Jump to content

Typing: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Hunt and peck: Brady is a word meaning 'slow', added a link to dictionary.com
Alphanumeric entry: remove the word "verified" from section preceding records, as it has no meaning here. (verified how?)
 
(499 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Text input method}}
{{About|entering text|classification of data into types in programming|Type system}}
{{About|entering text|classification of data into types in programming|Type system|China-related meanings|Taiping (disambiguation){{!}}Taiping}}
{{original research|date=March 2017}}
{{original research|date=March 2017}}
[[File:Computer keyboard.png|thumb|Person typing on a [[laptop]] keyboard]]
{{Refimprove|date = April 2016}}

[[File:Computer keyboard.png|thumb|Person typing on a [[Laptop|notebook computer]] keyboard]]
[[File:Typing example.ogv|thumb|Video of typing on a notebook computer keyboard]]
[[File:Typing example.ogv|thumb|Video of typing on a notebook computer keyboard]]
'''Typing''' is the process of writing or inputting text by pressing keys on a [[typewriter]], [[computer keyboard]], [[cell phone]], or [[calculator]]. It can be distinguished from other means of text input, such as [[handwriting recognition|handwriting]] and [[speech recognition]]. Text can be in the form of letters, numbers and other symbols. The world's first typist was Lillian Sholes from [[Wisconsin]] who wrote on the typewriter.<ref name=wisconsinhistory.org>{{cite web |title=World's First Typist |work=Wisconsin Historical Society |url=http://www.wisconsinhistory.org/whi/fullRecord.asp?id=3196&qstring=http%3A%2F%2Fwww.wisconsinhistory.org%2Fwhi%2Fresults.asp%3Fsubject_narrow%3DInventors |date= |accessdate=2010-09-11}}</ref><ref name=e-referencedesk.com>{{cite web |title=Wisconsin History Facts |work=e-ReferenceDesk |url=http://www.e-referencedesk.com/resources/state-facts/wisconsin.html |date= |accessdate=2010-09-11}}</ref> She was the daughter of [[Christopher Sholes]], the man who invented the first practical typewriter.<ref name=wisconsinhistory.org/>
'''Typing''' is the process of writing or inputting text by pressing keys on a [[typewriter]], [[computer keyboard]], [[mobile phone]], or [[calculator]]. It can be distinguished from other means of text input, such as [[handwriting recognition|handwriting]] and [[speech recognition]]. Text can be in the form of letters, numbers and other symbols. The world's first typist was Lillian Sholes from [[Wisconsin]] in the [[United States]],<ref name=wisconsinhistory.org>{{cite web |title=World's First Typist |work=Wisconsin Historical Society |date=December 2003 |url=http://www.wisconsinhistory.org/whi/fullRecord.asp?id=3196&qstring=http%3A%2F%2Fwww.wisconsinhistory.org%2Fwhi%2Fresults.asp%3Fsubject_narrow%3DInventors |access-date=2010-09-11 |archive-date=2012-11-07 |archive-url=https://web.archive.org/web/20121107022719/http://www.wisconsinhistory.org/whi/fullRecord.asp?id=3196&qstring=http:%2F%2Fwww.wisconsinhistory.org%2Fwhi%2Fresults.asp%3Fsubject_narrow=Inventors |url-status=live }}</ref><ref name=e-referencedesk.com>{{cite web |title=Wisconsin History Facts |work=e-ReferenceDesk |url=http://www.e-referencedesk.com/resources/state-facts/wisconsin.html |access-date=2010-09-11 |archive-date=2010-11-19 |archive-url=https://web.archive.org/web/20101119044802/http://www.e-referencedesk.com/resources/state-facts/wisconsin.html |url-status=live }}</ref> the daughter of [[Christopher Sholes]], who invented the first practical typewriter.<ref name=wisconsinhistory.org/>


[[User interface]] features such as [[spell checker]] and [[autocomplete]] serve to facilitate and speed up typing and to prevent or correct errors the typist may make.
[[User interface]] features such as [[spell checker]] and [[autocomplete]] serve to facilitate and speed up typing and to prevent or correct errors the typist may make.


== Technique ==
==Techniques==


=== Touch typing ===
===Hunt and peck===
'''Hunt and peck''' (''two-fingered typing'') is a common form of typing in which the typist presses each key individually. Instead of relying on the memorized position of keys, the typist must find each key by sight. Although good accuracy may be achieved, the use of this method may also prevent the typist from being able to see what has been typed without glancing away from the keys, and any [[typographical error|typing errors]] that are made may not be noticed immediately. Due to the fact that only a few fingers are used in this technique, this also means that the fingers are forced to move a much greater distance.
[[File:Touch typing.svg|thumb|right|Typing zones on a [[QWERTY]] keyboard for each finger taken from [[KTouch]]]]
[[File:Civilian Conservation Corps, Third Corps Area, typing class with W.P.A. instructor - NARA - 197144.jpg|thumb|right|300px|Civilian Conservation Corps typing class, 1933]]
{{Main article|Touch typing}}


===Touch typing===
The basic technique stands in contrast to [[hunt and peck typing]] in which the typist keeps his or her eyes on the source copy at all times. Touch typing also involves the use of the [[home row]] method, where typists keep their wrists up, rather than resting them on a desk or [[Computer keyboard|keyboard]] (which can cause [[carpal tunnel syndrome]]). To avoid this, typists should sit up tall, leaning slightly forward from the waist, place their feet flat on the floor in front of them with one foot slightly in front of the other, and keep their elbows close to their sides with forearms slanted slightly upward to the keyboard; fingers should be curved slightly and rest on the home row.
[[File:Touch typing.svg|thumb|Typing zones on a [[QWERTY]] keyboard for each finger taken from [[KTouch]] (home row keys are circled)|alt=Typing zones on a QWERTY keyboard for each finger taken from KTouch and home row keys]]
{{Main|Touch typing|3=}}


In this technique, the typist keeps their eyes on the source copy at all times. Touch typing also involves the use of the [[home row]] method, where typists rest their wrist down, rather than lifting up and typing (which can cause [[carpal tunnel syndrome]] {{Citation needed|date=December 2022}}). To avoid this, typists should sit up tall, leaning slightly forward from the waist, place their feet flat on the floor in front of them with one foot slightly in front of the other, and keep their elbows close to their sides with forearms slanted slightly upward to the keyboard; fingers should be curved slightly and rest on the home row.
Many touch typists also use [[keyboard shortcut]]s or hotkeys when typing on a computer. This allows them to edit their document without having to take their hands off the keyboard to use a mouse. An example of a keyboard shortcut is pressing the {{keypress|Ctrl}} key plus the {{key press|S}} key to save a document as they type, or the {{key press|Ctrl}} key plus the {{key press|Z}} key to undo a mistake. Many experienced typists can feel or sense when they have made an error and can hit the {{keypress|Backspace}} key and make the correction with no increase in time between keystrokes.


Many touch typists also use [[keyboard shortcut]]s when typing on a computer. This allows them to edit their document without having to take their hands off the keyboard to use a mouse. An example of a keyboard shortcut is pressing the {{keypress|Ctrl}} key plus the {{key press|S}} key to save a document as they type, or the {{key press|Ctrl}} key plus the {{key press|Z}} key to undo a mistake. Other shortcuts are the {{keypress|Ctrl}} key plus the {{keypress|C}} to copy and the {{keypress|Ctrl}} key and the {{keypress|V}} key to paste, and the {{keypress|Ctrl}} key and the {{keypress|X}} key to cut. Many experienced typists can feel or sense when they have made an error and can hit the {{keypress|Backspace}} key and make the correction with no increase in time between keystrokes.
=== Hunt and peck ===
'''Hunt and peck''' (''two-fingered typing''), also known as '''Brady<ref>http://www.dictionary.com/browse/brady</ref> typing'''<ref>https://www.youtube.com/watch?v=m520SIYSbSQ</ref> or '''Eagle Finger''', is a common form of typing, in which the typist presses each key individually. Instead of relying on the memorized position of keys, the typist must find each key by sight. Use of this method may also prevent the typist from being able to see what has been typed without glancing away from the keys. Although good accuracy may be achieved, any [[typographical error|typing errors]] that are made may not be noticed immediately, due to the user not looking at the screen. There is also the disadvantage that because fewer fingers are used, those that are used are forced to move a much greater distance.
[[File:Civilian Conservation Corps, Third Corps Area, typing class with W.P.A. instructor - NARA - 197144.jpg|thumb|right|300px|Civilian Conservation Corps typing class, 1933]]


=== Hybrid ===
===Hybrid===
There are many idiosyncratic typing styles in between novice-style "hunt and peck" and touch typing. For example, many "hunt and peck" typists have the keyboard layout memorized and are able to type while focusing their gaze on the screen. Some use just two fingers, while others use 3-6 fingers. Some use their fingers very consistently, with the same finger being used to type the same character every time, while others vary the way they use their fingers.
There are many idiosyncratic typing styles in between novice-style "hunt and peck" and touch typing. For example, many "hunt and peck" typists have the [[keyboard layout]] memorized and are able to type while focusing their gaze on the screen. Some use just two fingers, while others use 3–6 fingers. Some use their fingers very consistently, with the same finger being used to type the same character every time, while others vary the way they use their fingers.


