGCOLOR="#f0e0e0" |
|-BGCOLOR="#f0e0e0" |
||
!28 |
!28 |
||
||(0,1,1,1,2)√2||[[Runcinated 5-orthoplex]] (spat)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node_1}}||162||1200||2160||1440||320 |
||(0,1,1,1,2)√2||[[Runcinated 5-orthoplex]]<br>small prismated triacontaditeron (spat)<BR>{{CDD||node|4|node_1|3|node|3|node|3|node_1}}||162||1200||2160||1440||320 |
||
||[[File:Runcinated pentacross verf.png|60px]]|| r{4,3,3} || |
|| [[File:Runcinated pentacross verf.png|60px]]||[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|r{4,3,3}]] || [[File:Cuboctahedral prism.png|60px]]<br>[[Cuboctahedral prism|{ }×r{3,4}]] || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]]|| || [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!29 |
!29 |
||
||(0,1,1,2,2)√2||[[Bicantellated 5-cube]] (sibrant)<BR>(Bicantellated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node}}||122||840||2160||1920||480 |
||(0,1,1,2,2)√2||[[Bicantellated 5-cube]]<br>small birhombated penteractitriacontaditeron (sibrant)<BR>(Bicantellated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node}}||122||840||2160||1920||480 |
||
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantellated |
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantellated 16-cell.png|60px]]<BR>[[Rectified 24-cell|rr{3,3,4}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!30 |
!30 |
||
||(0,1,1,2,3)√2||[[Runcitruncated 5-orthoplex]] (pattit)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node_1}}||162||1440||3680||3360||960 |
||(0,1,1,2,3)√2||[[Runcitruncated 5-orthoplex]]<br>prismatotruncated triacontaditeron (pattit)<BR>{{CDD||node|4|node_1|3|node|3|node_1|3|node_1}}||162||1440||3680||3360||960 |
||
||[[File:Runcitruncated 5-orthoplex verf.png|60px]]|| rr{3,3,4} || { }×r{3,4} || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||[[File:Runcitruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 16-cell.png|60px]]<BR>[[Rectified 24-cell|rr{3,3,4}]] || [[File:Cuboctahedral prism.png|60px]]<br>[[Cuboctahedral prism|{ }×r{3,4}]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!31 |
!31 |
||
||(0,1,2,2,2)√2||[[Bitruncated 5-cube]] ( |
||(0,1,2,2,2)√2||[[Bitruncated 5-cube]]<br>bitruncated penteract (bittin)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node}}||42||280||720||800||320 |
||
|| [[File:Bitruncated penteract verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]|| - || - || - || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
|| [[File:Bitruncated penteract verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]|| - || - || - || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!32 |
!32 |
||
||(0,1,2,2,3)√2||[[Runcicantellated 5-orthoplex]] (pirt)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node_1}}||162||1200||2960||2880||960 |
||(0,1,2,2,3)√2||[[Runcicantellated 5-orthoplex]]<br>prismatorhombated triacontaditeron (pirt)<BR>{{CDD||node|4|node_1|3|node_1|3|node|3|node_1}}||162||1200||2960||2880||960 |
||
||[[File:Runcicantellated 5-orthoplex verf.png|60px]]|| { |
||[[File:Runcicantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|2t{4,3,3}]]||[[File:Truncated octahedral prism.png|60px]]<br>[[Truncated octahedral prism|{ }×t{3,4}]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{3}×{4}]] || - || [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!33 |
!33 |
||
||(0,1,2,3,3)√2||[[Bicantitruncated 5-cube]] (gibrant)<BR>(Bicantitruncated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node}}||122||840||2160||2400||960 |
||(0,1,2,3,3)√2||[[Bicantitruncated 5-cube]]<br>great birhombated triacontaditeron (gibrant)<BR>(Bicantitruncated 5-orthoplex)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node}}||122||840||2160||2400||960 |
||
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid |
|| [[File:Bicantellated penteract verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 16-cell.png|60px]]<BR>[[Truncated 24-cell|tr{3,3,4}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| - || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!34 |
!34 |
||
||(0,1,2,3,4)√2||[[Runcicantitruncated 5-orthoplex]] (gippit)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node_1}}||162||1440||4160||4800||1920 |
||(0,1,2,3,4)√2||[[Runcicantitruncated 5-orthoplex]]<br>great prismated triacontaditeron (gippit)<BR>{{CDD||node|4|node_1|3|node_1|3|node_1|3|node_1}}||162||1440||4160||4800||1920 |
||
||[[File:Runcicantitruncated 5-orthoplex verf.png|60px]]|| tr{3,3,4} || { }×t{3,4} || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
||[[File:Runcicantitruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 16-cell.png|60px]]<BR>[[Truncated 24-cell|tr{3,3,4}]] || [[File:Truncated octahedral prism.png|60px]]<br>[[Truncated octahedral prism|{ }×t{3,4}]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| - || [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!35 |
!35 |
||
||(1,1,1,1,1)||[[5-cube]] (pent)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node}}||10||40||80||80||32 |
||(1,1,1,1,1)||[[5-cube]]<br>penteract (pent)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node}}||10||40||80||80||32 |
||
||[[File:5-cube verf. |
||[[File:5-cube verf.svg|60px]]<BR>[[5-cell|{3,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3,3}]]|| - || - || - || - || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!36 |
!36 |
||
||(1,1,1,1,1)<BR>+ (0,0,0,0,1)√2||[[Stericated 5-cube]] (scant)<BR>(Stericated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node_1}}||242||800||1040||640||160 |
||(1,1,1,1,1)<BR>+ (0,0,0,0,1)√2||[[Stericated 5-cube]]<br>small cellated penteractitriacontaditeron (scant)<BR>(Stericated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node|3|node|3|node_1}}||242||800||1040||640||160 |
||
|| [[File:Stericated penteract verf.png|60px]]<BR>Tetr.antiprm|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[tesseract|{4,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{ }]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
|| [[File:Stericated penteract verf.png|60px]]<BR>Tetr.antiprm|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[tesseract|{4,3,3}]]|| [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{ }]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!37 |
!37 |
||
||(1,1,1,1,1)<BR>+ (0,0,0,1,1)√2||[[Runcinated 5-cube]] (span)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node}}||202||1240||2160||1440||320 |
||(1,1,1,1,1)<BR>+ (0,0,0,1,1)√2||[[Runcinated 5-cube]]<br>small prismated penteract (span)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node}}||202||1240||2160||1440||320 |
||
|| [[File:Runcinated penteract verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Octahedral prism.png|60px]]<BR>[[Rectified tetrahedral prism|{ }×r{3,3}]]|| [[File:Schlegel |
|| [[File:Runcinated penteract verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Octahedral prism.png|60px]]<BR>[[Rectified tetrahedral prism|{ }×r{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!38 |
!38 |
||
||(1,1,1,1,1)<BR>+ (0,0,0,1,2)√2||[[Steritruncated 5-orthoplex]] (cappin)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node_1}}||242||1520||2880||2240||640 |
||(1,1,1,1,1)<BR>+ (0,0,0,1,2)√2||[[Steritruncated 5-orthoplex]]<br>celliprismated triacontaditeron (cappin)<BR>{{CDD||node_1|4|node|3|node|3|node_1|3|node_1}}||242||1520||2880||2240||640 |
||
||[[File:Steritruncated 5-orthoplex verf.png|60px]]|| t<sub>0,3</sub>{ |
||[[File:Steritruncated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid runcinated 8-cell.png|60px]]<BR>[[Runcinated tesseract|t<sub>0,3</sub>{4,3,3}]] || [[File:Schlegel wireframe 8-cell.png|60px]]<BR>[[Tesseract|{4,3}×{ }]] || [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]] || [[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|{ }×t{3,3}]] || [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!39 |
!39 |
||
||(1,1,1,1,1)<BR>+ (0,0,1,1,1)√2||[[Cantellated 5-cube]] (sirn)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node}}||122||680||1520||1280||320 |
||(1,1,1,1,1)<BR>+ (0,0,1,1,1)√2||[[Cantellated 5-cube]]<br>small rhombated penteract (sirn)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node}}||122||680||1520||1280||320 |
||
|| [[File:Cantellated 5-cube vertf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
|| [[File:Cantellated 5-cube vertf.png|60px]]<BR>Prism-wedge|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!40 |
!40 |
||
||(1,1,1,1,1)<BR>+ (0,0,1,1,2)√2||[[Stericantellated 5-cube]] (carnit)<BR>(Stericantellated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node_1}}||242||2080||4720||3840||960 |
||(1,1,1,1,1)<BR>+ (0,0,1,1,2)√2||[[Stericantellated 5-cube]]<br>cellirhombated penteractitriacontaditeron (carnit)<BR>(Stericantellated 5-orthoplex)<BR>{{CDD||node_1|4|node|3|node_1|3|node|3|node_1}}||242||2080||4720||3840||960 |
||
||[[File:Stericantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{ }]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{ }×rr{3,3}]]|| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
||[[File:Stericantellated 5-orthoplex verf.png|60px]]|| [[File:Schlegel half-solid cantellated 8-cell.png|60px]]<BR>[[Cantellated tesseract|rr{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{ }]]|| [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{ }×rr{3,3}]]|| [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!41 |
!41 |
||
||(1,1,1,1,1)<BR>+ (0,0,1,2,2)√2||[[Runcicantellated 5-cube]] (prin)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node}}||202||1240||2960||2880||960 |
||(1,1,1,1,1)<BR>+ (0,0,1,2,2)√2||[[Runcicantellated 5-cube]]<br>prismatorhombated penteract (prin)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node}}||202||1240||2960||2880||960 |
||
||[[File:Runcicantellated 5-cube verf.png|60px]]|| [[File: |
||[[File:Runcicantellated 5-cube verf.png|60px]]|| [[File:Runcitruncated 16-cell.png|60px]]<BR>[[Runcitruncated 16-cell|t<sub>0,2,3</sub>{4,3,3}]]|| - || [[File:3-4 duoprism.png|60px]]<BR>[[3-4 duoprism|{4}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]]|| [[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] || |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
!42 |
!42 |
||
||(1,1,1,1,1)<BR>+ (0,0,1,2,3)√2||[[Stericantitruncated 5-orthoplex]] (cogart)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node_1}}||242||2320||5920||5760||1920 |
||(1,1,1,1,1)<BR>+ (0,0,1,2,3)√2||[[Stericantitruncated 5-orthoplex]]<br>celligreatorhombated triacontaditeron (cogart)<BR>{{CDD||node_1|4|node|3|node_1|3|node_1|3|node_1}}||242||2320||5920||5760||1920 |
||
||[[File:Stericanitruncated 5-orthoplex verf.png|60px]]|| [[File: |
||[[File:Stericanitruncated 5-orthoplex verf.png|60px]]|| [[File:Runcitruncated 16-cell.png|60px]]<BR>[[Runcitruncated 16-cell|t<sub>0,2,3</sub>{4,3,3}]]|| [[File:Rhombicuboctahedral prism.png|60px]]<BR>[[Rhombicuboctahedral prism|rr{4,3}×{ }]]|| [[File:6-4 duoprism.png|60px]]<BR>[[4-6 duoprism|{6}×{4}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Truncated octahedral prism|{ }×tr{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!43 |
!43 |
||
||(1,1,1,1,1)<BR>+ (0,1,1,1,1)√2||[[Truncated 5-cube]] (tan)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node}}||42||200||400||400||160 |
||(1,1,1,1,1)<BR>+ (0,1,1,1,1)√2||[[Truncated 5-cube]]<br>truncated penteract (tan)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node}}||42||200||400||400||160 |
||
|| [[File:Truncated 5-cube verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
|| [[File:Truncated 5-cube verf.png|60px]]<BR>[[5-cell|Tetrah.pyr]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| - || - || - || [[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!44 |
!44 |
||
||(1,1,1,1,1)<BR>+ (0,1,1,1,2)√2||[[Steritruncated 5-cube]] (capt)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node_1}}||242||1600||2960||2240||640 |
||(1,1,1,1,1)<BR>+ (0,1,1,1,2)√2||[[Steritruncated 5-cube]]<br>celliprismated triacontaditeron (capt)<BR>{{CDD||node_1|4|node_1|3|node|3|node|3|node_1}}||242||1600||2960||2240||640 |
||
||[[File:Steritruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{ }]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] |
||[[File:Steritruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid truncated tesseract.png|60px]]<BR>[[Truncated tesseract|t{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{ }]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!45 |
!45 |
||
||(1,1,1,1,1)<BR>+ (0,1,1,2,2)√2||[[Runcitruncated 5-cube]] (pattin)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node}}||202||1560||3760||3360||960 |
||(1,1,1,1,1)<BR>+ (0,1,1,2,2)√2||[[Runcitruncated 5-cube]]<br>prismatotruncated penteract (pattin)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node}}||202||1560||3760||3360||960 |
||
||[[File:Runcitruncated 5-cube verf.png|60px]]||[[File:Schlegel half-solid runcitruncated |
||[[File:Runcitruncated 5-cube verf.png|60px]]||[[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]] || - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Octahedral prism.png|60px]]<br>[[Octahedral prism|{ }×r{3,3}]] || [[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!46 |
!46 |
||
