Transfer function: Difference between revisions
Sentence structure |
Fgnievinski (talk | contribs) |
||
(418 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Function specifying the behavior of a component in an electronic or control system}} |
|||
:''For "transfer function" as used in computer graphics, see [[lookup table]].'' |
|||
{{distinguish|Transformation (function)}} |
|||
A '''transfer function''' is a mathematical representation of the relation between the input and output of a [[system analysis|system]]. |
|||
In [[engineering]], a '''transfer function''' (also known as '''system function'''<ref>[[Bernd Girod]], Rudolf Rabenstein, Alexander Stenger, ''Signals and systems'', 2nd ed., Wiley, 2001, {{ISBN|0-471-98800-6}} p. 50</ref> or '''network function''') of a system, sub-system, or component is a [[function (mathematics)|mathematical function]] that [[mathematical model|models]] the system's output for each possible input.<ref name="LaughtonWarne2002">{{cite book|author1=M. A. Laughton|author2=D.F. Warne|title=Electrical Engineer's Reference Book|date=27 September 2002|publisher=Newnes|isbn=978-0-08-052354-5|pages=14/9–14/10|edition=16}}</ref><ref name="Parr1993">{{cite book|author=E. A. Parr|title=Logic Designer's Handbook: Circuits and Systems|year=1993|publisher=Newness|isbn=978-1-4832-9280-9|pages=65–66|edition=2nd}}</ref><ref name="SinclairDunton2007">{{cite book|author1=Ian Sinclair|author2=John Dunton|title=Electronic and Electrical Servicing: Consumer and Commercial Electronics|year=2007|publisher=Routledge|isbn=978-0-7506-6988-7|page=172}}</ref> It is widely used in [[electronic engineering]] tools like [[Electronic circuit simulation|circuit simulators]] and [[control system]]s. In simple cases, this function can be represented as a two-dimensional [[graph (function)|graph]] of an independent [[scalar (mathematics)|scalar]] input versus the dependent scalar output (known as a '''transfer curve''' or '''characteristic curve'''). Transfer functions for components are used to design and analyze systems assembled from components, particularly using the [[block diagram]] technique, in electronics and [[control theory]]. |
|||
== Explanation == |
|||
Dimensions and units of the transfer function model the output response of the device for a range of possible inputs. The transfer function of a [[two-port]] electronic circuit, such as an [[amplifier]], might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical [[actuator]] might be the mechanical displacement of the movable arm as a function of electric current applied to the device; the transfer function of a [[photodetector]] might be the output voltage as a function of the [[luminous intensity]] of incident light of a given [[wavelength]]. |
|||
The transfer function is commonly used in the analysis of single-input single-output [[analog circuit|analog electronic circuits]], for instance. It is mainly used in [[signal processing]], [[communication theory]], and [[control theory]]. The term is often used exclusively to refer to [[LTI system|linear, time-invariant systems]] (LTI), as covered in this article. Most real systems have [[non-linear]] input/output characteristics, but many systems, when operated within nominal parameters (not "over-driven") have behavior that is close enough to linear that [[LTI system theory]] is an acceptable representation of the input/output behavior. |
|||
The term "transfer function" is also used in the [[frequency domain]] analysis of systems using transform methods, such as the [[Laplace transform]]; it is the [[amplitude]] of the output as a function of the [[frequency]] of the input signal. The transfer function of an [[electronic filter]] is the amplitude at the output as a function of the frequency of a constant amplitude [[sine wave]] applied to the input. For optical imaging devices, the [[optical transfer function]] is the [[Fourier transform]] of the [[point spread function]] (a function of [[spatial frequency]]). |
|||
In its simplest form for [[continuous-time]] input signal ''x''(''t'') and output ''y''(''t''), the transfer function is the linear mapping of the [[Laplace transform]] of the input, ''X''(''s''), to the output ''Y''(''s'')): |
|||
== Linear time-invariant systems == |
|||
:<math> Y(s) = H(s) \, X(s) </math> |
|||
