Fractional vortices: Difference between revisions
No edit summary |
Citation bot (talk | contribs) Add: url. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 35/39 |
||
(15 intermediate revisions by 11 users not shown) | |||
Line 3: | Line 3: | ||
The term '''Fractional vortex''' is used for two kinds of very different quantum vortices which occur when: |
The term '''Fractional vortex''' is used for two kinds of very different quantum vortices which occur when: |
||
(i) A physical system allows phase windings different from <math> 2\pi \times \mathit{integer}</math>, i.e. non-integer or fractional phase winding. Quantum mechanics prohibits it in a uniform ordinary superconductor, but it becomes possible in an inhomogeneous system, for example, if a vortex is placed on a boundary between two superconductors which are connected only by an extremely weak link (also called a [[Josephson junction]]); such a situation also occurs |
(i) A physical system allows phase windings different from <math> 2\pi \times \mathit{integer}</math>, i.e. non-integer or fractional phase winding. Quantum mechanics prohibits it in a uniform ordinary superconductor, but it becomes possible in an inhomogeneous system, for example, if a vortex is placed on a boundary between two superconductors which are connected only by an extremely weak link (also called a [[Josephson junction]]); such a situation also occurs on [[grain boundaries]] etc. At such superconducting boundaries the phase can have a discontinuous jump. Correspondingly, a vortex placed onto such a boundary acquires a fractional phase winding hence the term fractional vortex. A similar situation occurs in Spin-1 [[Bose condensate]], where a vortex with <math>\pi</math> phase winding can exist if it is combined with a domain of overturned spins. |
||
(ii) A different situation occurs in uniform multicomponent superconductors which allow stable vortex solutions with integer phase winding <math>2\pi N</math>, where <math> N= \pm 1, \pm 2, ... </math>, which however carry arbitrarily fractionally quantized magnetic flux.<ref>Egor Babaev, [http://link.aps.org/abstract/PRL/v89/e067001 Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model] [[Phys. Rev. Lett.]] 89 (2002) 067001.</ref> |
(ii) A different situation occurs in uniform multicomponent superconductors, which allow stable vortex solutions with integer phase winding <math>2\pi N</math>, where <math> N= \pm 1, \pm 2, ... </math>, which however carry arbitrarily fractionally quantized magnetic flux.<ref>Egor Babaev, [http://link.aps.org/abstract/PRL/v89/e067001 Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model] [[Phys. Rev. Lett.]] 89 (2002) 067001.</ref> |
||
Observation of fractional-flux vortices was reported in a multiband Iron-based superconductor. |
|||
<ref>Yusuke Iguchi, Ruby A. Shi1, Kunihiro Kihou, Chul-Ho Lee, Mats Barkman, Andrea L. Benfenati, Vadim Grinenko, Egor Babaev, Kathryn A. Moler |
|||
[https://www.science.org/doi/10.1126/science.abp9979 Superconducting vortices carrying a temperature-dependent fraction of the flux quantum] [Science ]</ref> |
|||
== (i) Vortices with non-integer phase winding == |
== (i) Vortices with non-integer phase winding == |
||
Line 13: | Line 17: | ||
==== Fractional vortices at phase discontinuities ==== |
==== Fractional vortices at phase discontinuities ==== |
||
[[Josephson phase]] discontinuities may appear in specially designed [[long Josephson junction]]s (LJJ). For example, so-called [[0-π LJJ]] have a |
[[Josephson phase]] discontinuities may appear in specially designed [[long Josephson junction]]s (LJJ). For example, so-called [[0-π LJJ]] have a <math>\pi</math> discontinuity of the Josephson phase at the point where 0 and <math>\pi</math> parts join. Physically, such <math>0-\pi</math> LJJ can be fabricated using tailored ferromagnetic barrier<ref name="Weides0piSFIS" /><ref name="DellaRocca0piSFS" /> or using d-wave superconductors.<ref name=Tsuei:2002:d-wave:implications /><ref name=Hilgenkamp:zigzag:SF /> The [[Josephson phase]] discontinuities can also be introduced using artificial tricks, e.g., a pair of tiny current injectors attached to one of the superconducting electrodes of the LJJ.<ref name=UstinovInsFluxon /><ref name=MalomedIcIinj /><ref name=GoldobinArt0pi /> The value of the phase discontinuity is denoted by κ and, without losing generality, it is assumed that {{math|0<κ<2π}}, because the phase is {{math|2π}} periodic. |