||(1,1,1,1,1)<BR>+ (0,1,1,2,3)√2||[[Steriruncitruncated 5-cube]] (captint)<BR>(Steriruncitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node_1}}||242||2160||5760||5760||1920 |
||(1,1,1,1,1)<BR>+ (0,1,1,2,3)√2||[[Steriruncitruncated 5-cube]]<br>celliprismatotruncated penteractitriacontaditeron (captint)<BR>(Steriruncitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node|3|node_1|3|node_1}}||242||2160||5760||5760||1920 |
||
||[[File:Steriruncitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{ }]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
||[[File:Steriruncitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid runcitruncated 8-cell.png|60px]]<BR>[[Runcitruncated tesseract|t<sub>0,1,3</sub>{4,3,3}]]|| [[File:Truncated cubic prism.png|60px]]<BR>[[Truncated cubic prism|t{4,3}×{ }]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!47 |
!47 |
||
||(1,1,1,1,1)<BR>+ (0,1,2,2,2)√2||[[Cantitruncated 5-cube]] (girn)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node}}||122||680||1520||1600||640 |
||(1,1,1,1,1)<BR>+ (0,1,2,2,2)√2||[[Cantitruncated 5-cube]]<br>great rhombated penteract (girn)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node}}||122||680||1520||1600||640 |
||
||[[File:Canitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR>[[Cantitruncated tesseract|tr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] |
||[[File:Canitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR>[[Cantitruncated tesseract|tr{4,3,3}]]|| - || - || [[File:Tetrahedral prism.png|60px]]<BR>[[Tetrahedral prism|{ }×{3,3}]]|| [[File:Schlegel half-solid truncated pentachoron.png|60px]]<BR>[[Truncated 5-cell|t{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!48 |
!48 |
||
||(1,1,1,1,1)<BR>+ (0,1,2,2,3)√2||[[Stericantitruncated 5-cube]] (cogrin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node_1}}||242||2400||6000||5760||1920 |
||(1,1,1,1,1)<BR>+ (0,1,2,2,3)√2||[[Stericantitruncated 5-cube]]<br>celligreatorhombated penteract (cogrin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node|3|node_1}}||242||2400||6000||5760||1920 |
||
||[[File:Stericanitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR> [[Cantitruncated tesseract|tr{4,3,3}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{ } |
||[[File:Stericanitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid cantitruncated 8-cell.png|60px]]<BR> [[Cantitruncated tesseract|tr{4,3,3}]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Cuboctahedral prism.png|60px]]<BR>[[Cantellated tetrahedral prism|{ }×rr{3,3}]]|| [[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<BR>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
!49 |
!49 |
||
||(1,1,1,1,1)<BR>+ (0,1,2,3,3)√2||[[Runcicantitruncated 5-cube]] (gippin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node}}||202||1560||4240||4800||1920 |
||(1,1,1,1,1)<BR>+ (0,1,2,3,3)√2||[[Runcicantitruncated 5-cube]]<br>great prismated penteract (gippin)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node}}||202||1560||4240||4800||1920 |
||
||[[File:Runcicantitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[Omnitruncated tesseract|t<sub>0,1,2,3</sub>{4,3,3}]]|| - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] |
||[[File:Runcicantitruncated 5-cube verf.png|60px]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[Omnitruncated tesseract|t<sub>0,1,2,3</sub>{4,3,3}]]|| - || [[File:8-3 duoprism.png|60px]]<BR>[[3-8 duoprism|{8}×{3}]]|| [[File:Truncated tetrahedral prism.png|60px]]<BR>[[Truncated tetrahedral prism|{ }×t{3,3}]]|| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<BR>[[Cantitruncated 5-cell|tr{3,3,3}]] || |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
!50 |
!50 |
||
||(1,1,1,1,1)<BR>+ (0,1,2,3,4)√2||[[Omnitruncated 5-cube]] (gacnet)<BR>(omnitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node_1}}||242||2640||8160||9600||3840 |
||(1,1,1,1,1)<BR>+ (0,1,2,3,4)√2||[[Omnitruncated 5-cube]]<br>great cellated penteractitriacontaditeron (gacnet)<BR>(omnitruncated 5-orthoplex)<BR>{{CDD||node_1|4|node_1|3|node_1|3|node_1|3|node_1}}||242||2640||8160||9600||3840 |
||
|| [[File:Omnitruncated 5-cube verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Omnitruncated tetrahedral prism|{ }×tr{3,3}]]|| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
|| [[File:Omnitruncated 5-cube verf.png|60px]]<BR>[[5-cell|Irr. {3,3,3}]]|| [[File:Schlegel half-solid omnitruncated 8-cell.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:Truncated cuboctahedral prism.png|60px]]<BR>[[truncated cuboctahedral prism|tr{4,3}×{ }]]|| [[File:8-6 duoprism.png|60px]]<BR>[[6-8 duoprism|{8}×{6}]]|| [[File:Truncated octahedral prism.png|60px]]<BR>[[Omnitruncated tetrahedral prism|{ }×tr{3,3}]]|| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<BR>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] || |
||
|- BGCOLOR="#d0f0f0" |
|||
!51 |
|||
| |
|||
|[[5-demicube]]<br>hemipenteract (hin)<br>{{CDD|node_h1|4|node|3|node|3|node|3|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node}} |
|||
|26 |
|||
|120 |
|||
|160 |
|||
|80 |
|||
|16 |
|||
|[[File:Demipenteract verf.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]] |
|||
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]] |
|||
| - |
|||
| - |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!52 |
|||
| |
|||
|[[Cantic 5-cube]]<br>Truncated hemipenteract (thin)<br>{{CDD|node_h1|4|node|3|node_1|3|node|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} |
|||
|42 |
|||
|280 |
|||
|640 |
|||
|560 |
|||
|160 |
|||
|[[File:Truncated 5-demicube verf.png|60px]] |
|||
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]] |
|||
| - |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!53 |
|||
| |
|||
| [[Runcic 5-cube]]<br>Small rhombated hemipenteract (sirhin)<br>{{CDD|node_h1|4|node|3|node|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} |
|||
|42 |
|||
|360 |
|||
|880 |
|||
|720 |
|||
|160 |
|||
| |
|||
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]] |
|||
| - |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid rectified 5-cell.png|60px]]<BR>[[Rectified 5-cell|r{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!54 |
|||
| |
|||
| [[Steric 5-cube]]<br>Small prismated hemipenteract (siphin)<br>{{CDD|node_h1|4|node|3|node|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} |
|||
|82 |
|||
|480 |
|||
|720 |
|||
|400 |
|||
|80 |
|||
| |
|||
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]] |
|||
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]] |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!55 |
|||
| |
|||
| [[Runcicantic 5-cube]]<br>Great rhombated hemipenteract (girhin)<br>{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} |
|||
|42 |
|||
|360 |
|||
|1040 |
|||
|1200 |
|||
|480 |
|||
| |
|||
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]] |
|||
| - |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!56 |
|||
| |
|||
| [[Stericantic 5-cube]]<br>Prismatotruncated hemipenteract (pithin)<br>{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} |
|||
|82 |
|||
|720 |
|||
|1840 |
|||
|1680 |
|||
|480 |
|||
| |
|||
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]] |
|||
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]] |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|rr{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!57 |
|||
| |
|||
|[[Steriruncic 5-cube]]<br>Prismatorhombated hemipenteract (pirhin)<br>{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} |
|||
|82 |
|||
|560 |
|||
|1280 |
|||
|1120 |
|||
|320 |
|||
| |
|||
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]] |
|||
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]] |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!58 |
|||
| |
|||
|[[Steriruncicantic 5-cube]]<br>Great prismated hemipenteract (giphin)<br>{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} |
|||
|82 |
|||
|720 |
|||
|2080 |
|||
|2400 |
|||
|960 |
|||
| |
|||
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]] |
|||
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]] |
|||
| - |
|||
| - |
|||
|(16)<br>[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]] |
|||
|(16)<br>[[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<br>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!Nonuniform |
|||
| |
|||
|Alternated runcicantitruncated 5-orthoplex<br>Snub prismatotriacontaditeron (snippit)<BR>Snub hemipenteract (snahin)<BR>{{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}} = {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} |
|||
|1122 |
|||
|6240 |
|||
|10880 |
|||
|6720 |
|||
|960 |
|||
| |
|||
|[[File:Schlegel half-solid alternated cantitruncated 16-cell.png|60px]]<br>[[Snub 24-cell|sr{3,3,4}]] |
|||
|[[Truncated octahedral prism#Related polytopes|sr{2,3,4}]] |
|||
|[[Duoprism#Duoantiprism|sr{3,2,4}]] |
|||
| - |
|||
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|(960)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!Nonuniform |
|||
| |
|||
|Edge-snub 5-orthoplex<br>Pyritosnub penteract (pysnan)<BR>{{CDD|node_1|4|node_h|3|node_h|3|node_h|3|node_h}} |
|||
|1202 |
|||
|7920 |
|||
|15360 |
|||
|10560 |
|||
|1920 |
|||
| |
|||
|sr<sub>3</sub>{3,3,4} |
|||
|[[Truncated_cuboctahedral_prism#Related_polytopes|sr<sub>3</sub>{2,3,4}]] |
|||
|sr<sub>3</sub>{3,2,4} |
|||
|[[File:Icosahedral prism.png|60px]]<br>[[Icosahedral prism|s{3,3}×{ }]] |
|||
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|(960)<br>[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|Irr. {3,3}×{ }]] |
|||
|- BGCOLOR="#d0f0f0" |
|||
!Nonuniform |
|||
| |
|||
|Snub 5-cube<br>Snub penteract (snan)<BR>{{CDD|node_h|4|node_h|3|node_h|3|node_h|3|node_h}} |
|||
|2162 |
|||
|12240 |
|||
|21600 |
|||
|13440 |
|||
|960 |
|||
| |
|||
|[[Runcinated_tesseracts#Full_snub_tesseract|ht<sub>0,1,2,3</sub>{3,3,4}]] |
|||
|[[Truncated_cuboctahedral_prism#Related_polytopes|ht<sub>0,1,2,3</sub>{2,3,4}]] |
|||
|[[Duoprism#Duoantiprism|ht<sub>0,1,2,3</sub>{3,2,4}]] |
|||
|[[Truncated octahedral prism#Related polytopes|ht<sub>0,1,2,3</sub>{3,3,2}]] |
|||
|[[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
|(1920)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]] |
|||
|} |
|} |
||
=== The D<sub>5</sub> family === |
=== The D<sub>5</sub> family === |
||
{{See|D5 polytope}} |
|||
The [[Coxeter group#Finite Coxeter groups|D<sub>5</sub> family]] has symmetry of order 1920 (5! x 2<sup>4</sup>). |
The [[Coxeter group#Finite Coxeter groups|D<sub>5</sub> family]] has symmetry of order 1920 (5! x 2<sup>4</sup>). |
||
This family has 23 Wythoffian uniform |
This family has 23 Wythoffian uniform polytopes, from ''3×8-1'' permutations of the D<sub>5</sub> [[Coxeter diagram]] with one or more rings. 15 (2×8-1) are repeated from the B<sub>5</sub> family and 8 are unique to this family, though even those 8 duplicate the alternations from the B<sub>5</sub> family. |
||
In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of {{CDD|node|3|node|3|node|3|node}} element are identical and the symmetry doubles: the relations are {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}... duplicating uniform 5-polytopes 51 through 58 above. |
|||
See symmetry graphs: [[List of D5 polytopes]] |
|||
{| class="wikitable" |
{| class="wikitable" |
||
Line 676: | Line 872: | ||
!colspan=5|Element counts |
!colspan=5|Element counts |
||
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
!rowspan=2|[[Vertex figure|Vertex<BR>figure]] |
||
!colspan= |
!colspan=6 |Facets by location: [[File:CD B5 nodes.png]] [3<sup>1,2,1</sup>] |
||
|- |
|- |
||
!4 |
!4 |
||
Line 688: | Line 884: | ||
! {{CDD|node|2|node|3|node|2|node}}<BR>[ ]×[3]×[ ]<BR>(80) |
! {{CDD|node|2|node|3|node|2|node}}<BR>[ ]×[3]×[ ]<BR>(80) |
||
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(16) |
! {{CDD|node|3|node|3|node|3|node}}<BR>[3,3,3]<BR>(16) |
||
! Alt |
|||
|- |
|- |
||
!51 |
![51] |
||
| {{CDD|nodes_10ru|split2|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node}}<BR>h{4,3,3,3}, [[5-demicube]]<BR>Hemipenteract (hin) |
| {{CDD|nodes_10ru|split2|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node}}<BR>h{4,3,3,3}, [[5-demicube]]<BR>Hemipenteract (hin) |
||
| 26 |
| 26 |
||
Line 696: | Line 893: | ||
| 80 |
| 80 |
||
| 16 |
| 16 |
||
| [[File:Demipenteract verf.png|50px]]<BR>[[rectified 5-cell| |
| [[File:Demipenteract verf.png|50px]]<BR>[[rectified 5-cell|r{3,3,3}]] |
||
| [[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|{3,3,3}]] |
|||
| {3,3,3} |
|||
| [[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]] |
|||
| t<sub>0</sub>(1<sub>11</sub>) |
|||
| - |
| - |
||
| - |
| - |
||
| - |
| - |
||
| |
|||
|- |
|- |
||
!52 |
![52] |
||
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node}}<BR>h<sub>2</sub>{4,3,3,3}, [[cantic 5-cube]]<BR>Truncated hemipenteract (thin) |
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node}}<BR>h<sub>2</sub>{4,3,3,3}, [[cantic 5-cube]]<BR>Truncated hemipenteract (thin) |
||
| 42 |
| 42 |
||
Line 711: | Line 909: | ||
| 160 |
| 160 |
||
|[[File:Truncated 5-demicube verf.png|60px]] |
|[[File:Truncated 5-demicube verf.png|60px]] |
||
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]] |