Transfer functions are commonly used in the analysis of systems such as [[single-input single-output]] [[Filter (signal processing)|filter]]s in [[signal processing]], [[communication theory]], and [[control theory]]. The term is often used exclusively to refer to [[linear time-invariant]] (LTI) systems. Most real systems have [[non-linear]] input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that [[LTI system theory]] is an acceptable representation of their input-output behavior. |
|||
or |
|||
:<math> H(s) = \frac{Y(s)} {X(s)} </math> |
|||
=== Continuous-time === |
|||
where H(s) is the transfer function of the LTI system. |
|||
Descriptions are given in terms of a [[complex variable]], <math>s = \sigma + j \cdot \omega</math>. In many applications it is sufficient to set <math>\sigma=0</math> (thus <math>s = j \cdot \omega</math>), which reduces the [[Laplace transform]]s with complex arguments to [[Fourier transform]]s with the real argument ω. This is common in applications primarily interested in the LTI system's steady-state response (often the case in [[signal processing]] and [[communication theory]]), not the fleeting turn-on and turn-off [[transient response]] or stability issues. |
|||
For [[continuous-time]] input signal <math>x(t)</math> and output <math>y(t)</math>, dividing the Laplace transform of the output, <math>Y(s) = \mathcal{L}\left\{y(t)\right\}</math>, by the Laplace transform of the input, <math>X(s) = \mathcal{L}\left\{x(t)\right\}</math>, yields the system's transfer function <math>H(s)</math>: |
|||
In [[discrete-time]] systems, the function is similarly written as <math>H(z) = \frac{Y(z)}{X(z)}</math> (see [[Z transform]]). |
|||
:<math> H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} } </math> |
|||
which can be rearranged as: |
|||
:<math> Y(s) = H(s)\;X(s) \, . </math> |
|||
=== Discrete-time === |
|||
==Signal processing== |
|||
{{See also|Z-transform#Linear constant-coefficient difference equation}} |
|||
[[Discrete-time]] signals may be notated as arrays indexed by an [[integer]] <math>n</math> (e.g. <math>x[n]</math> for input and <math>y[n]</math> for output). Instead of using the Laplace transform (which is better for continuous-time signals), discrete-time signals are dealt with using the [[z-transform]] (notated with a corresponding capital letter, like <math>X(z)</math> and <math>Y(z)</math>), so a discrete-time system's transfer function can be written as: |
|||
<math display="block">H(z) = \frac{Y(z)}{X(z)} = \frac{\mathcal{Z}\{y[n]\}}{\mathcal{Z}\{x[n]\}}.</math> |
|||
Let <math> x(t) \ </math> be the input to a general [[LTI system theory|linear time-invariant system]], and <math> y(t) \ </math> be the output, and the [[Laplace transform]] of <math> x(t) \ </math> and <math> y(t) \ </math> be |
|||
=== Direct derivation from differential equations === |
|||
: <math> X(s) = \mathcal{L}\left \{ x(t) \right \} \equiv \int_{-\infty}^{\infty} x(t) e^{-st}\, dt </math> |
|||
A [[linear differential equation]] with constant coefficients |
|||
: |
:<math> L[u] = \frac{d^nu}{dt^n} + a_1\frac{d^{n-1}u}{dt^{n-1}} + \dotsb + a_{n-1}\frac{du}{dt} + a_nu = r(t) </math> |
||
where ''u'' and ''r'' are suitably smooth functions of ''t'', and ''L'' is the operator defined on the relevant function space transforms ''u'' into ''r''. That kind of equation can be used to constrain the output function ''u'' in terms of the ''forcing'' function ''r''. The transfer function can be used to define an operator <math>F[r] = u </math> that serves as a right inverse of ''L'', meaning that <math>L[F[r]] = r</math>. |
|||
Then the output is related to the input by the '''transfer function''' <math> H(s) \ </math> as |
|||
Solutions of the homogeneous [[Linear differential equation#Homogeneous equations with constant coefficients|constant-coefficient differential equation]] <math>L[u] = 0</math> can be found by trying <math>u = e^{\lambda t}</math>. That substitution yields the [[Characteristic equation (calculus)|characteristic polynomial]] |
|||
:: <math> Y(s) = H(s) X(s) \, </math> |
|||
:<math> p_L(\lambda) = \lambda^n + a_1\lambda^{n-1} + \dotsb + a_{n-1}\lambda + a_n\,</math> |
|||
and the transfer function itself is therefore |
|||
The inhomogeneous case can be easily solved if the input function ''r'' is also of the form <math>r(t) = e^{s t}</math>. By substituting <math>u = H(s)e^{s t}</math>, <math>L[H(s) e^{s t}] = e^{s t}</math> if we define |
|||
:: <math> H(s) = \frac{Y(s)} {X(s)} </math> . |
|||
:<math>H(s) = \frac{1}{p_L(s)} \qquad\text{wherever }\quad p_L(s) \neq 0.</math> |
|||
In particular, if a [[complex number|complex]] [[harmonic]] [[signal (information theory)|signal]] with a [[sinusoidal]] component with [[amplitude]] <math>|X| \ </math>, [[angular frequency]] <math>\omega \ </math> and [[Phase (waves)|phase]] <math>\arg(X) \ </math> |
|||
Other definitions of the transfer function are used, for example <math>1/p_L(ik) .</math><ref>{{cite book |title= Ordinary differential equations|last= Birkhoff |first= Garrett|author2=Rota, Gian-Carlo |year=1978|publisher=John Wiley & Sons |location= New York|isbn= 978-0-471-05224-1}}{{page needed|date=April 2013}}</ref> |
|||
:<math> x(t) = Xe^{j\omega t} = |X|e^{j(\omega t + \arg(X))} </math> |
|||
=== Gain, transient behavior and stability === |
|||
:where <math> X = |X|e^{j\arg(X)} </math> |
|||
A general sinusoidal input to a system of frequency <math> \omega_0 / (2\pi)</math> may be written <math>\exp( j \omega_0 t )</math>. The response of a system to a sinusoidal input beginning at time <math>t=0</math> will consist of the sum of the steady-state response and a transient response. The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the [[differential equation]]. The transfer function for an LTI system may be written as the product: |
|||
is input to a [[linear]] time-invariant system, then the corresponding component in the output is: |
|||
:<math> |
|||
:<math> y(t) = Ye^{j\omega t} = |Y|e^{j(\omega t + \arg(Y))} </math> |
|||
H(s)=\prod_{i=1}^N \frac{1}{s-s_{P_i}} |
|||
</math> |
|||
where ''s<sub>P<sub>i</sub></sub>'' are the ''N'' roots of the characteristic polynomial and will be the [[Pole (complex analysis)|poles]] of the transfer function. In a transfer function with a single pole <math>H(s)=\frac{1}{s-s_P}</math> where <math>s_P = \sigma_P+j \omega_P</math>, the Laplace transform of a general sinusoid of unit amplitude will be <math>\frac{1}{s-j\omega_i}</math>. The Laplace transform of the output will be <math>\frac{H (s)}{s-j \omega_0}</math>, and the temporal output will be the inverse Laplace transform of that function: |
|||
:and <math> Y = |Y|e^{j\arg(Y)} </math>. |
|||
:<math> |
|||
Note that, in a linear time-invariant system, the input frequency <math> \omega \ </math> has not changed, only the amplitude and the phase angle of the sinusoid has been changed by the system. The [[frequency response]] <math> H(j \omega) \ </math> describes this change for every frequency <math> \omega \ </math> in terms of ''gain'': |
|||
g(t)=\frac{e^{j\,\omega_0\,t}-e^{(\sigma_P+j\,\omega_P)t}}{-\sigma_P+j (\omega_0-\omega_P)} |
|||
</math> |
|||
The second term in the numerator is the transient response, and in the limit of infinite time it will diverge to infinity if ''σ<sub>P</sub>'' is positive. For a system to be stable, its transfer function must have no poles whose real parts are positive. If the transfer function is strictly stable, the real parts of all poles will be negative and the transient behavior will tend to zero in the limit of infinite time. The steady-state output will be: |
|||
:<math>G(\omega) = \frac{|Y|}{|X|} = |H(j \omega)| \ </math> |
|||
:<math> |
|||
and ''phase shift'': |
|||
g(\infty)=\frac{e^{j\, \omega_0\,t}}{-\sigma_P+j (\omega_0-\omega_P)} |
|||
</math> |
|||
The [[frequency response]] (or "gain") ''G'' of the system is defined as the absolute value of the ratio of the output amplitude to the steady-state input amplitude: |
|||
:<math>\phi(\omega) = \arg(Y) - \arg(X) = \arg( H(j \omega))</math>. |
|||
:<math> |
|||
The [[phase delay]] (i.e., the frequency-dependent amount of delay to the sinusoid introduced by the transfer function) is: |
|||
G(\omega_i)=\left|\frac{1}{-\sigma_P+j (\omega_0-\omega_P)}\right|=\frac{1}{\sqrt{\sigma_P^2+(\omega_P-\omega_0)^2}}, |
|||
</math> |
|||
which is the absolute value of the transfer function <math> H(s) </math> evaluated at <math> j\omega_i </math>. This result is valid for any number of transfer-function poles. |
|||
:<math>\tau_{\phi}(\omega) = -\begin{matrix}\frac{\phi(\omega)}{\omega}\end{matrix}</math>. |
|||
==Signal processing== |
|||
The [[group delay]] (i.e., the frequency-dependent amount of delay to the envelope of the sinusoid introduced by the transfer function) is found by computing the derivative of the phase shift with respect to angular frequency <math> \omega \ </math>, |
|||
If <math> x(t) </math> is the input to a general [[LTI system theory|linear time-invariant system]], and <math> y(t) </math> is the output, and the [[bilateral Laplace transform]] of <math> x(t) </math> and <math> y(t) </math> is |
|||
: <math>\begin{align} |
|||
:<math>\tau_{g}(\omega) = -\begin{matrix}\frac{d\phi(\omega)}{d\omega}\end{matrix}</math>. |
|||
X(s) &= \mathcal{L}\left \{ x(t) \right \} \ \stackrel{\mathrm{def}}{=}\ \int_{-\infty}^{\infty} x(t) e^{-st}\, dt, \\ |
|||
Y(s) &= \mathcal{L}\left \{ y(t) \right \} \ \stackrel{\mathrm{def}}{=}\ \int_{-\infty}^{\infty} y(t) e^{-st}\, dt. |
|||
\end{align}</math> |
|||
The output is related to the input by the transfer function <math> H(s) </math> as |
|||
The transfer function can also be shown using the [[Fourier transform]] which is only a special case of the bilateral [[Laplace transform]] for the case where <math> s = j \omega </math>. |
|||
: <math> Y(s) = H(s) X(s) </math> |
|||
==Control engineering== |
|||
and the transfer function itself is |
|||
: <math> H(s) = \frac{Y(s)} {X(s)}. </math> |
|||
The transfer function was the primary tool used in classical control engineering. However, it has proven to be unwieldy for the analysis of multiple-input multiple-output (MIMO) systems, and has been largely supplanted by [[state space (controls)|state space]] representations for such systems. In spite of this, a '''transfer matrix''' can be always obtained for any linear system, in order to analyze its dynamics and other properties: each element of a transfer matrix is a transfer function relating a particular input variable to an output variable. |
|||
If a [[complex number|complex]] [[harmonic]] [[signal (information theory)|signal]] with a [[sinusoidal]] component with [[amplitude]] <math>|X|</math>, [[angular frequency]] <math>\omega</math> and [[Phase (waves)|phase]] <math>\arg(X)</math>, where arg is the [[Argument (complex analysis)|argument]] |
|||
==Optics== |
|||
:<math> x(t) = Xe^{j\omega t} = |X|e^{j(\omega t + \arg(X))} </math> |
|||
In [[optics]] the '''modulation transfer function''' describes the ability of an optical system to transfer contrast. |
|||
:where <math> X = |X|e^{j\arg(X)} </math> |
|||
For example, if a series of alternating white and black bars is drawn at a specific spatial frequency, when these bars are observed, the image will be somewhat degraded. The white bars may appear somewhat darker and the black bars will be somewhat lighter. |
|||
is input to a [[linear]] time-invariant system, the corresponding component in the output is: |
|||
By definition, the modulation transfer function at a given spatial frequency is defined as follows: |
|||
:<math>\begin{align} |
|||
: <math> \mathrm{MTF}(f) = \frac{M(\mathrm{image})} {M(\mathrm{source})}</math> |
|||
y(t) &= Ye^{j\omega t} = |Y|e^{j(\omega t + \arg(Y))}, \\ |
|||
Y &= |Y|e^{j\arg(Y)}. |
|||
\end{align}</math> |
|||
In a linear time-invariant system, the input frequency <math> \omega </math> has not changed; only the amplitude and phase angle of the sinusoid have been changed by the system. The [[frequency response]] <math> H(j \omega) </math> describes this change for every frequency <math> \omega </math> in terms of gain |
|||
Where the modulation (M), is derived from the Luminance (L) of either the image or the source as follows: |
|||
: |
:<math>G(\omega) = \frac{|Y|}{|X|} = |H(j \omega)| </math> |
||
and phase shift |
|||
:<math>\phi(\omega) = \arg(Y) - \arg(X) = \arg( H(j \omega)).</math> |
|||
The [[phase delay]] (the frequency-dependent amount of delay introduced to the sinusoid by the transfer function) is |
|||
:<math>\tau_{\phi}(\omega) = -\frac{\phi(\omega)}{\omega}.</math> |
|||
The [[group delay]] (the frequency-dependent amount of delay introduced to the envelope of the sinusoid by the transfer function) is found by computing the derivative of the phase shift with respect to angular frequency <math> \omega </math>, |
|||
:<math>\tau_{g}(\omega) = -\frac{d\phi(\omega)}{d\omega}.</math> |
|||
The transfer function can also be shown using the [[Fourier transform]], a special case of [[bilateral Laplace transform]] where <math> s = j \omega </math>. |
|||
=== {{anchor|Common transfer function families}}Common transfer-function families === |
|||
Although any LTI system can be described by some transfer function, "families" of special transfer functions are commonly used: |
|||
* [[Butterworth filter]] – maximally flat in passband and stopband for the given order |
|||
* [[Chebyshev filter|Chebyshev filter (Type I)]] – maximally flat in stopband, sharper cutoff than a Butterworth filter of the same order |
|||
* Chebyshev filter (Type II) – maximally flat in passband, sharper cutoff than a Butterworth filter of the same order |
|||
* [[Bessel filter]] – maximally constant [[group delay]] for a given order |
|||
* [[Elliptic filter]] – sharpest cutoff (narrowest transition between passband and stopband) for the given order |
|||
* [[Optimum "L" filter]] |
|||
* [[Gaussian filter]] – minimum group delay; gives no overshoot to a step function |
|||
* [[Raised-cosine filter]] |
|||
==Control engineering== |
|||
In [[control engineering]] and [[control theory]], the transfer function is derived with the [[Laplace transform]]. The transfer function was the primary tool used in classical control engineering. A [[transfer function matrix|transfer matrix]] can be obtained for any linear system to analyze its dynamics and other properties; each element of a transfer matrix is a transfer function relating a particular input variable to an output variable. A representation bridging [[state space]] and transfer function methods was proposed by [[Howard Harry Rosenbrock|Howard H. Rosenbrock]], and is known as the [[Rosenbrock system matrix]]. |
|||
== Imaging == |
|||
{{Main|Transfer functions in imaging}} |
|||
In [[imaging]], transfer functions are used to describe the relationship between the scene light, the image signal and the displayed light. |
|||
== Non-linear systems == |
|||
Transfer functions do not exist for many [[nonlinear control|non-linear systems]], such as [[relaxation oscillator]]s;<ref name="Dehaene">{{cite book|author=Valentijn De Smedt, Georges Gielen and Wim Dehaene|title=Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks|publisher=Springer|isbn=978-3-319-09003-0|page=47|year=2015}}</ref> however, [[describing function]]s can sometimes be used to approximate such nonlinear time-invariant systems. |
|||
==See also== |
==See also== |
||
{{div col |colwidth=14em |content= |
|||
* [[Analog computer]] |
|||
* [[Black box]] |
|||
* [[Bode plot]] |
* [[Bode plot]] |
||
* [[ |
* [[Convolution]] |
||
* [[Duhamel's principle]] |
|||
* [[Frequency response]] |
* [[Frequency response]] |
||
* [[ |
* [[Impulse response]] |
||
* [[ |
* [[Laplace transform]] |
||
* [[Linear time-invariant system|LTI system theory]] |
|||
* [[Nyquist plot]] |
|||
* [[Operational amplifier]] |
|||
* [[Optical transfer function]] |
|||
* [[Proper transfer function]] |
|||
* [[Rosenbrock system matrix]] |
|||
* [[Semi-log plot]] |
|||
* [[Signal-flow graph]] |
|||
* [[Signal transfer function]] |
|||
}} |
|||
[[Category:Electrical circuits]] |
|||
[[Category:Signal processing]] |
|||
[[Category:Control theory]] |
|||
[[Category:Cybernetics]] |
|||
== References == |
|||
[[ar:دالة تحويل]] |
|||
{{reflist|25em}} |
|||
[[de:Übertragungsfunktion]] |
|||
[[fr:Fonction de transfert]] |
|||
==External links== |
|||
[[it:Funzione di trasferimento]] |
|||
* [http://www.tedpavlic.com/teaching/osu/ece209/support/circuits_sys_review.pdf ECE 209: Review of Circuits as LTI Systems] — Short primer on the mathematical analysis of (electrical) LTI systems. |
|||
[[nl:Transferfunctie]] |
|||
[[ja:伝達関数法]] |
|||
{{Authority control}} |
|||
[[pl:Transmitancja operatorowa]] |
|||
[[ru:Передаточная функция]] |
|||
[[Category:Electrical circuits]] |
|||
[[uk:Передавальна функція]] |
|||
[[Category:Transfer functions| ]] |
|||
[[zh:传递函数]] |
|||
[[Category:Frequency-domain analysis]] |
|||
[[Category:Types of functions]] |
Latest revision as of 15:49, 28 October 2024
In engineering, a transfer function (also known as system function[1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input.[2][3][4] It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output (known as a transfer curve or characteristic curve). Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.
Dimensions and units of the transfer function model the output response of the device for a range of possible inputs. The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric current applied to the device; the transfer function of a photodetector might be the output voltage as a function of the luminous intensity of incident light of a given wavelength.
The term "transfer function" is also used in the frequency domain analysis of systems using transform methods, such as the Laplace transform; it is the amplitude of the output as a function of the frequency of the input signal. The transfer function of an electronic filter is the amplitude at the output as a function of the frequency of a constant amplitude sine wave applied to the input. For optical imaging devices, the optical transfer function is the Fourier transform of the point spread function (a function of spatial frequency).
Linear time-invariant systems
[edit]Transfer functions are commonly used in the analysis of systems such as single-input single-output filters in signal processing, communication theory, and control theory. The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.
Continuous-time
[edit]Descriptions are given in terms of a complex variable, . In many applications it is sufficient to set (thus ), which reduces the Laplace transforms with complex arguments to Fourier transforms with the real argument ω. This is common in applications primarily interested in the LTI system's steady-state response (often the case in signal processing and communication theory), not the fleeting turn-on and turn-off transient response or stability issues.
For continuous-time input signal and output , dividing the Laplace transform of the output, , by the Laplace transform of the input, , yields the system's transfer function :
which can be rearranged as:
Discrete-time
[edit]Discrete-time signals may be notated as arrays indexed by an integer (e.g. for input and for output). Instead of using the Laplace transform (which is better for continuous-time signals), discrete-time signals are dealt with using the z-transform (notated with a corresponding capital letter, like and ), so a discrete-time system's transfer function can be written as:
Direct derivation from differential equations
[edit]A linear differential equation with constant coefficients
where u and r are suitably smooth functions of t, and L is the operator defined on the relevant function space transforms u into r. That kind of equation can be used to constrain the output function u in terms of the forcing function r. The transfer function can be used to define an operator that serves as a right inverse of L, meaning that .
Solutions of the homogeneous constant-coefficient differential equation can be found by trying . That substitution yields the characteristic polynomial
The inhomogeneous case can be easily solved if the input function r is also of the form . By substituting , if we define
Other definitions of the transfer function are used, for example [5]
Gain, transient behavior and stability
[edit]A general sinusoidal input to a system of frequency may be written . The response of a system to a sinusoidal input beginning at time will consist of the sum of the steady-state response and a transient response. The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:
where sPi are the N roots of the characteristic polynomial and will be the poles of the transfer function. In a transfer function with a single pole where , the Laplace transform of a general sinusoid of unit amplitude will be . The Laplace transform of the output will be , and the temporal output will be the inverse Laplace transform of that function:
The second term in the numerator is the transient response, and in the limit of infinite time it will diverge to infinity if σP is positive. For a system to be stable, its transfer function must have no poles whose real parts are positive. If the transfer function is strictly stable, the real parts of all poles will be negative and the transient behavior will tend to zero in the limit of infinite time. The steady-state output will be:
The frequency response (or "gain") G of the system is defined as the absolute value of the ratio of the output amplitude to the steady-state input amplitude:
which is the absolute value of the transfer function evaluated at . This result is valid for any number of transfer-function poles.
Signal processing
[edit]If is the input to a general linear time-invariant system, and is the output, and the bilateral Laplace transform of and is
The output is related to the input by the transfer function as
and the transfer function itself is
If a complex harmonic signal with a sinusoidal component with amplitude , angular frequency and phase , where arg is the argument
- where
is input to a linear time-invariant system, the corresponding component in the output is:
In a linear time-invariant system, the input frequency has not changed; only the amplitude and phase angle of the sinusoid have been changed by the system. The frequency response describes this change for every frequency in terms of gain
and phase shift
The phase delay (the frequency-dependent amount of delay introduced to the sinusoid by the transfer function) is
The group delay (the frequency-dependent amount of delay introduced to the envelope of the sinusoid by the transfer function) is found by computing the derivative of the phase shift with respect to angular frequency ,
The transfer function can also be shown using the Fourier transform, a special case of bilateral Laplace transform where .
Common transfer-function families
[edit]Although any LTI system can be described by some transfer function, "families" of special transfer functions are commonly used:
- Butterworth filter – maximally flat in passband and stopband for the given order
- Chebyshev filter (Type I) – maximally flat in stopband, sharper cutoff than a Butterworth filter of the same order
- Chebyshev filter (Type II) – maximally flat in passband, sharper cutoff than a Butterworth filter of the same order
- Bessel filter – maximally constant group delay for a given order
- Elliptic filter – sharpest cutoff (narrowest transition between passband and stopband) for the given order
- Optimum "L" filter
- Gaussian filter – minimum group delay; gives no overshoot to a step function
- Raised-cosine filter
Control engineering
[edit]In control engineering and control theory, the transfer function is derived with the Laplace transform. The transfer function was the primary tool used in classical control engineering. A transfer matrix can be obtained for any linear system to analyze its dynamics and other properties; each element of a transfer matrix is a transfer function relating a particular input variable to an output variable. A representation bridging state space and transfer function methods was proposed by Howard H. Rosenbrock, and is known as the Rosenbrock system matrix.
Imaging
[edit]In imaging, transfer functions are used to describe the relationship between the scene light, the image signal and the displayed light.
Non-linear systems
[edit]Transfer functions do not exist for many non-linear systems, such as relaxation oscillators;[6] however, describing functions can sometimes be used to approximate such nonlinear time-invariant systems.
See also
[edit]- Analog computer
- Black box
- Bode plot
- Convolution
- Duhamel's principle
- Frequency response
- Impulse response
- Laplace transform
- LTI system theory
- Nyquist plot
- Operational amplifier
- Optical transfer function
- Proper transfer function
- Rosenbrock system matrix
- Semi-log plot
- Signal-flow graph
- Signal transfer function
References
[edit]- ^ Bernd Girod, Rudolf Rabenstein, Alexander Stenger, Signals and systems, 2nd ed., Wiley, 2001, ISBN 0-471-98800-6 p. 50
- ^ M. A. Laughton; D.F. Warne (27 September 2002). Electrical Engineer's Reference Book (16 ed.). Newnes. pp. 14/9–14/10. ISBN 978-0-08-052354-5.
- ^ E. A. Parr (1993). Logic Designer's Handbook: Circuits and Systems (2nd ed.). Newness. pp. 65–66. ISBN 978-1-4832-9280-9.
- ^ Ian Sinclair; John Dunton (2007). Electronic and Electrical Servicing: Consumer and Commercial Electronics. Routledge. p. 172. ISBN 978-0-7506-6988-7.
- ^ Birkhoff, Garrett; Rota, Gian-Carlo (1978). Ordinary differential equations. New York: John Wiley & Sons. ISBN 978-0-471-05224-1.[page needed]
- ^ Valentijn De Smedt, Georges Gielen and Wim Dehaene (2015). Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks. Springer. p. 47. ISBN 978-3-319-09003-0.
External links
[edit]- ECE 209: Review of Circuits as LTI Systems — Short primer on the mathematical analysis of (electrical) LTI systems.