||
An LJJ reacts to the phase discontinuity by bending the Josephson phase <math>\phi(x)</math> in the [[Josephson penetration depth|<math>\lambda_J</math>]] vicinity of the discontinuity point, so that far away there are no traces of this perturbation. The bending of the [[Josephson phase]] inevitably results in appearance of a local magnetic field <math>\propto d\phi(x)/dx</math> localized around the discontinuity (0- |
An LJJ reacts to the phase discontinuity by bending the Josephson phase <math>\phi(x)</math> in the [[Josephson penetration depth|<math>\lambda_J</math>]] vicinity of the discontinuity point, so that far away there are no traces of this perturbation. The bending of the [[Josephson phase]] inevitably results in appearance of a local magnetic field <math>\propto d\phi(x)/dx</math> localized around the discontinuity (<math>0-\pi</math> boundary). It also results in the appearance of a [[supercurrent]] <math>\propto\sin\phi(x)</math> circulating around the discontinuity. The total magnetic flux Φ, carried by the localized magnetic field is proportional to the value of the discontinuity <math>\kappa</math>, namely {{math|Φ {{=}} (κ/2π)Φ}}, |
||
where {{math|Φ<sub>0</sub>}} is a [[magnetic flux quantum]]. For a π-discontinuity, {{math|Φ{{=}}Φ<sub>0</sub>/2}}, the vortex of the [[supercurrent]] is called a [[semifluxon]]. When {{math|κ≠π}}, one speaks about '''arbitrary fractional Josephson vortices'''. This type of vortex is pinned at the phase discontinuity point, but may have two polarities, positive and negative, distinguished by the direction of the fractional flux and direction of the [[supercurrent]] (clockwise or counterclockwise) circulating around its center (discontinuity point).<ref name="GoldobinFractVort" /> |
where {{math|Φ<sub>0</sub>}} is a [[magnetic flux quantum]]. For a π-discontinuity, {{math|Φ{{=}}Φ<sub>0</sub>/2}}, the vortex of the [[supercurrent]] is called a [[semifluxon]]. When {{math|κ≠π}}, one speaks about '''arbitrary fractional Josephson vortices'''. This type of vortex is pinned at the phase discontinuity point, but may have two polarities, positive and negative, distinguished by the direction of the fractional flux and direction of the [[supercurrent]] (clockwise or counterclockwise) circulating around its center (discontinuity point).<ref name="GoldobinFractVort" /> |
||
Line 35: | Line 39: | ||
For {{math|''g''<-1}} ({{EquationNote|EqDSG}}) has two stable equilibrium values (in each 2π interval): {{math|ψ{{=}}±φ}}, where {{math|φ{{=}}cos(-1/''g'')}}. They corresponding to two energy minima. Correspondingly, there are two fractional vortices (topological solitons): one with the phase {{math|ψ(''x'')}} going from {{math|-φ}} to {{math|+φ}}, while the other has the phase {{math|ψ(''x'')}} changing from {{math|+φ}} to {{math|-φ+2π}}. The first vortex has a topological change of 2φ and carries the magnetic flux {{math|Φ<sub>1</sub>{{=}}(φ/π)Φ<sub>0</sub>}}. The second vortex has a topological change of {{math|2π-2φ}} and carries the flux {{math|Φ<sub>2</sub>{{=}}Φ<sub>0</sub>-Φ<sub>1</sub>}}. |
For {{math|''g''<-1}} ({{EquationNote|EqDSG}}) has two stable equilibrium values (in each 2π interval): {{math|ψ{{=}}±φ}}, where {{math|φ{{=}}cos(-1/''g'')}}. They corresponding to two energy minima. Correspondingly, there are two fractional vortices (topological solitons): one with the phase {{math|ψ(''x'')}} going from {{math|-φ}} to {{math|+φ}}, while the other has the phase {{math|ψ(''x'')}} changing from {{math|+φ}} to {{math|-φ+2π}}. The first vortex has a topological change of 2φ and carries the magnetic flux {{math|Φ<sub>1</sub>{{=}}(φ/π)Φ<sub>0</sub>}}. The second vortex has a topological change of {{math|2π-2φ}} and carries the flux {{math|Φ<sub>2</sub>{{=}}Φ<sub>0</sub>-Φ<sub>1</sub>}}. |
||
Splintered vortices were first observed at the asymmetric 45° grain boundaries between two d-wave superconductors<ref name=Mints:2002:SplintVort@GB /> YBa<sub>2</sub>Cu<sub>3</sub>O<sub> |