|||
| |
|||
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]] |
|||
| |
|||
| |
| - |
||
| |
| - |
||
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]] |
|||
| |
|||
| |
|||
|- |
|- |
||
!53 |
![53] |
||
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node}}<BR>h<sub>3</sub>{4,3,3,3}, [[runcic 5-cube]]<BR>Small rhombated hemipenteract (sirhin) |
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node}}<BR>h<sub>3</sub>{4,3,3,3}, [[runcic 5-cube]]<BR>Small rhombated hemipenteract (sirhin) |
||
| 42 |
| 42 |
||
Line 725: | Line 924: | ||
| 160 |
| 160 |
||
| |
| |
||
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<BR>[[Cantellated 5-cell|rr{3,3,3}]] |
|||
| |
|||
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]] |
|||
| |
|||
| |
| - |
||
| |
| - |
||
|[[File:Schlegel half-solid rectified 5-cell.png|60px]]<br>[[Rectified 5-cell|r{3,3,3}]] |
|||
| |
| |
||
|- |
|- |
||
!54 |
![54] |
||
| {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1}}<BR>h<sub>4</sub>{4,3,3,3}, [[steric 5-cube]]<BR>Small prismated hemipenteract (siphin) |
| {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1}}<BR>h<sub>4</sub>{4,3,3,3}, [[steric 5-cube]]<BR>Small prismated hemipenteract (siphin) |
||
| 82 |
| 82 |
||
Line 739: | Line 939: | ||
| 80 |
| 80 |
||
| |
| |
||
|[[File:Schlegel half-solid runcinated 5-cell.png|60px]]<BR>[[Runcinated 5-cell|t<sub>0,3</sub>{3,3,3}]] |
|||
| |
|||
|[[File:Schlegel wireframe 16-cell.png|60px]]<br>[[16-cell|h{4,3,3}]] |
|||
| |
|||
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]] |
|||
| - |
|||
|[[File:Schlegel wireframe 5-cell.png|60px]]<BR>[[5-cell|{3,3,3}]] |
|||
| |
| |
||
| |
|||
| |
|||
|- |
|- |
||
!55 |
![55] |
||
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}}<BR>h<sub>2,3</sub>{4,3,3,3}, [[runcicantic 5-cube]]<BR>Great rhombated hemipenteract (girhin) |
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}}<BR>h<sub>2,3</sub>{4,3,3,3}, [[runcicantic 5-cube]]<BR>Great rhombated hemipenteract (girhin) |
||
| 42 |
| 42 |
||
Line 753: | Line 954: | ||
| 480 |
| 480 |
||
| |
| |
||
|[[File:Schlegel half-solid bitruncated 5-cell.png|60px]]<BR>[[Bitruncated 5-cell|2t{3,3,3}]] |
|||
| |
|||
|[[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]] |
|||
| - |
|||
| - |
|||
|[[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]] |
|||
| |
| |
||
| |
|||
| |
|||
| |
|||
|- |
|- |
||
!56 |
![56] |
||
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}<BR>h<sub>2,4</sub>{4,3,3,3}, [[stericantic 5-cube]]<BR>Prismatotruncated hemipenteract (pithin) |
| {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}<BR>h<sub>2,4</sub>{4,3,3,3}, [[stericantic 5-cube]]<BR>Prismatotruncated hemipenteract (pithin) |
||
| 82 |
| 82 |
||
Line 767: | Line 969: | ||
| 480 |
| 480 |
||
| |
| |
||
|[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
|||
| |
|||
|[[File:Schlegel half-solid truncated 16-cell.png|60px]]<br>[[Truncated 16-cell|h<sub>2</sub>{4,3,3}]] |
|||
| |
|||
|[[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]] |
|||
| - |
|||
|[[File:Schlegel half-solid cantellated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|rr{3,3,3}]] |
|||
| |
| |
||
| |
|||
| |
|||
|- |
|- |
||
!57 |
![57] |
||
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}<BR>h<sub>3,4</sub>{4,3,3,3}, [[steriruncic 5-cube]]<BR>Prismatorhombated hemipenteract (pirhin) |
| {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}<BR>h<sub>3,4</sub>{4,3,3,3}, [[steriruncic 5-cube]]<BR>Prismatorhombated hemipenteract (pirhin) |
||
| 82 |
| 82 |
||
Line 781: | Line 984: | ||
| 320 |
| 320 |
||
| |
| |
||
|[[File:Schlegel half-solid runcitruncated 5-cell.png|60px]]<br>[[Runcitruncated 5-cell|t<sub>0,1,3</sub>{3,3,3}]] |
|||
|[[File:Schlegel half-solid rectified 8-cell.png|60px]]<BR>[[Rectified tesseract|h<sub>3</sub>{4,3,3}]] |
|||
|[[File:Tetrahedral prism.png|60px]]<br>[[Tetrahedral prism|h{4,3}×{}]] |
|||
| - |
|||
|[[File:Schlegel half-solid truncated pentachoron.png|60px]]<br>[[Truncated 5-cell|t{3,3,3}]] |
|||
| |
| |
||
| |
|||
| |
|||
| |
|||
| |
|||
|- |
|- |
||
!58 |
![58] |
||
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}<BR>h<sub>2,3,4</sub>{4,3,3,3}, [[steriruncicantic 5-cube]]<BR>Great prismated hemipenteract (giphin) |
| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}<BR>h<sub>2,3,4</sub>{4,3,3,3}, [[steriruncicantic 5-cube]]<BR>Great prismated hemipenteract (giphin) |
||
| 82 |
| 82 |
||
Line 795: | Line 999: | ||
| 960 |
| 960 |
||
| |
| |
||
| [[File:Schlegel half-solid omnitruncated 5-cell.png|60px]]<br>[[Omnitruncated 5-cell|t<sub>0,1,2,3</sub>{3,3,3}]] |
|||
| |
|||
| [[File:Schlegel half-solid bitruncated 8-cell.png|60px]]<BR>[[Bitruncated tesseract|h<sub>2,3</sub>{4,3,3}]] |
|||
| [[File:Truncated tetrahedral prism.png|60px]]<br>[[Truncated tetrahedral prism|h<sub>2</sub>{4,3}×{}]] |
|||
| - |
|||
| [[File:Schlegel half-solid cantitruncated 5-cell.png|60px]]<br>[[Cantitruncated 5-cell|tr{3,3,3}]] |
|||
| |
| |
||
|- bgcolor="#D0F0F0" |
|||
! Nonuniform |
|||
| {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} = {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}}<BR>ht<sub>0,1,2,3</sub>{3,3,3,4}, alternated runcicantitruncated 5-orthoplex<br>Snub hemipenteract (snahin) |
|||
|1122 |
|||
|6240 |
|||
|10880 |
|||
|6720 |
|||
|960 |
|||
| |
| |
||
| [[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
| |
|||
| [[File:Schlegel half-solid alternated cantitruncated 16-cell.png|60px]]<br>[[Snub 24-cell|sr{3,3,4}]] |
|||
| |
|||
| [[Truncated octahedral prism#Related polytopes|sr{2,3,4}]] |
|||
| [[Duoprism#Duoantiprism|sr{3,2,4}]] |
|||
| [[Runcinated 5-cell#Full snub 5-cell|ht<sub>0,1,2,3</sub>{3,3,3}]] |
|||
| (960)<br>[[File:Schlegel wireframe 5-cell.png|60px]]<br>[[5-cell|Irr. {3,3,3}]] |
|||
|} |
|} |
||
=== Uniform prismatic forms === |
=== Uniform prismatic forms === |
||
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s |
There are 5 finite categorical [[Uniform polytope|uniform]] [[Prismatic polytope|prism]]atic families of polytopes based on the nonprismatic uniform [[4-polytope]]s. For simplicity, most alternations are not shown. |
||
==== A<sub>4</sub> × A<sub>1</sub> ==== |
==== A<sub>4</sub> × A<sub>1</sub> ==== |
||
This prismatic family has [[Uniform |
This prismatic family has [[Uniform 4-polytope#The A4 .5B3.2C3.2C3.5D family - .285-cell.29|9 forms]]: |
||
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x A<sub>4</sub> family]] has symmetry of order 240 (2*5!). |
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x A<sub>4</sub> family]] has symmetry of order 240 (2*5!). |
||
Line 820: | Line 1,040: | ||
|- |
|- |
||
|59 |
|59 |
||
|{{CDD|node_1|3|node|3|node|3|node|2|node_1}} = {3,3,3}×{ }<BR>[[5-cell prism]] |
|{{CDD|node_1|3|node|3|node|3|node|2|node_1}} = {3,3,3}×{ }<BR>[[5-cell prism]] (penp) |
||
|7||20||30||25||10 |
|7||20||30||25||10 |
||
|- |
|- |
||
|60 |
|60 |
||
|{{CDD|node|3|node_1|3|node|3|node|2|node_1}} = r{3,3,3}×{ }<BR>[[Rectified 5-cell prism]] |
|{{CDD|node|3|node_1|3|node|3|node|2|node_1}} = r{3,3,3}×{ }<BR>[[Rectified 5-cell prism]] (rappip) |
||
|12||50||90||70||20 |
|12||50||90||70||20 |
||
|- |
|- |
||
|61 |
|61 |
||
|{{CDD|node_1|3|node_1|3|node|3|node|2|node_1}} = t{3,3,3}×{ }<BR>[[Truncated 5-cell prism]] |
|{{CDD|node_1|3|node_1|3|node|3|node|2|node_1}} = t{3,3,3}×{ }<BR>[[Truncated 5-cell prism]] (tippip) |
||
|12||50||100||100||40 |
|12||50||100||100||40 |
||
|- |
|- |
||
|62 |
|62 |
||
|{{CDD|node_1|3|node|3|node_1|3|node|2|node_1}} = rr{3,3,3}×{ }<BR>[[Cantellated 5-cell prism]] |
|{{CDD|node_1|3|node|3|node_1|3|node|2|node_1}} = rr{3,3,3}×{ }<BR>[[Cantellated 5-cell prism]] (srippip) |
||
|22||120||250||210||60 |
|22||120||250||210||60 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|63 |
|63 |
||
|{{CDD|node_1|3|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,3,3}×{ }<BR>[[Runcinated 5-cell prism]] |
|{{CDD|node_1|3|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,3,3}×{ }<BR>[[Runcinated 5-cell prism]] (spiddip) |
||
|32||130||200||140||40 |
|32||130||200||140||40 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|64 |
|64 |
||
|{{CDD|node|3|node_1|3|node_1|3|node|2|node_1}} = 2t{3,3,3}×{ }<BR>[[Bitruncated 5-cell prism]] |
|{{CDD|node|3|node_1|3|node_1|3|node|2|node_1}} = 2t{3,3,3}×{ }<BR>[[Bitruncated 5-cell prism]] (decap) |
||
|12||60||140||150||60 |
|12||60||140||150||60 |
||
|- |
|- |
||
|65 |
|65 |
||
|{{CDD|node_1|3|node_1|3|node_1|3|node|2|node_1}} = tr{3,3,3}×{ }<BR>[[Cantitruncated 5-cell prism]] |
|{{CDD|node_1|3|node_1|3|node_1|3|node|2|node_1}} = tr{3,3,3}×{ }<BR>[[Cantitruncated 5-cell prism]] (grippip) |
||
|22||120||280||300||120 |
|22||120||280||300||120 |
||
|- |
|- |
||
|66 |
|66 |
||
|{{CDD|node_1|3|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,3}×{ }<BR>[[Runcitruncated 5-cell prism]] |
|{{CDD|node_1|3|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,3}×{ }<BR>[[Runcitruncated 5-cell prism]] (prippip) |
||
|32||180||390||360||120 |
|32||180||390||360||120 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|67 |
|67 |
||
|{{CDD|node_1|3|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,3,3}×{ }<BR>[[Omnitruncated 5-cell prism]] |
|{{CDD|node_1|3|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,3,3}×{ }<BR>[[Omnitruncated 5-cell prism]] (gippiddip) |
||
|32||210||540||600||240 |
|32||210||540||600||240 |
||
|} |
|} |
||
Line 858: | Line 1,078: | ||
==== B<sub>4</sub> × A<sub>1</sub> ==== |
==== B<sub>4</sub> × A<sub>1</sub> ==== |
||
This prismatic family has [[Uniform |
This prismatic family has [[Uniform 4-polytope#The B.2FC4 .5B4.2C3.2C3.5D family - .28tesseract.2F16-cell.29|16 forms]]. (Three are shared with [3,4,3]×[ ] family) |
||
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub>×B<sub>4</sub> family]] has symmetry of order 768 (2<sup>5</sup>4!). |
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub>×B<sub>4</sub> family]] has symmetry of order 768 (2<sup>5</sup>4!). |
||
The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes. |
|||
{| class="wikitable" |
{| class="wikitable" |
||
Line 869: | Line 1,091: | ||
! Facets|| Cells|| Faces|| Edges|| Vertices |
! Facets|| Cells|| Faces|| Edges|| Vertices |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''[16]'''||{{CDD|node_1|4|node|3|node|3|node|2|node_1}} = {4,3,3}×{ }<BR>Tesseractic prism<BR>(Same as [[5-cube]]) |
|'''[16]'''||{{CDD|node_1|4|node|3|node|3|node|2|node_1}} = {4,3,3}×{ }<BR>Tesseractic prism (pent)<BR>(Same as [[5-cube]]) |
||
|10||40||80||80||32 |
|10||40||80||80||32 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''68'''||{{CDD|node|4|node_1|3|node|3|node|2|node_1}} = r{4,3,3}×{ }<BR>[[Rectified tesseractic prism]] |
|'''68'''||{{CDD|node|4|node_1|3|node|3|node|2|node_1}} = r{4,3,3}×{ }<BR>[[Rectified tesseractic prism]] (rittip) |
||
|26||136||272||224||64 |
|26||136||272||224||64 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''69'''||{{CDD|node_1|4|node_1|3|node|3|node|2|node_1}} = t{4,3,3}×{ }<BR>[[Truncated tesseractic prism]] |
|'''69'''||{{CDD|node_1|4|node_1|3|node|3|node|2|node_1}} = t{4,3,3}×{ }<BR>[[Truncated tesseractic prism]] (tattip) |
||
|26||136||304||320||128 |
|26||136||304||320||128 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''70'''||{{CDD|node_1|4|node|3|node_1|3|node|2|node_1}} = rr{4,3,3}×{ }<BR>[[Cantellated tesseractic prism]] |
|'''70'''||{{CDD|node_1|4|node|3|node_1|3|node|2|node_1}} = rr{4,3,3}×{ }<BR>[[Cantellated tesseractic prism]] (srittip) |
||
|58||360||784||672||192 |
|58||360||784||672||192 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''71'''||{{CDD|node_1|4|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{4,3,3}×{ }<BR>[[Runcinated tesseractic prism]] |
|'''71'''||{{CDD|node_1|4|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{4,3,3}×{ }<BR>[[Runcinated tesseractic prism]] (sidpithip) |
||
|82||368||608||448||128 |
|82||368||608||448||128 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''72'''||{{CDD|node|4|node_1|3|node_1|3|node|2|node_1}} = 2t{4,3,3}×{ }<BR>[[Bitruncated tesseractic prism]] |
|'''72'''||{{CDD|node|4|node_1|3|node_1|3|node|2|node_1}} = 2t{4,3,3}×{ }<BR>[[Bitruncated tesseractic prism]] (tahp) |
||
|26||168||432||480||192 |
|26||168||432||480||192 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''73'''||{{CDD|node_1|4|node_1|3|node_1|3|node|2|node_1}} = tr{4,3,3}×{ }<BR>[[Cantitruncated tesseractic prism]] |
|'''73'''||{{CDD|node_1|4|node_1|3|node_1|3|node|2|node_1}} = tr{4,3,3}×{ }<BR>[[Cantitruncated tesseractic prism]] (grittip) |
||
|58||360||880||960||384 |
|58||360||880||960||384 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''74'''||{{CDD|node_1|4|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{4,3,3}×{ }<BR>[[Runcitruncated tesseractic prism]] |
|'''74'''||{{CDD|node_1|4|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{4,3,3}×{ }<BR>[[Runcitruncated tesseractic prism]] (prohp) |
||
|82||528||1216||1152||384 |
|82||528||1216||1152||384 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''75'''||{{CDD|node_1|4|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{4,3,3}×{ }<BR>[[Omnitruncated tesseractic prism]] |
