Jump to content

RKM code: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Riom (talk | contribs)
{{anchor|Temperature code}}Temperature coefficient code: Added resistor temperature coefficient codes
m Change from U+00B5 "micro sign" (µ) to U+03BC "Greek small letter mu" (μ) for Unicode standard and MOS:UNITS compliance / convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
 
(136 intermediate revisions by 30 users not shown)
Line 1: Line 1:
{{Short description|Notation to specify resistor and capacitor values}}
The '''letter and digit<!-- also: numeral --> code for [[electrical resistance|resistance]] and [[capacitance]] values and tolerances''', which is also known as '''RKM code''' or "R notation", is a notation to specify [[resistor]] and [[capacitor]] values defined in the international standard '''IEC 60062''' (formerly '''IEC 62''') since 1952. It is also adopted by various other standards including '''DIN 40825''' (1973), '''BS 1852''' (1974), '''IS 8186''' (1976) and '''EN 60062''' (1993). The significantly updated '''IEC 60062:2016''' comprises the most recent release of the standard.
{{Use dmy dates|date=May 2019|cs1-dates=y}}
{{Use list-defined references|date=December 2021}}
The '''RKM code''',<ref name="IEC_60062_2016"/> also referred to as "letter and numeral code for [[electrical resistance|resistance]] and [[capacitance]] values and [[Electrical component tolerance|tolerance]]s",<ref name="IEC_60062_2016"/> "letter and digit code for resistance and capacitance values and tolerances",<ref name="IEC_60062_2004"/><ref name="IET_2016"/> or informally as "R notation"<ref name="Huster_2003"/><ref name="VAJ_2016"/><ref name="SE_2016"/><ref name="Bahn_2017"/><ref name="SQA_2018"/><ref name="PE"/> is a notation to specify [[resistor]] and [[capacitor]] values defined in the international standard [[International Electrotechnical Commission|IEC]]&nbsp;60062 (formerly IEC&nbsp;62) since 1952. Other standards including [[Deutsches Institut für Normung|DIN]]&nbsp;40825 (1973), [[British Standard|BS]]&nbsp;1852 (1975),<ref name="BS_1852_1975"/> [[Indian Standard|IS]]&nbsp;8186 (1976), and [[Euronorm|EN]]&nbsp;60062 (1993) have also accepted it. The updated IEC&nbsp;60062:2016,<ref name="IEC_60062_2016"/> amended in 2019, comprises the most recent release of the standard.


==Overview==
==Overview==
Originally meant also as part [[marking code]], this shorthand notation is widely used in [[electrical engineering]] to denote the values of resistors and capacitors in [[circuit diagram]]s and in the production of [[electronic circuit]]s (for example in [[bills of material]] and in [[silk screen]]s). This method avoids overlooking the [[decimal separator]], which may not be rendered reliably on components or when duplicating documents.
Originally meant also as part marking code, this shorthand notation is widely used in [[electrical engineering]] to denote the values of resistors and capacitors in [[circuit diagram]]s and in the production of [[electronic circuit]]s (for example in [[bills of material]] and in [[silk screen]]s). This method avoids overlooking the [[decimal separator]], which may not be rendered reliably on components or when duplicating documents.


The standards also define a ''[[color code for fixed resistors]]''.
The standards also define a ''[[color code for fixed resistors]]''.


==Part value code==
==Part value code==
For brevity, the notation omits to always specify the unit (ohm or farad) explicitly and instead relies on implicit knowledge raised from the usage of specific letters either only for resistors or for capacitors,<ref group="nb" name="NB_Letter-M"/> the case used (uppercase letters are typically used for resistors, lowercase letters for capacitors),<ref group="nb" name="NB_Letter-Case"/> a part's appearance, and the context.

The notation also avoids using a [[decimal separator]] and replaces it by a letter associated with the prefix symbol for the particular value.

This is not only for brevity (for example when printed on the part or PCB), but also to circumvent the problem that decimal separators tend to "disappear" when [[photocopy]]ing printed circuit diagrams.

The code letters are loosely related to the corresponding [[SI prefix]], but there are several exceptions, where the capitalization differs or alternative letters are used.

For example, <tt>8K2</tt> indicates a resistor value of 8.2&nbsp;kΩ. Additional zeros imply tighter tolerance, for example <tt>15M0</tt>.

When the value can be expressed without the need for a prefix, an "R" is used instead of the decimal separator. For example, <tt>1R2</tt> indicates 1.2&nbsp;Ω, and <tt>18R</tt> indicates 18&nbsp;Ω.
{| class="wikitable floatright"
{| class="wikitable floatright"
|+Examples of resistance values
|+Examples of resistance values<ref name="ETB_2010"/>
|-
|-
| R47
| R47
Line 31: Line 23:
|-
|-
| 4K7
| 4K7
| 4.7 kiloohm
| 4.7 kilohm
|-
|-
| 47K
| 47K
| 47 kiloohm
| 47 kilohm
|-
|-
| 47K3
| 47K3
| 47.3 kiloohm
| 47.3 kilohm
|-
|-
| 470K
| 470K
| 470 kiloohm
| 470 kilohm
|-
|-
| 4M7
| 4M7
| 4.7 megaohm
| 4.7 megohm
|-
|-
|}
|}
For brevity, the notation omits to always specify the unit ([[ohm]] or [[farad]]) explicitly and instead relies on implicit knowledge raised from the usage of specific letters either only for resistors or for capacitors,<ref group="nb" name="NB_Letter-M"/> the case used (uppercase letters are typically used for resistors, lowercase letters for capacitors),<ref group="nb" name="NB_Letter-Case"/> a part's appearance, and the context.

The notation also avoids using a [[decimal separator]] and replaces it by a letter associated with the prefix symbol for the particular value.<ref group="nb" name="NB_DecimalSeparator"/>

This is not only for brevity (for example when printed on the part or PCB), but also to circumvent the problem that decimal separators tend to "disappear" when [[photocopy]]ing printed circuit diagrams.

Another advantage is the easier sortability of values which helps to optimize the [[bill of materials]] by combining similar part values to improve maintainability and reduce costs.<ref group="nb" name="NB_Sortability"/>

The code letters are loosely related to the corresponding [[SI prefix]], but there are several exceptions, where the capitalization differs or alternative letters are used.

For example, <code>8K2</code> indicates a resistor value of 8.2&nbsp;kΩ. Additional zeros imply tighter tolerance, for example <code>15M0</code>.

When the value can be expressed without the need for a prefix, an "R" or "F" is used instead of the decimal separator. For example, <code>1R2</code> indicates 1.2&nbsp;Ω, and <code>18R</code> indicates 18&nbsp;Ω.

{|class="wikitable"
{|class="wikitable"
|-
|-
! colspan="2"|Code letter
! colspan="2"|Code letter
! colspan="2"|Prefix
! colspan="2"|[[SI prefix]]
! colspan="3"|Multiplier
! colspan="2"|Multiplier<ref name="Tooley_2011"/>
|-
|-
! Resistance <nowiki>[</nowiki>[[Ohm (unit)|Ω]]<nowiki>]</nowiki>
! Resistance <nowiki>[</nowiki>[[ohm (unit)|Ω]]<nowiki>]</nowiki>
! Capacitance <nowiki>[</nowiki>[[Farad (unit)|F]]<nowiki>]</nowiki>
! Capacitance <nowiki>[</nowiki>[[farad (unit)|F]]<nowiki>]</nowiki>
! Name
! Name
! Symbol ([[SI prefix|SI]])
! Symbol
! Base 10
! Base 10
! Base 1000
! Value
! Value
|-
|-
| -
|
| p (P<ref group="nb" name="NB_Letter-Case"/>)
| p (P<ref group="nb" name="NB_Letter-Case"/>)
| [[pico-]]
| pico
| p
| p
| ×10<sup>−12</sup>
| × 10<sup>−12</sup>
| × {{val|0.000000000001}}
| ×1000<sup>−4</sup>
| ×{{val|0.000000000001}}
|-
|-
| -
|
| n (N<ref group="nb" name="NB_Letter-Case"/>)
| n (N<ref group="nb" name="NB_Letter-Case"/>)
| [[nano-]]
| nano
| n
| n
| ×10<sup>−9</sup>
| × 10<sup>−9</sup>
| × {{val|0.000000001}}
| ×1000<sup>−3</sup>
| ×{{val|0.000000001}}
|-
|-
| -
|
| µ (u, U<ref group="nb" name="NB_Letter-Case"/>)
| μ (u, U<ref group="nb" name="NB_Letter-Case"/>)
| [[micro-]]
| micro
| µ
| μ
| ×10<sup>−6</sup>
| × 10<sup>−6</sup>
| × {{val|0.000001}}
| ×1000<sup>−2</sup>
| ×{{val|0.000001}}
|-
|-
| L
| L
| m&nbsp;(M<ref group="nb" name="NB_Letter-M"/><ref group="nb" name="NB_Letter-Case"/>)
| m&nbsp;(M<ref group="nb" name="NB_Letter-M"/><ref group="nb" name="NB_Letter-Case"/>)
| [[milli-]]
| milli
| m
| m
| ×10<sup>−3</sup>
| × 10<sup>−3</sup>
| × {{val|0.001}}
| ×1000<sup>−1</sup>
| ×{{val|0.001}}
|-
|-
| R (E<ref group="nb" name="NB_Letter-E"/>)
| R (E<ref group="nb" name="NB_Letter-E"/>)
| F
| F
| -
|
| -
|
| ×10<sup>0</sup>
| × 10<sup>0</sup>
| × {{val|1}}
| ×1000<sup>0</sup>
| ×{{val|1}}
|-
|-
| K (k<ref group="nb" name="NB_Letter-k"/>)
| K (k<ref group="nb" name="NB_Letter-k"/>)
| -
|
| [[kilo-]]
| kilo
| k
| k
| ×10<sup>3</sup>
| × 10<sup>3</sup>
| × {{val|1000}}
| ×1000<sup>1</sup>
| ×{{val|1000}}
|-
|-
| M<ref group="nb" name="NB_Letter-M"/>
| M<ref group="nb" name="NB_Letter-M"/>
| -
|
| [[mega-]]
| mega
| M
| M
| ×10<sup>6</sup>
| × 10<sup>6</sup>
| × {{val|1000000}}
| ×1000<sup>2</sup>
| ×{{val|1000000}}
|-
|-
| G
| G
| -
|
| [[giga-]]
| giga
| G
| G
| ×10<sup>9</sup>
| × 10<sup>9</sup>
| × {{val|1000000000}}
| ×1000<sup>3</sup>
| ×{{val|1000000000}}
|-
|-
| T
| T
| -
|
| [[tera-]]
| tera
| T
| T
| ×10<sup>12</sup>
| × 10<sup>12</sup>
| × {{val|1000000000000}}
| ×1000<sup>4</sup>
| ×{{val|1000000000000}}
|}
|}


For ''resistances'', the standard dictates the use of the uppercase letters <tt>L</tt> (for 10<sup>−3</sup>), <tt>R</tt> (for 10<sup>0</sup> = 1), <tt>K</tt> (for 10<sup>3</sup>), <tt>M</tt> (for 10<sup>6</sup>), and <tt>G</tt> (for 10<sup>9</sup>) to be used instead of the decimal point.
For ''resistances'', the standard dictates the use of the uppercase letters <code>L</code> (for 10<sup>−3</sup>), <code>R</code> (for 10<sup>0</sup> = 1), <code>K</code> (for 10<sup>3</sup>), <code>M</code> (for 10<sup>6</sup>), and <code>G</code> (for 10<sup>9</sup>) to be used instead of the decimal point.


The usage of the letter <tt>R</tt> instead of the SI unit symbol Ω for ohms stems from the fact that the Greek letter Ω wasn't (and still isn't) part of most character sets and therefore is sometimes impossible to reproduce, in particular in some CAD/CAM environments. The letter <tt>R</tt> was chosen because visually it loosely resembles the Ω glyph, and also because it works nicely as a [[mnemonic]] for ''r''esistance in many languages.
The usage of the letter <code>R</code> instead of the SI unit symbol Ω for ohms stems from the fact that the Greek letter Ω is absent from most older [[character encoding]]s (though it is present in the now-ubiquitous [[Unicode]]) and therefore is sometimes impossible to reproduce, in particular in some CAD/CAM environments. The letter <code>R</code> was chosen because visually it loosely resembles the Ω glyph, and also because it works nicely as a [[mnemonic]] for ''r''esistance in many languages.{{citation needed|date=November 2022}}


The letters <tt>G</tt> and <tt>T</tt> weren't part of the first issue of the standard, which pre-dates the introduction of the [[SI system]] (hence the name "RKM code"), but were added after the adoption of the corresponding SI prefixes.
The letters <code>G</code> and <code>T</code> weren't part of the first issue of the standard, which pre-dates the introduction of the [[SI system]] (hence the name "RKM code"), but were added after the adoption of the corresponding SI prefixes.