Splintered vortices were first observed at the asymmetric 45° grain boundaries between two d-wave superconductors<ref name=Mints:2002:SplintVort@GB /> YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>. |
||
===Spin-triplet Superfluidity=== |
===Spin-triplet Superfluidity=== |
||
In certain states of spin-1 superfluids or Bose condensates, the condensate wavefunction is invariant if the superfluid phase changes by <math> \pi</math>, along with a <math> \pi</math> rotation of spin angle. This is in contrast to the <math> |
In certain states of spin-1 superfluids or Bose condensates, the condensate wavefunction is invariant if the superfluid phase changes by <math> \pi</math>, along with a <math> \pi</math> rotation of spin angle. This is in contrast to the <math>2\pi</math> invariance of condensate wavefunction in a spin-0 superfluid. A vortex resulting from such phase windings is called fractional or half-quantum vortex, in contrast to one-quantum vortex where a phase changes by <math>2\pi</math>.<ref>{{cite book |author1=Dieter Vollhardt |author2=Peter Woelfle |title=The Superfluid Phases Of Helium 3 |year=1990 |publisher=Taylor & Francis |oclc=21118676}}</ref> |
||
== (ii) Vortices with integer phase winding and fractional flux in multicomponent superconductivity== |
== (ii) Vortices with integer phase winding and fractional flux in multicomponent superconductivity== |
||
Different kinds of "Fractional vortices" appear in a different context in multi-component superconductivity where several independent charged condensates or superconducting components interact with each other electromagnetically. |
Different kinds of "Fractional vortices" appear in a different context in multi-component superconductivity where several independent charged condensates or superconducting components interact with each other electromagnetically. |
||
Such a situation occurs for example in the <math> U(1)\times U(1)</math> theories of the projected quantum states of [[liquid metallic hydrogen]], where two order parameters originate from theoretically anticipated coexistence of electronic and protonic Cooper pairs. There topological defects with an <math> 2\pi</math> (i.e. "integer") phase winding only in or only in a protonic condensate carries fractionally quantized magnetic flux: a consequence of electromagnetic interaction with the second condensate. Also these fractional vortices carry a superfluid momentum which does not obey Onsager-Feynman quantization <ref> |
Such a situation occurs for example in the <math> U(1)\times U(1)</math> theories of the projected quantum states of [[liquid metallic hydrogen]], where two order parameters originate from theoretically anticipated coexistence of electronic and protonic Cooper pairs. There topological defects with an <math> 2\pi</math> (i.e. "integer") phase winding only in or only in a protonic condensate carries fractionally quantized magnetic flux: a consequence of electromagnetic interaction with the second condensate. Also these fractional vortices carry a superfluid momentum which does not obey Onsager-Feynman quantization <ref>Egor Babaev, "Vortices with fractional flux in two-gap superconductors and in extended Faddeev model" Phys. Rev. Lett. 89 (2002) 067001. {{Arxiv|cond-mat/0111192}}</ref> |
||
<ref>[http://www.nature.com/nphys/journal/v3/n8/full/nphys646.html]. Egor Babaev, N. W. Ashcroft "Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors" Nature Physics 3, 530 - 533 (2007).</ref> |
<ref>[http://www.nature.com/nphys/journal/v3/n8/full/nphys646.html]. Egor Babaev, N. W. Ashcroft "Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors" Nature Physics 3, 530 - 533 (2007).</ref> |
||
Despite the integer phase winding, the basic properties of these kinds of fractional vortices are very different from the [[Abrikosov vortex]] solutions. For example, in contrast to the [[Abrikosov vortex]], their magnetic field generically is not exponentially localized in space. Also in some cases the magnetic flux inverts its direction at a certain distance from the vortex center |
Despite the integer phase winding, the basic properties of these kinds of fractional vortices are very different from the [[Abrikosov vortex]] solutions. For example, in contrast to the [[Abrikosov vortex]], their magnetic field generically is not exponentially localized in space. Also in some cases the magnetic flux inverts its direction at a certain distance from the vortex center |