|'''75'''||{{CDD|node_1|4|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{4,3,3}×{ }<BR>[[Omnitruncated tesseractic prism]] (gidpithip) |
||
|82||624||1696||1920||768 |
|82||624||1696||1920||768 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''76'''||{{CDD|node|4|node|3|node|3|node_1|2|node_1}} = {3,3,4}×{ }<BR>[[16-cell prism]] |
|'''76'''||{{CDD|node|4|node|3|node|3|node_1|2|node_1}} = {3,3,4}×{ }<BR>[[16-cell prism]] (hexip) |
||
|18||64||88||56||16 |
|18||64||88||56||16 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''77'''||{{CDD|node|4|node|3|node_1|3|node|2|node_1}} = r{3,3,4}×{ }<BR>[[Rectified 16-cell prism]]<BR>(Same as '''24-cell prism''') |
|'''77'''||{{CDD|node|4|node|3|node_1|3|node|2|node_1}} = r{3,3,4}×{ }<BR>[[Rectified 16-cell prism]] (icope)<BR>(Same as '''24-cell prism''') |
||
|26||144||288||216||48 |
|26||144||288||216||48 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''78'''||{{CDD|node|4|node|3|node_1|3|node_1|2|node_1}} = t{3,3,4}×{ }<BR>[[Truncated 16-cell prism]] |
|'''78'''||{{CDD|node|4|node|3|node_1|3|node_1|2|node_1}} = t{3,3,4}×{ }<BR>[[Truncated 16-cell prism]] (thexip) |
||
|26||144||312||288||96 |
|26||144||312||288||96 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''79'''||{{CDD|node|4|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,4}×{ }<BR>[[Cantellated 16-cell prism]]<BR>(Same as '''rectified 24-cell prism''') |
|'''79'''||{{CDD|node|4|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,4}×{ }<BR>[[Cantellated 16-cell prism]] (ricope)<BR>(Same as '''rectified 24-cell prism''') |
||
|50||336||768||672||192 |
|50||336||768||672||192 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''80'''||{{CDD|node|4|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,4}×{ }<BR>[[Cantitruncated 16-cell prism]]<BR>(Same as '''truncated 24-cell prism''') |
|'''80'''||{{CDD|node|4|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,4}×{ }<BR>[[Cantitruncated 16-cell prism]] (ticope)<BR>(Same as '''truncated 24-cell prism''') |
||
|50||336||864||960||384 |
|50||336||864||960||384 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''81'''||{{CDD|node_1|4|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,4}×{ }<BR>[[Runcitruncated 16-cell prism]] |
|'''81'''||{{CDD|node_1|4|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,4}×{ }<BR>[[Runcitruncated 16-cell prism]] (prittip) |
||
|82||528||1216||1152||384 |
|82||528||1216||1152||384 |
||
|- BGCOLOR="#a0e0f0" |
|- BGCOLOR="#a0e0f0" |
||
|'''82'''||{{CDD|node_h|3|node_h|3|node_h|4|node|2|node_1}} = sr{3,3,4}×{ }<BR>[[snub 24-cell prism]] |
|'''82'''||{{CDD|node_h|3|node_h|3|node_h|4|node|2|node_1}} = sr{3,3,4}×{ }<BR>[[snub 24-cell prism]] (sadip) |
||
|146||768||1392||960||192 |
|146||768||1392||960||192 |
||
|- BGCOLOR="#a0e0f0" |
|||
|Nonuniform||{{CDD|node_h|2x|node_1|3|node|3|node|4|node_h}}<br>rectified tesseractic alterprism (rita) |
|||
|50||288||464||288||64 |
|||
|- BGCOLOR="#a0e0f0" |
|||
|Nonuniform||{{CDD|node_h|2x|node|3|node_1|3|node|4|node_h}}<br>truncated 16-cell alterprism (thexa) |
|||
|26||168||384||336||96 |
|||
|- BGCOLOR="#a0e0f0" |
|||
|Nonuniform||{{CDD|node_h|2x|node_1|3|node_1|3|node|4|node_h}}<br>bitruncated tesseractic alterprism (taha) |
|||
|50||288||624||576||192 |
|||
|} |
|} |
||
==== F<sub>4</sub> × A<sub>1</sub> ==== |
==== F<sub>4</sub> × A<sub>1</sub> ==== |
||
This prismatic family has [[Uniform |
This prismatic family has [[Uniform 4-polytope#The F4 .5B3.2C4.2C3.5D family - .2824-cell.29|10 forms]]. |
||
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x F<sub>4</sub> family]] has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3<sup>+</sup>,4,3,2] symmetry, order 1152. |
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x F<sub>4</sub> family]] has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3<sup>+</sup>,4,3,2] symmetry, order 1152. |
||
Line 931: | Line 1,162: | ||
! Facets|| Cells|| Faces|| Edges|| Vertices |
! Facets|| Cells|| Faces|| Edges|| Vertices |
||
|- |
|- |
||
|[77]||{{CDD|node_1|3|node|4|node|3|node|2|node_1}} = {3,4,3}×{ }<BR>[[24-cell prism]] |
|[77]||{{CDD|node_1|3|node|4|node|3|node|2|node_1}} = {3,4,3}×{ }<BR>[[24-cell prism]] (icope) |
||
|26||144||288||216||48 |
|26||144||288||216||48 |
||
|- |
|- |
||
|[79]||{{CDD|node|3|node_1|4|node|3|node|2|node_1}} = r{3,4,3}×{ }<BR>[[rectified 24-cell prism]] |
|[79]||{{CDD|node|3|node_1|4|node|3|node|2|node_1}} = r{3,4,3}×{ }<BR>[[rectified 24-cell prism]] (ricope) |
||
|50||336||768||672||192 |
|50||336||768||672||192 |
||
|- |
|- |
||
|[80]||{{CDD|node_1|3|node_1|4|node|3|node|2|node_1}} = t{3,4,3}×{ }<BR>[[truncated 24-cell prism]] |
|[80]||{{CDD|node_1|3|node_1|4|node|3|node|2|node_1}} = t{3,4,3}×{ }<BR>[[truncated 24-cell prism]] (ticope) |
||
|50||336||864||960||384 |
|50||336||864||960||384 |
||
|- |
|- |
||
|'''83'''||{{CDD|node_1|3|node|4|node_1|3|node|2|node_1}} = rr{3,4,3}×{ }<BR>[[cantellated 24-cell prism]] |
|'''83'''||{{CDD|node_1|3|node|4|node_1|3|node|2|node_1}} = rr{3,4,3}×{ }<BR>[[cantellated 24-cell prism]] (sricope) |
||
|146||1008||2304||2016||576 |
|146||1008||2304||2016||576 |
||
|- BGCOLOR="#b0f0b0" |
|- BGCOLOR="#b0f0b0" |
||
|'''84'''||{{CDD|node_1|3|node|4|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,4,3}×{ }<BR>[[runcinated 24-cell prism]] |
|'''84'''||{{CDD|node_1|3|node|4|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{3,4,3}×{ }<BR>[[runcinated 24-cell prism]] (spiccup) |
||
|242||1152||1920||1296||288 |
|242||1152||1920||1296||288 |
||
|- BGCOLOR="#b0f0b0" |
|- BGCOLOR="#b0f0b0" |
||
|'''85'''||{{CDD|node|3|node_1|4|node_1|3|node|2|node_1}} = 2t{3,4,3}×{ }<BR> [[bitruncated 24-cell prism]] |
|'''85'''||{{CDD|node|3|node_1|4|node_1|3|node|2|node_1}} = 2t{3,4,3}×{ }<BR> [[bitruncated 24-cell prism]] (contip) |
||
|50||432||1248||1440||576 |
|50||432||1248||1440||576 |
||
|- |
|- |
||
|'''86'''||{{CDD|node_1|3|node_1|4|node_1|3|node|2|node_1}} = tr{3,4,3}×{ }<BR>[[cantitruncated 24-cell prism]] |
|'''86'''||{{CDD|node_1|3|node_1|4|node_1|3|node|2|node_1}} = tr{3,4,3}×{ }<BR>[[cantitruncated 24-cell prism]] (gricope) |
||
|146||1008||2592||2880||1152 |
|146||1008||2592||2880||1152 |
||
|- |
|- |
||
|'''87'''||{{CDD|node_1|3|node_1|4|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,4,3}×{ }<BR>[[runcitruncated 24-cell prism]] |
|'''87'''||{{CDD|node_1|3|node_1|4|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,4,3}×{ }<BR>[[runcitruncated 24-cell prism]] (pricope) |
||
|242||1584||3648||3456||1152 |
|242||1584||3648||3456||1152 |
||
|- BGCOLOR="#b0f0b0" |
|- BGCOLOR="#b0f0b0" |
||
|'''88'''||{{CDD|node_1|3|node_1|4|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,4,3}×{ }<BR> [[omnitruncated 24-cell prism]] |
|'''88'''||{{CDD|node_1|3|node_1|4|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{3,4,3}×{ }<BR> [[omnitruncated 24-cell prism]] (gippiccup) |
||
|242||1872||5088||5760||2304 |
|242||1872||5088||5760||2304 |
||
|- BGCOLOR="#b0e0f0" |
|- BGCOLOR="#b0e0f0" |
||
|[82]||{{CDD|node_h|3|node_h|4|node|3|node|2|node_1}} = s{3,4,3}×{ }<BR>[[snub 24-cell prism]] |
|[82]||{{CDD|node_h|3|node_h|4|node|3|node|2|node_1}} = s{3,4,3}×{ }<BR>[[snub 24-cell prism]] (sadip) |
||
|146||768||1392||960||192 |
|146||768||1392||960||192 |
||
|} |
|} |
||
Line 964: | Line 1,195: | ||
==== H<sub>4</sub> × A<sub>1</sub> ==== |
==== H<sub>4</sub> × A<sub>1</sub> ==== |
||
This prismatic family has [[Uniform |
This prismatic family has [[Uniform 4-polytope#The H4 .5B5.2C3.2C3.5D family .E2.80.94 .28120-cell.2F600-cell.29|15 forms]]: |
||
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x H<sub>4</sub> family]] has symmetry of order 28800 (2*14400). |
The [[Coxeter group#Finite Coxeter groups|A<sub>1</sub> x H<sub>4</sub> family]] has symmetry of order 28800 (2*14400). |
||
Line 975: | Line 1,206: | ||
! Facets|| Cells|| Faces|| Edges|| Vertices |
! Facets|| Cells|| Faces|| Edges|| Vertices |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''89'''||{{CDD|node_1|5|node|3|node|3|node|2|node_1}} = {5,3,3}×{ }<BR>[[120-cell prism]] |
|'''89'''||{{CDD|node_1|5|node|3|node|3|node|2|node_1}} = {5,3,3}×{ }<BR>[[120-cell prism]] (hipe) |
||
|122||960||2640||3000||1200 |
|122||960||2640||3000||1200 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''90'''||{{CDD|node|5|node_1|3|node|3|node|2|node_1}} = r{5,3,3}×{ }<BR>[[Rectified 120-cell prism]] |
|'''90'''||{{CDD|node|5|node_1|3|node|3|node|2|node_1}} = r{5,3,3}×{ }<BR>[[Rectified 120-cell prism]] (rahipe) |
||
|722||4560||9840||8400||2400 |
|722||4560||9840||8400||2400 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''91'''||{{CDD|node_1|5|node_1|3|node|3|node|2|node_1}} = t{5,3,3}×{ }<BR>[[Truncated 120-cell prism]] |
|'''91'''||{{CDD|node_1|5|node_1|3|node|3|node|2|node_1}} = t{5,3,3}×{ }<BR>[[Truncated 120-cell prism]] (thipe) |
||
|722||4560||11040||12000||4800 |
|722||4560||11040||12000||4800 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''92'''||{{CDD|node_1|5|node|3|node_1|3|node|2|node_1}} = rr{5,3,3}×{ }<BR>[[Cantellated 120-cell prism]] |
|'''92'''||{{CDD|node_1|5|node|3|node_1|3|node|2|node_1}} = rr{5,3,3}×{ }<BR>[[Cantellated 120-cell prism]] (srahip) |
||
|1922||12960||29040||25200||7200 |
|1922||12960||29040||25200||7200 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''93'''||{{CDD|node_1|5|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{5,3,3}×{ }<BR>[[Runcinated 120-cell prism]] |
|'''93'''||{{CDD|node_1|5|node|3|node|3|node_1|2|node_1}} = t<sub>0,3</sub>{5,3,3}×{ }<BR>[[Runcinated 120-cell prism]] (sidpixhip) |
||
|2642||12720||22080||16800||4800 |
|2642||12720||22080||16800||4800 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''94'''||{{CDD|node|5|node_1|3|node_1|3|node|2|node_1}} = 2t{5,3,3}×{ }<BR>[[Bitruncated 120-cell prism]] |
|'''94'''||{{CDD|node|5|node_1|3|node_1|3|node|2|node_1}} = 2t{5,3,3}×{ }<BR>[[Bitruncated 120-cell prism]] (xhip) |
||
|722||5760||15840||18000||7200 |
|722||5760||15840||18000||7200 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''95'''||{{CDD|node_1|5|node_1|3|node_1|3|node|2|node_1}} = tr{5,3,3}×{ }<BR>[[Cantitruncated 120-cell prism]] |
|'''95'''||{{CDD|node_1|5|node_1|3|node_1|3|node|2|node_1}} = tr{5,3,3}×{ }<BR>[[Cantitruncated 120-cell prism]] (grahip) |
||
|1922||12960||32640||36000||14400 |
|1922||12960||32640||36000||14400 |
||
|- BGCOLOR="#f0e0e0" |
|- BGCOLOR="#f0e0e0" |
||
|'''96'''||{{CDD|node_1|5|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{5,3,3}×{ }<BR>[[Runcitruncated 120-cell prism]] |
|'''96'''||{{CDD|node_1|5|node_1|3|node|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{5,3,3}×{ }<BR>[[Runcitruncated 120-cell prism]] (prixip) |
||
|2642||18720||44880||43200||14400 |
|2642||18720||44880||43200||14400 |
||
|- BGCOLOR="#e0f0e0" |
|- BGCOLOR="#e0f0e0" |
||
|'''97'''||{{CDD|node_1|5|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{5,3,3}×{ }<BR>[[Omnitruncated 120-cell prism]] |
|'''97'''||{{CDD|node_1|5|node_1|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,2,3</sub>{5,3,3}×{ }<BR>[[Omnitruncated 120-cell prism]] (gidpixhip) |
||
|2642||22320||62880||72000||28800 |
|2642||22320||62880||72000||28800 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''98'''||{{CDD|node|5|node|3|node|3|node_1|2|node_1}} = {3,3,5}×{ }<BR>[[600-cell prism]] |
|'''98'''||{{CDD|node|5|node|3|node|3|node_1|2|node_1}} = {3,3,5}×{ }<BR>[[600-cell prism]] (exip) |
||
|602||2400||3120||1560||240 |
|602||2400||3120||1560||240 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''99'''||{{CDD|node|5|node|3|node_1|3|node|2|node_1}} = r{3,3,5}×{ }<BR>[[Rectified 600-cell prism]] |
|'''99'''||{{CDD|node|5|node|3|node_1|3|node|2|node_1}} = r{3,3,5}×{ }<BR>[[Rectified 600-cell prism]] (roxip) |
||
|722||5040||10800||7920||1440 |
|722||5040||10800||7920||1440 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''100'''||{{CDD|node|5|node|3|node_1|3|node_1|2|node_1}} = t{3,3,5}×{ }<BR>[[Truncated 600-cell prism]] |
|'''100'''||{{CDD|node|5|node|3|node_1|3|node_1|2|node_1}} = t{3,3,5}×{ }<BR>[[Truncated 600-cell prism]] (texip) |
||
|722||5040||11520||10080||2880 |
|722||5040||11520||10080||2880 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''101'''||{{CDD|node|5|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,5}×{ }<BR>[[Cantellated 600-cell prism]] |
|'''101'''||{{CDD|node|5|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,5}×{ }<BR>[[Cantellated 600-cell prism]] (srixip) |
||
|1442||11520||28080||25200||7200 |
|1442||11520||28080||25200||7200 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''102'''||{{CDD|node|5|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,5}×{ }<BR>[[Cantitruncated 600-cell prism]] |
|'''102'''||{{CDD|node|5|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,5}×{ }<BR>[[Cantitruncated 600-cell prism]] (grixip) |
||
|1442||11520||31680||36000||14400 |
|1442||11520||31680||36000||14400 |
||
|- BGCOLOR="#e0e0f0" |
|- BGCOLOR="#e0e0f0" |
||
|'''103'''||{{CDD|node_1|5|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,5}×{ }<BR>[[Runcitruncated 600-cell prism]] |