The introduction of the letter <tt>L</tt> in more recent issues of the standard (instead of an [[SI prefix]] <tt>m</tt> for [[milli-|milli]]) is justified to maintain the rule of only using uppercase letters for resistances (the otherwise resulting <tt>M</tt> was already in use for [[mega-|mega]]).
The introduction of the letter <code>L</code> in more recent issues of the standard (instead of an [[SI prefix]] <code>m</code> for [[milli-|milli]]) is justified to maintain the rule of only using uppercase letters for resistances (the otherwise resulting <code>M</code> was already in use for [[mega-|mega]]).


Similar, the standard prescribes the following lowercase letters for ''capacitances'' to be used instead of the decimal point: <tt>p</tt> (for 10<sup>−12</sup>), <tt>n</tt> (for 10<sup>−9</sup>), <tt>µ</tt> (for 10<sup>−6</sup>), <tt>m</tt> (for 10<sup>−3</sup>), but uppercase <tt>F</tt> (for 10<sup>0</sup> = 1) for [[farad]].
Similar, the standard prescribes the following lowercase letters for ''capacitances'' to be used instead of the decimal point: <code>p</code> (for 10<sup>−12</sup>), <code>n</code> (for 10<sup>−9</sup>), <code>μ</code> (for 10<sup>−6</sup>), <code>m</code> (for 10<sup>−3</sup>), but uppercase <code>F</code> (for 10<sup>0</sup> = 1) for [[farad]].


The letters <tt>p</tt> and <tt>n</tt> weren't part of the first issue of the standard, but were added after the adoption of the corresponding SI prefixes.
The letters <code>p</code> and <code>n</code> weren't part of the first issue of the standard, but were added after the adoption of the corresponding SI prefixes.


In cases, where the Greek letter <tt>µ</tt> is not available, the standard allows it to be replaced by <tt>u</tt> (or <tt>U</tt>, when only uppercase letters are available). This usage of <tt>u</tt> instead of <tt>µ</tt> is also in line with [[ISO 2955]] (1974,<ref name="ISO_2955-1974"/> 1983<ref name="ISO_2955-1983"/>), [[DIN 66030]] (Vornorm 1973;<ref name="Vornorm_DIN_66030_1973"/> 1980,<ref name="DIN_66030_1980"/><ref name="Computerwoche_1981_DIN"/> 2002<ref name="DIN_66030:2002-05"/>) and [[BS 6430]] (1983), which allow the prefix <tt>μ</tt> to be substituted by the letter <tt>u</tt> (or <tt>U</tt>) in circumstances, in which only the [[Latin alphabet]] is available.
In cases where the Greek letter <code>μ</code> is not available, the standard allows it to be replaced by <code>u</code> (or <code>U</code>, when only uppercase letters are available). This usage of <code>u</code> instead of <code>μ</code> is also in line with [[ISO 2955]] (1974,<ref name="ISO_2955-1974"/> 1983<ref name="ISO_2955-1983"/>), [[DIN 66030]] (Vornorm 1973;<ref name="Vornorm_DIN_66030_1973"/> 1980,<ref name="DIN_66030_1980"/><ref name="Computerwoche_1981_DIN"/> 2002<ref name="DIN_66030:2002-05"/>), [[BS 6430]] (1983) and [[Health Level 7]] (HL7),<ref name="HL7_2015"/> which allow the prefix <code>μ</code> to be substituted by the letter <code>u</code> (or <code>U</code>) in circumstances in which only the [[Latin alphabet]] is available.

Several manufacturers of resistors utilize the RKM code as part of the components' [[manufacturer's part number]]s (MPNs).<ref name="Yageo_2022"/><ref name="Vishay_2023"/>

===Similar codes===
<!-- There are several non-standard variants of the code used in real life, and also some SMD marking codes which loosely resemble this IEC 60062 code. They should better be mentioned elsewhere (perhaps in the resistor article? but could at least be mentioned here as well. -->
Though non-standard, some manufacturers also use the RKM code to mark [[inductor]]s with "R" indicating the decimal point in [[microhenry]] (e.g. 4R7 for 4.7&nbsp;μH).<ref name="Eaton_2016"/><ref name="TDK_2022"/>

A similar non-standard notation using the unit symbol instead of a decimal separator is sometimes used to indicate [[voltage]]s (i.e. 0V8 for 0.8&nbsp;V, 1V8 for 1.8&nbsp;V, 3V3 for 3.3&nbsp;V or 5V0 for 5.0&nbsp;V<ref name="Sumida_2015"/><ref name="TI_2021"/><ref name="ST_2022"/>) in contexts where a decimal separator would be inappropriate (e.g. in signal or pin names, in [[file name]]s, or in [[label]]s or [[subscript]]s).


==Tolerance code==
==Tolerance code==
Line 213: Line 217:
|-
|-
| J
| J
|
| J
| ±5.0%
| ±5.0%
| {{N/A}}
| {{N/A}}
Line 219: Line 223:
|-
|-
| K
| K
|
| K
| ±10%
| ±10%
| {{N/A}}
| {{N/A}}
Line 231: Line 235:
|-
|-
| M
| M
|
| M
| ±20%
| ±20%
| {{N/A}}
| {{N/A}}
Line 278: Line 282:
| {{N/A}}
| {{N/A}}
|}
|}

Before the introduction of the RKM code, some of the letters for symmetrical tolerances (viz. G, J, K, M) were already used in US military contexts following the [[American War Standard]] (AWS) and [[Joint Army-Navy]] Specifications (JAN) since the mid-1940s.<ref name="FTRC_1946"/>


=={{anchor|Temperature code}}Temperature coefficient code==
=={{anchor|Temperature code}}Temperature coefficient code==


Letter codes for resistor temperature coefficients:
Letter codes for the [[temperature coefficient of resistance]] (TCR):


{|class="wikitable"
{|class="wikitable"
|-
|-
! Code letter
! Code letter
! [[Parts-per notation#Parts-per expressions|ppm]]/K
! ppm/K
|-
|-
| K
| K
| 1
| 1
|-
| L
| 2
|-
|-
| M
| M
| 5
| 5
|-
| N
| 10
|-
|-
| P
| P
Line 311: Line 323:
| Z
| Z
| other
| other
|}


==Production date code==
==Production date codes==
===Twenty-year cycle code===

*First character: Year of production
* First character: Year of production in twenty-year cycle<ref group="nb" name="NB_AmbiguousLetters"/>
** A = 2010,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1990,<ref name="GOST_IEC_60062_2014"/> 1970<ref name="GOST_IEC_60062_2014"/>
** A = 2030,<ref name="Iskra_2018"/><ref name="Magnetec_2018"/> 2010,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1990,<ref name="GOST_IEC_60062_2014"/> 1970<ref name="GOST_IEC_60062_2014"/>
** B = 2011,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1991,<ref name="GOST_IEC_60062_2014"/> 1971<ref name="GOST_IEC_60062_2014"/>
** B = 2031,<ref name="Magnetec_2018"/> 2011,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1991,<ref name="GOST_IEC_60062_2014"/> 1971<ref name="GOST_IEC_60062_2014"/>
** C = 2012,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1992,<ref name="GOST_IEC_60062_2014"/> 1972<ref name="GOST_IEC_60062_2014"/>
** C = 2032,<ref name="Magnetec_2018"/> 2012,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1992,<ref name="GOST_IEC_60062_2014"/> 1972<ref name="GOST_IEC_60062_2014"/>
** D = 2013,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1993,<ref name="GOST_IEC_60062_2014"/> 1973<ref name="GOST_IEC_60062_2014"/>
** D = 2033,<ref name="Magnetec_2018"/> 2013,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1993,<ref name="GOST_IEC_60062_2014"/> 1973<ref name="GOST_IEC_60062_2014"/>
** E = 2014,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1994,<ref name="GOST_IEC_60062_2014"/> 1974<ref name="GOST_IEC_60062_2014"/>
** E = 2034,<ref name="Magnetec_2018"/> 2014,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1994,<ref name="GOST_IEC_60062_2014"/> 1974<ref name="GOST_IEC_60062_2014"/>
** F = 2015,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/> 1995,<ref name="GOST_IEC_60062_2014"/> 1975<ref name="GOST_IEC_60062_2014"/>
** F = 2035,<ref name="Magnetec_2018"/> 2015,<ref name="Kemet_2021"/><ref name="Iskra_2018"/><ref name="Iskra_Year_Codes"/> 1995,<ref name="GOST_IEC_60062_2014"/> 1975<ref name="GOST_IEC_60062_2014"/>
** H = 2016,<ref name="ISA_Date_Code"/> 1996,<ref name="GOST_IEC_60062_2014"/> 1976<ref name="GOST_IEC_60062_2014"/>
** H = 2036,<ref name="Magnetec_2018"/> 2016,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 1996,<ref name="GOST_IEC_60062_2014"/> 1976<ref name="GOST_IEC_60062_2014"/>
** J = 2017,<ref name="ISA_Date_Code"/> 1997,<ref name="GOST_IEC_60062_2014"/> 1977<ref name="GOST_IEC_60062_2014"/>
** J = 2037,<ref name="Magnetec_2018"/> 2017,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 1997,<ref name="GOST_IEC_60062_2014"/> 1977<ref name="GOST_IEC_60062_2014"/>
** K = 2018,<ref name="ISA_Date_Code"/> 1998,<ref name="GOST_IEC_60062_2014"/> 1978<ref name="GOST_IEC_60062_2014"/>
** K = 2038,<ref name="Magnetec_2018"/> 2018,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 1998,<ref name="GOST_IEC_60062_2014"/> 1978<ref name="GOST_IEC_60062_2014"/>
** L = 2019,<ref name="ISA_Date_Code"/> 1999,<ref name="GOST_IEC_60062_2014"/> 1979<ref name="GOST_IEC_60062_2014"/>
** L = 2039,<ref name="Magnetec_2018"/> 2019,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 1999,<ref name="GOST_IEC_60062_2014"/> 1979<ref name="GOST_IEC_60062_2014"/>
** M = 2020,<ref name="ISA_Date_Code"/> 2000,<ref name="GOST_IEC_60062_2014"/> 1980<ref name="GOST_IEC_60062_2014"/>
** M = 2020,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2000,<ref name="GOST_IEC_60062_2014"/> 1980<ref name="GOST_IEC_60062_2014"/>
** N = 2021,<ref name="ISA_Date_Code"/> 2001,<ref name="GOST_IEC_60062_2014"/> 1981<ref name="GOST_IEC_60062_2014"/>
** N = 2021,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2001,<ref name="GOST_IEC_60062_2014"/> 1981<ref name="GOST_IEC_60062_2014"/>
** P = 2022,<ref name="ISA_Date_Code"/> 2002,<ref name="GOST_IEC_60062_2014"/> 1982<ref name="GOST_IEC_60062_2014"/>
** P = 2022,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2002,<ref name="GOST_IEC_60062_2014"/> 1982<ref name="GOST_IEC_60062_2014"/>
** R = 2023,<ref name="ISA_Date_Code"/> 2003,<ref name="GOST_IEC_60062_2014"/> 1983<ref name="GOST_IEC_60062_2014"/>
** R = 2023,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2003,<ref name="GOST_IEC_60062_2014"/> 1983<ref name="GOST_IEC_60062_2014"/>
** S = 2024,<ref name="ISA_Date_Code"/> 2004,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1984<ref name="GOST_IEC_60062_2014"/>
** S = 2024,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2004,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1984<ref name="GOST_IEC_60062_2014"/>
** T = 2025,<ref name="ISA_Date_Code"/> 2005,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1985<ref name="GOST_IEC_60062_2014"/>
** T = 2025,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2005,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1985<ref name="GOST_IEC_60062_2014"/>
** U = 2006,<ref name="Iskra_Year_Codes"/> 1986<ref name="GOST_IEC_60062_2014"/>
** U = 2026,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2006,<ref name="Iskra_Year_Codes"/> 1986<ref name="GOST_IEC_60062_2014"/>
** V = 2007,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1987<ref name="GOST_IEC_60062_2014"/>
** V = 2027,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2007,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1987<ref name="GOST_IEC_60062_2014"/>
** W = 2008,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1988<ref name="GOST_IEC_60062_2014"/>
** W = 2028,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2008,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1988<ref name="GOST_IEC_60062_2014"/>
** X = 2009,<ref name="ISA_Date_Code"/><ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1989<ref name="GOST_IEC_60062_2014"/>
** X = 2029,<ref name="Kemet_2021"/><ref name="Iskra_2018"/> 2009,<ref name="Iskra_Year_Codes"/><ref name="GOST_IEC_60062_2014"/> 1989<ref name="GOST_IEC_60062_2014"/>
* Second character: Month of production<ref name="Iskra_2018"/><ref name="Magnetec_2018"/><ref name="Kemet_2021"/><ref group="nb" name="NB_AmbiguousInitials"/>

