Mir-19 microRNA precursor family: Difference between revisions
m →top: Fix empty citation, unnamed or unsupported parameter, or invalid parameter value using AutoEd; see Help:CS1 errors |
m Open access bot: doi updated in citation with #oabot. |
||
(43 intermediate revisions by 20 users not shown) | |||
Line 25: | Line 25: | ||
}} |
}} |
||
There are 89 known sequences today in the microRNA 19 (miR-19) family but it will change quickly. They are found in a large number of [[vertebrate]] species. The miR-19 microRNA precursor is a small [[non-coding RNA]] molecule that regulates [[gene expression]]. Within the human and mouse [[genome]] there are three copies of this [[microRNA]] that are processed from multiple predicted precursor [[Stem-loop|hairpins]]:<ref name=art1>{{cite journal | last = Lagos-Quintana | first = M |author2=Rauhut R |author3=Lendeckel W |author4=Tuschl T | year = 2001 | title = Identification of novel genes coding for small expressed RNAs | journal = Science | volume = 294 | pages = 853–858 | pmid = 11679670 | doi = 10.1126/science.1064921 | issue = 5543| bibcode = 2001Sci...294..853L }}</ref><ref>{{cite journal | last = Mourelatos | first = Z |author2=Dostie J |author3=Paushkin S |author4=Sharma A |author5=Charroux B |author6=Abel L |author7=Rappsilber J |author8=Mann M |author9=Dreyfuss G | year = 2002 | title=miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs | journal = Genes Dev | volume = 16 | pages = 720–728 | pmid = 11914277 | doi = 10.1101/gad.974702 | issue = 6 | pmc = 155365}}</ref><ref name=pmid12919684>{{cite journal | last = Houbaviy | first = HB |author2=Murray MF |author3=Sharp PA | year = 2003 | title = Embryonic stem cell-specific MicroRNAs | journal = Dev Cell | volume = 5 | pages = 351–358 | pmid = 12919684 | doi = 10.1016/S1534-5807(03)00227-2 | issue = 2}}</ref> |
There are 89 known sequences today in the microRNA 19 (miR-19) family but it will change quickly. They are found in a large number of [[vertebrate]] species. The miR-19 microRNA precursor is a small [[non-coding RNA]] molecule that regulates [[gene expression]]. Within the human and mouse [[genome]] there are three copies of this [[microRNA]] that are processed from multiple predicted precursor [[Stem-loop|hairpins]]:<ref name=art1>{{cite journal | last = Lagos-Quintana | first = M |author2=Rauhut R |author3=Lendeckel W |author4=Tuschl T | year = 2001 | title = Identification of novel genes coding for small expressed RNAs | journal = Science | volume = 294 | pages = 853–858 | pmid = 11679670 | doi = 10.1126/science.1064921 | issue = 5543| bibcode = 2001Sci...294..853L | hdl = 11858/00-001M-0000-0012-F65F-2 | s2cid = 18101169 | hdl-access = free }}</ref><ref>{{cite journal | last = Mourelatos | first = Z |author2=Dostie J |author3=Paushkin S |author4=Sharma A |author5=Charroux B |author6=Abel L |author7=Rappsilber J |author7-link=Juri Rappsilber |author8=Mann M |author9=Dreyfuss G | year = 2002 | title=miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs | journal = Genes Dev | volume = 16 | pages = 720–728 | pmid = 11914277 | doi = 10.1101/gad.974702 | issue = 6 | pmc = 155365}}</ref><ref name=pmid12919684>{{cite journal | last = Houbaviy | first = HB |author2=Murray MF |author3=Sharp PA | year = 2003 | title = Embryonic stem cell-specific MicroRNAs | journal = Dev Cell | volume = 5 | pages = 351–358 | pmid = 12919684 | doi = 10.1016/S1534-5807(03)00227-2 | issue = 2| doi-access = free }}</ref> |
||
* mouse: |
* mouse: |
||
: * miR-19a on chromosome 14 ([http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000688 MI0000688]) |
: * miR-19a on chromosome 14 ([https://archive.today/20121223041415/http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000688 MI0000688]) |
||
: * miR-19b-1 on chromosome 14 ([http:// |
: * miR-19b-1 on chromosome 14 ([http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000718 MI0000718]) |
||
: * miR-19b-2 on chromosome X ([http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000546 MI0000546]) |
: * miR-19b-2 on chromosome X ([https://archive.today/20121223072658/http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000546 MI0000546]) |
||
* human:<ref name=art1 /> |
* human:<ref name=art1 /> |
||
: * miR-19a on chromosome 13 ([http:// |
: * miR-19a on chromosome 13 ([http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000073 MI0000073]) |
||
: * miR-19b-1 on chromosome 13 ([http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000074 MI0000074]) |
: * miR-19b-1 on chromosome 13 ([https://archive.today/20121223171808/http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000074 MI0000074]) |
||
: * miR-19b-2 on chromosome X ([http:// |
: * miR-19b-2 on chromosome X ([http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000075 MI000075]). |
||
MiR-19 has now been predicted or experimentally confirmed ([http:// |
MiR-19 has now been predicted or experimentally confirmed ([http://www.mirbase.org/cgi-bin/mirna_summary.pl?fam=MIPF0000011 MIPF0000011]). In this case the mature sequence is excised from the 3' arm of the [[stem-loop|hairpin]] precursor. |
||
== Origins == |
== Origins == |
||
MicroRNA are ubiquitous in higher [[eukaryotes]], and show varying patterns of expression in specific cell types.<ref name=mamalian>{{cite journal | last = Landgraf | first = P |author2=M Rusu |author3=R Sheridan |author4=A Sewer | year = 2007 | title = A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing | journal = Cell | volume = 129 | pages = 1401–1414 | pmid = 17604727 | issue = 7| doi=10.1016/j.cell.2007.04.040 | pmc=2681231}}</ref> MiR-19 has been identified in a diverse range of [[vertebrate]] animals including [[green anole]] (Anolis carolinensis),<ref>{{cite journal | |
MicroRNA are ubiquitous in higher [[eukaryotes]], and show varying patterns of expression in specific cell types.<ref name=mamalian>{{cite journal | last = Landgraf | first = P |author2=M Rusu |author3=R Sheridan |author4=A Sewer | year = 2007 | title = A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing | journal = Cell | volume = 129 | pages = 1401–1414 | pmid = 17604727 | issue = 7| doi=10.1016/j.cell.2007.04.040 | pmc=2681231}}</ref> MiR-19 has been identified in a diverse range of [[vertebrate]] animals including [[green anole]] (''Anolis carolinensis''),<ref>{{cite journal |author1=Lyson TR |author2=Sperling EA |author3=Heimberg AM and al. |title=MicroRNAs support a turtle + lizard clade |journal=Biol Lett |volume = 8 | pages = 104–7 | pmid = 21775315 | doi = 10.1098/rsbl.2011.0477 | issue =1 |year=2012 | pmc=3259949}}</ref> [[primates]] (gorilla, human, ...),<ref>{{cite journal |author=Berezikov E, Guryev V, van de Belt J and al. |title=Phylogenetic shadowing and computational identification of human microRNA genes |journal=Cell |volume=120 | pages=21–4 | pmid =15652478 | issue =1 |year=2005 | doi=10.1016/j.cell.2004.12.031|doi-access=free }}</ref><ref>{{cite journal |author1=Lui WO |author2=Pourmand N |author3=Patterson BK and al. |title=Patterns of known and novel small RNAs in human cervical cancer |journal=Cancer Res | year=2007 |volume=67 | issue=13 | pages=6031–43 | pmid =17616659 | doi= 10.1158/0008-5472.CAN-06-0561|doi-access=free }}</ref> [[cattle]] (''Bos taurus''),<ref>{{cite journal |vauthors=Gu Z, Eleswarapu S, Jiang H |title=Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland |journal=FEBS Lett |volume=581 | pages=981–8 | pmid=17306260 | issue=5 |year=2007 | doi=10.1016/j.febslet.2007.01.081|s2cid=38117408 |doi-access=free }}</ref> [[dog]] (''Canis familiaris''),<ref>{{cite journal |author1=Friedländer MR |author2=Chen W |author3=Adamidi C and al. |title=Discovering microRNAs from deep sequencing data using miRDeep |journal=Nat Biotechnol |year=2008 |volume=26 | issue=4 | pages = 407–15 | pmid=18392026 | doi = 10.1038/nbt1394|s2cid=9956142 }}</ref> [[Chinese hamster]] (''Cricetulus griseus''),<ref>{{cite journal |author1=Hackl M |author2=Jakobi T |author3=Blom J and al. |title=Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering |journal=J Biotechnol |year=2011 |volume=153 | issue=1–2 | pages = 62–75 | pmid=21392545 | doi = 10.1016/j.jbiotec.2011.02.011 | pmc=3119918}}</ref> [[zebrafish]] (''Danio rerio''),<ref name="pmid15937218">{{cite journal |author1=Chen PY |author2=Manninga H |author3=Slanchev K and al. |title=The developmental miRNA profiles of zebrafish as determined by small RNA cloning | journal=Genes Dev |year=2005 |volume=19 | issue=11 | pages = 1288–93 | pmid=15937218 | doi = 10.1101/gad.1310605 | pmc=1142552}}</ref> [[horse]] (''Equus caballus''),<ref>{{cite journal |author1=Zhou M |author2=Wang Q |author3=Sun J and al. |title=In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach | journal=Genomics |year=2009 |volume=94 | issue=2 | pages=125–31 | pmid=19406225 | doi=10.1016/j.ygeno.2009.04.006|doi-access=free }}</ref> ''[[Takifugu rubripes]]'',<ref name="pmid15937218" /> ''[[Tetraodon nigroviridis]]'',<ref name="pmid15937218" /> [[chicken]] (''Gallus gallus''),<ref>{{cite journal |author=International Chicken Genome Sequencing Consortium |title=Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution | journal=Nature |year=2004 |volume=432 | issue=7018 | pages=695–716 | pmid=15592404 | doi=10.1038/nature03154|bibcode=2004Natur.432..695C |url=https://escholarship.org/content/qt44v0c3r5/qt44v0c3r5.pdf?t=or4mqz |doi-access=free }}</ref><ref>{{cite journal |author1=Yao Y |author2=Zhao Y |author3=Xu H and al. |title=MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs | journal=J Virol |year=2008 |volume=82 | issue=8 | pages=4007–15 | pmid=18256158 | doi=10.1128/JVI.02659-07 | pmc=2293013}}</ref> [[gray short-tailed opossum]] (''Monodelphis domestica''),<ref>{{cite journal |vauthors=Devor EJ, Samollow PB |title=In vitro and in silico annotation of conserved and nonconserved microRNAs in the genome of the marsupial Monodelphis domestica | journal=J Hered |year=2008 |volume=99 | issue=1 | pages=66–72 | pmid=17965199 | doi=10.1093/jhered/esm085| doi-access=free }}</ref> [[platypus]] (''Ornithorhynchus anatinus''),<ref>{{cite journal |author1=Murchison EP |author2=Kheradpour P |author3=Sachidanandam R and al. |title=Conservation of small RNA pathways in platypus | journal=Genome Res |year=2008 |volume=18 | issue=6 | pages=995–1004 | pmid=18463306 | doi=10.1101/gr.073056.107 | pmc=2413167}}</ref> [[Oryzias latipes|Japanese medaka]] (''Oryzias latipes''),<ref>{{cite journal |author1=Li SC |author2=Chan WC |author3=Ho MR and al. |title=Discovery and characterization of medaka miRNA genes by next generation sequencing platform | journal=BMC Genomics |year=2010 |volume= 11|issue=Suppl 4 | pages= S8| pmid=21143817 | doi=10.1186/1471-2164-11-S4-S8 | pmc=3005926 |doi-access=free }}</ref> [[African clawed frog]] (''Xenopus laevis''),<ref>{{cite journal |author1=Watanabe T |author2=Takeda A |author3=Mise K and al. |title=Stage-specific expression of microRNAs during Xenopus development | journal=FEBS Lett |year=2005 |volume=579 | issue=2 | pages=318–24 | pmid=15642338 | doi=10.1016/j.febslet.2004.11.067|doi-access= }}</ref> [[Tasmanian devil]] (''Sarcophilus harrisii''),<ref>{{cite journal |author1=Murchison EP |author2=Tovar C |author3=Hsu A and al. |title=The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer | journal=Science |year=2010 |volume=327 | issue=5961 | pages=84–7 | pmid=20044575 | doi=10.1126/science.1180616 | pmc=2982769|bibcode=2010Sci...327...84M }}</ref> [[pig]] (''Sus scrofa'')<ref>{{cite journal |author1=Wernersson R |author2=Schierup MH |author3=Jørgensen FG and al. |title=Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing | journal=BMC Genomics |year=2005 |volume= 6| pages=6:70 | pmid=15885146 | doi=10.1186/1471-2164-6-70 | pmc=1142312 |doi-access=free }}</ref> and [[zebra finch]] (''Taeniopygia guttata'').<ref>{{cite journal |author1=Warren WC |author2=Clayton DF |author3=Ellegren H and al. |title=The genome of a songbird | journal=Nature |year=2010 |volume=464 | issue=7289 | pages=757–62 | pmid=20360741 | doi=10.1038/nature08819 | pmc=3187626|bibcode=2010Natur.464..757W }}</ref> In some of these species the presence of miR-19 microRNAs have been directly measured, in other species genes have been identified with sequences that are predicted to encode miR-19.<ref name=art1 /> |
||
== Expression == |
== Expression == |
||
MiR-17-92 [[gene cluster|cluster]] was identified to encode 6 single mature miRNA ([[miR-17]], [ |
MiR-17-92 [[gene cluster|cluster]] was identified to encode 6 single mature miRNA ([[miR-17]], [https://www.ncbi.nlm.nih.gov/pubmed/20724452|miR-18], miR-19, [[Mir-20 microRNA precursor family|miR-20]], [[Mir-92 microRNA precursor family|miR-92]], [[Mir-106 microRNA precursor family|miR-106]]) containing the first oncogenic miRNA. |
||
MicroRNA from miR-19 family can be expressed from: |
MicroRNA from miR-19 family can be expressed from: |
||
: * [[T-lymphoblastic leukemia/lymphoma|T-cell acute lymphoblastic leukemia]] |
: * [[T-lymphoblastic leukemia/lymphoma|T-cell acute lymphoblastic leukemia]]<ref name="1137–1139">{{cite journal |author1=Huashan Ye |author2=Xiaowen Liu |author3=Meng Lv |author4=Yuliang Wu |author5=Shuzhen Kuang |author6=Jing Gong |author7=Ping Yuan |author8=Zhaodong Zhong |author9=Qiubai Li |author10=Haibo Jia |author11=Jun Sun |author12=Zhichao Chen |author13=An-Yuan Guo |title=MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia |journal=Nucleic Acids Research |volume=40 |issue=12 |pages=5201–14 |year=2012|doi=10.1093/nar/gks175 |pmid=22362744 |pmc=3384304 }}</ref> |
||
: * [[B-cell CLL/lymphoma|B-cell lymphomas]] |
: * [[B-cell CLL/lymphoma|B-cell lymphomas]]<ref name="pmid20008931">{{cite journal |author1=Ping Mu |author2=Yoon-Chi Han |author3=Doron Betel |author4=Evelyn Yao |author5=Massimo Squatrito |author6=Paul Ogrodowski |author7=Elisa de Stanchina |author8=Aleco D'Andrea |author9=Chris Sander |author10=Andrea Ventura |title=Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas |journal=Genes Dev |volume=23 | issue=24 | pages=2806–11 |year=2009 |pmid=20008931 |pmc=2800095 |doi=10.1101/gad.1872909 }}</ref> |
||
: * [[Cell lines]] |
: * [[Cell lines]]<ref name="1137–1139" /> |
||
: * [[Cerebellum]] |
: * [[Cerebellum]]<ref name="pmid18758459">{{cite journal |vauthors=Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY |title=miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis |journal=Nat. Neurosci. |volume=11 |issue=10 |pages=1137–9 |date=October 2008 |pmid=18758459 |pmc=2574629 |doi=10.1038/nn.2183 }}</ref><ref name="pmid21200023">{{cite journal |author1=Alexander Baraniskin |author2=Jan Kuhnhenn |author3=Uwe Schlegel |author4=Andrew Chan |author5=Martina Deckert |author6=Ralf Gold |author7=Abdelouahid Maghnouj |author8=Hannah Zöllner |author9=Anke Reinacher-Schick |author10=Wolff Schmiegel |author11=Stephan A. Hahn |author12=Roland Schroers |title=Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system |journal=Blood |volume=117 | issue= 11| pages=3140–3146 |year=2011 |pmid=21200023 |doi=10.1182/blood-2010-09-308684 |doi-access=free }}</ref> |
||
: * [[Purkinje cells]] |
: * [[Purkinje cells]]<ref name="pmid18758459" /> |
||
: * [[HeLa cells]] |
: * [[HeLa cells]]<ref name="pmc3439911">{{cite journal |author1=Michael P. Gantier |author2=H. James Stunden |author3=Claire E. McCoy |author4=Mark A. Behlke |author5=Die Wang |author6=Maria Kaparakis-Liaskos |author7=Soroush T. Sarvestani |author8=Yuan H. Yang |author9=Dakang Xu |author10=Sinéad C. Corr |author11=Eric F. Morand |author12=Bryan R. G. Williams |title=A miR-19 regulon that controls NF-iB signaling |journal=Nucleic Acids Research |volume=40 | issue=16 | pages=8048–8058 |year=2012 |pmid= 22684508|pmc=3439911 |doi=10.1093/nar/gks521 }}</ref> |
||
Finally they have tissues-specific miRNA expression. These microRNA are considered as [[oncogene]]s which improve [[Cell growth|proliferation]], [[Enzyme inhibitor|inhibits]] [[apoptosis]] and induce [[tumor]] [[angiogenesis]].<ref name="pmid21059650">{{cite journal | |
Finally they have tissues-specific miRNA expression. These microRNA are considered as [[oncogene]]s which improve [[Cell growth|proliferation]], [[Enzyme inhibitor|inhibits]] [[apoptosis]] and induce [[tumor]] [[angiogenesis]].<ref name="pmid21059650">{{cite journal |author1=Xiaoxi Zhang |author2=Haijun Yu |author3=Jessica R. Lou |author4=Jie Zheng |author5=Hua Zhu |author6=Narcis-Ioan Popescu |author7=Florea Lupu |author8=Stuart E. Lind |author9=Wei-Qun Ding |name-list-style=amp |title=MicroRNA-19 (miR-19) Regulates Tissue Factor Expression in Breast Cancer Cells |journal=The Journal of Biological Chemistry |volume=286 | issue= 2| pages=1429–1435 |year=2011 |pmid=21059650 |pmc=3020751 |doi=10.1074/jbc.M110.146530 |doi-access=free }}</ref> |
||
<br/> |
<br/> |
||
These miRNA are context-specific and they have different roles depending on where they are. |
These miRNA are context-specific and they have different roles depending on where they are. |
||
Line 61: | Line 61: | ||
=== Acute lymphoblastic leukemia === |
=== Acute lymphoblastic leukemia === |
||
[[Ectopic expression]] of miR-19 represses [[Cylindromatosis|CYLD]] expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases [[NF-kB]] expression in the [[Upstream and downstream (transduction)|downstream signaling pathway]]. |
[[Ectopic expression]] of miR-19 represses [[Cylindromatosis|CYLD]] expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases [[NF-kB]] expression in the [[Upstream and downstream (transduction)|downstream signaling pathway]]. |
||
Thus, miR-19, CYLD and NF-kB form a regulatory [[feedforward]] loop, which provides new clues for sustained activation of NF-kB in [[T-cell]] acute [[lymphoblast]]ic [[leukemia]].<ref name="1137–1139" /><br/> |
Thus, miR-19, CYLD and NF-kB form a regulatory [[feed forward (control)|feedforward]] loop, which provides new clues for sustained activation of NF-kB in [[T-cell]] acute [[lymphoblast]]ic [[leukemia]].<ref name="1137–1139" /><br/> |
||
MiR-19 is sufficient to induce T-cell lymphoblastic leukemia activating [[Notch-1|Notch1]] and accelerate the [[Acute lymphoblastic leukemia|disease]]. Its targets are: |
MiR-19 is sufficient to induce T-cell lymphoblastic leukemia activating [[Notch-1|Notch1]] and accelerate the [[Acute lymphoblastic leukemia|disease]]. Its targets are: |
||
: * [[BCL2L11|Bim (Bcl2L11)]] gene |
: * [[BCL2L11|Bim (Bcl2L11)]] gene |
||
: * [[Protein kinase, AMP-activated, alpha 1|AMP-activated kinase (Prkaa1)]] gene |
: * [[Protein kinase, AMP-activated, alpha 1|AMP-activated kinase (Prkaa1)]] gene |
||
: * E2F1 gene |
: * [[E2F1]] gene |
||
: * the tumour suppressor phosphatases [[PTEN (gene)|PTEN]] |
: * the tumour suppressor phosphatases [[PTEN (gene)|PTEN]] |
||
: * [[PPP2R5E|PP2A (Ppp2r5e)]] gene |
: * [[PPP2R5E|PP2A (Ppp2r5e)]] gene |
||
: * [[Dock5]] protein |
: * [[Dock5]] protein |
||
MiR-19b coordinates a [[PI3K/AKT/mTOR pathway|PI3K pathway]] acting on cell survival in lymphocytes contributing to leukaemogenesis.<ref name="pmid20190740">{{cite journal |author=Konstantinos J. Mavrakis1, Andrew L. Wolfe, Elisa Oricchio1, Teresa Palomero and al. |title=Genome-wide RNAi screen identifies miR-19 targets in Notchinduced acute T-cell leukaemia (T-ALL) |journal=Nat Cell Biol |volume=12 | issue=4 | pages=372–379 |year=2011 |pmid=20190740 |pmc=2989719 |doi=10.1038/ncb2037 |
MiR-19b coordinates a [[PI3K/AKT/mTOR pathway|PI3K pathway]] acting on cell survival in lymphocytes contributing to leukaemogenesis.<ref name="pmid20190740">{{cite journal |author=Konstantinos J. Mavrakis1, Andrew L. Wolfe, Elisa Oricchio1, Teresa Palomero and al. |title=Genome-wide RNAi screen identifies miR-19 targets in Notchinduced acute T-cell leukaemia (T-ALL) |journal=Nat Cell Biol |volume=12 | issue=4 | pages=372–379 |year=2011 |pmid=20190740 |pmc=2989719 |doi=10.1038/ncb2037 }}</ref><ref name="pmid20505335">{{cite journal |author1=Konstantinos J. Mavrakis |author2=Hans-Guido Wendel |name-list-style=amp |title=TargetScreen: an unbiased approach to identify functionally important microRNA targets |journal=Cell Cycle |volume=9 | issue=11 | pages=2080–4 |year=2010 |pmid=20505335|doi= 10.4161/cc.9.11.11807|doi-access=free }}</ref><ref name="pmid17575136">{{cite journal |author1=Séverine Landais |author2=Sébastien Landry |author3=Philippe Legault and al. |title=Oncogenic Potential of the miR-106-363 Cluster and Its Implication in Human T-Cell Leukemia |journal=Cancer Res |volume=67 | issue=12 | pages=5699–707 |year=2007 |pmid=17575136 |doi=10.1158/0008-5472.CAN-06-4478 |doi-access=free }}</ref> |
||
This pathway is activated through PTEN loss and can contribute to reduce sensitivity to [[chemotherapy]] and (in [[Adult T-cell leukemia/lymphoma|T-ALL]]) may impact the effectiveness of therapeutic [[Gamma secretase|gamma-secretase]] inhibitors. |
This pathway is activated through PTEN loss and can contribute to reduce sensitivity to [[chemotherapy]] and (in [[Adult T-cell leukemia/lymphoma|T-ALL]]) may impact the effectiveness of therapeutic [[Gamma secretase|gamma-secretase]] inhibitors. |
||
Line 77: | Line 77: | ||
=== B-cell lymphomas === |
=== B-cell lymphomas === |
||
MiR-19 has been identified as a key responsible for the oncogenic activity, reducing the tumor suppressor gene [[PTEN (gene)|PTEN]] expression and activating [[PI3K/AKT/mTOR pathway|AKT/mTOR pathway]]. This cluster might be important regulator on cancer and aging.<ref name="pmid20437201">{{cite journal | |
MiR-19 has been identified as a key responsible for the oncogenic activity, reducing the tumor suppressor gene [[PTEN (gene)|PTEN]] expression and activating [[PI3K/AKT/mTOR pathway|AKT/mTOR pathway]]. This cluster might be important regulator on cancer and aging.<ref name="pmid20437201">{{cite journal |author1=Johannes Grillari |author2=Matthias Hackl |author3=Regina Grillari-Voglauer |title=miR-17–92 cluster: ups and downs in cancer and aging |journal=Biogerontology |volume=11 | issue= 4| pages=501–506 |year=2010 |pmid=20437201 |pmc=2899009 |doi=10.1007/s10522-010-9272-9 }}</ref><ref name="pmid20008935">{{cite journal |author=Virginie Olive, Margaux J. Bennett, James C. Walker and al. |title=miR-19 is a key oncogenic component of mir-17-92 |journal=Genes Dev |volume=23 | issue=24 | pages=2839–49 |year=2009 |pmid=20008935 |pmc=2800084 |doi=10.1101/gad.1861409 }}</ref><br/> |
||
Mu and al. demonstrated that the expression of endogenous miR-17-92 is required to suppress [[apoptosis]] in [[Myc]]-driven [[B-cell CLL/lymphoma|B-cell]] [[lymphoma]]s. More specifically, miR-19a and miR-19b are required and sufficient to recapitulate the oncogenic properties of the entire cluster.<ref name="pmid20008931" /><ref name="pmid18728182" /> |
Mu and al. demonstrated that the expression of endogenous miR-17-92 is required to suppress [[apoptosis]] in [[Myc]]-driven [[B-cell CLL/lymphoma|B-cell]] [[lymphoma]]s. More specifically, miR-19a and miR-19b are required and sufficient to recapitulate the oncogenic properties of the entire cluster.<ref name="pmid20008931" /><ref name="pmid18728182" /> |
||
Using prediction algorithms, they found miR-19 targets to the pro-survival functions: |
Using prediction algorithms, they found miR-19 targets to the pro-survival functions: |
||
Line 88: | Line 88: | ||
=== Keratinocytes === |
=== Keratinocytes === |
||
In the cell response to [[Stress (biology)|stress]], the most important is the post-transcriptional control of the important gene expression to cell survival and [[apoptosis]]. MiR-19 regulates the [[RHOB|Ras homolog B (RhoB)]] expression in [[keratinocyte]]s after [[ultraviolet]] (UV) radiation exposition. This phenomenon needs the binding of [[ELAVL1|human antigen R (HuR)]] to the rhoB mRNA [[Three prime untranslated region|3'-untranslated region]]. |
In the cell response to [[Stress (biology)|stress]], the most important is the post-transcriptional control of the important gene expression to cell survival and [[apoptosis]]. MiR-19 regulates the [[RHOB|Ras homolog B (RhoB)]] expression in [[keratinocyte]]s after [[ultraviolet]] (UV) radiation exposition. This phenomenon needs the binding of [[ELAVL1|human antigen R (HuR)]] to the rhoB mRNA [[Three prime untranslated region|3'-untranslated region]]. |
||
In this case, HuR acts positively on miRNA action. The interaction between HuR and miR-19 with rhoB is lost under UV treatment. Here, miR-19, linked to RhoB, acts like a protector against keratinocyte apoptosis. A 52-[[nucleotide]]-long sequence of the rhoB 3'-UTR spanning bases 818–870, containing the miR-19 and the HuR binding site was sufficient for UV regulation. This event is UV dependent!<ref name="pmid21527938">{{cite journal | |
In this case, HuR acts positively on miRNA action. The interaction between HuR and miR-19 with rhoB is lost under UV treatment. Here, miR-19, linked to RhoB, acts like a protector against keratinocyte apoptosis. A 52-[[nucleotide]]-long sequence of the rhoB 3'-UTR spanning bases 818–870, containing the miR-19 and the HuR binding site was sufficient for UV regulation. This event is UV dependent!<ref name="pmid21527938">{{cite journal |author1=V Glorian |author2=G Maillot |author3=S Polès and al. |title=HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis |journal=Cell Death and Differentiation |volume=18 | issue= 11| pages=1692–1701 |year=2011 |pmid=21527938 |pmc=3190107 |doi=10.1038/cdd.2011.35 }}</ref> |
||
=== Multiple |
=== Multiple myeloma === |
||
One study on [[multiple myeloma]] patients permitted to identified a selective up-regulation of [[Mir-32 microRNA precursor family|miR-32]] and the miR-17-92 cluster. MiR-19a and miR-19b were shown to down regulate [[Suppressor of cytokine signaling 1|SOCS-1]] expression (a specific gene that inhibits [[Interleukin 6|IL-6]] growth signaling). Therefore, miR-17-92 with [[mIRN21|miR-21]], inhibits apoptosis and promotes cell survival.<ref name="pmid18728182">{{cite journal | |
One study on [[multiple myeloma]] patients permitted to identified a selective up-regulation of [[Mir-32 microRNA precursor family|miR-32]] and the miR-17-92 cluster. MiR-19a and miR-19b were shown to down regulate [[Suppressor of cytokine signaling 1|SOCS-1]] expression (a specific gene that inhibits [[Interleukin 6|IL-6]] growth signaling). Therefore, miR-17-92 with [[mIRN21|miR-21]], inhibits apoptosis and promotes cell survival.<ref name="pmid18728182">{{cite journal |author1=Flavia Pichiorri |author2=Sung-Suk Suh |author3=Marco Ladetto and al. |title=MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 | issue=35 | pages=12885–90 |year=2008 |pmid=18728182 |pmc=2529070 |doi=10.1073/pnas.0806202105 |bibcode=2008PNAS..10512885P |doi-access=free }}</ref> |
||
=== Retinoblastoma === |
=== Retinoblastoma === |
||
In this case, miR-17-92 cluster promotes [[retinoblastoma]] due to loss of [[Retinoblastoma protein|Rb family members]]. The mouse retinal development need miR-17-92 over- |
In this case, miR-17-92 cluster promotes [[retinoblastoma]] due to loss of [[Retinoblastoma protein|Rb family members]]. The mouse retinal development need miR-17-92 over-expression with Rb and p107 deletion, but it occurred frequent emergence of retinoblastoma and [[metastasis]] to the brain.<br/> |
||
Here, the cluster oncogenic function is not mediated by a miR-19/PTEN axis toward apoptosis suppression like in [[lymphoma]] or in [[leukemia]] models. MiR-17-92 increase the proliferative capacity of Rb/p107-deficient in [[Retina|retinal cells]].<br/> |
Here, the cluster oncogenic function is not mediated by a miR-19/PTEN axis toward apoptosis suppression like in [[lymphoma]] or in [[leukemia]] models. MiR-17-92 increase the proliferative capacity of Rb/p107-deficient in [[Retina|retinal cells]].<br/> |
||
Moreover, the Rb family members deletion led to compensatory up-regulation of the [[p21|cyclin-dependent kinase inhibitor p21Cip1]].<br/> |
Moreover, the Rb family members deletion led to compensatory up-regulation of the [[p21|cyclin-dependent kinase inhibitor p21Cip1]].<br/> |
||
Finally, the cluster over-expression counteracted p21Cip1 up-regulation, promotes proliferation and drove retinoblastoma formation.<ref name="pmid21816922">{{cite journal | |
Finally, the cluster over-expression counteracted p21Cip1 up-regulation, promotes proliferation and drove retinoblastoma formation.<ref name="pmid21816922">{{cite journal |author1=Karina Conkrite |author2=Maggie Sundby |author3=Shizuo Mukai and al. |title=miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma |journal=Genes & Development |volume=25 | issue=16 | pages=1734–45 |year=2011 |pmid=21816922 |pmc=3165937 |doi=10.1101/gad.17027411 }}</ref> |
||
=== Role in normal development of heart, lungs and immune system === |
=== Role in normal development of heart, lungs and immune system === |
||
Scientists observed that the loss of function of the miR-17-92 cluster is induced in smaller [[embryo]]s and postnatal deaths.<ref name="pmid18423194" /> The specific role of this cluster in heart and lung [[Developmental biology|development]] remains unclear, but the observations described above show that these miRNAs are normally highly expressed in embryonic lung and decrease with maturity. Moreover, [[Transgenesis|transgenic]] expression of these miRNAs specifically in lung epithelium results in severe developmental defects with enhanced proliferation and |
Scientists observed that the loss of function of the miR-17-92 cluster is induced in smaller [[embryo]]s and postnatal deaths.<ref name="pmid18423194" /> The specific role of this cluster in heart and lung [[Developmental biology|development]] remains unclear, but the observations described above show that these miRNAs are normally highly expressed in embryonic lung and decrease with maturity. Moreover, [[Transgenesis|transgenic]] expression of these miRNAs specifically in lung epithelium results in severe developmental defects with enhanced proliferation and |
||
inhibition of [[Cellular differentiation|differentiation]] of [[Epithelium|epithelial cells]].<br/> |
inhibition of [[Cellular differentiation|differentiation]] of [[Epithelium|epithelial cells]].<br/> |
||
Furthermore, mouse hematopoiesis occurring in the absence of miR-17-92 leads to an isolated defect in B cell development.<ref name="pmid18423194">{{cite journal |author=Joshua T. Mendell |title=miRiad roles for the miR-17-92 cluster in development and disease |journal=Cell |volume=133 | issue=2 | pages=217–22 |year=2008 |pmid=18423194 |pmc=2732113 |doi=10.1016/j.cell.2008.04.001 |
Furthermore, mouse hematopoiesis occurring in the absence of miR-17-92 leads to an isolated defect in B cell development.<ref name="pmid18423194">{{cite journal |author=Joshua T. Mendell |title=miRiad roles for the miR-17-92 cluster in development and disease |journal=Cell |volume=133 | issue=2 | pages=217–22 |year=2008 |pmid=18423194 |pmc=2732113 |doi=10.1016/j.cell.2008.04.001 }}</ref> |
||
=== Role in the endothelial differentiation of stem cells === |
=== Role in the endothelial differentiation of stem cells === |
||
The miR-17-92 cluster containing miR-19 miRNA family is also involved into control [[Endothelium|endothelial cell functions]] and neo-vascularization. MiRNA cluster ([[mir-17 microRNA precursor family|miR-17]], [[mir-18 microRNA precursor family|miR-18]], miR-19 and [[mir-20 microRNA precursor family|miR-20]]) increased during the induction of endothelial cell differentiation in embryonic [[stem cell]]s (tested on murine) or induce [[Cell potency|pluripotent]] stem cells. Even though this cluster regulates vascular integrity and [[angiogenesis]], none of each members has a significant impact on the endothelial differentiation of pluripotent stem cells.<ref name="pmid22797777">{{cite journal | |
The miR-17-92 cluster containing miR-19 miRNA family is also involved into control [[Endothelium|endothelial cell functions]] and neo-vascularization. MiRNA cluster ([[mir-17 microRNA precursor family|miR-17]], [[mir-18 microRNA precursor family|miR-18]], miR-19 and [[mir-20 microRNA precursor family|miR-20]]) increased during the induction of endothelial cell differentiation in embryonic [[stem cell]]s (tested on murine) or induce [[Cell potency|pluripotent]] stem cells. Even though this cluster regulates vascular integrity and [[angiogenesis]], none of each members has a significant impact on the endothelial differentiation of pluripotent stem cells.<ref name="pmid22797777">{{cite journal |author1=Karine Tréguer |author2=Eva-Marie Heinrich |author3=Kisho Ohtani and al. |title=Role of the MicroRNA-17–92 Cluster in the Endothelial Differentiation of Stem Cells |journal=Journal of Vascular Research |volume=49 | issue= 5| pages=447–460 |year=2012 |pmid=22797777 |doi=10.1159/000339429 |doi-access=free }}</ref> |
||
== miR-19a |
== miR-19a roles == |
||
=== Spinocerebellar ataxia type 1 === |
=== Spinocerebellar ataxia type 1 === |
||
It has been showing that the 3' UTR of the [[ATXN1]] gene contains 3 target sites for miR-19, and this microRNA shows moderate down regulation of [[reporter gene]]s containing the ATXN1 3' UTR. Furthermore, it directly binds to the ATXN1 3´UTR to suppress the translation of ATXN1. ATXN1 is also regulated by [[mir-101 microRNA precursor family|miR-101]], and [[mir-130 microRNA precursor family|miR-130]].<ref name="pmid18758459" /> |
It has been showing that the 3' UTR of the [[ATXN1]] gene contains 3 target sites for miR-19, and this microRNA shows moderate down regulation of [[reporter gene]]s containing the ATXN1 3' UTR. Furthermore, it directly binds to the ATXN1 3´UTR to suppress the translation of ATXN1. ATXN1 is also regulated by [[mir-101 microRNA precursor family|miR-101]], and [[mir-130 microRNA precursor family|miR-130]].<ref name="pmid18758459" /> |
||
=== Breast |
=== Breast cancer === |
||
⚫ | MiR-19 regulates [[tissue factor]] expression at a [[Post-transcriptional regulation|post-transcriptional]] level in [[breast cancer]] cells, providing a molecular basis for the selective expression of the tissue factor gene. Thanks to bioinformatics analyses, scientists predicted microRNA-[[Binding sites]] for miR-19, miR-20 and miR-106b in the 3'-UTR tissue factor transcript. Experiments confirmed that it negatively regulates gene expression in [[MCF-7]] cells, and over-expression of miR-19 [[downregulation|downregulates]] tissue factor expression in MDA-MB-231 cells ( |
||
⚫ | MiR-19 regulates [[tissue factor]] expression at a [[Post-transcriptional regulation|post-transcriptional]] level in [[breast cancer]] cells, providing a molecular basis for the selective expression of the tissue factor gene. Thanks to bioinformatics analyses, scientists predicted microRNA-[[Binding sites]] for miR-19, miR-20 and miR-106b in the 3'-UTR tissue factor transcript. Experiments confirmed that it negatively regulates gene expression in [[MCF-7]] cells, and over-expression of miR-19 [[downregulation|downregulates]] tissue factor expression in [[MDA-MB-231]] cells (human breast cancer cell lines). The main action of miR-19 seems to inhibit protein translation of the tissue factor gene in less invasive breast cancer cells.<ref name="pmid21059650" /> |
||
⚫ | |||
⚫ | |||
=== Rheumatoid arthritis === |
=== Rheumatoid arthritis === |
||
MiR-19 also takes part in [[Inflammation|inflammatory responses]] [[Enhancer (genetics)|enhancing]] or [[Repressor|repressing]] pro-inflammatory mediators expression. It positively regulates [[Toll-like receptor]] signaling with [[DICER1|Dicer1]] deletion and miRNA depletion. MiR-19b is an important protagonist in this phenomenon, regulating positively [[NF-kB]] activity. |
MiR-19 also takes part in [[Inflammation|inflammatory responses]] [[Enhancer (genetics)|enhancing]] or [[Repressor|repressing]] pro-inflammatory mediators expression. It positively regulates [[Toll-like receptor]] signaling with [[DICER1|Dicer1]] deletion and miRNA depletion. MiR-19b is an important protagonist in this phenomenon, regulating positively [[NF-kB]] activity. |
||
MiRNA depletion inhibits [[cytokine]]s production by NF-kB. This indicates that miRNA control of NF-kB signaling repressors thanks to its relief. Some important regulators of NF-kB signaling ([[TNFAIP3|like A20 (Tnfaip3)]], [[CYLD (gene)|Cyld]], and |
MiRNA depletion inhibits [[cytokine]]s production by NF-kB. This indicates that miRNA control of NF-kB signaling repressors thanks to its relief. Some important regulators of NF-kB signaling ([[TNFAIP3|like A20 (Tnfaip3)]], [[CYLD (gene)|Cyld]], and [[OTUD7B|Cézanne (Otud7b)]]) is targeted by the miR-17-92 cluster.<br/> |
||
Moreover, mir-19 targets some members of the Tnfaip3-ubiquitin editing complex ([[TNFAIP3|Tnfaip3]]/Itch/[[TNIP1|Tnip1]]/[[RNF11|Rnf11]]). MiR-19 directly involved in the modulation of several NF-kB signaling negative regulators expression, indicating an important role for Rnf11 in the effect of miR-19b on NF-kB signaling.<br/> |
Moreover, mir-19 targets some members of the Tnfaip3-ubiquitin editing complex ([[TNFAIP3|Tnfaip3]]/[[ITCH|Itch]]/[[TNIP1|Tnip1]]/[[RNF11|Rnf11]]). MiR-19 directly involved in the modulation of several NF-kB signaling negative regulators expression, indicating an important role for Rnf11 in the effect of miR-19b on NF-kB signaling.<br/> |
||
Finally, miR-19b exacerbates the [[Synovial joint|cells crucial]] inflammatory activation in [[Rheumatoid arthritis|rheumatoid arthritis disease]].<ref name="pmc3439911" /><ref name="pmid20505335" /> |
Finally, miR-19b exacerbates the [[Synovial joint|cells crucial]] inflammatory activation in [[Rheumatoid arthritis|rheumatoid arthritis disease]].<ref name="pmc3439911" /><ref name="pmid20505335" /> |
||
==References== |
==References== |
||
{{reflist| |
{{reflist|30em}} |
||
==Further reading== |
==Further reading== |
||
{{refbegin |
{{refbegin}} |
||
*{{Cite journal | author=Andrea Ventura, Amanda G. Young, Monte M. Winslow and al. | title=Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clustersMechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β | journal = Cell | volume = 132 | issue =5 | pages=875–886 | year = 2008 | pmid=18329372 |pmc=2323338 |doi=10.1016/j.cell.2008.02.019 }} |
|||
*{{Cite journal | |
*{{Cite journal |author1=Lixin Hong |author2=Maoyi Lai |author3=Michelle Chen and al. | title=The miR-17-92 Cluster of microRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence | journal = Cancer Res | volume = 70 | issue =21 | pages=8547–8557 | year =2010 | doi = 10.1158/0008-5472.CAN-10-1938 | pmid=20851997 |pmc=2970743 }} |
||
*{{Cite journal | |
*{{Cite journal |author1=JR-Shiuan Yang |author2=Michael D. Phillips |author3=Doron Betel and al. | title=Widespread regulatory activity of vertebrate microRNA* species | journal = RNA | volume = 17 | issue =2 | pages=312–26 | year =2011 | doi = 10.1261/rna.2537911 | pmid=21177881 |pmc=3022280 }} |
||
*{{ |
*{{cite journal |author1=Joost Kluiver |author2=Johan H. Gibcus |author3=Chris Hettinga and al. |title=Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition |journal=PLOS ONE |volume=7 | issue=1 | pages=e29275 |year=2012 |pmid=22238599 |pmc=3253070 |doi=10.1371/journal.pone.0029275 |bibcode=2012PLoSO...729275K |doi-access=free }} |
||
{{refend}} |
|||
*{{cite journal |author=Joost Kluiver, Johan H. Gibcus, Chris Hettinga and al. |title=Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition |journal=PLoS ONE |volume=7 | issue=1 | pages=e29275 |year=2012 |pmid=22238599 |pmc=3253070 |doi=10.1371/journal.pone.0029275 |url=|bibcode=2012PLoSO...729275K }} |
|||
==External links== |
==External links== |
Latest revision as of 19:29, 10 December 2023
mir-19 microRNA precursor family | |
---|---|
Identifiers | |
Symbol | mir-19 |
Rfam | RF00245 |
miRBase | MI0000073 |
miRBase family | MIPF0000011 |
Other data | |
RNA type | Gene; miRNA |
Domain(s) | Eukaryota |
GO | GO:0035195 GO:0035068 |
SO | SO:0001244 |
PDB structures | PDBe |
There are 89 known sequences today in the microRNA 19 (miR-19) family but it will change quickly. They are found in a large number of vertebrate species. The miR-19 microRNA precursor is a small non-coding RNA molecule that regulates gene expression. Within the human and mouse genome there are three copies of this microRNA that are processed from multiple predicted precursor hairpins:[1][2][3]
- mouse:
- * miR-19a on chromosome 14 (MI0000688)
- * miR-19b-1 on chromosome 14 (MI0000718)
- * miR-19b-2 on chromosome X (MI0000546)
- human:[1]
- * miR-19a on chromosome 13 (MI0000073)
- * miR-19b-1 on chromosome 13 (MI0000074)
- * miR-19b-2 on chromosome X (MI000075).
MiR-19 has now been predicted or experimentally confirmed (MIPF0000011). In this case the mature sequence is excised from the 3' arm of the hairpin precursor.
Origins
[edit]MicroRNA are ubiquitous in higher eukaryotes, and show varying patterns of expression in specific cell types.[4] MiR-19 has been identified in a diverse range of vertebrate animals including green anole (Anolis carolinensis),[5] primates (gorilla, human, ...),[6][7] cattle (Bos taurus),[8] dog (Canis familiaris),[9] Chinese hamster (Cricetulus griseus),[10] zebrafish (Danio rerio),[11] horse (Equus caballus),[12] Takifugu rubripes,[11] Tetraodon nigroviridis,[11] chicken (Gallus gallus),[13][14] gray short-tailed opossum (Monodelphis domestica),[15] platypus (Ornithorhynchus anatinus),[16] Japanese medaka (Oryzias latipes),[17] African clawed frog (Xenopus laevis),[18] Tasmanian devil (Sarcophilus harrisii),[19] pig (Sus scrofa)[20] and zebra finch (Taeniopygia guttata).[21] In some of these species the presence of miR-19 microRNAs have been directly measured, in other species genes have been identified with sequences that are predicted to encode miR-19.[1]
Expression
[edit]MiR-17-92 cluster was identified to encode 6 single mature miRNA (miR-17, [1], miR-19, miR-20, miR-92, miR-106) containing the first oncogenic miRNA.
MicroRNA from miR-19 family can be expressed from:
- * T-cell acute lymphoblastic leukemia[22]
- * B-cell lymphomas[23]
- * Cell lines[22]
- * Cerebellum[24][25]
- * Purkinje cells[24]
- * HeLa cells[26]
Finally they have tissues-specific miRNA expression. These microRNA are considered as oncogenes which improve proliferation, inhibits apoptosis and induce tumor angiogenesis.[27]
These miRNA are context-specific and they have different roles depending on where they are.
miR-19a/b roles
[edit]Acute lymphoblastic leukemia
[edit]Ectopic expression of miR-19 represses CYLD expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases NF-kB expression in the downstream signaling pathway.
Thus, miR-19, CYLD and NF-kB form a regulatory feedforward loop, which provides new clues for sustained activation of NF-kB in T-cell acute lymphoblastic leukemia.[22]
MiR-19 is sufficient to induce T-cell lymphoblastic leukemia activating Notch1 and accelerate the disease. Its targets are:
- * Bim (Bcl2L11) gene
- * AMP-activated kinase (Prkaa1) gene
- * E2F1 gene
- * the tumour suppressor phosphatases PTEN
- * PP2A (Ppp2r5e) gene
- * Dock5 protein
MiR-19b coordinates a PI3K pathway acting on cell survival in lymphocytes contributing to leukaemogenesis.[28][29][30]
This pathway is activated through PTEN loss and can contribute to reduce sensitivity to chemotherapy and (in T-ALL) may impact the effectiveness of therapeutic gamma-secretase inhibitors.
Primary central nervous system lymphoma
[edit]Baraniskin and al. study show that miR-21, miR-19, and miR-92a levels in cerebrospinal fluid (CSF) seems to be good biomarkers to diagnose a Primary central nervous system lymphoma (PCNSL). They also demonstrate that miRNAs in plasma are in a resistant form to intrinsic RNase activity, and there is a low RNase activity in the CSF.[25]
B-cell lymphomas
[edit]MiR-19 has been identified as a key responsible for the oncogenic activity, reducing the tumor suppressor gene PTEN expression and activating AKT/mTOR pathway. This cluster might be important regulator on cancer and aging.[31][32]
Mu and al. demonstrated that the expression of endogenous miR-17-92 is required to suppress apoptosis in Myc-driven B-cell lymphomas. More specifically, miR-19a and miR-19b are required and sufficient to recapitulate the oncogenic properties of the entire cluster.[23][33]
Using prediction algorithms, they found miR-19 targets to the pro-survival functions:
Keratinocytes
[edit]In the cell response to stress, the most important is the post-transcriptional control of the important gene expression to cell survival and apoptosis. MiR-19 regulates the Ras homolog B (RhoB) expression in keratinocytes after ultraviolet (UV) radiation exposition. This phenomenon needs the binding of human antigen R (HuR) to the rhoB mRNA 3'-untranslated region. In this case, HuR acts positively on miRNA action. The interaction between HuR and miR-19 with rhoB is lost under UV treatment. Here, miR-19, linked to RhoB, acts like a protector against keratinocyte apoptosis. A 52-nucleotide-long sequence of the rhoB 3'-UTR spanning bases 818–870, containing the miR-19 and the HuR binding site was sufficient for UV regulation. This event is UV dependent![34]
Multiple myeloma
[edit]One study on multiple myeloma patients permitted to identified a selective up-regulation of miR-32 and the miR-17-92 cluster. MiR-19a and miR-19b were shown to down regulate SOCS-1 expression (a specific gene that inhibits IL-6 growth signaling). Therefore, miR-17-92 with miR-21, inhibits apoptosis and promotes cell survival.[33]
Retinoblastoma
[edit]In this case, miR-17-92 cluster promotes retinoblastoma due to loss of Rb family members. The mouse retinal development need miR-17-92 over-expression with Rb and p107 deletion, but it occurred frequent emergence of retinoblastoma and metastasis to the brain.
Here, the cluster oncogenic function is not mediated by a miR-19/PTEN axis toward apoptosis suppression like in lymphoma or in leukemia models. MiR-17-92 increase the proliferative capacity of Rb/p107-deficient in retinal cells.
Moreover, the Rb family members deletion led to compensatory up-regulation of the cyclin-dependent kinase inhibitor p21Cip1.
Finally, the cluster over-expression counteracted p21Cip1 up-regulation, promotes proliferation and drove retinoblastoma formation.[35]
Role in normal development of heart, lungs and immune system
[edit]Scientists observed that the loss of function of the miR-17-92 cluster is induced in smaller embryos and postnatal deaths.[36] The specific role of this cluster in heart and lung development remains unclear, but the observations described above show that these miRNAs are normally highly expressed in embryonic lung and decrease with maturity. Moreover, transgenic expression of these miRNAs specifically in lung epithelium results in severe developmental defects with enhanced proliferation and
inhibition of differentiation of epithelial cells.
Furthermore, mouse hematopoiesis occurring in the absence of miR-17-92 leads to an isolated defect in B cell development.[36]
Role in the endothelial differentiation of stem cells
[edit]The miR-17-92 cluster containing miR-19 miRNA family is also involved into control endothelial cell functions and neo-vascularization. MiRNA cluster (miR-17, miR-18, miR-19 and miR-20) increased during the induction of endothelial cell differentiation in embryonic stem cells (tested on murine) or induce pluripotent stem cells. Even though this cluster regulates vascular integrity and angiogenesis, none of each members has a significant impact on the endothelial differentiation of pluripotent stem cells.[37]
miR-19a roles
[edit]Spinocerebellar ataxia type 1
[edit]It has been showing that the 3' UTR of the ATXN1 gene contains 3 target sites for miR-19, and this microRNA shows moderate down regulation of reporter genes containing the ATXN1 3' UTR. Furthermore, it directly binds to the ATXN1 3´UTR to suppress the translation of ATXN1. ATXN1 is also regulated by miR-101, and miR-130.[24]
Breast cancer
[edit]MiR-19 regulates tissue factor expression at a post-transcriptional level in breast cancer cells, providing a molecular basis for the selective expression of the tissue factor gene. Thanks to bioinformatics analyses, scientists predicted microRNA-Binding sites for miR-19, miR-20 and miR-106b in the 3'-UTR tissue factor transcript. Experiments confirmed that it negatively regulates gene expression in MCF-7 cells, and over-expression of miR-19 downregulates tissue factor expression in MDA-MB-231 cells (human breast cancer cell lines). The main action of miR-19 seems to inhibit protein translation of the tissue factor gene in less invasive breast cancer cells.[27]
miR-19b roles
[edit]Rheumatoid arthritis
[edit]MiR-19 also takes part in inflammatory responses enhancing or repressing pro-inflammatory mediators expression. It positively regulates Toll-like receptor signaling with Dicer1 deletion and miRNA depletion. MiR-19b is an important protagonist in this phenomenon, regulating positively NF-kB activity.
MiRNA depletion inhibits cytokines production by NF-kB. This indicates that miRNA control of NF-kB signaling repressors thanks to its relief. Some important regulators of NF-kB signaling (like A20 (Tnfaip3), Cyld, and Cézanne (Otud7b)) is targeted by the miR-17-92 cluster.
Moreover, mir-19 targets some members of the Tnfaip3-ubiquitin editing complex (Tnfaip3/Itch/Tnip1/Rnf11). MiR-19 directly involved in the modulation of several NF-kB signaling negative regulators expression, indicating an important role for Rnf11 in the effect of miR-19b on NF-kB signaling.
Finally, miR-19b exacerbates the cells crucial inflammatory activation in rheumatoid arthritis disease.[26][29]
References
[edit]- ^ a b c Lagos-Quintana, M; Rauhut R; Lendeckel W; Tuschl T (2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–858. Bibcode:2001Sci...294..853L. doi:10.1126/science.1064921. hdl:11858/00-001M-0000-0012-F65F-2. PMID 11679670. S2CID 18101169.
- ^ Mourelatos, Z; Dostie J; Paushkin S; Sharma A; Charroux B; Abel L; Rappsilber J; Mann M; Dreyfuss G (2002). "miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs". Genes Dev. 16 (6): 720–728. doi:10.1101/gad.974702. PMC 155365. PMID 11914277.
- ^ Houbaviy, HB; Murray MF; Sharp PA (2003). "Embryonic stem cell-specific MicroRNAs". Dev Cell. 5 (2): 351–358. doi:10.1016/S1534-5807(03)00227-2. PMID 12919684.
- ^ Landgraf, P; M Rusu; R Sheridan; A Sewer (2007). "A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing". Cell. 129 (7): 1401–1414. doi:10.1016/j.cell.2007.04.040. PMC 2681231. PMID 17604727.
- ^ Lyson TR; Sperling EA; Heimberg AM and al. (2012). "MicroRNAs support a turtle + lizard clade". Biol Lett. 8 (1): 104–7. doi:10.1098/rsbl.2011.0477. PMC 3259949. PMID 21775315.
- ^ Berezikov E, Guryev V, van de Belt J and al. (2005). "Phylogenetic shadowing and computational identification of human microRNA genes". Cell. 120 (1): 21–4. doi:10.1016/j.cell.2004.12.031. PMID 15652478.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Lui WO; Pourmand N; Patterson BK and al. (2007). "Patterns of known and novel small RNAs in human cervical cancer". Cancer Res. 67 (13): 6031–43. doi:10.1158/0008-5472.CAN-06-0561. PMID 17616659.
- ^ Gu Z, Eleswarapu S, Jiang H (2007). "Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland". FEBS Lett. 581 (5): 981–8. doi:10.1016/j.febslet.2007.01.081. PMID 17306260. S2CID 38117408.
- ^ Friedländer MR; Chen W; Adamidi C and al. (2008). "Discovering microRNAs from deep sequencing data using miRDeep". Nat Biotechnol. 26 (4): 407–15. doi:10.1038/nbt1394. PMID 18392026. S2CID 9956142.
- ^ Hackl M; Jakobi T; Blom J and al. (2011). "Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering". J Biotechnol. 153 (1–2): 62–75. doi:10.1016/j.jbiotec.2011.02.011. PMC 3119918. PMID 21392545.
- ^ a b c Chen PY; Manninga H; Slanchev K and al. (2005). "The developmental miRNA profiles of zebrafish as determined by small RNA cloning". Genes Dev. 19 (11): 1288–93. doi:10.1101/gad.1310605. PMC 1142552. PMID 15937218.
- ^ Zhou M; Wang Q; Sun J and al. (2009). "In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach". Genomics. 94 (2): 125–31. doi:10.1016/j.ygeno.2009.04.006. PMID 19406225.
- ^ International Chicken Genome Sequencing Consortium (2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution" (PDF). Nature. 432 (7018): 695–716. Bibcode:2004Natur.432..695C. doi:10.1038/nature03154. PMID 15592404.
- ^ Yao Y; Zhao Y; Xu H and al. (2008). "MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs". J Virol. 82 (8): 4007–15. doi:10.1128/JVI.02659-07. PMC 2293013. PMID 18256158.
- ^ Devor EJ, Samollow PB (2008). "In vitro and in silico annotation of conserved and nonconserved microRNAs in the genome of the marsupial Monodelphis domestica". J Hered. 99 (1): 66–72. doi:10.1093/jhered/esm085. PMID 17965199.
- ^ Murchison EP; Kheradpour P; Sachidanandam R and al. (2008). "Conservation of small RNA pathways in platypus". Genome Res. 18 (6): 995–1004. doi:10.1101/gr.073056.107. PMC 2413167. PMID 18463306.
- ^ Li SC; Chan WC; Ho MR and al. (2010). "Discovery and characterization of medaka miRNA genes by next generation sequencing platform". BMC Genomics. 11 (Suppl 4): S8. doi:10.1186/1471-2164-11-S4-S8. PMC 3005926. PMID 21143817.
- ^ Watanabe T; Takeda A; Mise K and al. (2005). "Stage-specific expression of microRNAs during Xenopus development". FEBS Lett. 579 (2): 318–24. doi:10.1016/j.febslet.2004.11.067. PMID 15642338.
- ^ Murchison EP; Tovar C; Hsu A and al. (2010). "The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer". Science. 327 (5961): 84–7. Bibcode:2010Sci...327...84M. doi:10.1126/science.1180616. PMC 2982769. PMID 20044575.
- ^ Wernersson R; Schierup MH; Jørgensen FG and al. (2005). "Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing". BMC Genomics. 6: 6:70. doi:10.1186/1471-2164-6-70. PMC 1142312. PMID 15885146.
- ^ Warren WC; Clayton DF; Ellegren H and al. (2010). "The genome of a songbird". Nature. 464 (7289): 757–62. Bibcode:2010Natur.464..757W. doi:10.1038/nature08819. PMC 3187626. PMID 20360741.
- ^ a b c Huashan Ye; Xiaowen Liu; Meng Lv; Yuliang Wu; Shuzhen Kuang; Jing Gong; Ping Yuan; Zhaodong Zhong; Qiubai Li; Haibo Jia; Jun Sun; Zhichao Chen; An-Yuan Guo (2012). "MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia". Nucleic Acids Research. 40 (12): 5201–14. doi:10.1093/nar/gks175. PMC 3384304. PMID 22362744.
- ^ a b Ping Mu; Yoon-Chi Han; Doron Betel; Evelyn Yao; Massimo Squatrito; Paul Ogrodowski; Elisa de Stanchina; Aleco D'Andrea; Chris Sander; Andrea Ventura (2009). "Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas". Genes Dev. 23 (24): 2806–11. doi:10.1101/gad.1872909. PMC 2800095. PMID 20008931.
- ^ a b c Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (October 2008). "miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis". Nat. Neurosci. 11 (10): 1137–9. doi:10.1038/nn.2183. PMC 2574629. PMID 18758459.
- ^ a b Alexander Baraniskin; Jan Kuhnhenn; Uwe Schlegel; Andrew Chan; Martina Deckert; Ralf Gold; Abdelouahid Maghnouj; Hannah Zöllner; Anke Reinacher-Schick; Wolff Schmiegel; Stephan A. Hahn; Roland Schroers (2011). "Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system". Blood. 117 (11): 3140–3146. doi:10.1182/blood-2010-09-308684. PMID 21200023.
- ^ a b Michael P. Gantier; H. James Stunden; Claire E. McCoy; Mark A. Behlke; Die Wang; Maria Kaparakis-Liaskos; Soroush T. Sarvestani; Yuan H. Yang; Dakang Xu; Sinéad C. Corr; Eric F. Morand; Bryan R. G. Williams (2012). "A miR-19 regulon that controls NF-iB signaling". Nucleic Acids Research. 40 (16): 8048–8058. doi:10.1093/nar/gks521. PMC 3439911. PMID 22684508.
- ^ a b Xiaoxi Zhang; Haijun Yu; Jessica R. Lou; Jie Zheng; Hua Zhu; Narcis-Ioan Popescu; Florea Lupu; Stuart E. Lind & Wei-Qun Ding (2011). "MicroRNA-19 (miR-19) Regulates Tissue Factor Expression in Breast Cancer Cells". The Journal of Biological Chemistry. 286 (2): 1429–1435. doi:10.1074/jbc.M110.146530. PMC 3020751. PMID 21059650.
- ^ Konstantinos J. Mavrakis1, Andrew L. Wolfe, Elisa Oricchio1, Teresa Palomero and al. (2011). "Genome-wide RNAi screen identifies miR-19 targets in Notchinduced acute T-cell leukaemia (T-ALL)". Nat Cell Biol. 12 (4): 372–379. doi:10.1038/ncb2037. PMC 2989719. PMID 20190740.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ a b Konstantinos J. Mavrakis & Hans-Guido Wendel (2010). "TargetScreen: an unbiased approach to identify functionally important microRNA targets". Cell Cycle. 9 (11): 2080–4. doi:10.4161/cc.9.11.11807. PMID 20505335.
- ^ Séverine Landais; Sébastien Landry; Philippe Legault and al. (2007). "Oncogenic Potential of the miR-106-363 Cluster and Its Implication in Human T-Cell Leukemia". Cancer Res. 67 (12): 5699–707. doi:10.1158/0008-5472.CAN-06-4478. PMID 17575136.
- ^ Johannes Grillari; Matthias Hackl; Regina Grillari-Voglauer (2010). "miR-17–92 cluster: ups and downs in cancer and aging". Biogerontology. 11 (4): 501–506. doi:10.1007/s10522-010-9272-9. PMC 2899009. PMID 20437201.
- ^ Virginie Olive, Margaux J. Bennett, James C. Walker and al. (2009). "miR-19 is a key oncogenic component of mir-17-92". Genes Dev. 23 (24): 2839–49. doi:10.1101/gad.1861409. PMC 2800084. PMID 20008935.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Flavia Pichiorri; Sung-Suk Suh; Marco Ladetto and al. (2008). "MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis". Proceedings of the National Academy of Sciences of the United States of America. 105 (35): 12885–90. Bibcode:2008PNAS..10512885P. doi:10.1073/pnas.0806202105. PMC 2529070. PMID 18728182.
- ^ V Glorian; G Maillot; S Polès and al. (2011). "HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis". Cell Death and Differentiation. 18 (11): 1692–1701. doi:10.1038/cdd.2011.35. PMC 3190107. PMID 21527938.
- ^ Karina Conkrite; Maggie Sundby; Shizuo Mukai and al. (2011). "miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma". Genes & Development. 25 (16): 1734–45. doi:10.1101/gad.17027411. PMC 3165937. PMID 21816922.
- ^ a b Joshua T. Mendell (2008). "miRiad roles for the miR-17-92 cluster in development and disease". Cell. 133 (2): 217–22. doi:10.1016/j.cell.2008.04.001. PMC 2732113. PMID 18423194.
- ^ Karine Tréguer; Eva-Marie Heinrich; Kisho Ohtani and al. (2012). "Role of the MicroRNA-17–92 Cluster in the Endothelial Differentiation of Stem Cells". Journal of Vascular Research. 49 (5): 447–460. doi:10.1159/000339429. PMID 22797777.
Further reading
[edit]- Andrea Ventura, Amanda G. Young, Monte M. Winslow and al. (2008). "Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clustersMechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β". Cell. 132 (5): 875–886. doi:10.1016/j.cell.2008.02.019. PMC 2323338. PMID 18329372.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Lixin Hong; Maoyi Lai; Michelle Chen and al. (2010). "The miR-17-92 Cluster of microRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence". Cancer Res. 70 (21): 8547–8557. doi:10.1158/0008-5472.CAN-10-1938. PMC 2970743. PMID 20851997.
- JR-Shiuan Yang; Michael D. Phillips; Doron Betel and al. (2011). "Widespread regulatory activity of vertebrate microRNA* species". RNA. 17 (2): 312–26. doi:10.1261/rna.2537911. PMC 3022280. PMID 21177881.
- Joost Kluiver; Johan H. Gibcus; Chris Hettinga and al. (2012). "Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition". PLOS ONE. 7 (1): e29275. Bibcode:2012PLoSO...729275K. doi:10.1371/journal.pone.0029275. PMC 3253070. PMID 22238599.