|'''103'''||{{CDD|node_1|5|node|3|node_1|3|node_1|2|node_1}} = t<sub>0,1,3</sub>{3,3,5}×{ }<BR>[[Runcitruncated 600-cell prism]] (prahip) |
||
|2642||18720||44880||43200||14400 |
|2642||18720||44880||43200||14400 |
||
|} |
|||
==== Duoprism prisms ==== |
|||
Uniform duoprism prisms, {''p''}×{''q''}×{ }, form an infinite class for all integers ''p'',''q''>2. {4}×{4}×{ } makes a lower symmetry form of the [[5-cube]]. |
|||
The extended [[f-vector]] of {''p''}×{''q''}×{ } is computed as (''p'',''p'','''1''')*(''q'',''q'','''1''')*(2,'''1''') = (2''pq'',5''pq'',4''pq''+2''p''+2''q'',3''pq''+3''p''+3''q'',''p''+''q''+2,'''1'''). |
|||
{| class="wikitable" |
|||
|- |
|||
!rowspan=2|[[Coxeter diagram]] |
|||
!rowspan=2|Names |
|||
!colspan=6|Element counts |
|||
|- |
|||
! 4-faces |
|||
! Cells |
|||
! Faces |
|||
! Edges |
|||
! Vertices |
|||
|- align=center |
|||
|{{CDD|branch_10|labelp|2|branch_10|labelq|2|node_1}}||{''p''}×{''q''}×{ }<ref>{{cite web | url=https://bendwavy.org/klitzing/incmats/n-m-dippip.htm | title=N,k-dippip }}</ref>||''p''+''q''+2||3''pq''+3''p''+3''q''||4''pq''+2''p''+2''q''||5''pq''||2''pq'' |
|||
|- align=center |
|||
|{{CDD|branch_10|labelp|2|branch_10|labelp|2|node_1}}||{''p''}<sup>2</sup>×{ }||2(''p''+1)||3''p''(''p''+1)||4''p''(''p''+1)||5''p''<sup>2</sup>||2''p''<sup>2</sup> |
|||
|- align=center |
|||
|{{CDD|branch_10|2|branch_10|2|node_1}}||{3}<sup>2</sup>×{ }||8||36||48||45||18 |
|||
|- align=center |
|||
|{{CDD|branch_10|label4|2|branch_10|label4|2|node_1}}||{4}<sup>2</sup>×{ } = [[5-cube]]||10||40||80||80||32 |
|||
|} |
|} |
||
Line 1,032: | Line 1,287: | ||
! Facets|| Cells|| Faces|| Edges|| Vertices |
! Facets|| Cells|| Faces|| Edges|| Vertices |
||
|- |
|- |
||
|'''104'''|| [[grand antiprism prism]]< |
|'''104'''|| [[grand antiprism prism]] (gappip)<ref>{{cite web | url=https://bendwavy.org/klitzing/incmats/gappip.htm | title=Gappip }}</ref>|| 322|| 1360|| 1940|| 1100|| 200 |
||
|} |
|} |
||
Line 1,041: | Line 1,296: | ||
Here are the primary operators available for constructing and naming the uniform 5-polytopes. |
Here are the primary operators available for constructing and naming the uniform 5-polytopes. |
||
The last operation, the snub, and more generally the alternation, are the |
The last operation, the snub, and more generally the alternation, are the operations that can create nonreflective forms. These are drawn with "hollow rings" at the nodes. |
||
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity. |
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity. |
||
Line 1,128: | Line 1,383: | ||
|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node_1}} |
|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node_1}} |
||
|- align=center |
|- align=center |
||
!Steriruncic |
|||
!Runcisteric |
|||
|colspan=2|h<sub>3,4</sub>{2p,3,q,r} |
|colspan=2|h<sub>3,4</sub>{2p,3,q,r} |
||
|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node_1}} |
|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node_1}} |
||
Line 1,237: | Line 1,492: | ||
|} |
|} |
||
=== |
=== Regular and uniform hyperbolic honeycombs === |
||
;Hyperbolic compact groups |
|||
There are 5 [[Coxeter-Dynkin diagram#Compact|compact hyperbolic Coxeter groups]] of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams. |
|||
{| class="wikitable" |
|||
| valign=top align=right| |
|||
<math>{\widehat{AF}}_4</math> = [(3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|split2|node}} |
|||
| valign=top align=right| |
|||
<math>{\bar{DH}}_4</math> = [5,3,3<sup>1,1</sup>]: {{CDD|node|5|node|3|node|split1|nodes}} |
|||
| valign=top align=right|<math>{\bar{H}}_4</math> = [3,3,3,5]: {{CDD|node|3|node|3|node|3|node|5|node}}<BR> |
|||
<math>{\bar{BH}}_4</math> = [4,3,3,5]: {{CDD|node|4|node|3|node|3|node|5|node}}<BR> |
|||
<math>{\bar{K}}_4</math> = [5,3,3,5]: {{CDD|node|5|node|3|node|3|node|5|node}} |
|||
|} |
|||
There are |
There are 5 regular compact convex hyperbolic honeycombs in H<sup>4</sup> space:<ref>Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213</ref> |
||
{| class="wikitable" |
{| class="wikitable" |
||
|+ Compact regular convex hyperbolic honeycombs |
|||
|- |
|- |
||
!Honeycomb name |
!Honeycomb name |
||
Line 1,253: | Line 1,522: | ||
![[dual polyhedron|Dual]] |
![[dual polyhedron|Dual]] |
||
|- BGCOLOR="#ffe0e0" align=center |
|- BGCOLOR="#ffe0e0" align=center |
||
|[[Order-5 5-cell honeycomb|Order-5 5-cell]]||{3,3,3,5}||{{CDD|node|5|node|3|node|3|node|3|node_1}}||{3,3,3}||{3,3}||{3}||{5}||{3,5}||{3,3,5}||{5,3,3,3} |
|[[Order-5 5-cell honeycomb|Order-5 5-cell]] (pente)||{3,3,3,5}||{{CDD|node|5|node|3|node|3|node|3|node_1}}||{3,3,3}||{3,3}||{3}||{5}||{3,5}||{3,3,5}||{5,3,3,3} |
||
|- BGCOLOR="#e0e0ff" align=center |
|- BGCOLOR="#e0e0ff" align=center |
||
|[[Order-3 120-cell honeycomb|Order-3 120-cell]]||{5,3,3,3}||{{CDD|node_1|5|node|3|node|3|node|3|node}}||{5,3,3}||{5,3}||{5}||{3}||{3,3}||{3,3,3}||{3,3,3,5} |
|[[Order-3 120-cell honeycomb|Order-3 120-cell]] (hitte)||{5,3,3,3}||{{CDD|node_1|5|node|3|node|3|node|3|node}}||{5,3,3}||{5,3}||{5}||{3}||{3,3}||{3,3,3}||{3,3,3,5} |
||
|- BGCOLOR="#ffe0e0" align=center |
|- BGCOLOR="#ffe0e0" align=center |
||
|[[Order-5 tesseractic honeycomb|Order-5 tesseractic]]||{4,3,3,5}||{{CDD|node|5|node|3|node|3|node|4|node_1}}||{4,3,3}||{4,3}||{4}||{5}||{3,5}||{3,3,5}||{5,3,3,4} |
|[[Order-5 tesseractic honeycomb|Order-5 tesseractic]] (pitest)||{4,3,3,5}||{{CDD|node|5|node|3|node|3|node|4|node_1}}||{4,3,3}||{4,3}||{4}||{5}||{3,5}||{3,3,5}||{5,3,3,4} |
||
|- BGCOLOR="#e0e0ff" align=center |
|- BGCOLOR="#e0e0ff" align=center |
||
|[[Order-4 120-cell honeycomb|Order-4 120-cell]]||{5,3,3,4}||{{CDD|node_1|5|node|3|node|3|node|4|node}}||{5,3,3}||{5,3}||{5}||{4}||{3,4}||{3,3,4}||{4,3,3,5} |
|[[Order-4 120-cell honeycomb|Order-4 120-cell]] (shitte)||{5,3,3,4}||{{CDD|node_1|5|node|3|node|3|node|4|node}}||{5,3,3}||{5,3}||{5}||{4}||{3,4}||{3,3,4}||{4,3,3,5} |
||
|- BGCOLOR="#e0ffe0" align=center |
|- BGCOLOR="#e0ffe0" align=center |
||
|[[Order-5 120-cell honeycomb|Order-5 120-cell]]||{5,3,3,5}||{{CDD|node_1|5|node|3|node|3|node|5|node}}||{5,3,3}||{5,3}||{5}||{5}||{3,5}||{3,3,5}||Self-dual |
|[[Order-5 120-cell honeycomb|Order-5 120-cell]] (phitte)||{5,3,3,5}||{{CDD|node_1|5|node|3|node|3|node|5|node}}||{5,3,3}||{5,3}||{5}||{5}||{3,5}||{3,3,5}||Self-dual |
||
|} |
|} |
||
There are |
There are also 4 regular compact hyperbolic star-honeycombs in H<sup>4</sup> space: |
||
{| class="wikitable" |
{| class="wikitable" |
||
|+ Compact regular hyperbolic star-honeycombs |
|||
|- |
|- |
||
!Honeycomb name |
!Honeycomb name |
||
Line 1,287: | Line 1,557: | ||
|} |
|} |
||
;Hyperbolic paracompact groups |
|||
=== Regular and uniform hyperbolic honeycombs === |
|||
There are |
There are 9 [[Coxeter-Dynkin diagram#Rank 4 to 10|paracompact hyperbolic Coxeter groups of rank 5]], each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite [[Facet (geometry)|facets]] or [[vertex figure]]s. |
||
{| class="wikitable" |
|||
|+ Compact hyperbolic groups |
|||
| valign=top align=right| |
|||
<math>{\widehat{AF}}_4</math> = [(3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|split2|node}} |
|||
| valign=top align=right| |
|||
<math>{\bar{DH}}_4</math> = [5,3,3<sup>1,1</sup>]: {{CDD|node|5|node|3|node|split1|nodes}} |
|||
| valign=top align=right|<math>{\bar{H}}_4</math> = [3,3,3,5]: {{CDD|node|3|node|3|node|3|node|5|node}}<BR> |
|||
<math>{\bar{BH}}_4</math> = [4,3,3,5]: {{CDD|node|4|node|3|node|3|node|5|node}}<BR> |
|||
<math>{\bar{K}}_4</math> = [5,3,3,5]: {{CDD|node|5|node|3|node|3|node|5|node}} |
|||
|} |
|||
{| class=wikitable |
{| class=wikitable |
||
|+ Paracompact hyperbolic groups |
|||
|align=right| |
|align=right| |
||
<math>{\bar{P}}_4</math> = [3,3<sup>[4]</sup>]: {{CDD|node|split1|nodes|split2|node|3|node}} |
<math>{\bar{P}}_4</math> = [3,3<sup>[4]</sup>]: {{CDD|node|split1|nodes|split2|node|3|node}} |
||
Line 1,330: | Line 1,589: | ||
** [[Coxeter|H.S.M. Coxeter]], ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean) |
** [[Coxeter|H.S.M. Coxeter]], ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean) |
||
** [[Coxeter|H.S.M. Coxeter]], ''The Beauty of Geometry: Twelve Essays'' (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213) |
** [[Coxeter|H.S.M. Coxeter]], ''The Beauty of Geometry: Twelve Essays'' (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213) |
||
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, |
* '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] |
||
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] |
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] |
||
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs) |
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs) |
||
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] |
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] |
||
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966 |
* [[Norman Johnson (mathematician)|N.W. Johnson]]: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966 |
||
* James E. Humphreys, ''Reflection Groups and Coxeter Groups'', Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [ |
* James E. Humphreys, ''Reflection Groups and Coxeter Groups'', Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [https://books.google.com/books?id=ODfjmOeNLMUC&dq=%22Reflection%20groups%20and%20Coxeter%20groups%22&pg=PA141] |
||
== External links == |
== External links == |
||
* {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} |
* {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} – includes nonconvex forms as well as the duplicate constructions from the B<sub>5</sub> and D<sub>5</sub> families |
||
{{Polytopes}} |
{{Polytopes}} |
Latest revision as of 02:24, 28 October 2024
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.
The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams.
History of discovery
[edit]- Regular polytopes: (convex faces)
- 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
- Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
- 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular 4-polytopes) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.[1]
- Convex uniform polytopes:
- 1940-1988: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes I, II, and III.
- 1966: Norman W. Johnson completed his Ph.D. Dissertation under Coxeter, The Theory of Uniform Polytopes and Honeycombs, University of Toronto
- Non-convex uniform polytopes:
- 1966: Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.[2]
- 2000-2024: Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,[3] with a current count of 1348 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.[4][5]
Regular 5-polytopes
[edit]Regular 5-polytopes can be represented by the Schläfli symbol {p,q,r,s}, with s {p,q,r} 4-polytope facets around each face. There are exactly three such regular polytopes, all convex:
- {3,3,3,3} - 5-simplex
- {4,3,3,3} - 5-cube
- {3,3,3,4} - 5-orthoplex
There are no nonconvex regular polytopes in 5 dimensions or above.
Convex uniform 5-polytopes
[edit]There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the grand antiprism prism are based on Wythoff constructions, reflection symmetry generated with Coxeter groups.[citation needed]
Symmetry of uniform 5-polytopes in four dimensions
[edit]The 5-simplex is the regular form in the A5 family. The 5-cube and 5-orthoplex are the regular forms in the B5 family. The bifurcating graph of the D5 family contains the 5-orthoplex, as well as a 5-demicube which is an alternated 5-cube.
Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, [[a,b,b,a]], like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry.
If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.
- Fundamental families[7]
Group symbol |
Order | Coxeter graph |
Bracket notation |
Commutator subgroup |
Coxeter number (h) |
Reflections m=5/2 h[8] | ||
---|---|---|---|---|---|---|---|---|
A5 | 720 | [3,3,3,3] | [3,3,3,3]+ | 6 | 15 | |||
D5 | 1920 | [3,3,31,1] | [3,3,31,1]+ | 8 | 20 | |||
B5 | 3840 | [4,3,3,3] | 10 | 5 | 20 |
- Uniform prisms
There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. There is one infinite family of 5-polytopes based on prisms of the uniform duoprisms {p}×{q}×{ }.
Coxeter group |
Order | Coxeter diagram |
Coxeter notation |
Commutator subgroup |
Reflections | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A4A1 | 120 | [3,3,3,2] = [3,3,3]×[ ] | [3,3,3]+ | 10 | 1 | ||||||
D4A1 | 384 | [31,1,1,2] = [31,1,1]×[ ] | [31,1,1]+ | 12 | 1 | ||||||
B4A1 | 768 | [4,3,3,2] = [4,3,3]×[ ] | 4 | 12 | 1 | ||||||
F4A1 | 2304 | [3,4,3,2] = [3,4,3]×[ ] | [3+,4,3+] | 12 | 12 | 1 | |||||
H4A1 | 28800 | [5,3,3,2] = [3,4,3]×[ ] | [5,3,3]+ | 60 | 1 | ||||||
Duoprismatic prisms (use 2p and 2q for evens) | |||||||||||
I2(p)I2(q)A1 | 8pq | [p,2,q,2] = [p]×[q]×[ ] | [p+,2,q+] | p | q | 1 | |||||
I2(2p)I2(q)A1 | 16pq | [2p,2,q,2] = [2p]×[q]×[ ] | p | p | q | 1 | |||||
I2(2p)I2(2q)A1 | 32pq | [2p,2,2q,2] = [2p]×[2q]×[ ] | p | p | q | q | 1 |
- Uniform duoprisms
There are 3 categorical uniform duoprismatic families of polytopes based on Cartesian products of the uniform polyhedra and regular polygons: {q,r}×{p}.