*Second character: Month of production
** 1 to 9 = January to September
** 1 to 9 = January to September
** O = October
** O = October
Line 342: Line 354:
** D = December
** D = December


Example: V8 = August 2007 (or August 1987)
Example: J8 = August 2017 (or August 1997)


Some <!-- at least (former) East-German -->manufacturers also used the production date code as a stand-alone code to indicate the production date of integrated circuits.<ref name="Robotron_2021"/>
==Similar codes==

<!-- There are several non-standard variants of the code used in real life, and also some SMD marking codes which loosely resemble this IEC 60062 code. They should better be mentioned elsewhere (perhaps in the resistor article? but could at least be mentioned here as well. -->
Some manufacturers specify a three-character date code with a two-digit week number following the year letter.<ref name="ISA_Date_Code"/>
{{Empty section|date=December 2016}}

IEC 60062<!-- at least since 6.0 2016 --> also specifies a four-character <!-- twenty-year cycle --> year/week code.<!-- Details TBD -->

===Ten-year cycle code===
<!-- Newer issues of IEC 60062 (at least since 6.0 2016) also specify a two-character ten-year cycle year/month code. The following info however is based on the Isabellenhütte PDF and still needs to be compared with the IEC 60062 definition. -->
* First character: Year of production in ten-year cycle<ref name="ISA_Date_Code"/>
** 0 = 2020<ref name="ISA_Date_Code"/>
** 1 = 2021<ref name="ISA_Date_Code"/>
** 2 = 2022,<ref name="ISA_Date_Code"/> 2012<ref name="ISA_Date_Code"/>
** 3 = 2023,<ref name="ISA_Date_Code"/> 2013<ref name="ISA_Date_Code"/>
** 4 = 2024,<ref name="ISA_Date_Code"/> 2014<ref name="ISA_Date_Code"/>
** 5 = 2025,<ref name="ISA_Date_Code"/> 2015<ref name="ISA_Date_Code"/>
** 6 = 2026,<ref name="ISA_Date_Code"/> 2016<ref name="ISA_Date_Code"/>
** 7 = 2017<ref name="ISA_Date_Code"/>
** 8 = 2018<ref name="ISA_Date_Code"/>
** 9 = 2019<ref name="ISA_Date_Code"/>
* Second character: Month of production<ref name="ISA_Date_Code"/>
** 1 to 9 = January to September
** X = October
** Y = November
** Z = December

Example: 78 = August 2017

IEC 60062<!-- at least since 6.0 2016 --> also specifies a four-character <!-- ten-year cycle --> year/week code.<!-- Details TBD -->

===Four-year cycle code===
IEC&nbsp;60062<!-- at least since IEC 60062:2004 (5.0), possibly even since IEC 62:1992 (4.0) or IEC 62:1992/AMD1:1995. (4.1) --> also specifies a single-character four-year cycle year/month code.<ref group="nb" name="NB_AmbiguousLetters2"/>

{| class="wikitable" style="float:left; margin-right:2em;"
!Year
!Month
!Letter
|- style="text-align:center;"
!rowspan="12"|1993<br/>1997<br/>2001<br/>2005<br/>2009<br/>2013<br/>2017<br/>2021
|1
|A
|- style="text-align:center;"
|2
|B
|- style="text-align:center;"
|3
|C
|- style="text-align:center;"
|4
|D
|- style="text-align:center;"
|5
|E
|- style="text-align:center;"
|6
|F
|- style="text-align:center;"
|7
|G
|- style="text-align:center;"
|8
|H
|- style="text-align:center;"
|9
|J
|- style="text-align:center;"
|10
|K
|- style="text-align:center;"
|11
|L
|- style="text-align:center;"
|12
|M
|}
{| class="wikitable" style="float:left; margin-right:2em;"
!Year
!Month
!Letter
|- style="text-align:center;"
!rowspan="12"|1994<br/>1998<br/>2002<br/>2006<br/>2010<br/>2014<br/>2018<br/>2022
|1
|N
|- style="text-align:center;"
|2
|P
|- style="text-align:center;"
|3
|Q
|- style="text-align:center;"
|4
|R
|- style="text-align:center;"
|5
|S
|- style="text-align:center;"
|6
|T
|- style="text-align:center;"
|7
|U
|- style="text-align:center;"
|8
|V
|- style="text-align:center;"
|9
|W
|- style="text-align:center;"
|10
|X
|- style="text-align:center;"
|11
|Y
|- style="text-align:center;"
|12
|Z
|}
{| class="wikitable" style="float:left; margin-right:2em;"
!Year
!Month
!Letter
|- style="text-align:center;"
!rowspan="12"|1995<br/>1999<br/>2003<br/>2007<br/>2011<br/>2015<br/>2019<br/>2023
|1
|a
|- style="text-align:center;"
|2
|b
|- style="text-align:center;"
|3
|c
|- style="text-align:center;"
|4
|d
|- style="text-align:center;"
|5
|e
|- style="text-align:center;"
|6
|f
|- style="text-align:center;"
|7
|g
|- style="text-align:center;"
|8
|h
|- style="text-align:center;"
|9
|j
|- style="text-align:center;"
|10
|k
|- style="text-align:center;"
|11
|l
|- style="text-align:center;"
|12
|m
|}
{| class="wikitable" style="float:left; margin-right:2em;"
!Year
!Month
!Letter
|- style="text-align:center;"
!rowspan="12"|1996<br/>2000<br/>2004<br/>2008<br/>2012<br/>2016<br/>2020<br/>2024
|1
|n
|- style="text-align:center;"
|2
|p
|- style="text-align:center;"
|3
|q
|- style="text-align:center;"
|4
|r
|- style="text-align:center;"
|5
|s
|- style="text-align:center;"
|6
|t
|- style="text-align:center;"
|7
|u
|- style="text-align:center;"
|8
|v
|- style="text-align:center;"
|9
|w
|- style="text-align:center;"
|10
|x
|- style="text-align:center;"
|11
|y
|- style="text-align:center;"
|12
|z
|}
{{clear}}

==Marking codes for E series preferred values==
===Three-character resistor marking code===
For resistances following the ([[E48 series (preferred numbers)|E48]] or) [[E96 series (preferred numbers)|E96 series]] of preferred values, the former EIA-96 as well as IEC&nbsp;60062:2016 define a ''[[special three-character marking code for resistors]]'' to be used on small parts. The code consists of two digits denoting one of the "positions" in the series of E96 values followed by a letter indicating the multiplier.

===Two-character capacitor marking code===
For capacitances following the ([[E3 series (preferred numbers)|E3]], [[E6 series (preferred numbers)|E6]], [[E12 series (preferred numbers)|E12]] or) [[E24 series (preferred numbers)|E24 series]] of preferred values, the former ANSI/EIA-198-D:1991, ANSI/EIA-198-1-E:1998 and ANSI/EIA-198-1-F:2002 as well as the amendment IEC&nbsp;60062:2016/AMD1:2019 to IEC&nbsp;60062 define a ''[[special two-character marking code for capacitors]]'' for very small parts which leave no room to print any longer codes onto them. The code consists of an uppercase letter denoting the two significant digits of the value followed by a digit indicating the multiplier. The EIA standard also defines a number of lowercase letters to specify a number of values not found in E24.<ref name="SIST-EN60062-A1_2019"/>


==Corresponding standards==
==Corresponding standards==
*IEC 62:1952 (aka IEC 60062:1952), first edition, 1952-01-01
* IEC 62:1952 (aka IEC 60062:1952), first edition, 1952-01-01
*IEC 62:1968 (aka IEC 60062:1968), second edition, 1968-01-01
* IEC 62:1968 (aka IEC 60062:1968), second edition, 1968-01-01
*IEC 62:1968/AMD1:1968 (aka IEC 60062:1968/AMD1:1968), amended second edition, 1968-12-31
* IEC 62:1968/AMD1:1968 (aka IEC 60062:1968/AMD1:1968), amended second edition, 1968-12-31
*IEC 62:1974 (aka IEC 60062:1974)<ref name="IEC_62_1974"/>
* IEC 62:1974 (aka IEC 60062:1974)<ref name="IEC_62_1974"/>
*IEC 62:1974/AMD1:1988 (aka IEC 60062:1974/AMD1:1988), amended third edition, 1988-04-30
* IEC 62:1974/AMD1:1988 (aka IEC 60062:1974/AMD1:1988), amended third edition, 1988-04-30
*IEC 62:1974/AMD2:1989 (aka IEC 60062:1974/AMD2:1989), amended third edition, 1989-01-01
* IEC 62:1974/AMD2:1989 (aka IEC 60062:1974/AMD2:1989), amended third edition, 1989-01-01
*IEC 62:1992 (aka IEC 60062:1992), fourth edition, 1992-03-15
* IEC 62:1992 (aka IEC 60062:1992), fourth edition, 1992-03-15
*IEC 62:1992/AMD1:1995 (aka IEC 60062:1992/AMD1:1995), amended fourth edition, 1995-06-19
* IEC 62:1992/AMD1:1995 (aka IEC 60062:1992/AMD1:1995), amended fourth edition, 1995-06-19
*IEC 60062:2004 (fifth edition, 2004-11-08)<ref name="IEC_60062_2004"/>
* IEC 60062:2004 (fifth edition, 2004-11-08)<ref name="IEC_60062_2004"/>
*IEC 60062:2016 (sixth edition, 2016-07-12)<ref name="IEC_60062_2016"/>
* IEC 60062:2016 (sixth edition, 2016-07-12)<ref name="IEC_60062_2016"/>
*IEC 60062:2016/COR1:2016 (corrected sixth edition, 2016-12-05)
* IEC 60062:2016/COR1:2016 (corrected sixth edition, 2016-12-05)
* IEC 60062:2016/AMD1:2019 (amendment 1, 2019-08-20)
*EN 60062:1993
* IEC 60062:2016+AMD1:2019 CSV (consolidated version 6.1, 2019-08-20)
*EN 60062:1994 (1994-10)
*EN 60062:2005
* EN 60062:1993
*EN 60062:2016
* EN 60062:1994 (1994-10)
* EN 60062:2005
*BS 1852:1975<ref name="BS_1852_1975"/> (related to IEC 60062:1974)
*BS EN 60062:1994<ref name="BS_EN_60062_1994"/>
* EN 60062:2016
* EN 60062:2016/AC:2016-12 (corrected edition)
*BS EN 60062:2005<ref name="BS_EN_60062_2005"/>
*BS EN 60062:2016<ref name="BS_EN_60062_2016"/>
* EN 60062:2016/A1:2019 (amendment 1)
* BS 1852:1975<ref name="BS_1852_1975"/> (related to IEC 60062:1974)
*DIN 40825:1973-04 (capacitor/resistor value code), DIN 41314:1975-12 (date code)
* BS EN 60062:1994<ref name="BS_EN_60062_1994"/>
*DIN IEC 62:1985-12 (aka DIN IEC 60062:1985-12)
* BS EN 60062:2005<ref name="BS_EN_60062_2005"/>
*DIN IEC 62:1989-10 (aka DIN IEC 60062:1989-10)
* BS EN 60062:2016<ref name="BS_EN_60062_2016"/>
*DIN IEC 62:1990-11 (aka DIN IEC 60062:1990-11)
* DIN 40825:1973-04 (capacitor/resistor value code), DIN 41314:1975-12 (date code)
*DIN IEC 62:1993-03 (aka DIN IEC 60062:1993-03)
*DIN EN 60062:1997-09
* DIN IEC 62:1985-12 (aka DIN IEC 60062:1985-12)
*DIN EN 60062:2001-11
* DIN IEC 62:1989-10 (aka DIN IEC 60062:1989-10)
*DIN EN 60062:2005-11
* DIN IEC 62:1990-11 (aka DIN IEC 60062:1990-11)
* DIN IEC 62:1993-03 (aka DIN IEC 60062:1993-03)
*ČSN EN 60062
*DS/EN 60062
* DIN EN 60062:1997-09
* DIN EN 60062:2001-11
* DIN EN 60062:2005-11
* DIN EN 60062:2017-06
* DIN EN 60062:2020-03
* ČSN EN 60062
* DS/EN 60062
<!-- *DS/EN 60062:2016 -->
<!-- *DS/EN 60062:2016 -->
*EVS-EN 60062
* EVS-EN 60062
<!-- *EVS-EN 60062:2016 -->
<!-- *EVS-EN 60062:2016 -->
*(GOST) ГОСТ IEC 60062-2014<ref name="GOST_IEC_60062_2014"/> (related to IEC 60062-2004)
* (GOST) ГОСТ IEC 60062-2014<ref name="GOST_IEC_60062_2014"/> (related to IEC 60062-2004)
*ILNAS-EN 60062
* ILNAS-EN 60062
<!-- *ILNAS-EN 60062:1993 -->
<!-- *ILNAS-EN 60062:1993 -->
*I.S. EN 60062
* I.S. EN 60062
<!-- *I.S. EN 60062:2005 -->
<!-- *I.S. EN 60062:2005 -->
*NEN EN IEC 60062
* NEN EN IEC 60062
*NF EN 60062
* NF EN 60062
*ÖVE/ÖNORM EN 60062
* ÖVE/ÖNORM EN 60062
*PN-EN 60062
* PN-EN 60062
<!-- *PN-EN 60062:2000 -->
<!-- *PN-EN 60062:2000 -->
*prМКС EN 60062
* prМКС EN 60062
<!-- *prМКС EN 60062:2016 -->
<!-- *prМКС EN 60062:2016 -->
*SN EN 60062
* SN EN 60062
*TS 2932 EN 60062
* TS 2932 EN 60062
*UNE-EN 60062
* UNE-EN 60062
<!-- *UNE-EN 60062:2005 -->
<!-- *UNE-EN 60062:2005 -->
* BIS IS 4114-1967<!-- Coded Markings Of Values Of Capacitance And Resistance By Letters And Digits -->

* IS 8186-1976<ref name="IS_8186_1976"/> (related to IEC 62:1974)<!-- supersedes IS 825-1956 (color code) and IS 4114-1967 (Coded markings of values, capacitance and resistance by letters and digits) -->
*BIS IS 4114-1967<!-- Coded Markings Of Values Of Capacitance And Resistance By Letters And Digits --><ref>http://www.worldstdindex.com/soft4/3975991.htm</ref>
* JIS C 5062, JIS C 60062
*IS 8186-1976<ref name="IS_8186_1976"/> (related to IEC 62:1974)<!-- supersedes IS 825-1956 (color code) and IS 4114-1967 (Coded markings of values, capacitance and resistance by letters and digits) -->
* TGL 31667<ref name="TGl31667"/>
*JIS C 5062


==See also==
==See also==
*[[Electronic color code]]
* [[Electronic color code]]
*[[SI prefix]]
* [[SI prefix]]
*[[Metric prefix]]
* [[Metric prefix]]
*[[Engineering notation]]
* [[Engineering notation]]
*[[E notation]]
* [[E notation]]
*[[Cifrão]] (a similar scheme for a currency)
* [[Cifrão]] (a similar scheme for a currency)
* [[Fermata]] (a remotely similar musical notation)


==Notes==
==Notes==
{{reflist|group="nb"|refs=
{{reflist|group="nb"|refs=
<ref group="nb" name="NB_Letter-M">The letter <tt>M</tt> was an exception to the rule that all different letters are supposed to be used for resistances and capacitances. Today, a lowercase letter <tt>m</tt> should be used for capacitances whenever possible to avoid confusion.</ref>
<ref group="nb" name="NB_Letter-M">The letter <code>M</code> was an exception to the rule that all different letters are supposed to be used for resistances and capacitances. Today, a lowercase letter <code>m</code> should be used for capacitances whenever possible to avoid confusion.</ref>
<ref group="nb" name="NB_Letter-Case">In old issues of the IEC 60062 standard, uppercase Latin letters were not only used for resistances, but also for capacitance values, whereas newer issues specifically use lowercase letters for capacitors (except for the special case of <tt>F</tt>).</ref>
<ref group="nb" name="NB_Letter-Case">In old issues of the IEC 60062 standard, uppercase Latin letters were not only used for resistances, but also for capacitance values, whereas newer issues specifically use lowercase letters for capacitors (except for the special case of <code>F</code>).</ref>
<ref group="nb" name="NB_Letter-k">The IEC 60062 standard prescribes the usage of an uppercase Latin letter <tt>K</tt> only, however, a lowercase <tt>k</tt> is often seen in [[schematic]]s and [[bill of material|bills of material]]s probably because the corresponding [[SI prefix]] is defined as a lowercase <tt>k</tt>.</ref>
<ref group="nb" name="NB_Letter-k">The IEC 60062 standard prescribes the usage of an uppercase Latin letter <code>K</code> only, however, a lowercase <code>k</code> is nevertheless often seen in [[schematic]]s and [[bill of material|bills of material]]s probably because the corresponding [[SI prefix]] is defined as a lowercase <code>k</code>.</ref>
<ref group="nb" name="NB_Letter-E">The usage of the Latin letter <tt>E</tt> instead of <tt>R</tt> is not standardized in IEC 60062, but nevertheless sometimes seen in practice. It stems from the fact, that <tt>R</tt> is used in symbolic names for resistors as well, and it is also used in a similar fashion but with incompatible meaning in other part marking codes. It may therefore cause confusion in some contexts. Visually, the letter <tt>E</tt> loosely resembles a small Greek letter [[omega]] (ω) turned sideways. Historically (f.e. in pre-[[WWII]] documents), before [[Ohm (unit)|ohm]]s were denoted using the uppercase Greek omega (Ω), a small omega (ω) was sometimes used for this purpose as well, as in 56<sup>ω</sup> for 56&nbsp;Ω. However, the letter <tt>E</tt> is conflictive with the similar looking but incompatible [[E notation]] in engineering, and it may therefore cause considerable confusion as well.<!--
<ref group="nb" name="NB_Letter-E">The usage of the Latin letter <code>E</code> instead of <code>R</code> is not standardized in IEC 60062, but nevertheless sometimes seen in practice. It stems from the fact, that <code>R</code> is used in symbolic names for resistors as well, and it is also used in a similar fashion but with incompatible meaning in other part marking codes. It may therefore cause confusion in some contexts. Visually, the letter <code>E</code> loosely resembles a small Greek letter [[omega]] (ω) turned sideways. Historically (i.e. in pre-[[WWII]] documents), before [[ohm (unit)|ohm]]s were denoted using the uppercase Greek omega (Ω), a small omega (ω) was sometimes used for this purpose as well, as in 56<sup>ω</sup> for 56&nbsp;Ω. However, the letter <code>E</code> is conflictive with the similar looking but incompatible [[E notation]] in engineering, and it may therefore cause considerable confusion as well.<!--
* https://www.quora.com/What-does-1E-2E2-220E-4E7-470E-4K7-2K2-2M2-6K8-8K2-means-in-a-mixed-pack-of-resistor
* https://www.quora.com/What-does-1E-2E2-220E-4E7-470E-4K7-2K2-2M2-6K8-8K2-means-in-a-mixed-pack-of-resistor
* http://www.edaboard.com/thread67699.html
* http://www.edaboard.com/thread67699.html
Line 422: Line 646:
* https://www.altex.com/Velleman-E12-Series-Resistors-Pack-of-610-KRES-E12-P146405.aspx
* https://www.altex.com/Velleman-E12-Series-Resistors-Pack-of-610-KRES-E12-P146405.aspx
--></ref>
--></ref>
<ref group="nb" name="NB_AmbiguousLetters">In order to reduce the risk for read errors, the letters <code>G</code> (<code>6</code>), <code>I</code> (<code>J</code>, <code>1</code>), <code>O</code> (<code>0</code>, <code>Q</code>, <code>D</code>), <code>Q</code> (<code>O</code>, <code>D</code>, <code>0</code>), <code>Y</code>, <code>Z</code> (<code>2</code>) are not used as their glyphs look similar to other letters and digits.</ref>
<ref group="nb" name="NB_AmbiguousLetters2">In order to reduce the risk for read errors, the letters <code>I</code>/<code>i</code> and <code>O</code>/<code>o</code> are not used as their glyphs look similar to other letters and digits.</ref>
<ref group="nb" name="NB_AmbiguousInitials">Due to the ambiguity of many month initials (<code>A</code>, <code>J</code>, <code>M</code>) the code for the most part uses digits. Since letter <code>O</code> is easily confused with digit <code>0</code>, the code is arranged so that the letter <code>O</code> is used for October, the tenth month, rather than for January.</ref>
<ref group="nb" name="NB_DecimalSeparator">As different [[decimal separator]]s are used depending on the locale (most commonly <code>.</code> and <code>,</code>), and these characters are also used as [[thousands separator]]s in some areas, avoiding to use decimal separators also has the advantage of not risking to become ambiguous in an international context.</ref>
<ref group="nb" name="NB_Sortability">Alphanumerically sorting part values in RKM notation results in sorted groups of nearby values. Within some limits, this makes it easier to identify and combine similar values within these groups in preparation of a [[bill of materials]] in order to rationalize part inventory, ease part procurement and safe costs. For example, sorting the following random part values (3.3&nbsp;kΩ, 4.7&nbsp;kΩ, 4.7&nbsp;MΩ, 3.6&nbsp;kΩ, 5.1&nbsp;kΩ, 3.3&nbsp;Ω, 1.0&nbsp;Ω, 5.6&nbsp;MΩ, 9.1&nbsp;kΩ) would conventionally result in a list like 1.0&nbsp;Ω, 3.3&nbsp;Ω, 3.3&nbsp;kΩ, 3.6&nbsp;kΩ, 4.7&nbsp;kΩ, 4.7&nbsp;MΩ, 5.1&nbsp;kΩ, 5.6&nbsp;MΩ, 9.1&nbsp;kΩ, but would result in 3K3, 3K6, 4K7, 5K1, 9K1, 4M7, 5M6, 1R0, 3R3 in RKM code, where it is easier to spot that the values 3.3&nbsp;kΩ and 3.6&nbsp;kΩ as well as 4.7&nbsp;kΩ and 5.1&nbsp;kΩ are, depending on application, close enough to be potentially subjects for optimization.</ref>
}}
}}