One study examining 30 subjects, of varying different styles and expertise, has found minimal difference in typing speed between touch typists and self-taught hybrid typists.<ref>http://phys.org/news/2016-02-ten-fingers-fast.html</ref> According to the study, "The number of fingers does not determine typing speed... People using self-taught typing strategies were found to be as fast as trained typists... instead of the number of fingers, there are other factors that predict typing speed... fast typists... keep their hands fixed on one position, instead of moving them over the keyboard, and more consistently use the same finger to type a certain letter." To quote doctoral candidate Anna Feit: "We were surprised to observe that people who took a typing course, performed at similar average speed and accuracy, as those that taught typing to themselves and only used 6 fingers on average"
One study examining 30 subjects, of varying different styles and expertise, has found minimal difference in typing speed between touch typists and self-taught hybrid typists.<ref>{{cite web|url=http://phys.org/news/2016-02-ten-fingers-fast.html|title=Ten fingers not needed for fast typing, study shows|website=phys.org|access-date=2016-02-13|archive-date=2016-02-13|archive-url=https://web.archive.org/web/20160213144457/http://phys.org/news/2016-02-ten-fingers-fast.html|url-status=live}}</ref> According to the study, "The number of fingers does not determine typing speed... People using self-taught typing strategies were found to be as fast as trained typists... instead of the number of fingers, there are other factors that predict typing speed... fast typists... keep their hands fixed on one position, instead of moving them over the keyboard, and more consistently use the same finger to type a certain letter." To quote Prof. Dr. Anna Feit: "We were surprised to observe that people who took a typing course, performed at similar average speed and accuracy, as those that taught typing to themselves and only used 6 fingers on average."<ref>{{Cite book |last1=Feit |first1=Anna Maria |last2=Weir |first2=Daryl |last3=Oulasvirta |first3=Antti |chapter=How We Type: Movement Strategies and Performance in Everyday Typing |date=2016-05-07 |title=Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems |chapter-url=https://dl.acm.org/doi/10.1145/2858036.2858233 |series=CHI '16 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=4262–4273 |doi=10.1145/2858036.2858233 |isbn=978-1-4503-3362-7 |access-date=2023-12-13 |archive-date=2023-12-13 |archive-url=https://web.archive.org/web/20231213175117/https://dl.acm.org/doi/10.1145/2858036.2858233 |url-status=live }}</ref>


=== Buffering ===
===Thumbing===
A late 20th century trend in typing, primarily used with devices with small keyboards (such as PDAs and Smartphones), is ''thumbing'' or thumb typing. This can be accomplished using either only one thumb or both the thumbs, with more proficient typists reaching speeds of 100 words per minute.<ref>{{cite news |last1=Blakely |first1=Rhys |title=Thumbs up for speedy smartphone typists |url=https://www.thetimes.co.uk/article/thumbs-up-for-speedy-smartphone-typists-j78n3jq53 |access-date=7 February 2022 |work=The Times |date=2 October 2019 |archive-date=7 February 2022 |archive-url=https://web.archive.org/web/20220207131552/https://www.thetimes.co.uk/article/thumbs-up-for-speedy-smartphone-typists-j78n3jq53 |url-status=live }}</ref> Similar to desktop keyboards and input devices, if a user overuses keys which need hard presses and/or have small and unergonomic layouts, it could cause thumb tendonitis or other [[repetitive strain injury]].<ref>{{cite news |title="Smartphone thumb" is plaguing more people, doctors say |url=https://www.cbsnews.com/news/smartphone-thumb-texting-tendinitis-plaguing-more-people/ |access-date=7 February 2022 |work=CBS News |date=29 March 2017 |archive-date=7 February 2022 |archive-url=https://web.archive.org/web/20220207131543/https://www.cbsnews.com/news/smartphone-thumb-texting-tendinitis-plaguing-more-people/ |url-status=live }}</ref>
Some people combine '''touch typing''' and '''hunt and peck''' by using a '''buffering''' method. In the buffer method, the typist looks at the source copy, mentally stores one or several sentences, then looks at the keyboard and types out the '''buffer''' of sentences. This eliminates frequent up and down motions with the head and is used in typing competitions in which the typist is not well versed in touch typing.{{clarify|date=June 2015}}<!--It would be nice to provide a specific example of this type of competition.--> Not normally used in day-to-day contact with keyboards, this buffer method is used only when time is of the essence.{{Citation needed|date=November 2016}}
==Words per minute==
{{Further|Words per minute}}
[[Words per minute]] (WPM) is a measure of typing speed, commonly used in [[recruitment]]. For the purposes of WPM measurement a word is standardized to five characters or keystrokes. Therefore, "brown" counts as one word, but "mozzarella" counts as two.


The benefits of a standardized measurement of input speed are that it enables comparison across language and hardware boundaries. The speed of an [[Afrikaans]]-speaking operator in [[Cape Town]] can be compared with a [[French language|French]]-speaking operator in [[Paris]].
=== Thumbing ===
A late 20th century trend in typing, primarily used with devices with small keyboards (such as PDAs and Smartphones), is ''thumbing'' or thumb typing. This can be accomplished using one or both thumbs. Similar to desktop keyboards and input devices, if a user overuses keys which need hard presses and/or have small and unergonomic layouts, it could cause thumb tendonitis or other [[repetitive strain injury]].{{Citation needed|date=August 2010}}


Today, even [[Written Chinese]] can be typed very quickly using the combination of a software prediction system and by typing their sounds in [[Pinyin]].<ref>{{Cite web|author1=Eli MacKinnon|date=2016-08-01|title=What's the Fastest Language to Type In?|url=https://www.livescience.com/55607-whats-the-fastest-language-for-texting.html|access-date=2022-01-25|website=livescience.com|language=en|archive-date=2022-01-25|archive-url=https://web.archive.org/web/20220125222144/https://www.livescience.com/55607-whats-the-fastest-language-for-texting.html|url-status=live}}</ref> Such prediction software even allows typing short-hand forms while producing complete characters. For example, the phrase "nǐ chī le ma" (你吃了吗) meaning "Have you eaten yet?" can be typed with just 4 strokes: "nclm".
== Words per minute ==
{{Contradicts other|date=April 2010|1=Words per minute}}
{{further information|Words per minute}}
[[Words per minute]] (WPM) is a measure of typing speed, commonly used in [[recruitment]]. For the purposes of WPM measurement a word is standardized to five characters or keystrokes. Therefore, "brown" counts as one word, but "accounted" counts as two.


===Alphanumeric entry===
The benefits of a standardized measurement of input speed are that it enables comparison across language and hardware boundaries. The speed of an [[Afrikaans]]-speaking operator in [[Cape Town]] can be compared with a [[French language|French]]-speaking operator in [[Paris]].
In one study of average computer users, the average rate for transcription was 33 words per minute, and 19 words per minute for composition.<ref>{{citation |last1=Karat |first1=C.M. |last2=Halverson |first2=C. |last3=Horn |first3=D. |last4=Karat |first4=J. |year=1999 |title=Patterns of entry and correction in large vocabulary continuous speech recognition systems |work=CHI 99 Conference Proceedings |pages=568–575}}</ref> In the same study, when the group was divided into "fast", "moderate" and "slow" groups, the average speeds were 40 wpm, 35 wpm, and 23 wpm respectively. An average professional [[Copy typist|typist]] reaches 50 to 80 wpm, while some positions can require 80 to 95 wpm (usually the minimum required for dispatch positions and other typing jobs), and some advanced typists work at speeds above 120 wpm.<ref name="Ayres&Martinás2005">{{citation |year=2005 |author=Ayres, Robert U |author-link=Robert Ayres (scientist) |author2=Martinás, Katalin |chapter=120 wpm for very skilled typist |page=41 |chapter-url=https://books.google.com/books?id=ksxK7J95IF8C&q=typists+%22120+words+per+minute%22&pg=PA41 |title=On the Reappraisal of Microeconomics: Economic Growth and Change in a Material World |place=Cheltenham, UK & Northampton, Massachusetts |publisher=Edward Elgar Publishing |isbn=1-84542-272-4 |url=https://books.google.com/books?id=ksxK7J95IF8C&q=reappraisal+microeconomics |access-date=22 November 2010}}</ref><ref>{{Citation |first=Teresia R. |last=Ostrach |year=1997 |title=Typing Speed: How Fast is Average |url=http://onlinestudentreadiness.org/documents/TypingSpeed.pdf |url-status=dead |archive-url=https://web.archive.org/web/20120502164156/http://onlinestudentreadiness.org/documents/TypingSpeed.pdf |archive-date =2012-05-02}}</ref> Two-finger typists, sometimes also referred to as "hunt and peck" typists, commonly reach sustained speeds of about 37 wpm for memorized text and 27 wpm when copying text, but in bursts may be able to reach speeds of 60 to 70 wpm.<ref name="multiple">Brown, C. M. (1988). Human-computer interface design guidelines. Norwood, NJ: [[Ablex Publishing]].</ref> From the 1920s through the 1970s, typing speed (along with shorthand speed) was an important secretarial qualification and typing contests were popular and often publicized by typewriter companies as promotional tools.