Coxeter group |
Order | Coxeter diagram |
Coxeter notation |
Commutator subgroup |
Reflections | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Prismatic groups (use 2p for even) | |||||||||||
A3I2(p) | 48p | [3,3,2,p] = [3,3]×[p] | [(3,3)+,2,p+] | 6 | p | ||||||
A3I2(2p) | 96p | [3,3,2,2p] = [3,3]×[2p] | 6 | p | p | ||||||
B3I2(p) | 96p | [4,3,2,p] = [4,3]×[p] | 3 | 6 | p | ||||||
B3I2(2p) | 192p | [4,3,2,2p] = [4,3]×[2p] | 3 | 6 | p | p | |||||
H3I2(p) | 240p | [5,3,2,p] = [5,3]×[p] | [(5,3)+,2,p+] | 15 | p | ||||||
H3I2(2p) | 480p | [5,3,2,2p] = [5,3]×[2p] | 15 | p | p |
Enumerating the convex uniform 5-polytopes
[edit]- Simplex family: A5 [34]
- 19 uniform 5-polytopes
- Hypercube/Orthoplex family: B5 [4,33]
- 31 uniform 5-polytopes
- Demihypercube D5/E5 family: [32,1,1]
- 23 uniform 5-polytopes (8 unique)
- Polychoral prisms:
- 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[ ], [4,3,3]×[ ], [5,3,3]×[ ], [31,1,1]×[ ].
- One non-Wythoffian - The grand antiprism prism is the only known non-Wythoffian convex uniform 5-polytope, constructed from two grand antiprisms connected by polyhedral prisms.
That brings the tally to: 19+31+8+45+1=104
In addition there are:
- Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[ ].
- Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p].
The A5 family
[edit]There are 19 forms based on all permutations of the Coxeter diagrams with one or more rings. (16+4-1 cases)
They are named by Norman Johnson from the Wythoff construction operations upon regular 5-simplex (hexateron).
The A5 family has symmetry of order 720 (6 factorial). 7 of the 19 figures, with symmetrically ringed Coxeter diagrams have doubled symmetry, order 1440.
The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).
# | Base point | Johnson naming system Bowers name and (acronym) Coxeter diagram |
k-face element counts | Vertex figure |
Facet counts by location: [3,3,3,3] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 3 | 2 | 1 | 0 | [3,3,3] (6) |
[3,3,2] (15) |
[3,2,3] (20) |
[2,3,3] (15) |
[3,3,3] (6) |
Alt | ||||
1 | (0,0,0,0,0,1) or (0,1,1,1,1,1) | 5-simplex hexateron (hix) |
6 | 15 | 20 | 15 | 6 | {3,3,3} |
{3,3,3} |
- | - | - | - | |
2 | (0,0,0,0,1,1) or (0,0,1,1,1,1) | Rectified 5-simplex rectified hexateron (rix) |
12 | 45 | 80 | 60 | 15 | t{3,3}×{ } |
r{3,3,3} |
- | - | - | {3,3,3} | |
3 | (0,0,0,0,1,2) or (0,1,2,2,2,2) | Truncated 5-simplex truncated hexateron (tix) |
12 | 45 | 80 | 75 | 30 | Tetrah.pyr |
t{3,3,3} |
- | - | - | {3,3,3} |
|
4 | (0,0,0,1,1,2) or (0,1,1,2,2,2) | Cantellated 5-simplex small rhombated hexateron (sarx) |
27 | 135 | 290 | 240 | 60 | prism-wedge |
rr{3,3,3} |
- | - | { }×{3,3} |
r{3,3,3} |
|
5 | (0,0,0,1,2,2) or (0,0,1,2,2,2) | Bitruncated 5-simplex bitruncated hexateron (bittix) |
12 | 60 | 140 | 150 | 60 | 2t{3,3,3} |
- | - | - | t{3,3,3} |
||
6 | (0,0,0,1,2,3) or (0,1,2,3,3,3) | Cantitruncated 5-simplex great rhombated hexateron (garx) |
27 | 135 | 290 | 300 | 120 | tr{3,3,3} |
- | - | { }×{3,3} |
t{3,3,3} |
||
7 | (0,0,1,1,1,2) or (0,1,1,1,2,2) | Runcinated 5-simplex small prismated hexateron (spix) |
47 | 255 | 420 | 270 | 60 | t0,3{3,3,3} |
- | {3}×{3} |
{ }×r{3,3} |
r{3,3,3} |
||
8 | (0,0,1,1,2,3) or (0,1,2,2,3,3) | Runcitruncated 5-simplex prismatotruncated hexateron (pattix) |
47 | 315 | 720 | 630 | 180 | t0,1,3{3,3,3} |
- | {6}×{3} |
{ }×r{3,3} |
rr{3,3,3} |
||
9 | (0,0,1,2,2,3) or (0,1,1,2,3,3) | Runcicantellated 5-simplex prismatorhombated hexateron (pirx) |
47 | 255 | 570 | 540 | 180 | t0,1,3{3,3,3} |
- | {3}×{3} |
{ }×t{3,3} |
2t{3,3,3} |
||
10 | (0,0,1,2,3,4) or (0,1,2,3,4,4) | Runcicantitruncated 5-simplex great prismated hexateron (gippix) |
47 | 315 | 810 | 900 | 360 | Irr.5-cell |
t0,1,2,3{3,3,3} |
- | {3}×{6} |
{ }×t{3,3} |
tr{3,3,3} |
|
11 | (0,1,1,1,2,3) or (0,1,2,2,2,3) | Steritruncated 5-simplex celliprismated hexateron (cappix) |
62 | 330 | 570 | 420 | 120 | t{3,3,3} |
{ }×t{3,3} |
{3}×{6} |
{ }×{3,3} |
t0,3{3,3,3} |
||
12 | (0,1,1,2,3,4) or (0,1,2,3,3,4) | Stericantitruncated 5-simplex celligreatorhombated hexateron (cograx) |
62 | 480 | 1140 | 1080 | 360 | tr{3,3,3} |
{ }×tr{3,3} |
{3}×{6} |
{ }×rr{3,3} |
t0,1,3{3,3,3} |
||
13 | (0,0,0,1,1,1) | Birectified 5-simplex dodecateron (dot) |
12 | 60 | 120 | 90 | 20 | {3}×{3} |
r{3,3,3} |
- | - | - | r{3,3,3} |
|
14 | (0,0,1,1,2,2) | Bicantellated 5-simplex small birhombated dodecateron (sibrid) |
32 | 180 | 420 | 360 | 90 | rr{3,3,3} |
- | {3}×{3} |
- | rr{3,3,3} |
||
15 | (0,0,1,2,3,3) | Bicantitruncated 5-simplex great birhombated dodecateron (gibrid) |
32 | 180 | 420 | 450 | 180 | tr{3,3,3} |
- | {3}×{3} |
- | tr{3,3,3} |
||
16 | (0,1,1,1,1,2) | Stericated 5-simplex small cellated dodecateron (scad) |
62 | 180 | 210 | 120 | 30 | Irr.16-cell |
{3,3,3} |
{ }×{3,3} |
{3}×{3} |
{ }×{3,3} |
{3,3,3} |
|
17 | (0,1,1,2,2,3) | Stericantellated 5-simplex small cellirhombated dodecateron (card) |
62 | 420 | 900 | 720 | 180 | rr{3,3,3} |
{ }×rr{3,3} |
{3}×{3} |
{ }×rr{3,3} |
rr{3,3,3} |
||
18 | (0,1,2,2,3,4) | Steriruncitruncated 5-simplex celliprismatotruncated dodecateron (captid) |
62 | 450 | 1110 | 1080 | 360 | t0,1,3{3,3,3} |
{ }×t{3,3} |
{6}×{6} |
{ }×t{3,3} |
t0,1,3{3,3,3} |
||
19 | (0,1,2,3,4,5) | Omnitruncated 5-simplex great cellated dodecateron (gocad) |
62 | 540 | 1560 | 1800 | 720 | Irr. {3,3,3} |
t0,1,2,3{3,3,3} |
{ }×tr{3,3} |
{6}×{6} |
{ }×tr{3,3} |
t0,1,2,3{3,3,3} |
|
Nonuniform | Omnisnub 5-simplex snub dodecateron (snod) snub hexateron (snix) |
422 | 2340 | 4080 | 2520 | 360 | ht0,1,2,3{3,3,3} | ht0,1,2,3{3,3,2} | ht0,1,2,3{3,2,3} | ht0,1,2,3{3,3,2} | ht0,1,2,3{3,3,3} | (360) Irr. {3,3,3} |
The B5 family
[edit]The B5 family has symmetry of order 3840 (5!×25).
This family has 25−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the Coxeter diagram. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D5 family as ... = ..... (There are more alternations that are not listed because they produce only repetitions, as ... = .... and ... = .... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.)
For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.
The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.
# | Base point | Name Coxeter diagram |
Element counts | Vertex figure |
Facet counts by location: [4,3,3,3] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 3 | 2 | 1 | 0 | [4,3,3] (10) |
[4,3,2] (40) |
[4,2,3] (80) |
[2,3,3] (80) |
[3,3,3] (32) |
Alt | ||||
20 | (0,0,0,0,1)√2 | 5-orthoplex triacontaditeron (tac) |
32 | 80 | 80 | 40 | 10 | {3,3,4} |
- | - | - | - | {3,3,3} |
|
21 | (0,0,0,1,1)√2 | Rectified 5-orthoplex rectified triacontaditeron (rat) |
42 | 240 | 400 | 240 | 40 | { }×{3,4} |
{3,3,4} |
- | - | - | r{3,3,3} |
|
22 | (0,0,0,1,2)√2 | Truncated 5-orthoplex truncated triacontaditeron (tot) |
42 | 240 | 400 | 280 | 80 | (Octah.pyr) |
{3,3,4} |
- | - | - | t{3,3,3} |
|
23 | (0,0,1,1,1)√2 | Birectified 5-cube penteractitriacontaditeron (nit) (Birectified 5-orthoplex) |
42 | 280 | 640 | 480 | 80 | {4}×{3} |
r{3,3,4} |
- | - | - | r{3,3,3} |
|
24 | (0,0,1,1,2)√2 | Cantellated 5-orthoplex small rhombated triacontaditeron (sart) |
82 | 640 | 1520 | 1200 | 240 | Prism-wedge |
r{3,3,4} |
{ }×{3,4} |
- | - | rr{3,3,3} |
|
25 | (0,0,1,2,2)√2 | Bitruncated 5-orthoplex bitruncated triacontaditeron (bittit) |
42 | 280 | 720 | 720 | 240 | t{3,3,4} |
- | - | - | 2t{3,3,3} |
||
26 | (0,0,1,2,3)√2 | Cantitruncated 5-orthoplex great rhombated triacontaditeron (gart) |
82 | 640 | 1520 | 1440 | 480 | t{3,3,4} |
{ }×{3,4} |
- | - | t0,1,3{3,3,3} |
||
27 | (0,1,1,1,1)√2 | Rectified 5-cube rectified penteract (rin) |
42 | 200 | 400 | 320 | 80 | {3,3}×{ } |
r{4,3,3} |
- | - | - | {3,3,3} |
|
28 | (0,1,1,1,2)√2 | Runcinated 5-orthoplex small prismated triacontaditeron (spat) |
162 | 1200 | 2160 | 1440 | 320 | r{4,3,3} |
{ }×r{3,4} |
{3}×{4} |
t0,3{3,3,3} |
|||
29 | (0,1,1,2,2)√2 | Bicantellated 5-cube small birhombated penteractitriacontaditeron (sibrant) (Bicantellated 5-orthoplex) |
122 | 840 | 2160 | 1920 | 480 | rr{3,3,4} |
- | {4}×{3} |
- | rr{3,3,3} |
||
30 | (0,1,1,2,3)√2 | Runcitruncated 5-orthoplex prismatotruncated triacontaditeron (pattit) |
162 | 1440 | 3680 | 3360 | 960 | rr{3,3,4} |
{ }×r{3,4} |
{6}×{4} |
- | t0,1,3{3,3,3} |
||
31 | (0,1,2,2,2)√2 | Bitruncated 5-cube bitruncated penteract (bittin) |
42 | 280 | 720 | 800 | 320 | 2t{4,3,3} |
- | - | - | t{3,3,3} |
||
32 | (0,1,2,2,3)√2 | Runcicantellated 5-orthoplex prismatorhombated triacontaditeron (pirt) |
162 | 1200 | 2960 | 2880 | 960 | 2t{4,3,3} |
{ }×t{3,4} |
{3}×{4} |
- | t0,1,3{3,3,3} |
||
33 | (0,1,2,3,3)√2 | Bicantitruncated 5-cube great birhombated triacontaditeron (gibrant) (Bicantitruncated 5-orthoplex) |
122 | 840 | 2160 | 2400 | 960 | tr{3,3,4} |
- | {4}×{3} |
- | rr{3,3,3} |
||
34 | (0,1,2,3,4)√2 | Runcicantitruncated 5-orthoplex great prismated triacontaditeron (gippit) |
162 | 1440 | 4160 | 4800 | 1920 | tr{3,3,4} |
{ }×t{3,4} |
{6}×{4} |
- | t0,1,2,3{3,3,3} |
||
35 | (1,1,1,1,1) | 5-cube penteract (pent) |
10 | 40 | 80 | 80 | 32 | {3,3,3} |
{4,3,3} |
- | - | - | - | |
36 | (1,1,1,1,1) + (0,0,0,0,1)√2 |
Stericated 5-cube small cellated penteractitriacontaditeron (scant) (Stericated 5-orthoplex) |
242 | 800 | 1040 | 640 | 160 | Tetr.antiprm |
{4,3,3} |
{4,3}×{ } |
{4}×{3} |
{ }×{3,3} |
{3,3,3} |
|
37 | (1,1,1,1,1) + (0,0,0,1,1)√2 |
Runcinated 5-cube small prismated penteract (span) |
202 | 1240 | 2160 | 1440 | 320 | t0,3{4,3,3} |
- | {4}×{3} |
{ }×r{3,3} |
r{3,3,3} |
||
38 | (1,1,1,1,1) + (0,0,0,1,2)√2 |
Steritruncated 5-orthoplex celliprismated triacontaditeron (cappin) |
242 | 1520 | 2880 | 2240 | 640 | t0,3{4,3,3} |
{4,3}×{ } |
{6}×{4} |
{ }×t{3,3} |
t{3,3,3} |
||
39 | (1,1,1,1,1) + (0,0,1,1,1)√2 |
Cantellated 5-cube small rhombated penteract (sirn) |
122 | 680 | 1520 | 1280 | 320 | Prism-wedge |
rr{4,3,3} |
- | - | { }×{3,3} |
r{3,3,3} |
|
40 | (1,1,1,1,1) + (0,0,1,1,2)√2 |