==References==
==References==
{{reflist|refs=
{{reflist|refs=
<ref name="ISO_2955-1974">{{cite book |title=ISO 2955-1974: lnformation processing - Representations of SI and other units for use in systems with limited character sets |edition=1st |date=1974}}</ref>
<ref name="ISO_2955-1974">{{cite book |title=ISO 2955-1974: lnformation processing - Representations of SI and other units for use in systems with limited character sets |edition=1 |date=1974}}</ref>
<ref name="ISO_2955-1983">{{cite book |title=ISO 2955-1983: lnformation processing - Representations of SI and other units for use in systems with limited character sets |chapter=Table 2 |date=1983-05-15 |edition=2nd |url=http://isotc.iso.org/livelink/livelink/4289384/ISO_2955-1983E_repr_of_SI_units_with_limited_char_sets.pdf?func=doc.Fetch&nodeid=4289384 |access-date=2016-12-14}} [http://www.bgu.ac.il/~averbukh/ISO_2955-1983E.pdf<!-- https://web.archive.org/web/20161214025341/http://www.bgu.ac.il/~averbukh/ISO_2955-1983E.pdf -->]</ref>
<ref name="ISO_2955-1983">{{cite book |title=ISO 2955-1983: lnformation processing - Representations of SI and other units for use in systems with limited character sets |chapter=Table 2 |date=1983-05-15 |edition=2 |url=http://isotc.iso.org/livelink/livelink/4289384/ISO_2955-1983E_repr_of_SI_units_with_limited_char_sets.pdf?func=doc.Fetch&nodeid=4289384 |access-date=2016-12-14}} [http://www.bgu.ac.il/~averbukh/ISO_2955-1983E.pdf<!-- https://web.archive.org/web/20161214025341/http://www.bgu.ac.il/~averbukh/ISO_2955-1983E.pdf -->]</ref>
<ref name="Vornorm_DIN_66030_1973">{{cite book |title=Vornorm DIN 66030 |language=German |trans-title=Preliminary standard DIN 66030 |date=January 1973}}</ref>
<ref name="Vornorm_DIN_66030_1973">{{cite book |title=Vornorm DIN 66030 |language=de |trans-title=Preliminary standard DIN 66030 |date=January 1973}}</ref>
<ref name="DIN_66030_1980">{{cite book |title=DIN 66030: Informationsverarbeitung - Darstellungen von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat |language=German |trans-title=Information processing; representations for names of units to be used in systems with limited graphic character sets |publisher={{ill|Beuth Verlag|de}} |edition=1st |date=November 1980 |url=https://www.beuth.de/de/norm/din-66030/2309434 |access-date=2016-12-14}}</ref>
<ref name="DIN_66030_1980">{{cite book |title=DIN 66030: Informationsverarbeitung - Darstellungen von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat |language=de |trans-title=Information processing; representations for names of units to be used in systems with limited graphic character sets |publisher={{ill|Beuth Verlag|de}} |edition=1 |date=November 1980 |url=https://www.beuth.de/de/norm/din-66030/2309434 |access-date=2016-12-14}}</ref>
<ref name="Computerwoche_1981_DIN">{{cite journal|title=Neue Normen für die Informationsverarbeitung |language=German |journal=[[Computerwoche]] |date=1981-01-09 |url=http://www.computerwoche.de/a/neue-normen-fuer-die-informationsverarbeitung,1184901 |access-date=2016-12-14 |dead-url=no |archive-url=https://web.archive.org/web/20161214025700/http://www.computerwoche.de/a/neue-normen-fuer-die-informationsverarbeitung%2C1184901 |archive-date=2016-12-14 |df= }}</ref>
<ref name="Computerwoche_1981_DIN">{{cite journal|title=Neue Normen für die Informationsverarbeitung |language=de |journal=[[Computerwoche]] |date=1981-01-09 |url=http://www.computerwoche.de/a/neue-normen-fuer-die-informationsverarbeitung,1184901 |access-date=2016-12-14 |url-status=live |archive-url=https://web.archive.org/web/20161214025700/http://www.computerwoche.de/a/neue-normen-fuer-die-informationsverarbeitung%2C1184901 |archive-date=2016-12-14}}</ref>
<ref name="DIN_66030:2002-05">{{cite book |title=DIN 66030:2002-05 - Informationstechnik - Darstellung von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat |language=German |trans-title=Information technology - Representation of SI and other units in systems with limited character sets |date=May 2002 |publisher={{ill|Beuth Verlag|de}} |url=https://www.beuth.de/de/norm/din-66030/50570368 |access-date=2016-12-14}}</ref>
<ref name="DIN_66030:2002-05">{{cite book |title=DIN 66030:2002-05 - Informationstechnik - Darstellung von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat |language=de |trans-title=Information technology - Representation of SI and other units in systems with limited character sets |date=May 2002 |publisher={{ill|Beuth Verlag|de}} |url=https://www.beuth.de/de/norm/din-66030/50570368 |access-date=2016-12-14}}</ref>
<ref name="GOST_IEC_60062_2014">{{cite book |title=ГОСТ IEC 60062-2014 |date=2014 |language=Russian |publisher=[[GOST]] (ГОСТ) |url=http://gostexpert.ru/data/files/60062-2014/68492.pdf}}</ref>
<ref name="GOST_IEC_60062_2014">{{cite book |title=ГОСТ IEC 60062-2014 |date=2014 |language=ru |publisher=[[GOST]] (ГОСТ) |url=http://gostexpert.ru/data/files/60062-2014/68492.pdf |access-date=2022-06-16 |url-status=live |archive-url=https://web.archive.org/web/20220210082045/http://gostexpert.ru/data/files/60062-2014/68492.pdf |archive-date=2022-02-10}}</ref>
<ref name="IS_8186_1976">{{cite book |title=IS : 8186-1976 |date=1977 |orig-year=1976 |url=https://law.resource.org/pub/in/bis/S04/is.8186.1976.pdf |access-date=2016-12-14 |dead-url=no |archive-url=https://web.archive.org/web/20161214114015/https://law.resource.org/pub/in/bis/S04/is.8186.1976.pdf |archive-date=2016-12-14}}</ref>
<ref name="IS_8186_1976">{{cite book |title=IS: 8186-1976 |date=1977 |orig-date=1976 |url=https://law.resource.org/pub/in/bis/S04/is.8186.1976.pdf |access-date=2016-12-14 |url-status=live |archive-url=https://web.archive.org/web/20161214114015/https://law.resource.org/pub/in/bis/S04/is.8186.1976.pdf |archive-date=2016-12-14}}</ref>
<ref name="BS_1852_1975">{{cite book |title=BS 1852:1975 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000010037100}}</ref>
<ref name="BS_1852_1975">{{cite book |title=BS 1852:1975 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000010037100}}</ref>
<ref name="BS_EN_60062_1994">{{cite book |title=BS EN 60062:1994 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000030089551}}</ref>
<ref name="BS_EN_60062_1994">{{cite book |title=BS EN 60062:1994 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000030089551}}</ref>
Line 439: Line 668:
<ref name="BS_EN_60062_2016">{{cite book |title=BS EN 60062:2016 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000030294117}}</ref>
<ref name="BS_EN_60062_2016">{{cite book |title=BS EN 60062:2016 |url=http://shop.bsigroup.com/ProductDetail/?pid=000000000030294117}}</ref>
<ref name="IEC_62_1974">IEC 60062:1974</ref>
<ref name="IEC_62_1974">IEC 60062:1974</ref>
<ref name="IEC_60062_2004">{{cite book |title=International Standard IEC 60062: Marking codes for resistors and capacitors - Preview |edition=5 |date=November 2004 |publisher=[[International Electrotechnical Commission]] |url=https://webstore.iec.ch/p-preview/info_iec60062%7Bed5.0%7Den.pdf |access-date=2022-06-16 |url-status=live |archive-url=https://web.archive.org/web/20220210050826/https://webstore.iec.ch/p-preview/info_iec60062%7Bed5.0%7Den.pdf |archive-date=2022-02-10}}</ref>
<ref name="IEC_60062_2004">https://webstore.iec.ch/p-preview/info_iec60062%7Bed5.0%7Den.pdf</ref>
<ref name="IEC_60062_2016">https://webstore.iec.ch/publication/25395</ref>
<ref name="IEC_60062_2016">{{cite web |title=IEC 60062:2016-07 |date=July 2016 |edition=6.0 |url=https://www.sis.se/enwiki/api/document/preview/8021442/ |access-date=2018-07-23 |url-status=live |archive-url=https://web.archive.org/web/20180723125246/https://www.sis.se/enwiki/api/document/preview/8021442/ |archive-date=2018-07-23}} [https://webstore.iec.ch/publication/25395]</ref>
<ref name="Iskra_Year_Codes">{{cite web |title=Production date code marking system according to IEC 60062, clause 5.1 Two-character code (year/month) |publisher=[[Iskra Kondenzatorji]] |date=2017 |url=http://www.componentsbureau.com/site/media/files/iskra/product_marking_and_taping_specification.pdf |access-date=2017-02-07 |dead-url=no |archive-url=https://web.archive.org/web/20170207141407/http://www.componentsbureau.com/site/media/files/iskra/product_marking_and_taping_specification.pdf |archive-date=2017-02-07}} (NB. Date codes for 2016 and 2017 are obviously wrong.)</ref>
<ref name="Iskra_Year_Codes">{{cite web |title=Production date code marking system according to IEC 60062, clause 5.1 Two-character code (year/month) |publisher=[[Iskra Kondenzatorji]] |date=2017 |url=http://www.componentsbureau.com/site/media/files/iskra/product_marking_and_taping_specification.pdf |access-date=2017-02-07 |url-status=live |archive-url=https://web.archive.org/web/20170207141407/http://www.componentsbureau.com/site/media/files/iskra/product_marking_and_taping_specification.pdf |archive-date=2017-02-07}} (NB. Date codes for 2016 and 2017 are obviously wrong.)</ref>
<ref name="ISA_Date_Code">{{cite web |title=Precision and Power Resistors (ISA) |publisher=Isotek Corporation / {{ill|Isabellenhütte|de}} |location=Swansea, MA, USA |url=http://www.isotekcorp.com/sites/default/files/pdfs/Date%20Code%20Information.pdf |access-date=2017-02-07 |dead-url=no |archive-url=https://web.archive.org/web/20170207140043/http://www.isotekcorp.com/sites/default/files/pdfs/Date%20Code%20Information.pdf |archive-date=2017-02-07}}</ref>
<ref name="ISA_Date_Code">{{cite web |title=Precision and Power Resistors (ISA) |publisher=Isotek Corporation / {{ill|Isabellenhütte|de}} |location=Swansea, MA, USA |url=http://www.isotekcorp.com/sites/default/files/pdfs/Date%20Code%20Information.pdf |access-date=2017-02-07 |url-status=dead |archive-url=https://web.archive.org/web/20170207140043/http://www.isotekcorp.com/sites/default/files/pdfs/Date%20Code%20Information.pdf |archive-date=2017-02-07}}</ref>
<ref name="FTRC_1946">{{cite book |title=Reference Data for Radio Engineers |chapter=Chapter 3: Audio and radio design |editor-first1=Harold H. |editor-last1=Buttner |editor-first2=H. T. |editor-last2=Kohlhaas |editor-first3=F. J. |editor-last3=Mann |publisher=[[Federal Telephone and Radio Corporation]] (FTR) |edition=2 |date=1946 |pages=52, 55 |url=http://www.tubebooks.org/Books/FTR_ref_data.pdf |access-date=2020-01-03 |url-status=live |archive-url=https://web.archive.org/web/20180516201551/http://www.tubebooks.org/Books/FTR_ref_data.pdf |archive-date=2018-05-16}} (NB. While the tolerance codes according to AWS/JAN are listed in this second edition of the book, they are not listed in the 1943 original edition.<!-- This might indicate that they were still new back then. -->)</ref>
<ref name="ETB_2010">{{cite web |title=Resistors - Letters and Digit Codes. Letter and digit codes to indicating resistor values |work=The Engineering ToolBox |date=2010 |url=https://www.engineeringtoolbox.com/resistors-value-letter-digit-code-d_1656.html |access-date=2020-05-14 |url-status=live |archive-url=https://web.archive.org/web/20200621121054/https://www.engineeringtoolbox.com/resistors-value-letter-digit-code-d_1656.html |archive-date=2020-06-21}}</ref>
<ref name="Tooley_2011">{{cite web |author-first=Mike |author-last=Tooley |title=BS1852 Resistor Coding |website=Matrix - Electronic circuits and components |date=2011-07-19 |url=https://www.matrixtsl.com/courses/ecc/index.php?n=Resistors.BS1852ResistorCoding |access-date=2020-05-14 |archive-url=https://web.archive.org/web/20161220120913/http://www.matrixtsl.com/courses/ecc/index.php?n=Resistors.BS1852ResistorCoding |archive-date=2016-12-20}}</ref>