A less common measure of the speed of a typist, CPM is used to identify the number of characters typed per minute. This is a common measurement for typing programs, or typing tutors, as it can give a more accurate measure of a person's typing speed without having to type for a prolonged period of time. The common conversion factor between WPM and CPM is 5. It is also used occasionally for associating the speed of a reader with the amount they have read. CPM has also been applied to 20th century printers, but modern faster printers more commonly use PPM (pages per minute).{{Citation needed|date=December 2024}}

216 words per minute, was achieved by Stella Pajunas-Garnand from Chicago in 1946 in one minute on an [[IBM Electric typewriter|IBM electric]]<ref>{{cite web |url=http://www.bigsiteofamazingfacts.com/history-of-typewriters |title=History of Typewriters &#124; Big Site of Amazing Facts ® |date=12 September 2007 |publisher=Bigsiteofamazingfacts.com |access-date=2012-06-13 |archive-date=2013-05-15 |archive-url=https://web.archive.org/web/20130515165828/http://www.bigsiteofamazingfacts.com/history-of-typewriters |url-status=live }}</ref><ref>{{cite web |url=http://www.owled.com/typing.html |title=World Records in Typing |publisher=Owled.com |date=2006-09-02 |access-date=2012-06-13 |archive-date=2018-08-26 |archive-url=https://web.archive.org/web/20180826043812/http://www.owled.com/typing.html |url-status=live }}</ref><ref>{{cite web |url=http://www-03.ibm.com/ibm/history/exhibits/modelb/modelb_4509PH04.html |title=IBM Archives: Typing posture |date=23 January 2003 |publisher=03.ibm.com |access-date=2012-06-13 |archive-date=2016-07-20 |archive-url=https://web.archive.org/web/20160720232526/http://www-03.ibm.com/ibm/history/exhibits/modelb/modelb_4509PH04.html |url-status=dead }}</ref><ref>{{cite web |url=http://www.deskstore.com/INFORMATION-1/en/Plan-Your-Office/Believe-it-or-not |title=Believe it or not ... |publisher=Deskstore.com |access-date=2012-06-13 |archive-date=2020-08-07 |archive-url=https://web.archive.org/web/20200807234602/https://www.deskstore.com/INFORMATION-1/en/Plan-Your-Office/Believe-it-or-not/ |url-status=live }}</ref> using the [[QWERTY]] keyboard layout.<ref>{{cite web |url=http://thekindle3books.com/qwerty-vs-dvorak-the-two-great-keyboards-the-time-were-born/ |title=QWERTY vs Dvorak: The two great keyboards the time were born |author=Lowell |date=2017-03-15 |access-date=2019-01-19 |archive-date=2019-01-19 |archive-url=https://web.archive.org/web/20190119230910/http://thekindle3books.com/qwerty-vs-dvorak-the-two-great-keyboards-the-time-were-born/ |url-status=live }}</ref><ref>{{cite web |url=https://www.pond5.com/stock-footage/75268195/miss-stella-pajunas-worlds-fast-typist-types-ibm-electric-ty.html |title=Miss Stella Pajunas, World's Fast Typist, Types On An Ibm Electric Typewriterƒ |author=RetroFootage |publisher=Pond5.com |access-date=2019-01-19 |archive-date=2019-01-19 |archive-url=https://web.archive.org/web/20190119230948/https://www.pond5.com/stock-footage/75268195/miss-stella-pajunas-worlds-fast-typist-types-ibm-electric-ty.html |url-status=live }}</ref>


<!-- This section is copied from the [[Barbara Blackburn (typist)]] article -->
=== Alphanumeric entry{{anchor|Alphanumeric entry}} ===
The [[Associated Press]] reported [[Barbara Blackburn (typist)|Barbara Blackburn]] achieving a speed of 194 wpm in October 1984 using the MasterType typing game[https://archive.org/details/a2_MasterType_The_Typing_Instruction_Game_1981_Lightning_Software].<ref name="AP1985">{{cite news |date=January 5, 1985 |title=Grandmother, 64, from Oregon sets her third world speed typing record |url=https://www.newspapers.com/article/the-columbia-record-barbara-blackburn-19/127173241/ |url-status=live |archive-url=https://web.archive.org/web/20230628092431/https://www.newspapers.com/article/the-columbia-record-barbara-blackburn-19/127173241/ |archive-date=June 28, 2023 |access-date=June 28, 2023 |work=[[The Columbia Record]] |place=Tarrytown, New York |publication-place=Columbia, South Carolina |quote=This past October, using the software program, Master type, published by Scarborough Systems of Tarrytown, and a Dvorak keyboard, she broke her computer speed mark by typing at a rate of 194 words a minute. |agency=Associated Press}}</ref> In a January 1985 story in the ''[[Los Angeles Times]]'', Blackburn said she had recently reached 196 wpm. During her ''[[Late Night with David Letterman|Late Night]]'' appearance on January 24, 1985, she claimed to have achieved 170 wpm on minute tests, and 200 wpm using a computer.<ref name="Letterman2">{{Citation |title=The Great Typing Controversy on Letterman, January 24 and 28, 1985 |date=May 6, 2016 |url=https://www.youtube.com/watch?v=z3OlsQL1rYs |access-date=August 16, 2022 |archive-url=https://web.archive.org/web/20220816201056/https://www.youtube.com/watch?v=z3OlsQL1rYs |archive-date=August 16, 2022 |url-status=live |language=en}}</ref>{{rp|1m07s}} In May 1985, ''[[The Seattle Times]]'' reported that Blackburn said she had "attained speeds of 212 words a minute for a brief time" using an Apple computer keyboard and the Dvorak layout.
In one study of average computer users, the average rate for transcription was 33 words per minute, and 19 words per minute for composition.<ref>Karat, C.M., Halverson, C., Horn, D. and Karat, J. (1999), Patterns of entry and correction in large vocabulary continuous speech recognition systems, CHI 99 Conference Proceedings, 568-575.</ref> In the same study, when the group was divided into "fast", "moderate" and "slow" groups, the average speeds were 40 wpm, 35 wpm, and 23 wpm respectively. An average professional [[Copy typist|typist]] reaches 50 to 80 wpm, while some positions can require 80 to 95 wpm (usually the minimum required for dispatch positions and other typing jobs), and some advanced typists work at speeds above 120 wpm.<ref name="Ayres&Martinás2005">{{citation |year=2005 |author=Ayres, Robert U |authorlink=Robert Ayres (scientist) |author2=Martinás, Katalin |chapter=120 wpm for very skilled typist |page=41 |chapter-url=https://books.google.com/books?id=ksxK7J95IF8C&pg=PA41&dq=typists+%22120+words+per+minute%22#v=onepage&q=typists%20%22120%20words%20per%20minute%22&f=false |title=On the Reappraisal of Microeconomics: Economic Growth and Change in a Material World |place=Cheltenham, UK & Northampton, Massachusetts |publisher=Edward Elgar Publishing |isbn=1-84542-272-4 |url=https://books.google.com/books?id=ksxK7J95IF8C&printsec=frontcover&dq=reappraisal+microeconomics#v=onepage&q&f=false |accessdate=22 November 2010}}</ref><ref>{{Citation
|author=Teresia R. Ostrach
|year=1997
|title=Typing Speed: How Fast is Average
|publisher=
| publication-place=
|page=
|url=http://onlinestudentreadiness.org/documents/TypingSpeed.pdf
| accessdate=
}}</ref> Two-finger typists, sometimes also referred to as "hunt and peck" typists, commonly reach sustained speeds of about 37 wpm for memorized text and 27 wpm when copying text, but in bursts may be able to reach speeds of 60 to 70 wpm.<ref name="multiple">Brown, C. M. (1988). Human-computer interface design guidelines. Norwood, NJ: [[Ablex Publishing]].</ref> From the 1920s through the 1970s, typing speed (along with shorthand speed) was an important secretarial qualification and typing contests were popular and often publicized by typewriter companies as promotional tools.


The recent emergence of several competitive typing websites has allowed fast typists on computer keyboards to emerge along with new records, though many of these are unverifiable. Some notable{{Citation needed|date=December 2024|reason=Why are these records particularly notable}}, records include 255 wpm on a one-minute, random-word test by a user under the username slekap and occasionally bailey,<ref>{{Citation |title=255 WPM Monkey Type 60s (World Record) | date=10 November 2021 |url=https://www.youtube.com/watch?v=poGFlGf-jO0 |language=en |access-date=2022-05-05 |archive-date=2022-05-05 |archive-url=https://web.archive.org/web/20220505030022/https://www.youtube.com/watch?v=poGFlGf-jO0&gl=US&hl=en |url-status=live }}</ref> 213 wpm on a 1-hour, random-word test by Joshua Hu,<ref>{{Citation |title=Typing 213 wpm for an hour straight | date=19 November 2021 |url=https://www.youtube.com/watch?v=mBuDtqdx57g |language=en |access-date=2022-05-05 |archive-date=2022-05-05 |archive-url=https://web.archive.org/web/20220505030022/https://www.youtube.com/watch?v=mBuDtqdx57g&gl=US&hl=en |url-status=live }}</ref> 221 wpm average on 10 random quotes by Joshua Hu,<ref>{{Cite web |title=TypeRacer Race History |url=https://data.typeracer.com/pit/race_history?user=joshua728 |access-date=2022-05-05 |website=data.typeracer.com |archive-date=2020-10-31 |archive-url=https://web.archive.org/web/20201031111847/https://data.typeracer.com/pit/race_history?user=joshua728 |url-status=live }}</ref> and first place in the 2020 [[Ultimate Typing Championship]] by Anthony Ermollin based on an average of 180.88 wpm on texts of various lengths.<ref>{{Cite web |title=Ultimate Typing Championship |url=https://ultimatetypingchampionship.com/leaderboard#:~:text=Anthony%20%22chack%22%20Ermollin%20has%20been,Typing%20Champion%20and%20win%20$5,000. |access-date=2022-05-05 |website=ultimatetypingchampionship.com |language=en |archive-date=2022-04-15 |archive-url=https://web.archive.org/web/20220415132750/https://ultimatetypingchampionship.com/leaderboard#:~:text=Anthony%20%22chack%22%20Ermollin%20has%20been,Typing%20Champion%20and%20win%20$5,000. |url-status=live }}</ref><ref>{{Cite web |date=2020-08-25 |title=Das Keyboard Announces Winners of the Ultimate Typing Championship 2020 and Crowns Best Typist on the Planet |url=https://www.businesswire.com/news/home/20200825005348/en/Das-Keyboard-Announces-Winners-of-the-Ultimate-Typing-Championship-2020-and-Crowns-Best-Typist-on-the-Planet |access-date=2022-05-05 |website=www.businesswire.com |language=en |archive-date=2022-05-05 |archive-url=https://web.archive.org/web/20220505030033/https://www.businesswire.com/news/home/20200825005348/en/Das-Keyboard-Announces-Winners-of-the-Ultimate-Typing-Championship-2020-and-Crowns-Best-Typist-on-the-Planet |url-status=live }}</ref> All of their records were set on the [[QWERTY]] keyboard layout.
A less common measure of the speed of a typist, CPM is used to identify the number of characters typed per minute. This is a common measurement for typing programs, or typing tutors, as it can give a more accurate measure of a person's typing speed without having to type for a prolonged period of time. The common conversion factor between WPM and CPM is 5. It is also used occasionally for associating the speed of a reader with the amount they have read. CPM has also been applied to 20th century printers, but modern faster printers more commonly use PPM (pages per minute).


The current fastest typist is 17 year old who goes by the username ''MythicalRocket'', with a speed of 305 WPM for 15 seconds using [[QWERTY]].<ref>{{Cite web |title=The World's Fastest Typist Is 17 Years Old, and His Next Trick Is Topping 305 Words Per Minute |url=https://www.pcmag.com/articles/the-worlds-fastest-typist-is-17-years-old-and-types-at-305-wpm |access-date=2024-12-06 |website=PCMAG |language=en}}</ref><ref>{{Cite web |last= |date=2022-07-28 |title=Test Your WPM Typing Speed for Free: Typists & World Records {{!}} AOLCC |url=https://www.academyoflearning.com/blog/the-fastest-typists-in-the-world-past-and-present/ |access-date=2024-12-06 |website=Academy of Learning |language=en-US}}</ref>
The fastest typing speed ever, 216 words per minute, was achieved by Stella Pajunas-Garnand from Chicago in 1946 in one minute on an [[IBM Electric typewriter|IBM electric]].<ref>{{cite web|url=http://www.bigsiteofamazingfacts.com/history-of-typewriters |title=History of Typewriters &#124; Big Site of Amazing Facts ® |publisher=Bigsiteofamazingfacts.com |date= |accessdate=2012-06-13}}</ref><ref>{{cite web|url=http://www.owled.com/typing.html |title=World Records in Typing |publisher=Owled.com |date=2006-09-02 |accessdate=2012-06-13}}</ref><ref>{{cite web|url=http://www-03.ibm.com/ibm/history/exhibits/modelb/modelb_4509PH04.html |title=IBM Archives: Typing posture |publisher=03.ibm.com |date= |accessdate=2012-06-13}}</ref><ref>{{cite web|url=http://www.deskstore.com/INFORMATION-1/en/Plan-Your-Office/Believe-it-or-not |title=Believe it or not ... |publisher=Deskstore.com |date= |accessdate=2012-06-13}}</ref> {{As of|2005}}, writer Barbara Blackburn was the fastest [[English language]] typist in the world, according to [[The Guinness Book of World Records]]. Using the [[Dvorak Simplified Keyboard]], she has maintained 150 wpm for 50 minutes, and 170 wpm for shorter periods. She has been clocked at a peak speed of 212 wpm. Blackburn, who failed her [[QWERTY]] typing class in high school, first encountered the Dvorak keyboard in 1938, quickly learned to achieve very high speeds, and occasionally toured giving speed-typing demonstrations during her secretarial career. She appeared on ''[[The David Letterman Show]]'' and felt that Letterman made a spectacle of her.<ref name="Letterman">{{cite web|url=http://rcranger.mysite.syr.edu/dvorak/ |title=Barbara Blackburn, the World's Fastest Typist |accessdate=2008-05-08}}</ref> Blackburn died in April 2008.<ref name="Letterman" />
However, the recent emergence of several competitive typing websites has allowed several fast typists on computer keyboards to emerge along with new records, though these are unverifiable for the most part. Two of the most notable online records that are considered genuine are 241.82 wpm on an English text on typingzone.com by Brazilian Guilherme Sandrini (equivalent to 290.184 wpm using the traditional definition for words per minute since this site defines a word as six characters rather than five)<ref>{{cite web|author1=Jean-Didier Febvay |author2=Jonathan Gutierrez |lastauthoramp=yes |url=http://typingzone.com/index.php?month=2010-07&page=archives |title=international typing speed contest |publisher=Typing Zone |date= |accessdate=2012-06-13}}</ref> and 256 wpm (a record caught on video) on [[TypeRacer]] by American Sean Wrona, the inaugural [[Ultimate Typing Championship]] winner, which was considered the highest ever legitimate score ever set on the site, until Wrona claimed it has been surpassed.<ref name="highestscoreontyperacer">{{cite web|url=https://www.youtube.com/watch?v=IozhMc6lPTU&feature=youtube_gdata |title=256 wpm race - former all-time TypeRacer record |publisher=YouTube |date= |accessdate=December 3, 2016}}</ref> Both of these records are essentially sprint speeds on short text selections lasting much less than one minute and were achieved on the QWERTY keyboard.
Wrona also maintained 174 wpm on a 50-minute test taken on hi-games.net, another online typing website to unofficially displace Blackburn as the fastest endurance typist, although disputes might still arise over differences in the difficulty of the texts as well as Wrona's use of a modern computer keyboard as opposed to the typewriter used by Blackburn.<ref name="highestwpmon50minutes">{{cite web|url=http://hi-games.net/typing-test,3000/watch?u=2591 |title=Typing - Replay of Sean Wrona's highscore of 174 wpm |publisher=hi-games.net |date= |accessdate=2012-06-13}}</ref><ref>{{cite web|url=http://seanwrona.com/typing.php |title=Sean Wrona, official site }}</ref>


Using a personalized [[User interface|interface]], [[Physics|physicist]] [[Stephen Hawking]], who suffers from [[amyotrophic lateral sclerosis]], managed to type 15 wpm with a switch and adapted software created by Walt Woltosz. Due to a slowdown of his motor skills, his interface was upgraded with an [[thermographic camera|infrared camera]] that detects "twitches in the cheek muscle under the eye."<ref name="hawkingcamera">{{cite web|url=http://singularityhub.com/2010/05/03/how-does-stephen-hawking-talk-video/ |title=How Does Stephen Hawking Talk? (video) |publisher=Singularity Hub |date=2010-05-03 |accessdate=2012-06-13}}</ref> Currently he can write approximately one word per minute.<ref>http://www.newscientist.com/article/dn21323-the-man-who-saves-stephen-hawkings-voice.html</ref>
Using a personalized [[User interface|interface]], [[physicist]] [[Stephen Hawking]], who suffered from [[amyotrophic lateral sclerosis]], managed to type 15 wpm with a switch and adapted software created by Walt Woltosz. Due to a slowdown of his motor skills, his interface was upgraded with an [[thermographic camera|infrared camera]] that detected "twitches in the cheek muscle under the eye."<ref name="hawkingcamera">{{cite web |url=http://singularityhub.com/2010/05/03/how-does-stephen-hawking-talk-video/ |title=How Does Stephen Hawking Talk? (video) |publisher=Singularity Hub |date=2010-05-03 |access-date=2012-06-13 |archive-date=2012-06-24 |archive-url=https://web.archive.org/web/20120624175500/http://singularityhub.com/2010/05/03/how-does-stephen-hawking-talk-video/ |url-status=live }}</ref> His typing speed decreased to approximately one word per minute in the later part of his life.<ref>{{cite web|url=https://www.newscientist.com/article/dn21323-the-man-who-saves-stephen-hawkings-voice.html|title=The man who saves Stephen Hawking's voice|website=newscientist.com|access-date=2017-09-17|archive-date=2012-08-25|archive-url=https://web.archive.org/web/20120825092537/http://www.newscientist.com/article/dn21323-the-man-who-saves-stephen-hawkings-voice.html|url-status=live}}</ref>


===Numeric entry===
===Numeric entry===
The numeric entry, or 10-key, speed is a measure of one's ability to manipulate a numeric keypad.
The numeric entry, or 10-key, speed is a measure of one's ability to manipulate a numeric keypad. Generally, it is measured in keystrokes per hour (KPH).


== Text-entry research ==
==Text-entry research==
{{More citations needed|section|date=June 2024}}


=== Error analysis ===
===Error analysis===
With the introduction of computers and word-processors, there has been a change in how text-entry is performed. In the past, using a typewriter, speed was measured with a stopwatch and errors were tallied by hand. With the current technology, document preparation is more about using word-processors as a composition aid, changing the meaning of error rate and how it is measured. Research performed by R. William Soukoreff and I. Scott MacKenzie, has led to a discovery of the application of a well-known algorithm. Through the use of this algorithm and accompanying analysis technique, two statistics were used, ''minimum string distance error rate'' (MSD error rate) and ''keystrokes per character'' (KSPC). The two advantages of this technique include:
With the introduction of computers and word-processors, there has been a change in how text-entry is performed. In the past, using a typewriter, speed was measured with a stopwatch and errors were tallied by hand. With the current technology, document preparation is more about using word-processors as a composition aid, changing the meaning of error rate and how it is measured. Research performed by R. William Soukoreff and I. Scott MacKenzie, has led to a discovery of the application of a well-known algorithm. Through the use of this algorithm and accompanying analysis technique, two statistics were used, ''minimum string distance error rate'' (MSD error rate) and ''keystrokes per character'' (KSPC). The two advantages of this technique include:


1. Participants are allowed to enter text naturally, since they may commit error and correct them.<br />
*Participants are allowed to enter text naturally, since they may commit errors and correct them.
2. The identification of errors and generation of error rate statistics is easy to automate.
*The identification of errors and generation of error rate statistics is easy to automate.


==== Deconstructing the text input process ====
====Deconstructing the text input process====
Through analysis of keystrokes, the keystrokes of the input stream were divided into four classes: Correct (C), Incorrect Fixed (IF), Fixes (F), and Incorrect Not Fixed (INF). These key stroke classification are broken down into the following
Through analysis of keystrokes, the keystrokes of the input stream were divided into four classes: Correct (C), Incorrect Fixed (IF), Fixes (F), and Incorrect Not Fixed (INF). These key stroke classification are broken down into the following


1. The two classes Correct and Incorrect Not Fixed comprise all of the characters in transcribed text. <br />
*The two classes Correct and Incorrect Not Fixed comprise all of the characters in transcribed text.
2. Fixes (F) keystrokes are easy to identify, and include keystrokes such as backspace, delete, cursor movements, and modifier keys. <br />
*Fixes (F) keystrokes are easy to identify, and include keystrokes such as backspace, delete, cursor movements, and modifier keys.
3. Incorrect Fixed (IF) keystrokes are found in the input stream, but not the transcribed text, and are not editing keys.
*Incorrect Fixed (IF) keystrokes are found in the input stream, but not the transcribed text, and are not editing keys.


Using these classes, the Minimum String Distance Error Rate and the Key Strokes per Character statistics can both be calculated.
Using these classes, the Minimum String Distance Error Rate and the Key Strokes per Character statistics can both be calculated.


==== Minimum string distance error rate ====
====Minimum string distance error rate====
The minimum string distance (MSD) is the number of "primitives" which is the number of insertions, deletions, or substitutions to transform one string into another. The following equation was found for the MSD Error Rate
The minimum string distance (MSD) is the number of "primitives" which is the number of insertions, deletions, or substitutions to transform one string into another. The following equation was found for the MSD Error Rate.


''MSD Error Rate'' = <math>(INF/(C + INF)) * 100\%</math>
''MSD Error Rate'' = <math>(INF/(C + INF)) * 100\%</math>


==== Key strokes per character (KSPC) ====
====Key strokes per character (KSPC)====
With the minimum string distance error, errors that are corrected do not appear in the transcribed text. The following example will show you why this is an important class of errors to consider:
With the minimum string distance error, errors that are corrected do not appear in the transcribed text. The following example shows why this can be an important class of errors to consider:


''Presented Text'': the quick brown<br />
''Presented Text'': the quick brown<br />
Line 93: Line 86:
''Transcribed Text'': the quick brown
''Transcribed Text'': the quick brown


in the above example, the incorrect character ('x') was deleted with a backspace ('<-'). Since these errors do not appear in the transcribed text, the MSD error rate is 0%. This is why there is the key strokes per character (KSPC) statistic.
In the above example, the incorrect character ('x') was deleted with a backspace ('<-'). Since these errors do not appear in the transcribed text, the MSD error rate is 0%. That is the purpose of the key strokes per character (KSPC) statistic.


''KSPC'' = <math>(C+INF+IF+F)/(C+INF)</math>
''KSPC'' = <math>(C+INF+IF+F)/(C+INF)</math>


The three shortcomings of the KSPC statistic are listed below:
There are some shortcomings of the KSPC statistic, such as:


1. High KSPC values can be related to either many errors which were corrected, or few errors which were not corrected, however there is no way to distinguish the two.<br />
* High KSPC values can be related to either many errors which were corrected, or few errors which were not corrected; however, there is no way to distinguish the two.
2. KSPC depend on the text input method, and cannot be used to meaningfully compare two different input methods, such as Qwerty-keyboard and a multi-tap input.<br />
* KSPC depends on the text input method, and cannot be used to meaningfully compare two different input methods, such as a [[QWERTY]] keyboard and a multi-tap device.
3. There is no obvious way to combine KSPC and MSD into an over-all error rate, even though they have an inverse relationship.
* There is no obvious way to combine KSPC and MSD into an overall error rate, even though they have an inverse relationship.


==== Further metrics ====
====Further metrics====
Using the classes described above, further metrics were defined by R. William Soukoreff and I.Scott MacKenzie:
Using the [[Classes of computers|classes]] described above, further metrics were defined by R. William Soukoreff and I.Scott MacKenzie:


1. ''Error correction efficiency'' refers to the ease with which the participant performed error correction.<br />
''Error correction efficiency'' refers to the ease with which the participant performed error correction.
''Correction Efficiency'' = IF/F
* ''Correction Efficiency'' = IF/F
''Participant conscientiousness'' is the ratio of corrected errors to the total number of error, which helps distinguish [[Perfectionism (psychology)|perfectionists]] from apathetic participants.
* ''Participant Conscientiousness'' = IF / (IF + INF)
If C represents the amount of useful information transferred, INF, IF, and F represent the proportion of bandwidth wasted.
* ''Utilized Bandwidth'' = C / (C + INF + IF + F)
* ''Wasted Bandwidth'' = (INF + IF + F)/ (C + INF + IF + F)


====Total error rate====
2. ''Participant conscientiousness'' is the ratio of corrected errors to the total number of error, which helps distinguish perfectionists from apathetic participants.<br />
The classes described also provide an intuitive definition of total [[error]] rate:
''Participant Conscientiousness'' = IF / (IF + INF)


* ''Total Error Rate'' = ((INF + IF)/ (C + INF + IF)) * 100%
3. If C represents the amount of useful information transferred, INF, IF, and F represent the proportion of bandwidth wasted.<br />
''Utilized Bandwidth'' = C / (C + INF + IF + F)<br />
* ''Not Corrected Error Rate'' = (INF/ (C + INF + IF)) * 100%
''Wasted Bandwidth'' = (INF + IF + F)/ (C + INF + IF + F)
* ''Corrected Error Rate'' = (IF/ (C + INF + IF)) * 100%


Since these three error rates are ratios, they are comparable between different devices, something that cannot be done with the KSPC statistic, which is device dependent.<ref>{{cite web |url=http://www.soukoreff.com/academic/chi03 |title=Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and KSPC, and a new unified error metric. Proceedings of the ACM Conference on Human Factors in Computing Systems - CHI 2003, pp. 113-120. New York: ACM. |access-date=2013-05-16 |archive-date=2011-08-24 |archive-url=https://web.archive.org/web/20110824164440/http://soukoreff.com/academic/chi03/ |url-status=live }}</ref>
==== Total error rate ====
The classes described also provide an intuitive definition of total error rate:


===Tools for text entry research===
''Total Error Rate'' = ((INF + IF)/ (C + INF + IF)) * 100%<br />
Currently, two tools are publicly available for text entry researchers to record text entry performance metrics. The first is TEMA<ref>{{Cite book|last1=Castellucci|first1=Steven J.|last2=MacKenzie|first2=I. Scott|title=CHI '11 Extended Abstracts on Human Factors in Computing Systems |chapter=Gathering text entry metrics on android devices |date=2011-01-01|series=CHI EA '11|location=New York, NY, USA|publisher=ACM|pages=1507–1512|doi=10.1145/1979742.1979799|isbn=9781450302685|s2cid=2107842}}</ref> that runs only on the [[Android (operating system)]]. The second is [http://www.asarif.com/resources/WebTEM/ WebTEM] that runs on any device with a modern Web browser, and works with almost all text entry technique.<ref>{{Cite book|last1=Arif|first1=Ahmed Sabbir|last2=Mazalek|first2=Ali|title=Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces |chapter=WebTEM |date=2016-01-01|series=ISS '16|location=New York, NY, USA|publisher=ACM|pages=415–420|doi=10.1145/2992154.2996791|isbn=9781450342483|s2cid=16022337}}</ref>
''Not Corrected Error Rate'' = (INF/ (C + INF + IF)) * 100%<br />
''Corrected Error Rate'' = (IF/ (C + INF + IF)) * 100%


==Keystroke dynamics==
Since these three error rates are ratios, they are comparable between different devices, something that cannot be done with the KSPC statistic, which is device dependent.<ref>{{cite web|url=http://www.soukoreff.com/academic/chi03 |title=Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and KSPC, and a new unified error metric. Proceedings of the ACM Conference on Human Factors in Computing Systems - CHI 2003, pp. 113-120. New York: ACM.}}</ref>
[[Keystroke dynamics]], or ''typing dynamics'', is the obtaining of detailed timing information that describes exactly when each key was pressed and when it was released as a person is typing at a [[computer keyboard]] for [[biometric]] identification,<ref>{{cite web|url=http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/User%20authentication%20through%20typing%20biometrics%20features.pdf|title=User authentication through typing biometrics features|website=pku.edu.cn|access-date=2013-11-14|archive-date=2014-03-04|archive-url=https://web.archive.org/web/20140304233632/http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/User%20authentication%20through%20typing%20biometrics%20features.pdf|url-status=dead}}</ref> similar to [[speaker recognition]].<ref>{{cite conference |author=Robert Moskovitch, Clint Feher, Arik Messerman, Niklas Kirschnick, Tarik Mustafic, Ahmet Camtepe, Bernhard Löhlein, Ulrich Heister, [[Sebastian Möller]], Lior Rokach, Yuval Elovici |url=http://www.ise.bgu.ac.il/faculty/liorr/idth.pdf |title=Identity theft, computers and behavioral biometrics |conference=Proceedings of the IEEE International Conference on Intelligence and Security Informatics |year=2009 |pages=155–160 |access-date=2013-11-14 |archive-date=2013-09-27 |archive-url=https://web.archive.org/web/20130927073140/http://www.ise.bgu.ac.il/faculty/liorr/idth.pdf |url-status=live }}</ref> Data needed to analyze keystroke dynamics is obtained by [[keystroke logging]].


The [[biometric|behavioral biometric]] of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.<ref>{{cite journal|url=https://ieeexplore.ieee.org/document/491588|title=Continuous authentication by analysis of keyboard typing characteristics - IET Conference Publication|date=May 1995|pages=111–114|doi=10.1049/cp:19950480|access-date=2019-12-07|archive-date=2020-10-01|archive-url=https://web.archive.org/web/20201001045003/https://ieeexplore.ieee.org/document/491588|url-status=live}}</ref>
=== Tools for text entry research ===
Currently, two tools are publicly available for text entry researchers to record text entry performance metrics. The first is TEMA<ref>{{Cite journal|last=Castellucci|first=Steven J.|last2=MacKenzie|first2=I. Scott|date=2011-01-01|title=Gathering Text Entry Metrics on Android Devices|url=http://doi.acm.org/10.1145/1979742.1979799|journal=CHI '11 Extended Abstracts on Human Factors in Computing Systems|series=CHI EA '11|location=New York, NY, USA|publisher=ACM|pages=1507–1512|doi=10.1145/1979742.1979799|isbn=9781450302685}}</ref> that runs only on the [[Android (operating system)]]. The second is [http://www.asarif.com/resources/WebTEM/ WebTEM] that runs on any device with a modern Web browser, and works with almost all text entry technique.<ref>{{Cite journal|last=Arif|first=Ahmed Sabbir|last2=Mazalek|first2=Ali|date=2016-01-01|title=WebTEM: A Web Application to Record Text Entry Metrics|url=http://doi.acm.org/10.1145/2992154.2996791|journal=Proceedings of the 2016 ACM on Interactive Surfaces and Spaces|series=ISS '16|location=New York, NY, USA|publisher=ACM|pages=415–420|doi=10.1145/2992154.2996791|isbn=9781450342483}}</ref>


==See also==
== Keystroke dynamics ==
[[Keystroke dynamics]], or ''typing dynamics'', is the obtaining of detailed timing information that describes exactly when each key was pressed and when it was released as a person is typing at a [[computer keyboard]] for the identification of humans by their characteristics or traits,<ref>[http://ai.pku.edu.cn/aiwebsite/research.files/collected%20papers%20-%20others/User%20authentication%20through%20typing%20biometrics%20features.pdf User authentication through typing biometrics features]</ref> similar to [[speaker recognition]].<ref>{{cite conference |author=Robert Moskovitch , Clint Feher , Arik Messerman , Niklas Kirschnick , Tarik Mustafic , Ahmet Camtepe , Bernhard Löhlein , Ulrich Heister , [[Sebastian Möller]] , Lior Rokach , Yuval Elovici |url=http://www.ise.bgu.ac.il/faculty/liorr/idth.pdf |title=Identity theft, computers and behavioral biometrics |conference=Proceedings of the IEEE International Conference on Intelligence and Security Informatics|year=2009|pages=155–160}}</ref> Data needed to analyze keystroke dynamics is obtained by [[keystroke logging]].

The [[biometric|behavioral biometric]] of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.<ref>[http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=491588 Continuous authentication by analysis of keyboard typing characteristics]</ref>

== See also ==
[[File:War correspondent typing his despatch.jpg|right|thumb|War correspondent typing his dispatch in a wood outside Arnhem, 1944]]
[[File:War correspondent typing his despatch.jpg|right|thumb|War correspondent typing his dispatch in a wood outside Arnhem, 1944]]
*[[Muscle memory]]
* [[Dvorak Simplified Keyboard]]
* [[Keyboard layout]]
*[[Stenotype]]
* [[Muscle memory]]
*[[Copy typist]]
* [[QWERTY]]
*[[Audio typist]]
* [[Stenotype]]
*[[Data entry clerk]]
* [[Touch typing]]
*[[Speed typing contest]]
* [[Copy typist]]
*[[Typesetting]]
* [[Audio typist]]
*[[Typing Day]]
* [[Data entry clerk]]
* [[Speed typing contest]]


== References ==
==References==
{{Reflist|33em}}
{{Reflist|33em}}


==External links==
{{Wikiversity | Typing}}
{{Wikiversity | Typing}}
*{{Commons category-inline}}

{{Authority control}}


[[Category:Typing| ]]
[[Category:Typing| ]]

Latest revision as of 02:18, 6 December 2024

Person typing on a laptop keyboard
Video of typing on a notebook computer keyboard

Typing is the process of writing or inputting text by pressing keys on a typewriter, computer keyboard, mobile phone, or calculator. It can be distinguished from other means of text input, such as handwriting and speech recognition. Text can be in the form of letters, numbers and other symbols. The world's first typist was Lillian Sholes from Wisconsin in the United States,[1][2] the daughter of Christopher Sholes, who invented the first practical typewriter.[1]

User interface features such as spell checker and autocomplete serve to facilitate and speed up typing and to prevent or correct errors the typist may make.

Techniques

[edit]

Hunt and peck

[edit]

Hunt and peck (two-fingered typing) is a common form of typing in which the typist presses each key individually. Instead of relying on the memorized position of keys, the typist must find each key by sight. Although good accuracy may be achieved, the use of this method may also prevent the typist from being able to see what has been typed without glancing away from the keys, and any typing errors that are made may not be noticed immediately. Due to the fact that only a few fingers are used in this technique, this also means that the fingers are forced to move a much greater distance.

Civilian Conservation Corps typing class, 1933

Touch typing

[edit]
Typing zones on a QWERTY keyboard for each finger taken from KTouch and home row keys
Typing zones on a QWERTY keyboard for each finger taken from KTouch (home row keys are circled)

In this technique, the typist keeps their eyes on the source copy at all times. Touch typing also involves the use of the home row method, where typists rest their wrist down, rather than lifting up and typing (which can cause carpal tunnel syndrome [citation needed]). To avoid this, typists should sit up tall, leaning slightly forward from the waist, place their feet flat on the floor in front of them with one foot slightly in front of the other, and keep their elbows close to their sides with forearms slanted slightly upward to the keyboard; fingers should be curved slightly and rest on the home row.

Many touch typists also use keyboard shortcuts when typing on a computer. This allows them to edit their document without having to take their hands off the keyboard to use a mouse. An example of a keyboard shortcut is pressing the Ctrl key plus the S key to save a document as they type, or the Ctrl key plus the Z key to undo a mistake. Other shortcuts are the Ctrl key plus the C to copy and the Ctrl key and the V key to paste, and the Ctrl key and the X key to cut. Many experienced typists can feel or sense when they have made an error and can hit the ← Backspace key and make the correction with no increase in time between keystrokes.

Hybrid

[edit]

There are many idiosyncratic typing styles in between novice-style "hunt and peck" and touch typing. For example, many "hunt and peck" typists have the keyboard layout memorized and are able to type while focusing their gaze on the screen. Some use just two fingers, while others use 3–6 fingers. Some use their fingers very consistently, with the same finger being used to type the same character every time, while others vary the way they use their fingers.

One study examining 30 subjects, of varying different styles and expertise, has found minimal difference in typing speed between touch typists and self-taught hybrid typists.[3] According to the study, "The number of fingers does not determine typing speed... People using self-taught typing strategies were found to be as fast as trained typists... instead of the number of fingers, there are other factors that predict typing speed... fast typists... keep their hands fixed on one position, instead of moving them over the keyboard, and more consistently use the same finger to type a certain letter." To quote Prof. Dr. Anna Feit: "We were surprised to observe that people who took a typing course, performed at similar average speed and accuracy, as those that taught typing to themselves and only used 6 fingers on average."[4]

Thumbing

[edit]

A late 20th century trend in typing, primarily used with devices with small keyboards (such as PDAs and Smartphones), is thumbing or thumb typing. This can be accomplished using either only one thumb or both the thumbs, with more proficient typists reaching speeds of 100 words per minute.[5] Similar to desktop keyboards and input devices, if a user overuses keys which need hard presses and/or have small and unergonomic layouts, it could cause thumb tendonitis or other repetitive strain injury.[6]

Words per minute

[edit]

Words per minute (WPM) is a measure of typing speed, commonly used in recruitment. For the purposes of WPM measurement a word is standardized to five characters or keystrokes. Therefore, "brown" counts as one word, but "mozzarella" counts as two.

The benefits of a standardized measurement of input speed are that it enables comparison across language and hardware boundaries. The speed of an Afrikaans-speaking operator in Cape Town can be compared with a French-speaking operator in Paris.

Today, even Written Chinese can be typed very quickly using the combination of a software prediction system and by typing their sounds in Pinyin.[7] Such prediction software even allows typing short-hand forms while producing complete characters. For example, the phrase "nǐ chī le ma" (你吃了吗) meaning "Have you eaten yet?" can be typed with just 4 strokes: "nclm".

Alphanumeric entry

[edit]

In one study of average computer users, the average rate for transcription was 33 words per minute, and 19 words per minute for composition.[8] In the same study, when the group was divided into "fast", "moderate" and "slow" groups, the average speeds were 40 wpm, 35 wpm, and 23 wpm respectively. An average professional typist reaches 50 to 80 wpm, while some positions can require 80 to 95 wpm (usually the minimum required for dispatch positions and other typing jobs), and some advanced typists work at speeds above 120 wpm.[9][10] Two-finger typists, sometimes also referred to as "hunt and peck" typists, commonly reach sustained speeds of about 37 wpm for memorized text and 27 wpm when copying text, but in bursts may be able to reach speeds of 60 to 70 wpm.[11] From the 1920s through the 1970s, typing speed (along with shorthand speed) was an important secretarial qualification and typing contests were popular and often publicized by typewriter companies as promotional tools.

A less common measure of the speed of a typist, CPM is used to identify the number of characters typed per minute. This is a common measurement for typing programs, or typing tutors, as it can give a more accurate measure of a person's typing speed without having to type for a prolonged period of time. The common conversion factor between WPM and CPM is 5. It is also used occasionally for associating the speed of a reader with the amount they have read. CPM has also been applied to 20th century printers, but modern faster printers more commonly use PPM (pages per minute).[citation needed]

216 words per minute, was achieved by Stella Pajunas-Garnand from Chicago in 1946 in one minute on an IBM electric[12][13][14][15] using the QWERTY keyboard layout.[16][17]

The Associated Press reported Barbara Blackburn achieving a speed of 194 wpm in October 1984 using the MasterType typing game[1].[18] In a January 1985 story in the Los Angeles Times, Blackburn said she had recently reached 196 wpm. During her Late Night appearance on January 24, 1985, she claimed to have achieved 170 wpm on minute tests, and 200 wpm using a computer.[19]: 1m07s  In May 1985, The Seattle Times reported that Blackburn said she had "attained speeds of 212 words a minute for a brief time" using an Apple computer keyboard and the Dvorak layout.

The recent emergence of several competitive typing websites has allowed fast typists on computer keyboards to emerge along with new records, though many of these are unverifiable. Some notable[citation needed], records include 255 wpm on a one-minute, random-word test by a user under the username slekap and occasionally bailey,[20] 213 wpm on a 1-hour, random-word test by Joshua Hu,[21] 221 wpm average on 10 random quotes by Joshua Hu,[22] and first place in the 2020 Ultimate Typing Championship by Anthony Ermollin based on an average of 180.88 wpm on texts of various lengths.[23][24] All of their records were set on the QWERTY keyboard layout.

The current fastest typist is 17 year old who goes by the username MythicalRocket, with a speed of 305 WPM for 15 seconds using QWERTY.[25][26]

Using a personalized interface, physicist Stephen Hawking, who suffered from amyotrophic lateral sclerosis, managed to type 15 wpm with a switch and adapted software created by Walt Woltosz. Due to a slowdown of his motor skills, his interface was upgraded with an infrared camera that detected "twitches in the cheek muscle under the eye."[27] His typing speed decreased to approximately one word per minute in the later part of his life.[28]

Numeric entry

[edit]

The numeric entry, or 10-key, speed is a measure of one's ability to manipulate a numeric keypad. Generally, it is measured in keystrokes per hour (KPH).

Text-entry research

[edit]

Error analysis

[edit]

With the introduction of computers and word-processors, there has been a change in how text-entry is performed. In the past, using a typewriter, speed was measured with a stopwatch and errors were tallied by hand. With the current technology, document preparation is more about using word-processors as a composition aid, changing the meaning of error rate and how it is measured. Research performed by R. William Soukoreff and I. Scott MacKenzie, has led to a discovery of the application of a well-known algorithm. Through the use of this algorithm and accompanying analysis technique, two statistics were used, minimum string distance error rate (MSD error rate) and keystrokes per character (KSPC). The two advantages of this technique include:

  • Participants are allowed to enter text naturally, since they may commit errors and correct them.
  • The identification of errors and generation of error rate statistics is easy to automate.

Deconstructing the text input process

[edit]

Through analysis of keystrokes, the keystrokes of the input stream were divided into four classes: Correct (C), Incorrect Fixed (IF), Fixes (F), and Incorrect Not Fixed (INF). These key stroke classification are broken down into the following

  • The two classes Correct and Incorrect Not Fixed comprise all of the characters in transcribed text.
  • Fixes (F) keystrokes are easy to identify, and include keystrokes such as backspace, delete, cursor movements, and modifier keys.
  • Incorrect Fixed (IF) keystrokes are found in the input stream, but not the transcribed text, and are not editing keys.

Using these classes, the Minimum String Distance Error Rate and the Key Strokes per Character statistics can both be calculated.

Minimum string distance error rate

[edit]

The minimum string distance (MSD) is the number of "primitives" which is the number of insertions, deletions, or substitutions to transform one string into another. The following equation was found for the MSD Error Rate.

MSD Error Rate =

Key strokes per character (KSPC)

[edit]

With the minimum string distance error, errors that are corrected do not appear in the transcribed text. The following example shows why this can be an important class of errors to consider:

Presented Text: the quick brown
Input Stream: the quix<-ck brown
Transcribed Text: the quick brown

In the above example, the incorrect character ('x') was deleted with a backspace ('<-'). Since these errors do not appear in the transcribed text, the MSD error rate is 0%. That is the purpose of the key strokes per character (KSPC) statistic.

KSPC =

There are some shortcomings of the KSPC statistic, such as:

  • High KSPC values can be related to either many errors which were corrected, or few errors which were not corrected; however, there is no way to distinguish the two.
  • KSPC depends on the text input method, and cannot be used to meaningfully compare two different input methods, such as a QWERTY keyboard and a multi-tap device.
  • There is no obvious way to combine KSPC and MSD into an overall error rate, even though they have an inverse relationship.

Further metrics

[edit]

Using the classes described above, further metrics were defined by R. William Soukoreff and I.Scott MacKenzie:

Error correction efficiency refers to the ease with which the participant performed error correction.

  • Correction Efficiency = IF/F

Participant conscientiousness is the ratio of corrected errors to the total number of error, which helps distinguish perfectionists from apathetic participants.

  • Participant Conscientiousness = IF / (IF + INF)

If C represents the amount of useful information transferred, INF, IF, and F represent the proportion of bandwidth wasted.

  • Utilized Bandwidth = C / (C + INF + IF + F)
  • Wasted Bandwidth = (INF + IF + F)/ (C + INF + IF + F)

Total error rate

[edit]

The classes described also provide an intuitive definition of total error rate:

  • Total Error Rate = ((INF + IF)/ (C + INF + IF)) * 100%
  • Not Corrected Error Rate = (INF/ (C + INF + IF)) * 100%
  • Corrected Error Rate = (IF/ (C + INF + IF)) * 100%

Since these three error rates are ratios, they are comparable between different devices, something that cannot be done with the KSPC statistic, which is device dependent.[29]

Tools for text entry research

[edit]

Currently, two tools are publicly available for text entry researchers to record text entry performance metrics. The first is TEMA[30] that runs only on the Android (operating system). The second is WebTEM that runs on any device with a modern Web browser, and works with almost all text entry technique.[31]

Keystroke dynamics

[edit]

Keystroke dynamics, or typing dynamics, is the obtaining of detailed timing information that describes exactly when each key was pressed and when it was released as a person is typing at a computer keyboard for biometric identification,[32] similar to speaker recognition.[33] Data needed to analyze keystroke dynamics is obtained by keystroke logging.

The behavioral biometric of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.[34]

See also

[edit]
War correspondent typing his dispatch in a wood outside Arnhem, 1944

References

[edit]
  1. ^ a b "World's First Typist". Wisconsin Historical Society. December 2003. Archived from the original on 2012-11-07. Retrieved 2010-09-11.
  2. ^ "Wisconsin History Facts". e-ReferenceDesk. Archived from the original on 2010-11-19. Retrieved 2010-09-11.
  3. ^ "Ten fingers not needed for fast typing, study shows". phys.org. Archived from the original on 2016-02-13. Retrieved 2016-02-13.
  4. ^ Feit, Anna Maria; Weir, Daryl; Oulasvirta, Antti (2016-05-07). "How We Type: Movement Strategies and Performance in Everyday Typing". Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. New York, NY, USA: Association for Computing Machinery. pp. 4262–4273. doi:10.1145/2858036.2858233. ISBN 978-1-4503-3362-7. Archived from the original on 2023-12-13. Retrieved 2023-12-13.
  5. ^ Blakely, Rhys (2 October 2019). "Thumbs up for speedy smartphone typists". The Times. Archived from the original on 7 February 2022. Retrieved 7 February 2022.
  6. ^ ""Smartphone thumb" is plaguing more people, doctors say". CBS News. 29 March 2017. Archived from the original on 7 February 2022. Retrieved 7 February 2022.
  7. ^ Eli MacKinnon (2016-08-01). "What's the Fastest Language to Type In?". livescience.com. Archived from the original on 2022-01-25. Retrieved 2022-01-25.
  8. ^ Karat, C.M.; Halverson, C.; Horn, D.; Karat, J. (1999), "Patterns of entry and correction in large vocabulary continuous speech recognition systems", CHI 99 Conference Proceedings, pp. 568–575
  9. ^ Ayres, Robert U; Martinás, Katalin (2005), "120 wpm for very skilled typist", On the Reappraisal of Microeconomics: Economic Growth and Change in a Material World, Cheltenham, UK & Northampton, Massachusetts: Edward Elgar Publishing, p. 41, ISBN 1-84542-272-4, retrieved 22 November 2010
  10. ^ Ostrach, Teresia R. (1997), Typing Speed: How Fast is Average (PDF), archived from the original (PDF) on 2012-05-02
  11. ^ Brown, C. M. (1988). Human-computer interface design guidelines. Norwood, NJ: Ablex Publishing.
  12. ^ "History of Typewriters | Big Site of Amazing Facts ®". Bigsiteofamazingfacts.com. 12 September 2007. Archived from the original on 2013-05-15. Retrieved 2012-06-13.
  13. ^ "World Records in Typing". Owled.com. 2006-09-02. Archived from the original on 2018-08-26. Retrieved 2012-06-13.
  14. ^ "IBM Archives: Typing posture". 03.ibm.com. 23 January 2003. Archived from the original on 2016-07-20. Retrieved 2012-06-13.
  15. ^ "Believe it or not ..." Deskstore.com. Archived from the original on 2020-08-07. Retrieved 2012-06-13.
  16. ^ Lowell (2017-03-15). "QWERTY vs Dvorak: The two great keyboards the time were born". Archived from the original on 2019-01-19. Retrieved 2019-01-19.
  17. ^ RetroFootage. "Miss Stella Pajunas, World's Fast Typist, Types On An Ibm Electric Typewriterƒ". Pond5.com. Archived from the original on 2019-01-19. Retrieved 2019-01-19.
  18. ^ Written at Tarrytown, New York. "Grandmother, 64, from Oregon sets her third world speed typing record". The Columbia Record. Columbia, South Carolina. Associated Press. January 5, 1985. Archived from the original on June 28, 2023. Retrieved June 28, 2023. This past October, using the software program, Master type, published by Scarborough Systems of Tarrytown, and a Dvorak keyboard, she broke her computer speed mark by typing at a rate of 194 words a minute.
  19. ^ The Great Typing Controversy on Letterman, January 24 and 28, 1985, May 6, 2016, archived from the original on August 16, 2022, retrieved August 16, 2022
  20. ^ 255 WPM Monkey Type 60s (World Record), 10 November 2021, archived from the original on 2022-05-05, retrieved 2022-05-05
  21. ^ Typing 213 wpm for an hour straight, 19 November 2021, archived from the original on 2022-05-05, retrieved 2022-05-05
  22. ^ "TypeRacer Race History". data.typeracer.com. Archived from the original on 2020-10-31. Retrieved 2022-05-05.
  23. ^ "Ultimate Typing Championship". ultimatetypingchampionship.com. Archived from the original on 2022-04-15. Retrieved 2022-05-05.
  24. ^ "Das Keyboard Announces Winners of the Ultimate Typing Championship 2020 and Crowns Best Typist on the Planet". www.businesswire.com. 2020-08-25. Archived from the original on 2022-05-05. Retrieved 2022-05-05.
  25. ^ "The World's Fastest Typist Is 17 Years Old, and His Next Trick Is Topping 305 Words Per Minute". PCMAG. Retrieved 2024-12-06.
  26. ^ "Test Your WPM Typing Speed for Free: Typists & World Records | AOLCC". Academy of Learning. 2022-07-28. Retrieved 2024-12-06.
  27. ^ "How Does Stephen Hawking Talk? (video)". Singularity Hub. 2010-05-03. Archived from the original on 2012-06-24. Retrieved 2012-06-13.
  28. ^ "The man who saves Stephen Hawking's voice". newscientist.com. Archived from the original on 2012-08-25. Retrieved 2017-09-17.
  29. ^ "Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and KSPC, and a new unified error metric. Proceedings of the ACM Conference on Human Factors in Computing Systems - CHI 2003, pp. 113-120. New York: ACM". Archived from the original on 2011-08-24. Retrieved 2013-05-16.
  30. ^ Castellucci, Steven J.; MacKenzie, I. Scott (2011-01-01). "Gathering text entry metrics on android devices". CHI '11 Extended Abstracts on Human Factors in Computing Systems. CHI EA '11. New York, NY, USA: ACM. pp. 1507–1512. doi:10.1145/1979742.1979799. ISBN 9781450302685. S2CID 2107842.
  31. ^ Arif, Ahmed Sabbir; Mazalek, Ali (2016-01-01). "WebTEM". Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces. ISS '16. New York, NY, USA: ACM. pp. 415–420. doi:10.1145/2992154.2996791. ISBN 9781450342483. S2CID 16022337.
  32. ^ "User authentication through typing biometrics features" (PDF). pku.edu.cn. Archived from the original (PDF) on 2014-03-04. Retrieved 2013-11-14.
  33. ^ Robert Moskovitch, Clint Feher, Arik Messerman, Niklas Kirschnick, Tarik Mustafic, Ahmet Camtepe, Bernhard Löhlein, Ulrich Heister, Sebastian Möller, Lior Rokach, Yuval Elovici (2009). Identity theft, computers and behavioral biometrics (PDF). Proceedings of the IEEE International Conference on Intelligence and Security Informatics. pp. 155–160. Archived (PDF) from the original on 2013-09-27. Retrieved 2013-11-14.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  34. ^ "Continuous authentication by analysis of keyboard typing characteristics - IET Conference Publication". May 1995: 111–114. doi:10.1049/cp:19950480. Archived from the original on 2020-10-01. Retrieved 2019-12-07. {{cite journal}}: Cite journal requires |journal= (help)
[edit]
  • Media related to Typing at Wikimedia Commons