Stericantellated 5-cube cellirhombated penteractitriacontaditeron (carnit) (Stericantellated 5-orthoplex) |
242 | 2080 | 4720 | 3840 | 960 | rr{4,3,3} |
rr{4,3}×{ } |
{4}×{3} |
{ }×rr{3,3} |
rr{3,3,3} |
||
41 | (1,1,1,1,1) + (0,0,1,2,2)√2 |
Runcicantellated 5-cube prismatorhombated penteract (prin) |
202 | 1240 | 2960 | 2880 | 960 | t0,2,3{4,3,3} |
- | {4}×{3} |
{ }×t{3,3} |
2t{3,3,3} |
||
42 | (1,1,1,1,1) + (0,0,1,2,3)√2 |
Stericantitruncated 5-orthoplex celligreatorhombated triacontaditeron (cogart) |
242 | 2320 | 5920 | 5760 | 1920 | t0,2,3{4,3,3} |
rr{4,3}×{ } |
{6}×{4} |
{ }×tr{3,3} |
tr{3,3,3} |
||
43 | (1,1,1,1,1) + (0,1,1,1,1)√2 |
Truncated 5-cube truncated penteract (tan) |
42 | 200 | 400 | 400 | 160 | Tetrah.pyr |
t{4,3,3} |
- | - | - | {3,3,3} |
|
44 | (1,1,1,1,1) + (0,1,1,1,2)√2 |
Steritruncated 5-cube celliprismated triacontaditeron (capt) |
242 | 1600 | 2960 | 2240 | 640 | t{4,3,3} |
t{4,3}×{ } |
{8}×{3} |
{ }×{3,3} |
t0,3{3,3,3} |
||
45 | (1,1,1,1,1) + (0,1,1,2,2)√2 |
Runcitruncated 5-cube prismatotruncated penteract (pattin) |
202 | 1560 | 3760 | 3360 | 960 | t0,1,3{4,3,3} |
- | {8}×{3} |
{ }×r{3,3} |
rr{3,3,3} |
||
46 | (1,1,1,1,1) + (0,1,1,2,3)√2 |
Steriruncitruncated 5-cube celliprismatotruncated penteractitriacontaditeron (captint) (Steriruncitruncated 5-orthoplex) |
242 | 2160 | 5760 | 5760 | 1920 | t0,1,3{4,3,3} |
t{4,3}×{ } |
{8}×{6} |
{ }×t{3,3} |
t0,1,3{3,3,3} |
||
47 | (1,1,1,1,1) + (0,1,2,2,2)√2 |
Cantitruncated 5-cube great rhombated penteract (girn) |
122 | 680 | 1520 | 1600 | 640 | tr{4,3,3} |
- | - | { }×{3,3} |
t{3,3,3} |
||
48 | (1,1,1,1,1) + (0,1,2,2,3)√2 |
Stericantitruncated 5-cube celligreatorhombated penteract (cogrin) |
242 | 2400 | 6000 | 5760 | 1920 | tr{4,3,3} |
tr{4,3}×{ } |
{8}×{3} |
{ }×rr{3,3} |
t0,1,3{3,3,3} |
||
49 | (1,1,1,1,1) + (0,1,2,3,3)√2 |
Runcicantitruncated 5-cube great prismated penteract (gippin) |
202 | 1560 | 4240 | 4800 | 1920 | t0,1,2,3{4,3,3} |
- | {8}×{3} |
{ }×t{3,3} |
tr{3,3,3} |
||
50 | (1,1,1,1,1) + (0,1,2,3,4)√2 |
Omnitruncated 5-cube great cellated penteractitriacontaditeron (gacnet) (omnitruncated 5-orthoplex) |
242 | 2640 | 8160 | 9600 | 3840 | Irr. {3,3,3} |
tr{4,3}×{ } |
tr{4,3}×{ } |
{8}×{6} |
{ }×tr{3,3} |
t0,1,2,3{3,3,3} |
|
51 | 5-demicube hemipenteract (hin) = |
26 | 120 | 160 | 80 | 16 | r{3,3,3} |
h{4,3,3} |
- | - | - | - | (16) {3,3,3} | |
52 | Cantic 5-cube Truncated hemipenteract (thin) = |
42 | 280 | 640 | 560 | 160 | h2{4,3,3} |
- | - | - | (16) r{3,3,3} |
(16) t{3,3,3} | ||
53 | Runcic 5-cube Small rhombated hemipenteract (sirhin) = |
42 | 360 | 880 | 720 | 160 | h3{4,3,3} |
- | - | - | (16) r{3,3,3} |
(16) rr{3,3,3} | ||
54 | Steric 5-cube Small prismated hemipenteract (siphin) = |
82 | 480 | 720 | 400 | 80 | h{4,3,3} |
h{4,3}×{} |
- | - | (16) {3,3,3} |
(16) t0,3{3,3,3} | ||
55 | Runcicantic 5-cube Great rhombated hemipenteract (girhin) = |
42 | 360 | 1040 | 1200 | 480 | h2,3{4,3,3} |
- | - | - | (16) 2t{3,3,3} |
(16) tr{3,3,3} | ||
56 | Stericantic 5-cube Prismatotruncated hemipenteract (pithin) = |
82 | 720 | 1840 | 1680 | 480 | h2{4,3,3} |
h2{4,3}×{} |
- | - | (16) rr{3,3,3} |
(16) t0,1,3{3,3,3} | ||
57 | Steriruncic 5-cube Prismatorhombated hemipenteract (pirhin) = |
82 | 560 | 1280 | 1120 | 320 | h3{4,3,3} |
h{4,3}×{} |
- | - | (16) t{3,3,3} |
(16) t0,1,3{3,3,3} | ||
58 | Steriruncicantic 5-cube Great prismated hemipenteract (giphin) = |
82 | 720 | 2080 | 2400 | 960 | h2,3{4,3,3} |
h2{4,3}×{} |
- | - | (16) tr{3,3,3} |
(16) t0,1,2,3{3,3,3} | ||
Nonuniform | Alternated runcicantitruncated 5-orthoplex Snub prismatotriacontaditeron (snippit) Snub hemipenteract (snahin) = |
1122 | 6240 | 10880 | 6720 | 960 | sr{3,3,4} |
sr{2,3,4} | sr{3,2,4} | - | ht0,1,2,3{3,3,3} | (960) Irr. {3,3,3} | ||
Nonuniform | Edge-snub 5-orthoplex Pyritosnub penteract (pysnan) |
1202 | 7920 | 15360 | 10560 | 1920 | sr3{3,3,4} | sr3{2,3,4} | sr3{3,2,4} | s{3,3}×{ } |
ht0,1,2,3{3,3,3} | (960) Irr. {3,3}×{ } | ||
Nonuniform | Snub 5-cube Snub penteract (snan) |
2162 | 12240 | 21600 | 13440 | 960 | ht0,1,2,3{3,3,4} | ht0,1,2,3{2,3,4} | ht0,1,2,3{3,2,4} | ht0,1,2,3{3,3,2} | ht0,1,2,3{3,3,3} | (1920) Irr. {3,3,3} |
The D5 family
[edit]The D5 family has symmetry of order 1920 (5! x 24).
This family has 23 Wythoffian uniform polytopes, from 3×8-1 permutations of the D5 Coxeter diagram with one or more rings. 15 (2×8-1) are repeated from the B5 family and 8 are unique to this family, though even those 8 duplicate the alternations from the B5 family.
In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of element are identical and the symmetry doubles: the relations are ... = .... and ... = ..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation ... = ... duplicating uniform 5-polytopes 51 through 58 above.
# | Coxeter diagram Schläfli symbol symbols Johnson and Bowers names |
Element counts | Vertex figure |
Facets by location: [31,2,1] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 3 | 2 | 1 | 0 | [3,3,3] (16) |
[31,1,1] (10) |
[3,3]×[ ] (40) |
[ ]×[3]×[ ] (80) |
[3,3,3] (16) |
Alt | |||
[51] | = h{4,3,3,3}, 5-demicube Hemipenteract (hin) |
26 | 120 | 160 | 80 | 16 | r{3,3,3} |
{3,3,3} |
h{4,3,3} |
- | - | - | |
[52] | = h2{4,3,3,3}, cantic 5-cube Truncated hemipenteract (thin) |
42 | 280 | 640 | 560 | 160 | t{3,3,3} |
h2{4,3,3} |
- | - | r{3,3,3} |
||
[53] | = h3{4,3,3,3}, runcic 5-cube Small rhombated hemipenteract (sirhin) |
42 | 360 | 880 | 720 | 160 | rr{3,3,3} |
h3{4,3,3} |
- | - | r{3,3,3} |
||
[54] | = h4{4,3,3,3}, steric 5-cube Small prismated hemipenteract (siphin) |
82 | 480 | 720 | 400 | 80 | t0,3{3,3,3} |
h{4,3,3} |
h{4,3}×{} |
- | {3,3,3} |
||
[55] | = h2,3{4,3,3,3}, runcicantic 5-cube Great rhombated hemipenteract (girhin) |
42 | 360 | 1040 | 1200 | 480 | 2t{3,3,3} |
h2,3{4,3,3} |
- | - | tr{3,3,3} |
||
[56] | = h2,4{4,3,3,3}, stericantic 5-cube Prismatotruncated hemipenteract (pithin) |
82 | 720 | 1840 | 1680 | 480 | t0,1,3{3,3,3} |
h2{4,3,3} |
h2{4,3}×{} |
- | rr{3,3,3} |
||
[57] | = h3,4{4,3,3,3}, steriruncic 5-cube Prismatorhombated hemipenteract (pirhin) |
82 | 560 | 1280 | 1120 | 320 | t0,1,3{3,3,3} |
h3{4,3,3} |
h{4,3}×{} |
- | t{3,3,3} |
||
[58] | = h2,3,4{4,3,3,3}, steriruncicantic 5-cube Great prismated hemipenteract (giphin) |
82 | 720 | 2080 | 2400 | 960 | t0,1,2,3{3,3,3} |
h2,3{4,3,3} |
h2{4,3}×{} |
- | tr{3,3,3} |
||
Nonuniform | = ht0,1,2,3{3,3,3,4}, alternated runcicantitruncated 5-orthoplex Snub hemipenteract (snahin) |
1122 | 6240 | 10880 | 6720 | 960 | ht0,1,2,3{3,3,3} | sr{3,3,4} |
sr{2,3,4} | sr{3,2,4} | ht0,1,2,3{3,3,3} | (960) Irr. {3,3,3} |
Uniform prismatic forms
[edit]There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. For simplicity, most alternations are not shown.
A4 × A1
[edit]This prismatic family has 9 forms:
The A1 x A4 family has symmetry of order 240 (2*5!).
# | Coxeter diagram and Schläfli symbols Name |
Element counts | ||||
---|---|---|---|---|---|---|
Facets | Cells | Faces | Edges | Vertices | ||
59 | = {3,3,3}×{ } 5-cell prism (penp) |
7 | 20 | 30 | 25 | 10 |
60 | = r{3,3,3}×{ } Rectified 5-cell prism (rappip) |
12 | 50 | 90 | 70 | 20 |
61 | = t{3,3,3}×{ } Truncated 5-cell prism (tippip) |
12 | 50 | 100 | 100 | 40 |
62 | = rr{3,3,3}×{ } Cantellated 5-cell prism (srippip) |
22 | 120 | 250 | 210 | 60 |
63 | = t0,3{3,3,3}×{ } Runcinated 5-cell prism (spiddip) |
32 | 130 | 200 | 140 | 40 |
64 | = 2t{3,3,3}×{ } Bitruncated 5-cell prism (decap) |
12 | 60 | 140 | 150 | 60 |
65 | = tr{3,3,3}×{ } Cantitruncated 5-cell prism (grippip) |
22 | 120 | 280 | 300 | 120 |
66 | = t0,1,3{3,3,3}×{ } Runcitruncated 5-cell prism (prippip) |
32 | 180 | 390 | 360 | 120 |
67 | = t0,1,2,3{3,3,3}×{ } Omnitruncated 5-cell prism (gippiddip) |
32 | 210 | 540 | 600 | 240 |
B4 × A1
[edit]This prismatic family has 16 forms. (Three are shared with [3,4,3]×[ ] family)
The A1×B4 family has symmetry of order 768 (254!).
The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes.
# | Coxeter diagram and Schläfli symbols Name |
Element counts | ||||
---|---|---|---|---|---|---|
Facets | Cells | Faces | Edges | Vertices | ||
[16] | = {4,3,3}×{ } Tesseractic prism (pent) (Same as 5-cube) |
10 | 40 | 80 | 80 | 32 |
68 | = r{4,3,3}×{ } Rectified tesseractic prism (rittip) |
26 | 136 | 272 | 224 | 64 |
69 | = t{4,3,3}×{ } Truncated tesseractic prism (tattip) |
26 | 136 | 304 | 320 | 128 |
70 | = rr{4,3,3}×{ } Cantellated tesseractic prism (srittip) |
58 | 360 | 784 | 672 | 192 |
71 | = t0,3{4,3,3}×{ } Runcinated tesseractic prism (sidpithip) |
82 | 368 | 608 | 448 | 128 |
72 | = 2t{4,3,3}×{ } Bitruncated tesseractic prism (tahp) |
26 | 168 | 432 | 480 | 192 |
73 | = tr{4,3,3}×{ } Cantitruncated tesseractic prism (grittip) |
58 | 360 | 880 | 960 | 384 |
74 | = t0,1,3{4,3,3}×{ } Runcitruncated tesseractic prism (prohp) |
82 | 528 | 1216 | 1152 | 384 |
75 | = t0,1,2,3{4,3,3}×{ } Omnitruncated tesseractic prism (gidpithip) |
82 | 624 | 1696 | 1920 | 768 |
76 | = {3,3,4}×{ } 16-cell prism (hexip) |
18 | 64 | 88 | 56 | 16 |
77 | = r{3,3,4}×{ } Rectified 16-cell prism (icope) (Same as 24-cell prism) |
26 | 144 | 288 | 216 | 48 |
78 | = t{3,3,4}×{ } Truncated 16-cell prism (thexip) |
26 | 144 | 312 | 288 | 96 |
79 | = rr{3,3,4}×{ } Cantellated 16-cell prism (ricope) (Same as rectified 24-cell prism) |
50 | 336 | 768 | 672 | 192 |
80 | = tr{3,3,4}×{ } Cantitruncated 16-cell prism (ticope) (Same as truncated 24-cell prism) |
50 | 336 | 864 | 960 | 384 |
81 | = t0,1,3{3,3,4}×{ } Runcitruncated 16-cell prism (prittip) |
82 | 528 | 1216 | 1152 | 384 |
82 | = sr{3,3,4}×{ } snub 24-cell prism (sadip) |
146 | 768 | 1392 | 960 | 192 |
Nonuniform | rectified tesseractic alterprism (rita) |
50 | 288 | 464 | 288 | 64 |
Nonuniform | truncated 16-cell alterprism (thexa) |
26 | 168 | 384 | 336 | 96 |
Nonuniform | bitruncated tesseractic alterprism (taha) |
50 | 288 | 624 | 576 | 192 |
F4 × A1
[edit]This prismatic family has 10 forms.