<ref name="TGl31667">{{cite book |title=TGL 31667: Bauelemente der Elektronik; Kennzeichnung; Herstellungsdatum |trans-title=TGL 31667: Electronic Components; Designation; Date of Manufacture |language=de |publisher=Verlag für Standardisierung |publication-place=Leipzig, Germany |date=October 1979 |url=https://www.bbr-server.de/bauarchivddr/archiv/tglarchiv/tgl30001bis40000/tgl31501bis32000/tgl-31667-okt-1979.pdf |access-date=2018-01-09 |url-status=live |archive-url=https://web.archive.org/web/20210128033827/https://www.bbr-server.de/bauarchivddr/archiv/tglarchiv/tgl30001bis40000/tgl31501bis32000/tgl-31667-okt-1979.pdf |archive-date=2021-01-28}}</ref>
<ref name="IET_2016">{{cite book |title=Units & Symbols for Electrical & Electronic Engineers |chapter=14. Letter and digit code for R & C values |publisher=[[The Institution of Engineering and Technology]] (IET) |date=2016 |orig-date=1985 |page=29 |url=https://www.theiet.org/media/4173/units-and-symbols.pdf |access-date=2021-04-25 |url-status=live |archive-url=https://web.archive.org/web/20200807070232/https://www.theiet.org/media/4173/units-and-symbols.pdf |archive-date=2020-08-07}} (37 pages)</ref>
<ref name="Robotron_2021">{{cite web |title=Integrierte Schaltkreise |language=de |editor-first1=Rüdiger |editor-last1=Kurth |editor-first2=Martin |editor-last2=Groß |editor-first3=Henry |editor-last3=Hunger |date=2021-09-27 |orig-date=2011 |at=Beschriftung der Schaltkreise |website=Robotron Technik |url=https://www.robotrontechnik.de/index.htm?/html/komponenten/ic.htm |access-date=2021-12-06 |url-status=live |archive-url=https://web.archive.org/web/20211203190907/https://www.robotrontechnik.de/index.htm?/html/komponenten/ic.htm |archive-date=2021-12-03}}</ref>
<ref name="Iskra_2018">{{cite book |title=Electromagnetic Interference Suppression Capacitors - Class X2 305/310VAC - Technical Specification - Metallized Polypropylene Film Capacitors (MKP) - Type: KNB1580 |chapter=8. Marking |date=April 2018 |publisher=ISKRA, d.d. |publication-place=Semič, Slovenia |page=11 |url=https://www.iskra.eu/f/docs/24447/Technical-Specification-KNB1580.pdf |access-date=2022-06-16 |url-status=live |archive-url=https://web.archive.org/web/20201229233153/http://www.iskra.eu/f/docs/24447/Technical-Specification-KNB1580.pdf |archive-date=2020-12-29}} (15 pages)</ref>
<ref name="Magnetec_2018">{{cite book |title=How to understand MAGNETEC's Datasheet |chapter=Appendix A |publisher=MAGNETEC GmbH |publication-place=Langenselbold, Germany |id=PB-DS |date=April 2018 |page=8 |url=https://www.magnetec.de/wp-content/uploads/2018/11/pb_ds.pdf |access-date=2022-06-16 |url-status=live |archive-url=https://web.archive.org/web/20220616140252/https://www.magnetec.de/wp-content/uploads/2018/11/pb_ds.pdf |archive-date=2022-06-16}} (9 pages)</ref>
<ref name="Kemet_2021">{{cite book |title=Class X2: Metallized Polyester Film EMI Suppression Capacitors PHE820E, Class X2, 300 VAC |chapter=Marking |publisher=[[KEMET Electronics Corporation]] |date=2021-11-10 |id=F3010_PHE820E_X2_300 |publication-place=Fort Lauderdale, Florida, USA |page=9 |url=https://content.kemet.com/datasheets/KEM_F3010_PHE820E_X2_300.pdf |access-date=2022-06-16 |url-status=live |archive-url=https://web.archive.org/web/20220616140258/https://content.kemet.com/datasheets/KEM_F3010_PHE820E_X2_300.pdf |archive-date=2022-06-16}} (13 pages)</ref>
<ref name="SIST-EN60062-A1_2019">{{cite book |title=SLOVENSKI STANDARD SIST EN 60062:2016/A1:2019 |chapter=Annex B: Special two-character code system for capacitors |date=2019-12-01 |type=preview |pages=3–4 |url=https://cdn.standards.iteh.ai/samples/67713/7c42aed17a454cdaaff49b69445f0ee8/SIST-EN-60062-2016-A1-2019.pdf |access-date=2022-06-17 |url-status=live |archive-url=https://web.archive.org/web/20220617174351/https://cdn.standards.iteh.ai/samples/67713/7c42aed17a454cdaaff49b69445f0ee8/SIST-EN-60062-2016-A1-2019.pdf |archive-date=2022-06-17}}</ref>
<ref name="Huster_2003">{{cite web |title=Resistor Nomenclature |author-first=Dean |author-last=Huster |date=2003-09-24 |work=T&L Publications |url=https://forum.nutsvolts.com/viewtopic.php?f=45&t=940 |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618140011/https://forum.nutsvolts.com/viewtopic.php?f=45&t=940 |archive-date=2022-06-18}}</ref>
<ref name="VAJ_2016">{{cite web |title=Controlling a Opto-Relay using Arduino |author=((vaj4088)) |date=2016-04-13 |website=arduino.cc |url=https://forum.arduino.cc/t/controlling-a-opto-relay-using-arduino-help-required/379212 |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618135400/https://forum.arduino.cc/t/controlling-a-opto-relay-using-arduino-help-required/379212 |archive-date=2022-06-18}}</ref>
<ref name="SE_2016">{{cite web |title=What is a "100R" resistor? |date=2016-07-22 |website=stackexchange.com |url=https://electronics.stackexchange.com/questions/246920/what-is-a-100r-resistor |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618134426/https://electronics.stackexchange.com/questions/246920/what-is-a-100r-resistor |archive-date=2022-06-18}}</ref>
<ref name="Bahn_2017">{{cite web |title=Square resistors on circuit boards? |author-first=W. |author-last=Bahn |date=2017-09-14 |website=allaboutcircuits.com |url=https://forum.allaboutcircuits.com/threads/square-resistors-on-circuit-boards.140015/ |access-date=2022-06-08 |url-status=live |archive-url=https://web.archive.org/web/20220618132338/https://forum.allaboutcircuits.com/threads/square-resistors-on-circuit-boards.140015/ |archive-date=2022-06-18}}</ref>
<ref name="SQA_2018">{{cite book |title=2018 Practical Electronics - National 5 Finalised Marking Instructions |date=2018 |series=N5: National Qualifications 2019 |publisher=[[Scottish Qualifications Authority]] (SQA) |pages=3, 12 |url=https://www.sqa.org.uk/pastpapers/papers/instructions/2018/mi_N5_Practical-Electronics_mi_2018.pdf |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618134643/https://www.sqa.org.uk/pastpapers/papers/instructions/2018/mi_N5_Practical-Electronics_mi_2018.pdf |archive-date=2022-06-18}} (12 pages); {{cite book |title=2019 Practical Electronics - National 5 Finalised Marking Instructions |date=2019 |series=N5: National Qualifications 2019 |publisher=[[Scottish Qualifications Authority]] (SQA) |pages=3, 10 |url=https://www.sqa.org.uk/pastpapers/papers/instructions/2019/mi_N5_Practical-Electronics_mi_2019.pdf |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618131510/https://www.sqa.org.uk/pastpapers/papers/instructions/2019/mi_N5_Practical-Electronics_mi_2019.pdf |archive-date=2022-06-18}} (11 pages)</ref>
<ref name="PE">{{cite web |title=Practical Electronics |work=[[Bathgate Academy]] |location=West Lothian, Scotland, UK |page=12 |url=http://www.bathgateacademy.westlothian.org.uk/media/19117/N5-Practical-Electronics-summary-sheet/pdf/N5_Practical_Electronics_summary_sheet.pdf?m=636528315569700000 |access-date=2022-06-18 |url-status=live |archive-url=https://web.archive.org/web/20220618132035/http://www.bathgateacademy.westlothian.org.uk/media/19117/N5-Practical-Electronics-summary-sheet/pdf/N5_Practical_Electronics_summary_sheet.pdf?m=636528315569700000 |archive-date=2022-06-18}} (15 pages)</ref>
<ref name="HL7_2015">{{cite web |title=Commonly Used UCUM Codes for Healthcare Units |date=2015-11-21 |publisher=HL7 Deutschland e.V. |url=https://download.hl7.de/documents/ucum/ucumdata.html |access-date=2022-12-24 |url-status=live |archive-url=https://web.archive.org/web/20221006180404/https://download.hl7.de/documents/ucum/ucumdata.html |archive-date=2022-10-06}}</ref>
<ref name="TI_2021">{{cite web |title=User's Guide - Dual-Mode Bluetooth CC2564C Evaluation Board |date=December 2021 |orig-date=March 2020 |id=SWRU495C |publisher=[[Texas Instruments Incorporated]] |page=7 |url=https://www.ti.com/lit/ml/swru495c/swru495c.pdf?ts=1701721542215 |access-date=2023-12-04 |url-status=live |archive-url=https://web.archive.org/web/20231204203007/https://www.ti.com/lit/ml/swru495c/swru495c.pdf?ts=1701721542215 |archive-date=2023-12-04}} (8 pages)</ref>
<ref name="ST_2022">{{cite web |title=L99VR02J Datasheet: Automotive linear voltage regulator with configurable output voltage having 500 mA current capability |id=DS14076 |version=Revision 1 |date=December 2022 |publisher=[[STMicroelectronics NV]] |url=https://www.st.com/resource/en/datasheet/l99vr02j.pdf}} (38 pages)</ref>
<ref name="Sumida_2015">{{cite web |title=SPM1004: 12V Input 6A Output Power Supply in Inductor (PSI2) Module |version=Version 3.0 |date=2015-07-29 |publisher={{ill|Sumida Corporation|de|Sumida AG}} |url=https://www.mouser.com/datasheet/2/390/SPM1004%20Datasheet%20V3.0-783582.pdf |access-date=2023-12-05 |url-status=live |archive-url=https://web.archive.org/web/20231205224513/https://www.mouser.com/datasheet/2/390/SPM1004%20Datasheet%20V3.0-783582.pdf |archive-date=2023-12-05}} (28+1 pages)</ref>
<ref name="TDK_2022">{{cite web |title=Why are the characters such as "4R7" or "100" printed on some products? |work=FAQ |date=2022 |publisher=[[TDK Corporation]] |url=https://product.tdk.com/en/contact/faq/inductors-0032.html |access-date=2023-12-06 |url-status=live |archive-url=https://web.archive.org/web/20221209021719/https://product.tdk.com/en/contact/faq/inductors-0032.html |archive-date=2022-12-09 |quote=These are the inductances expressed in a unit of microhenry (uH). The first two digits indicate significant figures and the third digit a multiplier. When there is an "R", it indicates a decimal point, and all numbers are significant figures.}}</ref>
<ref name="Eaton_2016">{{cite web |title=Technical Data 4085 - HCM0703 - High current power inductors |date=March 2016 |orig-date=December 2014 |id= |publisher=[[Eaton Electronics Division]] |publication-place=Cleveland, Ohio, USA |url=https://www.farnell.com/datasheets/2307649.pdf |access-date=2023-12-06 |url-status=live |archive-url=https://web.archive.org/web/20231205233750/https://www.farnell.com/datasheets/2307649.pdf |archive-date=2023-12-05 |quote=Part marking: XXX=Inductance value in uH, R= decimal point. If no R is present then last character equals number of zeros}}</ref>
<ref name="Yageo_2022">{{cite web |title=Data Sheet General Purpose Chip Resistors RC_L series ±0.1%, ±0.5%, ±1%, ±5% Sizes 0075/0100/0201/0402/0603/0805/1206/1210/1218/2010/2512 |publisher=[[Yageo]] |date=2022-08-02 |type=Datasheet |edition=Version 12 |url=https://www.mouser.com/datasheet/2/447/YAGEO_PYu_RC_Group_51_RoHS_L_12-3313492.pdf |access-date=2024-02-07 |url-status=live |archive-url=https://web.archive.org/web/20240207232859/https://www.mouser.com/datasheet/2/447/YAGEO_PYu_RC_Group_51_RoHS_L_12-3313492.pdf |archive-date=2024-02-07}} (10+1 pages)</ref>
<ref name="Vishay_2023">{{cite web |title=Standard Thick Film Chip Resistors D/CRCW e3 |publisher=[[Vishay Intertechnology, Inc.]] |date=2024-01-01 |orig-date=2023-11-07 |id=Document Number: 20035 |url=https://www.vishay.com/docs/20035/dcrcwe3.pdf |access-date=2024-02-07 |url-status=live |archive-url=https://web.archive.org/web/20240207232919/https://www.vishay.com/docs/20035/dcrcwe3.pdf |archive-date=2024-02-07}}</ref>
}}
}}


== External links ==
*http://www.engineeringtoolbox.com/resistors-value-letter-digit-code-d_1656.html
*http://www.matrixtsl.com/courses/ecc/index.php?n=Resistors.BS1852ResistorCoding
*https://electronics.stackexchange.com/questions/246920/what-is-a-100r-resistor
{{List of IEC standards}}
{{List of IEC standards}}

[[Category:Standards]]
[[Category:Standards]]
[[Category:Electrical components]]
[[Category:Encodings]]

Latest revision as of 05:02, 28 May 2024

The RKM code,[1] also referred to as "letter and numeral code for resistance and capacitance values and tolerances",[1] "letter and digit code for resistance and capacitance values and tolerances",[2][3] or informally as "R notation"[4][5][6][7][8][9] is a notation to specify resistor and capacitor values defined in the international standard IEC 60062 (formerly IEC 62) since 1952. Other standards including DIN 40825 (1973), BS 1852 (1975),[10] IS 8186 (1976), and EN 60062 (1993) have also accepted it. The updated IEC 60062:2016,[1] amended in 2019, comprises the most recent release of the standard.

Overview

[edit]

Originally meant also as part marking code, this shorthand notation is widely used in electrical engineering to denote the values of resistors and capacitors in circuit diagrams and in the production of electronic circuits (for example in bills of material and in silk screens). This method avoids overlooking the decimal separator, which may not be rendered reliably on components or when duplicating documents.

The standards also define a color code for fixed resistors.

Part value code

[edit]
Examples of resistance values[11]
R47 0.47 ohm
4R7 4.7 ohm
470R 470 ohm
4K7 4.7 kilohm
47K 47 kilohm
47K3 47.3 kilohm
470K 470 kilohm
4M7 4.7 megohm

For brevity, the notation omits to always specify the unit (ohm or farad) explicitly and instead relies on implicit knowledge raised from the usage of specific letters either only for resistors or for capacitors,[nb 1] the case used (uppercase letters are typically used for resistors, lowercase letters for capacitors),[nb 2] a part's appearance, and the context.

The notation also avoids using a decimal separator and replaces it by a letter associated with the prefix symbol for the particular value.[nb 3]

This is not only for brevity (for example when printed on the part or PCB), but also to circumvent the problem that decimal separators tend to "disappear" when photocopying printed circuit diagrams.

Another advantage is the easier sortability of values which helps to optimize the bill of materials by combining similar part values to improve maintainability and reduce costs.[nb 4]

The code letters are loosely related to the corresponding SI prefix, but there are several exceptions, where the capitalization differs or alternative letters are used.

For example, 8K2 indicates a resistor value of 8.2 kΩ. Additional zeros imply tighter tolerance, for example 15M0.

When the value can be expressed without the need for a prefix, an "R" or "F" is used instead of the decimal separator. For example, 1R2 indicates 1.2 Ω, and 18R indicates 18 Ω.

Code letter SI prefix Multiplier[12]
Resistance [Ω] Capacitance [F] Name Symbol Base 10 Value
p (P[nb 2]) pico p × 10−12 × 0.000000000001
n (N[nb 2]) nano n × 10−9 × 0.000000001
μ (u, U[nb 2]) micro μ × 10−6 × 0.000001
L m (M[nb 1][nb 2]) milli m × 10−3 × 0.001
R (E[nb 5]) F × 100 × 1
K (k[nb 6]) kilo k × 103 × 1000
M[nb 1] mega M × 106 × 1000000
G giga G × 109 × 1000000000
T tera T × 1012 × 1000000000000

For resistances, the standard dictates the use of the uppercase letters L (for 10−3), R (for 100 = 1), K (for 103), M (for 106), and G (for 109) to be used instead of the decimal point.

The usage of the letter R instead of the SI unit symbol Ω for ohms stems from the fact that the Greek letter Ω is absent from most older character encodings (though it is present in the now-ubiquitous Unicode) and therefore is sometimes impossible to reproduce, in particular in some CAD/CAM environments. The letter R was chosen because visually it loosely resembles the Ω glyph, and also because it works nicely as a mnemonic for resistance in many languages.[citation needed]

The letters G and T weren't part of the first issue of the standard, which pre-dates the introduction of the SI system (hence the name "RKM code"), but were added after the adoption of the corresponding SI prefixes.

The introduction of the letter L in more recent issues of the standard (instead of an SI prefix m for milli) is justified to maintain the rule of only using uppercase letters for resistances (the otherwise resulting M was already in use for mega).

Similar, the standard prescribes the following lowercase letters for capacitances to be used instead of the decimal point: p (for 10−12), n (for 10−9), μ (for 10−6), m (for 10−3), but uppercase F (for 100 = 1) for farad.

The letters p and n weren't part of the first issue of the standard, but were added after the adoption of the corresponding SI prefixes.

In cases where the Greek letter μ is not available, the standard allows it to be replaced by u (or U, when only uppercase letters are available). This usage of u instead of μ is also in line with ISO 2955 (1974,[13] 1983[14]), DIN 66030 (Vornorm 1973;[15] 1980,[16][17] 2002[18]), BS 6430 (1983) and Health Level 7 (HL7),[19] which allow the prefix μ to be substituted by the letter u (or U) in circumstances in which only the Latin alphabet is available.

Several manufacturers of resistors utilize the RKM code as part of the components' manufacturer's part numbers (MPNs).[20][21]

Similar codes

[edit]

Though non-standard, some manufacturers also use the RKM code to mark inductors with "R" indicating the decimal point in microhenry (e.g. 4R7 for 4.7 μH).[22][23]

A similar non-standard notation using the unit symbol instead of a decimal separator is sometimes used to indicate voltages (i.e. 0V8 for 0.8 V, 1V8 for 1.8 V, 3V3 for 3.3 V or 5V0 for 5.0 V[24][25][26]) in contexts where a decimal separator would be inappropriate (e.g. in signal or pin names, in file names, or in labels or subscripts).

Tolerance code

[edit]

Letter code for resistance and capacitance tolerances:

Code letter Tolerance
Resistance Capacitance Relative Absolute
Symmetrical Asymmetrical C <10 pF only
A A variable (±0.05%) variable variable
B B ±0.1%
C C ±0.25% ±0.25 pF
D D ±0.5% ±0.5 pF
E ±0.005%
F F ±1.0% ±1.0 pF
G G ±2.0% ±2.0 pF
H H ±3.0%
J J ±5.0%
K K ±10%
L ±0.01%
M M ±20%
N ±30%
P ±0.02%
Q −10/+30%
S −20/+50%
T −10/+50%
W ±0.05%
Z −20/+80%

Before the introduction of the RKM code, some of the letters for symmetrical tolerances (viz. G, J, K, M) were already used in US military contexts following the American War Standard (AWS) and Joint Army-Navy Specifications (JAN) since the mid-1940s.[27]

Temperature coefficient code

[edit]

Letter codes for the temperature coefficient of resistance (TCR):

Code letter ppm/K
K 1
L 2
M 5
N 10
P 15
Q 25
R 50
S 100
U 250
Z other

Production date codes

[edit]

Twenty-year cycle code

[edit]

Example: J8 = August 2017 (or August 1997)

Some manufacturers also used the production date code as a stand-alone code to indicate the production date of integrated circuits.[33]

Some manufacturers specify a three-character date code with a two-digit week number following the year letter.[34]

IEC 60062 also specifies a four-character year/week code.

Ten-year cycle code

[edit]
  • First character: Year of production in ten-year cycle[34]
  • Second character: Month of production[34]
    • 1 to 9 = January to September
    • X = October
    • Y = November
    • Z = December

Example: 78 = August 2017

IEC 60062 also specifies a four-character year/week code.

Four-year cycle code

[edit]

IEC 60062 also specifies a single-character four-year cycle year/month code.[nb 9]

Year Month Letter
1993
1997
2001
2005
2009
2013
2017
2021
1 A
2 B
3 C
4 D
5 E
6 F
7 G
8 H
9 J
10 K
11 L
12 M
Year Month Letter
1994
1998
2002
2006
2010
2014
2018
2022
1 N
2 P
3 Q
4 R
5 S
6 T
7 U
8 V
9 W
10 X
11 Y
12 Z
Year Month Letter
1995
1999
2003
2007
2011
2015
2019
2023
1 a
2 b
3 c
4 d
5 e
6 f
7 g
8 h
9 j
10 k
11 l
12 m
Year Month Letter
1996
2000
2004
2008
2012
2016
2020
2024
1 n
2 p
3 q
4 r
5 s
6 t
7 u
8 v
9 w
10 x
11 y
12 z

Marking codes for E series preferred values

[edit]

Three-character resistor marking code

[edit]

For resistances following the (E48 or) E96 series of preferred values, the former EIA-96 as well as IEC 60062:2016 define a special three-character marking code for resistors to be used on small parts. The code consists of two digits denoting one of the "positions" in the series of E96 values followed by a letter indicating the multiplier.

Two-character capacitor marking code

[edit]

For capacitances following the (E3, E6, E12 or) E24 series of preferred values, the former ANSI/EIA-198-D:1991, ANSI/EIA-198-1-E:1998 and ANSI/EIA-198-1-F:2002 as well as the amendment IEC 60062:2016/AMD1:2019 to IEC 60062 define a special two-character marking code for capacitors for very small parts which leave no room to print any longer codes onto them. The code consists of an uppercase letter denoting the two significant digits of the value followed by a digit indicating the multiplier. The EIA standard also defines a number of lowercase letters to specify a number of values not found in E24.[35]

Corresponding standards

[edit]
  • IEC 62:1952 (aka IEC 60062:1952), first edition, 1952-01-01
  • IEC 62:1968 (aka IEC 60062:1968), second edition, 1968-01-01
  • IEC 62:1968/AMD1:1968 (aka IEC 60062:1968/AMD1:1968), amended second edition, 1968-12-31
  • IEC 62:1974 (aka IEC 60062:1974)[36]
  • IEC 62:1974/AMD1:1988 (aka IEC 60062:1974/AMD1:1988), amended third edition, 1988-04-30
  • IEC 62:1974/AMD2:1989 (aka IEC 60062:1974/AMD2:1989), amended third edition, 1989-01-01
  • IEC 62:1992 (aka IEC 60062:1992), fourth edition, 1992-03-15
  • IEC 62:1992/AMD1:1995 (aka IEC 60062:1992/AMD1:1995), amended fourth edition, 1995-06-19
  • IEC 60062:2004 (fifth edition, 2004-11-08)[2]
  • IEC 60062:2016 (sixth edition, 2016-07-12)[1]
  • IEC 60062:2016/COR1:2016 (corrected sixth edition, 2016-12-05)
  • IEC 60062:2016/AMD1:2019 (amendment 1, 2019-08-20)
  • IEC 60062:2016+AMD1:2019 CSV (consolidated version 6.1, 2019-08-20)
  • EN 60062:1993
  • EN 60062:1994 (1994-10)
  • EN 60062:2005
  • EN 60062:2016
  • EN 60062:2016/AC:2016-12 (corrected edition)
  • EN 60062:2016/A1:2019 (amendment 1)
  • BS 1852:1975[10] (related to IEC 60062:1974)
  • BS EN 60062:1994[37]
  • BS EN 60062:2005[38]
  • BS EN 60062:2016[39]
  • DIN 40825:1973-04 (capacitor/resistor value code), DIN 41314:1975-12 (date code)
  • DIN IEC 62:1985-12 (aka DIN IEC 60062:1985-12)
  • DIN IEC 62:1989-10 (aka DIN IEC 60062:1989-10)
  • DIN IEC 62:1990-11 (aka DIN IEC 60062:1990-11)
  • DIN IEC 62:1993-03 (aka DIN IEC 60062:1993-03)
  • DIN EN 60062:1997-09
  • DIN EN 60062:2001-11
  • DIN EN 60062:2005-11
  • DIN EN 60062:2017-06
  • DIN EN 60062:2020-03
  • ČSN EN 60062
  • DS/EN 60062
  • EVS-EN 60062
  • (GOST) ГОСТ IEC 60062-2014[32] (related to IEC 60062-2004)
  • ILNAS-EN 60062
  • I.S. EN 60062
  • NEN EN IEC 60062
  • NF EN 60062
  • ÖVE/ÖNORM EN 60062
  • PN-EN 60062
  • prМКС EN 60062
  • SN EN 60062
  • TS 2932 EN 60062
  • UNE-EN 60062
  • BIS IS 4114-1967
  • IS 8186-1976[40] (related to IEC 62:1974)
  • JIS C 5062, JIS C 60062
  • TGL 31667[41]

See also

[edit]

Notes

[edit]
  1. ^ a b c The letter M was an exception to the rule that all different letters are supposed to be used for resistances and capacitances. Today, a lowercase letter m should be used for capacitances whenever possible to avoid confusion.
  2. ^ a b c d e In old issues of the IEC 60062 standard, uppercase Latin letters were not only used for resistances, but also for capacitance values, whereas newer issues specifically use lowercase letters for capacitors (except for the special case of F).
  3. ^ As different decimal separators are used depending on the locale (most commonly . and ,), and these characters are also used as thousands separators in some areas, avoiding to use decimal separators also has the advantage of not risking to become ambiguous in an international context.
  4. ^ Alphanumerically sorting part values in RKM notation results in sorted groups of nearby values. Within some limits, this makes it easier to identify and combine similar values within these groups in preparation of a bill of materials in order to rationalize part inventory, ease part procurement and safe costs. For example, sorting the following random part values (3.3 kΩ, 4.7 kΩ, 4.7 MΩ, 3.6 kΩ, 5.1 kΩ, 3.3 Ω, 1.0 Ω, 5.6 MΩ, 9.1 kΩ) would conventionally result in a list like 1.0 Ω, 3.3 Ω, 3.3 kΩ, 3.6 kΩ, 4.7 kΩ, 4.7 MΩ, 5.1 kΩ, 5.6 MΩ, 9.1 kΩ, but would result in 3K3, 3K6, 4K7, 5K1, 9K1, 4M7, 5M6, 1R0, 3R3 in RKM code, where it is easier to spot that the values 3.3 kΩ and 3.6 kΩ as well as 4.7 kΩ and 5.1 kΩ are, depending on application, close enough to be potentially subjects for optimization.
  5. ^ The usage of the Latin letter E instead of R is not standardized in IEC 60062, but nevertheless sometimes seen in practice. It stems from the fact, that R is used in symbolic names for resistors as well, and it is also used in a similar fashion but with incompatible meaning in other part marking codes. It may therefore cause confusion in some contexts. Visually, the letter E loosely resembles a small Greek letter omega (ω) turned sideways. Historically (i.e. in pre-WWII documents), before ohms were denoted using the uppercase Greek omega (Ω), a small omega (ω) was sometimes used for this purpose as well, as in 56ω for 56 Ω. However, the letter E is conflictive with the similar looking but incompatible E notation in engineering, and it may therefore cause considerable confusion as well.
  6. ^ The IEC 60062 standard prescribes the usage of an uppercase Latin letter K only, however, a lowercase k is nevertheless often seen in schematics and bills of materials probably because the corresponding SI prefix is defined as a lowercase k.
  7. ^ In order to reduce the risk for read errors, the letters G (6), I (J, 1), O (0, Q, D), Q (O, D, 0), Y, Z (2) are not used as their glyphs look similar to other letters and digits.
  8. ^ Due to the ambiguity of many month initials (A, J, M) the code for the most part uses digits. Since letter O is easily confused with digit 0, the code is arranged so that the letter O is used for October, the tenth month, rather than for January.
  9. ^ In order to reduce the risk for read errors, the letters I/i and O/o are not used as their glyphs look similar to other letters and digits.

References

[edit]
  1. ^ a b c d "IEC 60062:2016-07" (6.0 ed.). July 2016. Archived from the original on 2018-07-23. Retrieved 2018-07-23. [1]
  2. ^ a b International Standard IEC 60062: Marking codes for resistors and capacitors - Preview (PDF) (5 ed.). International Electrotechnical Commission. November 2004. Archived (PDF) from the original on 2022-02-10. Retrieved 2022-06-16.
  3. ^ "14. Letter and digit code for R & C values". Units & Symbols for Electrical & Electronic Engineers (PDF). The Institution of Engineering and Technology (IET). 2016 [1985]. p. 29. Archived (PDF) from the original on 2020-08-07. Retrieved 2021-04-25. (37 pages)
  4. ^ Huster, Dean (2003-09-24). "Resistor Nomenclature". T&L Publications. Archived from the original on 2022-06-18. Retrieved 2022-06-18.
  5. ^ vaj4088 (2016-04-13). "Controlling a Opto-Relay using Arduino". arduino.cc. Archived from the original on 2022-06-18. Retrieved 2022-06-18.
  6. ^ "What is a "100R" resistor?". stackexchange.com. 2016-07-22. Archived from the original on 2022-06-18. Retrieved 2022-06-18.
  7. ^ Bahn, W. (2017-09-14). "Square resistors on circuit boards?". allaboutcircuits.com. Archived from the original on 2022-06-18. Retrieved 2022-06-08.
  8. ^ 2018 Practical Electronics - National 5 Finalised Marking Instructions (PDF). N5: National Qualifications 2019. Scottish Qualifications Authority (SQA). 2018. pp. 3, 12. Archived (PDF) from the original on 2022-06-18. Retrieved 2022-06-18. (12 pages); 2019 Practical Electronics - National 5 Finalised Marking Instructions (PDF). N5: National Qualifications 2019. Scottish Qualifications Authority (SQA). 2019. pp. 3, 10. Archived (PDF) from the original on 2022-06-18. Retrieved 2022-06-18. (11 pages)
  9. ^ "Practical Electronics" (PDF). Bathgate Academy. West Lothian, Scotland, UK. p. 12. Archived (PDF) from the original on 2022-06-18. Retrieved 2022-06-18. (15 pages)
  10. ^ a b BS 1852:1975.
  11. ^ "Resistors - Letters and Digit Codes. Letter and digit codes to indicating resistor values". The Engineering ToolBox. 2010. Archived from the original on 2020-06-21. Retrieved 2020-05-14.
  12. ^ Tooley, Mike (2011-07-19). "BS1852 Resistor Coding". Matrix - Electronic circuits and components. Archived from the original on 2016-12-20. Retrieved 2020-05-14.
  13. ^ ISO 2955-1974: lnformation processing - Representations of SI and other units for use in systems with limited character sets (1 ed.). 1974.
  14. ^ "Table 2". ISO 2955-1983: lnformation processing - Representations of SI and other units for use in systems with limited character sets (PDF) (2 ed.). 1983-05-15. Retrieved 2016-12-14. [2]
  15. ^ Vornorm DIN 66030 [Preliminary standard DIN 66030] (in German). January 1973.
  16. ^ DIN 66030: Informationsverarbeitung - Darstellungen von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat [Information processing; representations for names of units to be used in systems with limited graphic character sets] (in German) (1 ed.). Beuth Verlag [de]. November 1980. Retrieved 2016-12-14.
  17. ^ "Neue Normen für die Informationsverarbeitung". Computerwoche (in German). 1981-01-09. Archived from the original on 2016-12-14. Retrieved 2016-12-14.
  18. ^ DIN 66030:2002-05 - Informationstechnik - Darstellung von Einheitennamen in Systemen mit beschränktem Schriftzeichenvorrat [Information technology - Representation of SI and other units in systems with limited character sets] (in German). Beuth Verlag [de]. May 2002. Retrieved 2016-12-14.
  19. ^ "Commonly Used UCUM Codes for Healthcare Units". HL7 Deutschland e.V. 2015-11-21. Archived from the original on 2022-10-06. Retrieved 2022-12-24.
  20. ^ "Data Sheet General Purpose Chip Resistors RC_L series ±0.1%, ±0.5%, ±1%, ±5% Sizes 0075/0100/0201/0402/0603/0805/1206/1210/1218/2010/2512" (PDF) (Datasheet) (Version 12 ed.). Yageo. 2022-08-02. Archived (PDF) from the original on 2024-02-07. Retrieved 2024-02-07. (10+1 pages)
  21. ^ "Standard Thick Film Chip Resistors D/CRCW e3" (PDF). Vishay Intertechnology, Inc. 2024-01-01 [2023-11-07]. Document Number: 20035. Archived (PDF) from the original on 2024-02-07. Retrieved 2024-02-07.
  22. ^ "Technical Data 4085 - HCM0703 - High current power inductors" (PDF). Cleveland, Ohio, USA: Eaton Electronics Division. March 2016 [December 2014]. Archived (PDF) from the original on 2023-12-05. Retrieved 2023-12-06. Part marking: XXX=Inductance value in uH, R= decimal point. If no R is present then last character equals number of zeros
  23. ^ "Why are the characters such as "4R7" or "100" printed on some products?". FAQ. TDK Corporation. 2022. Archived from the original on 2022-12-09. Retrieved 2023-12-06. These are the inductances expressed in a unit of microhenry (uH). The first two digits indicate significant figures and the third digit a multiplier. When there is an "R", it indicates a decimal point, and all numbers are significant figures.
  24. ^ "SPM1004: 12V Input 6A Output Power Supply in Inductor (PSI2) Module" (PDF). Version 3.0. Sumida Corporation [de]. 2015-07-29. Archived (PDF) from the original on 2023-12-05. Retrieved 2023-12-05. (28+1 pages)
  25. ^ "User's Guide - Dual-Mode Bluetooth CC2564C Evaluation Board" (PDF). Texas Instruments Incorporated. December 2021 [March 2020]. p. 7. SWRU495C. Archived (PDF) from the original on 2023-12-04. Retrieved 2023-12-04. (8 pages)
  26. ^ "L99VR02J Datasheet: Automotive linear voltage regulator with configurable output voltage having 500 mA current capability" (PDF). Revision 1. STMicroelectronics NV. December 2022. DS14076. (38 pages)
  27. ^ Buttner, Harold H.; Kohlhaas, H. T.; Mann, F. J., eds. (1946). "Chapter 3: Audio and radio design". Reference Data for Radio Engineers (PDF) (2 ed.). Federal Telephone and Radio Corporation (FTR). pp. 52, 55. Archived (PDF) from the original on 2018-05-16. Retrieved 2020-01-03. (NB. While the tolerance codes according to AWS/JAN are listed in this second edition of the book, they are not listed in the 1943 original edition.)
  28. ^ a b c d e f g h i j k l m n o p q r s t u v "8. Marking". Electromagnetic Interference Suppression Capacitors - Class X2 305/310VAC - Technical Specification - Metallized Polypropylene Film Capacitors (MKP) - Type: KNB1580 (PDF). Semič, Slovenia: ISKRA, d.d. April 2018. p. 11. Archived (PDF) from the original on 2020-12-29. Retrieved 2022-06-16. (15 pages)
  29. ^ a b c d e f g h i j k "Appendix A". How to understand MAGNETEC's Datasheet (PDF). Langenselbold, Germany: MAGNETEC GmbH. April 2018. p. 8. PB-DS. Archived (PDF) from the original on 2022-06-16. Retrieved 2022-06-16. (9 pages)
  30. ^ a b c d e f g h i j k l m n o p q r s t u "Marking". Class X2: Metallized Polyester Film EMI Suppression Capacitors PHE820E, Class X2, 300 VAC (PDF). Fort Lauderdale, Florida, USA: KEMET Electronics Corporation. 2021-11-10. p. 9. F3010_PHE820E_X2_300. Archived (PDF) from the original on 2022-06-16. Retrieved 2022-06-16. (13 pages)
  31. ^ a b c d e f g h i j k l "Production date code marking system according to IEC 60062, clause 5.1 Two-character code (year/month)" (PDF). Iskra Kondenzatorji. 2017. Archived (PDF) from the original on 2017-02-07. Retrieved 2017-02-07. (NB. Date codes for 2016 and 2017 are obviously wrong.)
  32. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ГОСТ IEC 60062-2014 (PDF) (in Russian). GOST (ГОСТ). 2014. Archived (PDF) from the original on 2022-02-10. Retrieved 2022-06-16.
  33. ^ Kurth, Rüdiger; Groß, Martin; Hunger, Henry, eds. (2021-09-27) [2011]. "Integrierte Schaltkreise". Robotron Technik (in German). Beschriftung der Schaltkreise. Archived from the original on 2021-12-03. Retrieved 2021-12-06.
  34. ^ a b c d e f g h i j k l m n o p q r "Precision and Power Resistors (ISA)" (PDF). Swansea, MA, USA: Isotek Corporation / Isabellenhütte [de]. Archived from the original (PDF) on 2017-02-07. Retrieved 2017-02-07.
  35. ^ "Annex B: Special two-character code system for capacitors". SLOVENSKI STANDARD SIST EN 60062:2016/A1:2019 (PDF) (preview). 2019-12-01. pp. 3–4. Archived (PDF) from the original on 2022-06-17. Retrieved 2022-06-17.
  36. ^ IEC 60062:1974
  37. ^ BS EN 60062:1994.
  38. ^ BS EN 60062:2005.
  39. ^ BS EN 60062:2016.
  40. ^ IS: 8186-1976 (PDF). 1977 [1976]. Archived (PDF) from the original on 2016-12-14. Retrieved 2016-12-14.
  41. ^ TGL 31667: Bauelemente der Elektronik; Kennzeichnung; Herstellungsdatum [TGL 31667: Electronic Components; Designation; Date of Manufacture] (PDF) (in German). Leipzig, Germany: Verlag für Standardisierung. October 1979. Archived (PDF) from the original on 2021-01-28. Retrieved 2018-01-09.