||
Line 57: | Line 61: | ||
|arxiv=0903.3339 |
|arxiv=0903.3339 |
||
|bibcode=2009PhRvL.103w7002B |
|bibcode=2009PhRvL.103w7002B |
||
|doi=10.1103/physrevlett.103.237002 |
|doi=10.1103/physrevlett.103.237002 |
||
|pmid=20366165|s2cid=4493256 |
|||
}}</ref> |
|||
==See also== |
==See also== |
||
Line 67: | Line 73: | ||
==References== |
==References== |
||
{{ |
{{Reflist|refs= |
||
<ref name=Mints:2002:SplintVort@GB> |
<ref name=Mints:2002:SplintVort@GB> |
||
{{cite journal |
{{cite journal |
||
Line 77: | Line 83: | ||
|author6=J. Mannhart |
|author6=J. Mannhart |
||
|year=2002 |
|year=2002 |
||
|title=Observation of Splintered Josephson Vortices at Grain Boundaries in YBa<sub>2</sub>Cu<sub>3</sub>O<sub> |
|title=Observation of Splintered Josephson Vortices at Grain Boundaries in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> |
||
|journal=[[Physical Review Letters]] |
|journal=[[Physical Review Letters]] |
||
|volume=89 |issue=6 |page=067004 |
|volume=89 |issue=6 |page=067004 |
||
|bibcode=2002PhRvL..89f7004M |
|bibcode=2002PhRvL..89f7004M |
||
|doi=10.1103/PhysRevLett.89.067004 |
|doi=10.1103/PhysRevLett.89.067004|pmid=12190605 |
||
|url=https://research.utwente.nl/en/publications/observation-of-splintered-josephson-vortices-at-grain-boundaries-in-yba2cu3o7d(e5ccccbf-fd2a-4dbd-8344-ea38648c3b67).html |
|||
}} |
|||
</ref> |
</ref> |
||
Line 101: | Line 109: | ||
|title=d-Wave pairing symmetry in cuprate superconductors—fundamental implications and potential applications |
|title=d-Wave pairing symmetry in cuprate superconductors—fundamental implications and potential applications |
||
|journal=[[Physica C: Superconductivity]] |
|journal=[[Physica C: Superconductivity]] |
||
|volume=367|issue= |
|volume=367|issue=1–4|pages=1–8 |
||
|bibcode=2002PhyC..367....1T |
|bibcode=2002PhyC..367....1T |
||
|doi=10.1016/S0921-4534(01)00976-5}} |
|doi=10.1016/S0921-4534(01)00976-5}} |
||
Line 115: | Line 123: | ||
{{cite book |
{{cite book |
||
|author1=V. I. Arnold |
|author1=V. I. Arnold |
||
|author2=V. V Kozlov |
|author2=V. V. Kozlov |
||
|author3=A. I. Neishtandt |
|author3=A. I. Neishtandt |
||
|title=''Mathematical aspects of classical and celestial mechanics'', Springer |
|title=''Mathematical aspects of classical and celestial mechanics'', Springer |
||
Line 130: | Line 138: | ||
|arxiv=0708.1222 |
|arxiv=0708.1222 |
||
|bibcode=2007PhRvB..76e4518M |
|bibcode=2007PhRvB..76e4518M |
||
|doi=10.1103/PhysRevB.76.054518 |
|doi=10.1103/PhysRevB.76.054518|s2cid=1576744 |
||
}} |
|||
</ref> |
</ref> |
||
<ref name="DellaRocca0piSFS"> |
<ref name="DellaRocca0piSFS"> |
||
Line 140: | Line 149: | ||
|author5=P. Spathis |
|author5=P. Spathis |
||
|year=2005 |
|year=2005 |
||
|title= |
|title=Ferromagnetic 0-<math>\pi</math> Junctions as Classical Spins |
||
|journal=[[Physical Review Letters]] |
|journal=[[Physical Review Letters]] |
||
|volume=94 |issue=19 |pages=197003 |
|volume=94 |issue=19 |pages=197003 |
||
Line 146: | Line 155: | ||
|bibcode=2005PhRvL..94s7003D |
|bibcode=2005PhRvL..94s7003D |
||
|doi=10.1103/PhysRevLett.94.197003 |
|doi=10.1103/PhysRevLett.94.197003 |
||
|pmid=16090200 |
|pmid=16090200|s2cid=39682770 |
||
}} |
|||
</ref>and underdamped SIFS-type.<ref name="Weides0piSFIS"> |
</ref> and underdamped SIFS-type.<ref name="Weides0piSFIS"> |
||
{{cite journal |
{{cite journal |
||
|author1=M. Weides |
|author1=M. Weides |
||
Line 157: | Line 167: | ||
|author7=E. Goldobin |
|author7=E. Goldobin |
||
|year=2006 |
|year=2006 |
||
|title= |
|title=0-<math>\pi</math> Josephson Tunnel Junctions with Ferromagnetic Barrier |
||
|journal=[[Physical Review Letters]] |
|journal=[[Physical Review Letters]] |
||
|volume=97 |issue=24 |pages=247001 |
|volume=97 |issue=24 |pages=247001 |
||
Line 163: | Line 173: | ||
|bibcode=2006PhRvL..97x7001W |
|bibcode=2006PhRvL..97x7001W |
||
|doi=10.1103/PhysRevLett.97.247001 |
|doi=10.1103/PhysRevLett.97.247001 |
||
|pmid=17280309 |
|pmid=17280309|s2cid=2206595 |
||
}}</ref> |
|||
<ref name="UstinovInsFluxon"> |
<ref name="UstinovInsFluxon"> |
||
{{cite journal |
{{cite journal |
||
|author=A. Ustinov |
|author=A. Ustinov |
||
|year=2002 |
|year=2002 |
||
|title= |
|title=Fluxon insertion into annular Josephson junctions |
||
|journal=[[Applied Physics Letters]] |
|journal=[[Applied Physics Letters]] |
||
|volume=80 |issue=17 |pages=3153–3155 |
|volume=80 |issue=17 |pages=3153–3155 |
||
Line 178: | Line 189: | ||
|author2=A. V. Ustinov |
|author2=A. V. Ustinov |
||
|year=2004 |
|year=2004 |
||
|title= |
|title=Creation of classical and quantum fluxons by a current dipole in a long Josephson junction |
||
|journal=[[Physical Review B]] |
|journal=[[Physical Review B]] |
||
|volume=69 |issue=6 |pages=064502 |
|volume=69 |issue=6 |pages=064502 |
||
|arxiv=cond-mat/0310595 |
|arxiv=cond-mat/0310595 |
||
|bibcode=2004PhRvB..69f4502M |
|bibcode=2004PhRvB..69f4502M |
||
|doi=10.1103/PhysRevB.69.064502}}</ref> |
|doi=10.1103/PhysRevB.69.064502|s2cid=119367540 |
||
}}</ref> |
|||
.<ref name="GoldobinArt0pi"> |
.<ref name="GoldobinArt0pi"> |
||
{{cite journal |
{{cite journal |
||
Line 192: | Line 204: | ||
|author5=R. Kleiner |
|author5=R. Kleiner |
||
|year=2004 |
|year=2004 |
||
|title= |
|title=Dynamics of semifluxons in Nb long Josephson 0-<math>\pi</math> junctions |
||
|journal=[[Physical Review Letters]] |
|journal=[[Physical Review Letters]] |
||
|volume=92 |issue=5 |pages=057005 |
|volume=92 |issue=5 |pages=057005 |
||
Line 198: | Line 210: | ||
|bibcode=2004PhRvL..92e7005G |
|bibcode=2004PhRvL..92e7005G |
||
|doi=10.1103/PhysRevLett.92.057005 |
|doi=10.1103/PhysRevLett.92.057005 |
||
|pmid=14995336 |
|pmid=14995336|s2cid=29995698 |
||
}}</ref> |
|||
<ref name="GoldobinFractVort"> |
<ref name="GoldobinFractVort"> |
||
{{cite journal |
{{cite journal |
||
Line 205: | Line 218: | ||
|author3=R. Kleiner |
|author3=R. Kleiner |
||
|year=2004 |
|year=2004 |
||
|title= |
|title=Ground states of one and two fractional vortices in long Josephson 0-<math>\kappa</math> junctions |
||
|journal=[[Physical Review B]] |
|journal=[[Physical Review B]] |
||
|volume=70 |issue=17 |pages=174519 |
|volume=70 |issue=17 |pages=174519 |
||
|arxiv=cond-mat/0405078 |
|arxiv=cond-mat/0405078 |
||
|bibcode=2004PhRvB..70q4519G |
|bibcode=2004PhRvB..70q4519G |
||
|doi=10.1103/PhysRevB.70.174519}}</ref> |
|doi=10.1103/PhysRevB.70.174519|s2cid=119090326 |
||
}}</ref> |
|||
<ref name="EigenFreqT"> |
<ref name="EigenFreqT"> |
||
{{cite journal |
{{cite journal |
||
Line 219: | Line 233: | ||
|author5=S. A. van Gils |
|author5=S. A. van Gils |
||
|year=2005 |
|year=2005 |
||
|title= |
|title=Oscillatory eigenmodes and stability of one and two arbitrary fractional vortices in long Josephson 0-<math>\kappa</math> junctions |
||
|journal=[[Physical Review B]] |
|journal=[[Physical Review B]] |
||
|volume=71 |issue=10 |pages=104518 |
|volume=71 |issue=10 |pages=104518 |
||
|arxiv=cond-mat/0410340 |
|arxiv=cond-mat/0410340 |
||
|bibcode=2005PhRvB..71j4518G |
|bibcode=2005PhRvB..71j4518G |
||
|doi=10.1103/PhysRevB.71.104518 |
|doi=10.1103/PhysRevB.71.104518|s2cid=28687419 |
||
|url=http://doc.utwente.nl/53369/1/oscillatory.pdf |
|||
}}</ref> |
|||
<ref name="EigenFreqE"> |
<ref name="EigenFreqE"> |
||
{{cite journal |
{{cite journal |
||
Line 234: | Line 250: | ||
|author6=E. Goldobin |
|author6=E. Goldobin |
||
|year=2007 |
|year=2007 |
||
|title= |
|title=Spectroscopy of the Fractional Vortex Eigenfrequency in a Long Josephson 0-<math>\kappa</math> Junction |
||
|journal=[[Physical Review Letters]] |
|journal=[[Physical Review Letters]] |
||
|volume=98 |issue=11 |pages=117006 |
|volume=98 |issue=11 |pages=117006 |
||
Line 240: | Line 256: | ||
|bibcode=2007PhRvL..98k7006B |
|bibcode=2007PhRvL..98k7006B |
||
|doi=10.1103/PhysRevLett.98.117006 |
|doi=10.1103/PhysRevLett.98.117006 |
||
|pmid=17501081 |
|pmid=17501081|s2cid=39281669 |
||
}}</ref> |
|||
<ref name=Hilgenkamp:zigzag:SF> |
<ref name=Hilgenkamp:zigzag:SF> |
||
Line 253: | Line 270: | ||
|author8=C. C. Tsuei |
|author8=C. C. Tsuei |
||
|title=Ordering and manipulation of the magnetic moments in large-scale superconducting <math>\pi</math>-loop arrays |
|title=Ordering and manipulation of the magnetic moments in large-scale superconducting <math>\pi</math>-loop arrays |
||
|journal=[[Nature]] |
|journal=[[Nature (journal)|Nature]] |
||
|volume=422|issue=6927|pages=50–53 |
|volume=422 |issue=6927 |pages=50–53 |
||
|bibcode = 2003Natur.422...50H |
|bibcode = 2003Natur.422...50H |
||
|doi=10.1038/nature01442 |
|doi=10.1038/nature01442 |
||
|pmid=12621428 |
|pmid=12621428|year=2003 |
||
|s2cid=4398135 |
|||
|url=https://ris.utwente.nl/ws/files/6951051/Hilgenkamp03ordering.pdf |
|||
}}</ref> |
|||
}} |
}} |
||
{{DEFAULTSORT:Fractional Vortices}} |
{{DEFAULTSORT:Fractional Vortices}} |
||
[[Category:Josephson effect]] |
[[Category:Josephson effect]] |
||
[[Category:Superfluidity]] |
Latest revision as of 03:55, 17 August 2023
In a standard superconductor, described by a complex field fermionic condensate wave function (denoted ), vortices carry quantized magnetic fields because the condensate wave function is invariant to increments of the phase by . There a winding of the phase by creates a vortex which carries one flux quantum. See quantum vortex.
The term Fractional vortex is used for two kinds of very different quantum vortices which occur when:
(i) A physical system allows phase windings different from , i.e. non-integer or fractional phase winding. Quantum mechanics prohibits it in a uniform ordinary superconductor, but it becomes possible in an inhomogeneous system, for example, if a vortex is placed on a boundary between two superconductors which are connected only by an extremely weak link (also called a Josephson junction); such a situation also occurs on grain boundaries etc. At such superconducting boundaries the phase can have a discontinuous jump. Correspondingly, a vortex placed onto such a boundary acquires a fractional phase winding hence the term fractional vortex. A similar situation occurs in Spin-1 Bose condensate, where a vortex with phase winding can exist if it is combined with a domain of overturned spins.
(ii) A different situation occurs in uniform multicomponent superconductors, which allow stable vortex solutions with integer phase winding , where , which however carry arbitrarily fractionally quantized magnetic flux.[1]
Observation of fractional-flux vortices was reported in a multiband Iron-based superconductor. [2]
(i) Vortices with non-integer phase winding
[edit]Fractional vortices at phase discontinuities
[edit]Josephson phase discontinuities may appear in specially designed long Josephson junctions (LJJ). For example, so-called 0-π LJJ have a discontinuity of the Josephson phase at the point where 0 and parts join. Physically, such LJJ can be fabricated using tailored ferromagnetic barrier[3][4] or using d-wave superconductors.[5][6] The Josephson phase discontinuities can also be introduced using artificial tricks, e.g., a pair of tiny current injectors attached to one of the superconducting electrodes of the LJJ.[7][8][9] The value of the phase discontinuity is denoted by κ and, without losing generality, it is assumed that 0<κ<2π, because the phase is 2π periodic.
An LJJ reacts to the phase discontinuity by bending the Josephson phase in the vicinity of the discontinuity point, so that far away there are no traces of this perturbation. The bending of the Josephson phase inevitably results in appearance of a local magnetic field localized around the discontinuity ( boundary). It also results in the appearance of a supercurrent circulating around the discontinuity. The total magnetic flux Φ, carried by the localized magnetic field is proportional to the value of the discontinuity , namely Φ = (κ/2π)Φ, where Φ0 is a magnetic flux quantum. For a π-discontinuity, Φ=Φ0/2, the vortex of the supercurrent is called a semifluxon. When κ≠π, one speaks about arbitrary fractional Josephson vortices. This type of vortex is pinned at the phase discontinuity point, but may have two polarities, positive and negative, distinguished by the direction of the fractional flux and direction of the supercurrent (clockwise or counterclockwise) circulating around its center (discontinuity point).[10]
The semifluxon is a particular case of such a fractional vortex pinned at the phase discontinuity point.
Although, such fractional Josephson vortices are pinned, if perturbed they may perform a small oscillations around the phase discontinuity point with an eigenfrequency,[11][12] that depends on the value of κ.
Splintered vortices (double sine-Gordon solitons)
[edit]In the context of d-wave superconductivity, a fractional vortex (also known as splintered vortex[13][14]) is a vortex of supercurrent carrying unquantized magnetic flux Φ1<Φ0, which depends on parameters of the system. Physically, such vortices may appear at the grain boundary between two d-wave superconductors, which often looks like a regular or irregular sequence of 0 and π facets. One can also construct an artificial array of short 0 and π facets to achieve the same effect. These splintered vortices are solitons. They are able to move and preserve their shape similar to conventional integer Josephson vortices (fluxons). This is opposite to the fractional vortices pinned at phase discontinuity, e.g. semifluxons, which are pinned at the discontinuity and cannot move far from it.
Theoretically, one can describe a grain boundary between d-wave superconductors (or an array of tiny 0 and π facets) by an effective equation for a large-scale phase ψ. Large scale means that the scale is much larger than the facet size. This equation is double sin-Gordon equation, which in normalized units reads
EqDSG |
where g<0 is a dimensionless constant resulting from averaging over tiny facets. The detailed mathematical procedure of averaging is similar to the one done for a parametrically driven pendulum,[15][16] and can be extended to time-dependent phenomena.[17] In essence, (EqDSG) described extended φ Josephson junction.
For g<-1 (EqDSG) has two stable equilibrium values (in each 2π interval): ψ=±φ, where φ=cos(-1/g). They corresponding to two energy minima. Correspondingly, there are two fractional vortices (topological solitons): one with the phase ψ(x) going from -φ to +φ, while the other has the phase ψ(x) changing from +φ to -φ+2π. The first vortex has a topological change of 2φ and carries the magnetic flux Φ1=(φ/π)Φ0. The second vortex has a topological change of 2π-2φ and carries the flux Φ2=Φ0-Φ1.
Splintered vortices were first observed at the asymmetric 45° grain boundaries between two d-wave superconductors[14] YBa2Cu3O7−δ.
Spin-triplet Superfluidity
[edit]In certain states of spin-1 superfluids or Bose condensates, the condensate wavefunction is invariant if the superfluid phase changes by , along with a rotation of spin angle. This is in contrast to the invariance of condensate wavefunction in a spin-0 superfluid. A vortex resulting from such phase windings is called fractional or half-quantum vortex, in contrast to one-quantum vortex where a phase changes by .[18]
(ii) Vortices with integer phase winding and fractional flux in multicomponent superconductivity
[edit]Different kinds of "Fractional vortices" appear in a different context in multi-component superconductivity where several independent charged condensates or superconducting components interact with each other electromagnetically. Such a situation occurs for example in the theories of the projected quantum states of liquid metallic hydrogen, where two order parameters originate from theoretically anticipated coexistence of electronic and protonic Cooper pairs. There topological defects with an (i.e. "integer") phase winding only in or only in a protonic condensate carries fractionally quantized magnetic flux: a consequence of electromagnetic interaction with the second condensate. Also these fractional vortices carry a superfluid momentum which does not obey Onsager-Feynman quantization [19] [20] Despite the integer phase winding, the basic properties of these kinds of fractional vortices are very different from the Abrikosov vortex solutions. For example, in contrast to the Abrikosov vortex, their magnetic field generically is not exponentially localized in space. Also in some cases the magnetic flux inverts its direction at a certain distance from the vortex center [21]
See also
[edit]References
[edit]- ^ Egor Babaev, Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model Phys. Rev. Lett. 89 (2002) 067001.
- ^ Yusuke Iguchi, Ruby A. Shi1, Kunihiro Kihou, Chul-Ho Lee, Mats Barkman, Andrea L. Benfenati, Vadim Grinenko, Egor Babaev, Kathryn A. Moler Superconducting vortices carrying a temperature-dependent fraction of the flux quantum [Science ]
- ^ M. Weides; M. Kemmler; H. Kohlstedt; R. Waser; D. Koelle; R. Kleiner; E. Goldobin (2006). "0- Josephson Tunnel Junctions with Ferromagnetic Barrier". Physical Review Letters. 97 (24): 247001. arXiv:cond-mat/0605656. Bibcode:2006PhRvL..97x7001W. doi:10.1103/PhysRevLett.97.247001. PMID 17280309. S2CID 2206595.
- ^ M. L. Della Rocca; M. Aprili; T. Kontos; A. Gomez; P. Spathis (2005). "Ferromagnetic 0- Junctions as Classical Spins". Physical Review Letters. 94 (19): 197003. arXiv:cond-mat/0501459. Bibcode:2005PhRvL..94s7003D. doi:10.1103/PhysRevLett.94.197003. PMID 16090200. S2CID 39682770.
- ^ C. C. Tsuei; J. R. Kirtley (2002). "d-Wave pairing symmetry in cuprate superconductors—fundamental implications and potential applications". Physica C: Superconductivity. 367 (1–4): 1–8. Bibcode:2002PhyC..367....1T. doi:10.1016/S0921-4534(01)00976-5.
- ^ H. Hilgenkamp; Ariando; H.-J. H. Smilde; D. H. A. Blank; G. Rijnders; H. Rogalla; J. R. Kirtley; C. C. Tsuei (2003). "Ordering and manipulation of the magnetic moments in large-scale superconducting -loop arrays" (PDF). Nature. 422 (6927): 50–53. Bibcode:2003Natur.422...50H. doi:10.1038/nature01442. PMID 12621428. S2CID 4398135.
- ^ A. Ustinov (2002). "Fluxon insertion into annular Josephson junctions". Applied Physics Letters. 80 (17): 3153–3155. Bibcode:2002ApPhL..80.3153U. doi:10.1063/1.1474617.
- ^ B. A. Malomed; A. V. Ustinov (2004). "Creation of classical and quantum fluxons by a current dipole in a long Josephson junction". Physical Review B. 69 (6): 064502. arXiv:cond-mat/0310595. Bibcode:2004PhRvB..69f4502M. doi:10.1103/PhysRevB.69.064502. S2CID 119367540.
- ^ E. Goldobin; A. Sterck; T. Gaber; D. Koelle; R. Kleiner (2004). "Dynamics of semifluxons in Nb long Josephson 0- junctions". Physical Review Letters. 92 (5): 057005. arXiv:cond-mat/0311610. Bibcode:2004PhRvL..92e7005G. doi:10.1103/PhysRevLett.92.057005. PMID 14995336. S2CID 29995698.
- ^ E. Goldobin; D. Koelle; R. Kleiner (2004). "Ground states of one and two fractional vortices in long Josephson 0- junctions". Physical Review B. 70 (17): 174519. arXiv:cond-mat/0405078. Bibcode:2004PhRvB..70q4519G. doi:10.1103/PhysRevB.70.174519. S2CID 119090326.
- ^ E. Goldobin; H. Susanto; D. Koelle; R. Kleiner; S. A. van Gils (2005). "Oscillatory eigenmodes and stability of one and two arbitrary fractional vortices in long Josephson 0- junctions" (PDF). Physical Review B. 71 (10): 104518. arXiv:cond-mat/0410340. Bibcode:2005PhRvB..71j4518G. doi:10.1103/PhysRevB.71.104518. S2CID 28687419.
- ^ K. Buckenmaier; T. Gaber; M. Siegel; D. Koelle; R. Kleiner; E. Goldobin (2007). "Spectroscopy of the Fractional Vortex Eigenfrequency in a Long Josephson 0- Junction". Physical Review Letters. 98 (11): 117006. arXiv:cond-mat/0610043. Bibcode:2007PhRvL..98k7006B. doi:10.1103/PhysRevLett.98.117006. PMID 17501081. S2CID 39281669.
- ^ R. G. Mints (1998). "Self-generated flux in Josephson junctions with alternating critical current density". Physical Review B. 57 (6): R3221 – R3224. Bibcode:1998PhRvB..57.3221M. doi:10.1103/PhysRevB.57.R3221.
- ^ a b R. G. Mints; I. Papiashvili; J. R. Kirtley; H. Hilgenkamp; G. Hammerl; J. Mannhart (2002). "Observation of Splintered Josephson Vortices at Grain Boundaries in YBa2Cu3O7−δ". Physical Review Letters. 89 (6): 067004. Bibcode:2002PhRvL..89f7004M. doi:10.1103/PhysRevLett.89.067004. PMID 12190605.
- ^ L. D. Landau; E. M. Lifshitz (1994). Mechanics, Pergamon press, Oxford.
- ^ V. I. Arnold; V. V. Kozlov; A. I. Neishtandt (1997). Mathematical aspects of classical and celestial mechanics, Springer.
- ^ M. Moshe; R. G. Mints (2007). "Shapiro steps in Josephson junctions with alternating critical current density". Physical Review B. 76 (5): 054518. arXiv:0708.1222. Bibcode:2007PhRvB..76e4518M. doi:10.1103/PhysRevB.76.054518. S2CID 1576744.
- ^ Dieter Vollhardt; Peter Woelfle (1990). The Superfluid Phases Of Helium 3. Taylor & Francis. OCLC 21118676.
- ^ Egor Babaev, "Vortices with fractional flux in two-gap superconductors and in extended Faddeev model" Phys. Rev. Lett. 89 (2002) 067001. arXiv:cond-mat/0111192
- ^ [1]. Egor Babaev, N. W. Ashcroft "Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors" Nature Physics 3, 530 - 533 (2007).
- ^ E. Babaev; J. Jaykka; M. Speight (2009). "Magnetic field delocalization and flux inversion in fractional vortices in two-component superconductors". Phys. Rev. Lett. 103 (23): 237002. arXiv:0903.3339. Bibcode:2009PhRvL.103w7002B. doi:10.1103/physrevlett.103.237002. PMID 20366165. S2CID 4493256.