The A1 x F4 family has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3+,4,3,2] symmetry, order 1152.
# | Coxeter diagram and Schläfli symbols Name |
Element counts | ||||
---|---|---|---|---|---|---|
Facets | Cells | Faces | Edges | Vertices | ||
[77] | = {3,4,3}×{ } 24-cell prism (icope) |
26 | 144 | 288 | 216 | 48 |
[79] | = r{3,4,3}×{ } rectified 24-cell prism (ricope) |
50 | 336 | 768 | 672 | 192 |
[80] | = t{3,4,3}×{ } truncated 24-cell prism (ticope) |
50 | 336 | 864 | 960 | 384 |
83 | = rr{3,4,3}×{ } cantellated 24-cell prism (sricope) |
146 | 1008 | 2304 | 2016 | 576 |
84 | = t0,3{3,4,3}×{ } runcinated 24-cell prism (spiccup) |
242 | 1152 | 1920 | 1296 | 288 |
85 | = 2t{3,4,3}×{ } bitruncated 24-cell prism (contip) |
50 | 432 | 1248 | 1440 | 576 |
86 | = tr{3,4,3}×{ } cantitruncated 24-cell prism (gricope) |
146 | 1008 | 2592 | 2880 | 1152 |
87 | = t0,1,3{3,4,3}×{ } runcitruncated 24-cell prism (pricope) |
242 | 1584 | 3648 | 3456 | 1152 |
88 | = t0,1,2,3{3,4,3}×{ } omnitruncated 24-cell prism (gippiccup) |
242 | 1872 | 5088 | 5760 | 2304 |
[82] | = s{3,4,3}×{ } snub 24-cell prism (sadip) |
146 | 768 | 1392 | 960 | 192 |
H4 × A1
[edit]This prismatic family has 15 forms:
The A1 x H4 family has symmetry of order 28800 (2*14400).
# | Coxeter diagram and Schläfli symbols Name |
Element counts | ||||
---|---|---|---|---|---|---|
Facets | Cells | Faces | Edges | Vertices | ||
89 | = {5,3,3}×{ } 120-cell prism (hipe) |
122 | 960 | 2640 | 3000 | 1200 |
90 | = r{5,3,3}×{ } Rectified 120-cell prism (rahipe) |
722 | 4560 | 9840 | 8400 | 2400 |
91 | = t{5,3,3}×{ } Truncated 120-cell prism (thipe) |
722 | 4560 | 11040 | 12000 | 4800 |
92 | = rr{5,3,3}×{ } Cantellated 120-cell prism (srahip) |
1922 | 12960 | 29040 | 25200 | 7200 |
93 | = t0,3{5,3,3}×{ } Runcinated 120-cell prism (sidpixhip) |
2642 | 12720 | 22080 | 16800 | 4800 |
94 | = 2t{5,3,3}×{ } Bitruncated 120-cell prism (xhip) |
722 | 5760 | 15840 | 18000 | 7200 |
95 | = tr{5,3,3}×{ } Cantitruncated 120-cell prism (grahip) |
1922 | 12960 | 32640 | 36000 | 14400 |
96 | = t0,1,3{5,3,3}×{ } Runcitruncated 120-cell prism (prixip) |
2642 | 18720 | 44880 | 43200 | 14400 |
97 | = t0,1,2,3{5,3,3}×{ } Omnitruncated 120-cell prism (gidpixhip) |
2642 | 22320 | 62880 | 72000 | 28800 |
98 | = {3,3,5}×{ } 600-cell prism (exip) |
602 | 2400 | 3120 | 1560 | 240 |
99 | = r{3,3,5}×{ } Rectified 600-cell prism (roxip) |
722 | 5040 | 10800 | 7920 | 1440 |
100 | = t{3,3,5}×{ } Truncated 600-cell prism (texip) |
722 | 5040 | 11520 | 10080 | 2880 |
101 | = rr{3,3,5}×{ } Cantellated 600-cell prism (srixip) |
1442 | 11520 | 28080 | 25200 | 7200 |
102 | = tr{3,3,5}×{ } Cantitruncated 600-cell prism (grixip) |
1442 | 11520 | 31680 | 36000 | 14400 |
103 | = t0,1,3{3,3,5}×{ } Runcitruncated 600-cell prism (prahip) |
2642 | 18720 | 44880 | 43200 | 14400 |
Duoprism prisms
[edit]Uniform duoprism prisms, {p}×{q}×{ }, form an infinite class for all integers p,q>2. {4}×{4}×{ } makes a lower symmetry form of the 5-cube.
The extended f-vector of {p}×{q}×{ } is computed as (p,p,1)*(q,q,1)*(2,1) = (2pq,5pq,4pq+2p+2q,3pq+3p+3q,p+q+2,1).
Coxeter diagram | Names | Element counts | |||||
---|---|---|---|---|---|---|---|
4-faces | Cells | Faces | Edges | Vertices | |||
{p}×{q}×{ }[9] | p+q+2 | 3pq+3p+3q | 4pq+2p+2q | 5pq | 2pq | ||
{p}2×{ } | 2(p+1) | 3p(p+1) | 4p(p+1) | 5p2 | 2p2 | ||
{3}2×{ } | 8 | 36 | 48 | 45 | 18 | ||
{4}2×{ } = 5-cube | 10 | 40 | 80 | 80 | 32 |
Grand antiprism prism
[edit]The grand antiprism prism is the only known convex non-Wythoffian uniform 5-polytope. It has 200 vertices, 1100 edges, 1940 faces (40 pentagons, 500 squares, 1400 triangles), 1360 cells (600 tetrahedra, 40 pentagonal antiprisms, 700 triangular prisms, 20 pentagonal prisms), and 322 hypercells (2 grand antiprisms , 20 pentagonal antiprism prisms , and 300 tetrahedral prisms ).
# | Name | Element counts | ||||
---|---|---|---|---|---|---|
Facets | Cells | Faces | Edges | Vertices | ||
104 | grand antiprism prism (gappip)[10] | 322 | 1360 | 1940 | 1100 | 200 |
Notes on the Wythoff construction for the uniform 5-polytopes
[edit]Construction of the reflective 5-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 5-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.
Here are the primary operators available for constructing and naming the uniform 5-polytopes.
The last operation, the snub, and more generally the alternation, are the operations that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
Operation | Extended Schläfli symbol |
Coxeter diagram | Description | |
---|---|---|---|---|
Parent | t0{p,q,r,s} | {p,q,r,s} | Any regular 5-polytope | |
Rectified | t1{p,q,r,s} | r{p,q,r,s} | The edges are fully truncated into single points. The 5-polytope now has the combined faces of the parent and dual. | |
Birectified | t2{p,q,r,s} | 2r{p,q,r,s} | Birectification reduces faces to points, cells to their duals. | |
Trirectified | t3{p,q,r,s} | 3r{p,q,r,s} | Trirectification reduces cells to points. (Dual rectification) | |
Quadrirectified | t4{p,q,r,s} | 4r{p,q,r,s} | Quadrirectification reduces 4-faces to points. (Dual) | |
Truncated | t0,1{p,q,r,s} | t{p,q,r,s} | Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 5-polytope. The 5-polytope has its original faces doubled in sides, and contains the faces of the dual. | |
Cantellated | t0,2{p,q,r,s} | rr{p,q,r,s} | In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. | |
Runcinated | t0,3{p,q,r,s} | Runcination reduces cells and creates new cells at the vertices and edges. | ||
Stericated | t0,4{p,q,r,s} | 2r2r{p,q,r,s} | Sterication reduces facets and creates new facets (hypercells) at the vertices and edges in the gaps. (Same as expansion operation for 5-polytopes.) | |
Omnitruncated | t0,1,2,3,4{p,q,r,s} | All four operators, truncation, cantellation, runcination, and sterication are applied. | ||
Half | h{2p,3,q,r} | Alternation, same as | ||
Cantic | h2{2p,3,q,r} | Same as | ||
Runcic | h3{2p,3,q,r} | Same as | ||
Runcicantic | h2,3{2p,3,q,r} | Same as | ||
Steric | h4{2p,3,q,r} | Same as | ||
Steriruncic | h3,4{2p,3,q,r} | Same as | ||
Stericantic | h2,4{2p,3,q,r} | Same as | ||
Steriruncicantic | h2,3,4{2p,3,q,r} | Same as | ||
Snub | s{p,2q,r,s} | Alternated truncation | ||
Snub rectified | sr{p,q,2r,s} | Alternated truncated rectification | ||
ht0,1,2,3{p,q,r,s} | Alternated runcicantitruncation | |||
Full snub | ht0,1,2,3,4{p,q,r,s} | Alternated omnitruncation |
Regular and uniform honeycombs
[edit]There are five fundamental affine Coxeter groups, and 13 prismatic groups that generate regular and uniform tessellations in Euclidean 4-space.[11][12]
# | Coxeter group | Coxeter diagram | Forms | ||
---|---|---|---|---|---|
1 | [3[5]] | [(3,3,3,3,3)] | 7 | ||
2 | [4,3,3,4] | 19 | |||
3 | [4,3,31,1] | [4,3,3,4,1+] | = | 23 (8 new) | |
4 | [31,1,1,1] | [1+,4,3,3,4,1+] | = | 9 (0 new) | |
5 | [3,4,3,3] | 31 (21 new) |
There are three regular honeycombs of Euclidean 4-space:
- tesseractic honeycomb, with symbols {4,3,3,4}, = . There are 19 uniform honeycombs in this family.
- 24-cell honeycomb, with symbols {3,4,3,3}, . There are 31 reflective uniform honeycombs in this family, and one alternated form.
- Truncated 24-cell honeycomb with symbols t{3,4,3,3},
- Snub 24-cell honeycomb, with symbols s{3,4,3,3}, and constructed by four snub 24-cell, one 16-cell, and five 5-cells at each vertex.
- 16-cell honeycomb, with symbols {3,3,4,3},
Other families that generate uniform honeycombs:
- There are 23 uniquely ringed forms, 8 new ones in the 16-cell honeycomb family. With symbols h{4,32,4} it is geometrically identical to the 16-cell honeycomb, =
- There are 7 uniquely ringed forms from the , family, all new, including:
- There are 9 uniquely ringed forms in the : [31,1,1,1] family, two new ones, including the quarter tesseractic honeycomb, = , and the bitruncated tesseractic honeycomb, = .
Non-Wythoffian uniform tessellations in 4-space also exist by elongation (inserting layers), and gyration (rotating layers) from these reflective forms.
# | Coxeter group | Coxeter diagram | |
---|---|---|---|
1 | × | [4,3,4,2,∞] | |
2 | × | [4,31,1,2,∞] | |
3 | × | [3[4],2,∞] | |
4 | ×x | [4,4,2,∞,2,∞] | |
5 | ×x | [6,3,2,∞,2,∞] | |
6 | ×x | [3[3],2,∞,2,∞] | |
7 | ×xx | [∞,2,∞,2,∞,2,∞] | |
8 | x | [3[3],2,3[3]] | |
9 | × | [3[3],2,4,4] | |
10 | × | [3[3],2,6,3] | |
11 | × | [4,4,2,4,4] | |
12 | × | [4,4,2,6,3] | |
13 | × | [6,3,2,6,3] |
Regular and uniform hyperbolic honeycombs
[edit]- Hyperbolic compact groups
There are 5 compact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams.
= [(3,3,3,3,4)]: |
= [5,3,31,1]: |
= [3,3,3,5]: = [4,3,3,5]: |
There are 5 regular compact convex hyperbolic honeycombs in H4 space:[13]
Honeycomb name | Schläfli Symbol {p,q,r,s} |
Coxeter diagram | Facet type {p,q,r} |
Cell type {p,q} |
Face type {p} |
Face figure {s} |
Edge figure {r,s} |
Vertex figure {q,r,s} |
Dual |
---|---|---|---|---|---|---|---|---|---|
Order-5 5-cell (pente) | {3,3,3,5} | {3,3,3} | {3,3} | {3} | {5} | {3,5} | {3,3,5} | {5,3,3,3} | |
Order-3 120-cell (hitte) | {5,3,3,3} | {5,3,3} | {5,3} | {5} | {3} | {3,3} | {3,3,3} | {3,3,3,5} | |
Order-5 tesseractic (pitest) | {4,3,3,5} | {4,3,3} | {4,3} | {4} | {5} | {3,5} | {3,3,5} | {5,3,3,4} | |
Order-4 120-cell (shitte) | {5,3,3,4} | {5,3,3} | {5,3} | {5} | {4} | {3,4} | {3,3,4} | {4,3,3,5} | |
Order-5 120-cell (phitte) | {5,3,3,5} | {5,3,3} | {5,3} | {5} | {5} | {3,5} | {3,3,5} | Self-dual |
There are also 4 regular compact hyperbolic star-honeycombs in H4 space:
Honeycomb name | Schläfli Symbol {p,q,r,s} |
Coxeter diagram | Facet type {p,q,r} |
Cell type {p,q} |
Face type {p} |
Face figure {s} |
Edge figure {r,s} |
Vertex figure {q,r,s} |
Dual |
---|---|---|---|---|---|---|---|---|---|
Order-3 small stellated 120-cell | {5/2,5,3,3} | {5/2,5,3} | {5/2,5} | {5} | {5} | {3,3} | {5,3,3} | {3,3,5,5/2} | |
Order-5/2 600-cell | {3,3,5,5/2} | {3,3,5} | {3,3} | {3} | {5/2} | {5,5/2} | {3,5,5/2} | {5/2,5,3,3} | |
Order-5 icosahedral 120-cell | {3,5,5/2,5} | {3,5,5/2} | {3,5} | {3} | {5} | {5/2,5} | {5,5/2,5} | {5,5/2,5,3} | |
Order-3 great 120-cell | {5,5/2,5,3} | {5,5/2,5} | {5,5/2} | {5} | {3} | {5,3} | {5/2,5,3} | {3,5,5/2,5} |
- Hyperbolic paracompact groups
There are 9 paracompact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite facets or vertex figures.
= [3,3[4]]: = [4,3[4]]: |
= [4,/3\,3,4]: |
= [3,4,3,4]: |
Notes
[edit]- ^ T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
- ^ Multidimensional Glossary, George Olshevsky
- ^ Bowers, Jonathan (2000). "Uniform Polychora" (PDF). In Reza Sarhagi (ed.). Bridges 2000. Bridges Conference. pp. 239–246.
- ^ Uniform Polytera, Jonathan Bowers
- ^ Uniform polytope
- ^ ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04
- ^ Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions
- ^ Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
- ^ "N,k-dippip".
- ^ "Gappip".
- ^ Regular polytopes, p.297. Table IV, Fundamental regions for irreducible groups generated by reflections.
- ^ Regular and Semiregular polytopes, II, pp.298-302 Four-dimensional honeycombs
- ^ Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213
References
[edit]- T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900 (3 regular and one semiregular 4-polytope)
- A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
- H.S.M. Coxeter, The Beauty of Geometry: Twelve Essays (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [2]
External links
[edit]- Klitzing, Richard. "5D uniform polytopes (polytera)". – includes nonconvex forms as well as the duplicate constructions from the B5 and D5 families
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |