Jump to content

Heilmann locomotive: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
The loco is a steam electric one, steam prime mover, electric traction motors.
top: hyphen missing from compound modifier
 
(48 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{short description|Experimental steam locomotives with electric transmission.}}
{{Use dmy dates|date=July 2015}}
{{Use dmy dates|date=July 2015}}
The '''Heilmann locomotives''' were a series of three experimental [[steam-electric locomotive]]s produced in the 1890s for the French [[Chemins de Fer de l'Ouest]] (CF de l'Ouest). A [[prototype]] was built in 1894 and two larger locomotives were built in 1897. These locomotives can be considered the ancestors of [[diesel-electric locomotive]]s, and other self powered locomotives which use an electric transmission.
The '''Heilmann locomotives''' were a series of three experimental steam–electric locomotives produced in the 1890s for the French [[Chemins de fer de l'Ouest]] (CF de l'Ouest). A [[prototype]] was built in 1894 and two larger locomotives were built in 1897. These locomotives used electric transmission, much like later-popular [[diesel–electric locomotive]]s and various other self-powered locomotives.


==La Fusée Electrique==
==La Fusée Electrique==
{{Infobox locomotive
{{Infobox locomotive
| name = ''La Fusée Electrique''
| name = ''La Fusée Electrique''
| powertype = Steam-electric
| powertype = Steam–electric
| image = FuséeElectrique.png
| image = File:Heilmann Electric Locomotive - Cassier's 1894-04.png
| alt =
| alt =
| caption =
| caption =
| designer = {{Interlanguage link multi|Jean Jacques Heilmann|fr|3=Jean-Jacques Heilmann (inventeur)}}
| designer = {{Interlanguage link multi|Jean Jacques Heilmann|fr|3=Jean-Jacques Heilmann (inventeur)}}<br/>
| builder = Forges et Chantiers de la Méditerranée
| builder = [[Forges et Chantiers de la Méditerranée]]
| ordernumber =
| ordernumber =
| serialnumber =
| serialnumber =
| buildmodel =
| buildmodel =
| builddate = 1892-1893
| builddate = 1892–1893
| totalproduction = 1
| totalproduction = 1
| rebuilder =
| rebuilder =
Line 21: Line 22:
| aarwheels = <!-- D-D -->
| aarwheels = <!-- D-D -->
| uicclass = Do'Do'
| uicclass = Do'Do'
| gauge = {{track gauge|4ft8.5in}}*
| gauge = {{Track gauge|4ft8.5in|allk=on}}*
| leadingdiameter =
| leadingdiameter =
| driverdiameter =
| driverdiameter =
| trailingdiameter =
| trailingdiameter =
| minimumcurve =
| minimumcurve =
| wheeldiameter = {{convert|1.2|m|ftin|abbr=on}}
| wheeldiameter = {{convert|1.2|m|ftin|frac=8|abbr=on}}
| wheelbase =
| wheelbase =
| length = {{convert|16.5|m|ftin|abbr=on}} ''(frame)''
| length = {{convert|16.5|m|ftin|frac=8|abbr=on}} ''([[Locomotive frame|frame]])''
| width =
| width =
| height =
| height =
| axleload =
| axleload =
| weightondrivers =
| weightondrivers =
| locoweight = {{convert|100|t|LT|0|abbr=on}} ''(empty)''
| locoweight = {{convert|100|t|LT ST|0|abbr=on}} ''(empty)''
| fueltype = coal
| fueltype = coal
| fuelcap = {{convert|6|t|LT|abbr=on}}
| fuelcap = {{convert|6|t|LT ST|abbr=on}}
| watercap = {{convert|12000|l|impgal|abbr=on}}
| watercap = {{convert|12000|L|impgal USgal|abbr=on}}
| tendercap =
| tendercap =
| sandcap =
| sandcap =
| boiler =
| boiler =
| boilerpressure = {{convert|12.6|atm|lb/in2|abbr=on}} <!-- note pressure is given as 13kilog - ie kg/sq cm, which is 12.58.. atm ?-->
| boilerpressure = <!-- {{convert|12.6|atm|lb/in2|abbr=on}} note pressure is given as 13kilog - ie kg/sq cm, which is 12.58.. atm ?--><br/>{{convert|13|kg/cm2|atm lb/in2|2|abbr=on}}
| feedwaterheater =
| feedwaterheater =
| firearea = {{convert|2.25|m2|sqft|abbr=on}}
| firearea = {{convert|2.25|m2|sqft|abbr=on}}
Line 54: Line 55:
| frontcylindersize=
| frontcylindersize=
| rearcylindersize =
| rearcylindersize =
| hpcylindersize = {{convert|425|x|300|mm|in|abbr=on}}
| hpcylindersize = {{convert|425|x|300|mm|in|2|abbr=on}}
| lpcylindersize = {{convert|650|x|300|mm|in|abbr=on}}
| lpcylindersize = {{convert|650|x|300|mm|in|2|abbr=on}}
| valvegear =
| valvegear =
| valvetype =
| valvetype =
Line 63: Line 64:
| transmission =
| transmission =
| maxspeed = {{convert|107|km/h|mph|abbr=on}}*
| maxspeed = {{convert|107|km/h|mph|abbr=on}}*
| poweroutput =
| poweroutput = {{convert|80|to|100|CV|kW hp|lk=in|abbr=on}} / traction motor
| tractiveeffort =
| tractiveeffort =
| factorofadhesion =
| factorofadhesion =
| trainheating =
| trainheating =
| locobrakes = Air, disc brakes on wheels
| locobrakes = [[Railway air brake|Air]], [[Disc brake]]s
| locobrakeforce =
| locobrakeforce =
| trainbrakes =
| trainbrakes =
Line 93: Line 94:
| electricsystem =
| electricsystem =
| generator =
| generator =
| tractionmotors = Eight axle mounted motors of {{convert|80|to|100|CV|kW|lk=in|abbr=on}}
| tractionmotors = Eight axle mounted motors
| notes = Sources :<ref name="j1894"/><ref name="j1894b"/><ref name="j1894d"/> except *
| notes = Sources:<ref name="j1894" /><ref name="j1894b" /><ref name="j1894d" /> except *
}}
}}
[[File:FuséeElectrique.png|thumb|Cutaway view]]
In 1890, {{Interlanguage link multi|Jean Jacques Heilmann|fr|3=Jean-Jacques Heilmann (inventeur)}} registered a patent (France №. 207055) for a self powered electric vehicle; the design was intended to eliminate the unbalanced oscillatory moments and "[[hammer blow]]" caused by the [[Crank (mechanism)|cranked action]] of a conventional mechanical steam locomotive.<ref name="nom" /> His design used a balanced steam engine to drive the locomotive via an electrical transmission (an [[electrical generator]] driving [[electric motors]] via controlling [[rheostat]]s and [[electrical switch|switches]]).<ref name="Self, Heilmann" >{{cite web
|url=http://www.douglas-self.com/MUSEUM/LOCOLOCO/heilmann/heilmann1.htm
|title=The Heilmann Locomotive
|author=Douglas Self
|author-link=Douglas Self
|access-date=2023-03-09
}}</ref> Heilmann wished to create a machine specifically suited for high-speed trains without the high costs of an electrified infrastructure. His earliest design was of a trainset consisting of a vehicle with a triple expansion steam engine of {{convert|600|hp}}<ref name="cv" group="n" >The [[horsepower]] figure is given as ''chevaux'' and likely to be ''[[metric horsepower]]'', which is ~736W, and not the figure for ''mechanical horsepower'' of 746W.</ref> and generator providing {{convert|480|hp}} @ 80% expected efficiency, a tender and three carriages. The entire train was to run on bogies and use a distributed traction system provided by 12 axle-mounted electric motors in the three carriages.<ref >J.-J. Heilmann (1891), "Un nouveau chemin de fer électrique", Séance du 20 Février 1891 [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/102/0/884/870/884 p. 105–106]</ref>


The first real locomotive built to Heilmann's design was a prototype steam–electric locomotive, with boiler, steam engine, generator and motors built into a single locomotive; construction began in 1892 and was completed in August 1893.<ref name="j1894" >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/361/0/650/0/0 pp. 361–364]</ref> On completion it was named ''Fusée'' (also known as ''La Fusée Électrique'';<ref name="nom" >{{Base Palissy|IM76004632| Locomotive thermo-électrique dite la fusée électrique}}</ref> {{langx|en|The Electric Rocket}}),<ref name=Backtrack0108 /> a reference to the 1830 [[Robert Stephenson|Stephenson]] locomotive "''[[Stephenson's Rocket|Rocket]]''".<ref >E. Hospitalier (1897), "Nouvelle locomotive électrique de M. J.-J. Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.50/23/0/536/0/0 p. 19]</ref>
In 1890 {{Interlanguage link multi|Jean Jacques Heilmann|fr|3=Jean-Jacques Heilmann (inventeur)}} registered a patent (France №. 207055) for a self powered electric vehicle; the design was intended to eliminate the unbalanced oscillatory moments and "[[hammer blow]]" caused by the [[Crank (mechanism)|cranked action]] of a conventional mechanical steam locomotive.<ref name="nom"/> His design used a balanced steam engine to drive the locomotive via an electrical transmission (an [[electrical generator]] driving [[electric motors]] via controlling [[rheostat]]s and [[electrical switch|switches]]).<ref name=Heilmann>{{cite web |url=http://www.aqpl43.dsl.pipex.com/MUSEUM/LOCOLOCO/heilmann/heilmann.htm |title=The Heilmann Locomotive |publisher=Douglas Self |accessdate=22 August 2011}}</ref> Heilmann wished to create a machine specifically suited for high-speed trains without the high costs of an electrified infrastructure. His earliest design was of a trainset consisting of a vehicle with a triple expansion steam engine (of 600&nbsp;hp.<ref name="cv" group="n">The [[horsepower]] figure is given as ''chevaux'' and likely to be ''[[metric horsepower]]'', which is ~736W, and not the figure for ''mechanical horsepower'' of 746W.</ref>) and generator (providing 480&nbsp;hp @ 80% expected efficiency), a tender and three carriages. The entire train was to run on bogies, and use a distributed traction system provided by 12 axle-mounted electric motors in the three carriages.<ref>J.-J. Heilmann (1891), "Un nouveau chemin de fer électrique", Séance du 20 Février 1891 [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/102/0/884/870/884 p.105-106]</ref>


The steam engine (designed by [[Swiss Locomotive and Machine Works]] (SLM) at [[Winterthur]], Switzerland.<ref name=Backtrack0108 />) and boiler were built at the ''[[Forges et Chantiers de la Méditerranée]]'' in [[Le Havre]], the electrical equipment was designed and built at [[Brown, Boveri & Cie|Brown, Boveri & Compagnie]] of [[Baden, Switzerland]], whilst the locomotive frame and bogies were built at the [[Compagnie de Materiel de Chemins de Fer]].<ref >Michael C. Duffy (2003), [https://archive.org/details/electricrailways0000duff/page/43 p. 43]</ref>
The first real locomotive built to Heilmann's design was a prototype steam-electric locomotive, with boiler, steam engine, generator and motors built into a single locomotive; construction began in 1892 and was complete in August 1893,<ref name="j1894">Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/361/0/650/0/0 pp.361-364]</ref> and named ''Fusée'' (also known as ''La Fusée Électrique'';<ref name="nom">{{cite web |url=http://www.culture.gouv.fr/public/mistral/palsri_fr?ACTION=CHERCHER&FIELD_1=REF&VALUE_1=IM76004632| title = Locomotive thermo-électrique dite la fusée électrique, in the inventory of railway heritage|language=French|work = www.culture.gouv.fr|publisher = [[Ministère de la Culture et de la Communication]]}}</ref> {{lang-en|The Electric Rocket}}),<ref name=Backtrack0108/> a reference to the 1830 Stephenson locomotive "''[[Rocket (locomotive)|Rocket]]''".<ref>E. Hospitalier (1897), "Nouvelle locomotive électrique de M. J.-J. Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.50/23/0/536/0/0 p.19]</ref>


The locomotive had a {{convert|600|to|800|CV|kW|lk=in}}<ref name="cv" group="n" /> (@ 300 to 400&nbsp;[[Revolutions per minute|rpm]]) two-cylinder horizontal [[compound steam engine]] with transversely mounted cylinders of {{convert|425|and|650|mm|in}} diameter by 300&nbsp;mm (11{{frac|4|5}} in) stroke. It was supplied with steam by a [[Lentz boiler|Lentz-type boiler]], operating at a pressure of {{convert|12.6|atm|lb/in2}},<ref name="j1894" /> with a firebox of a stayless [[corrugated furnace|corrugated type]].<ref name=Backtrack0108/> It had a grate area of {{convert|2.25|m2|sqft}}. The boiler had a total surface area of {{convert|145|m2|sqft}}.<ref name="j1894"/> The engine had a fixed [[cutoff (steam engine)|cutoff]] with no reversing mechanism, and no [[Governor (device)|speed governor]] excluding a centrifugal overspeed safety device.<ref name="j1894b" >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/364/0/650/0/0 pp. 364–365]</ref>
The steam engine (designed by [[Swiss Locomotive and Machine Works]] (SLM) at [[Winterthur]], Switzerland.<ref name=Backtrack0108/>) and boiler were built at the ''[[Forges et Chantiers de la Méditerranée]]'' in [[Le Havre]], the electrical equipment was designed and built at [[Brown, Boveri & Cie|Brown, Boveri & Compagnie]] of [[Baden, Switzerland]], whilst the locomotive frame and bogies were built at the [[Compagnie de Materiel de Chemins de Fer]].<ref>Michael C. Duffy (2003), [https://books.google.com/books?id=cpFEm3aqz_MC&lpg=PP1&pg=PA43#v=onepage&q&f=false p.43]</ref>


The steam engine drove directly a direct current dynamo,<ref name=Backtrack0108/> rated at approximately 500&nbsp;kW (1,200 A @ 400 V); it was a six pole machine with the armature constructed on the [[Gramme dynamo|Gramme dynamo principle]] with six [[Brush (electric)|brushes]].<ref name="j1894c" >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/365/0/650/0/0 pp. 365–367]</ref> The generator's [[field coil]]s were energised by a separate [[Bipolar field|bipolar]] dynamo capable of generating 100 A at 100 V ({{convert|10|kW|hp}}), which was directly driven at approximately 300 rpm by a 20 [[Metric horsepower|CV]] two cylinder vertical compound steam engine of similar design to the main engine. This secondary generator's output was also used to provide a supply for electric lighting in carriages.<ref name="j1894c" />
The locomotive had a {{convert|600|to|800|CV|kW|lk=in}}<ref name="cv" group="n"/> (@ 300 to 400&nbsp;[[Revolutions per minute|rpm]]) two-cylinder horizontal [[compound steam engine]] with transversely mounted cylinders of {{convert|425|mm|in}} and {{convert|650|mm|in}} diameter by 300&nbsp;mm (11{{frac|4|5}} in) stroke. It was supplied with steam by a [[Lentz boiler|Lentz-type boiler]], operating at a pressure of {{convert|12.6|atm|lb/in2}}.<ref name="j1894"/> The engine had a fixed [[cutoff (steam engine)|cutoff]] with no reversing mechanism, and no [[Governor (device)|speed governor]] excluding a centrifugal overspeed safety device.<ref name="j1894b">Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/364/0/650/0/0 pp.364-365]</ref>
The firebox was of a stayless corrugated type.<ref name=Backtrack0108/> It had a grate area of {{convert|2.25|m2|sqft}}. The boiler had a total surface area of {{convert|145|m2|sqft}}.<ref name="j1894"/>


Electric speed and load control was obtained by reducing the main generator's field excitation current coming from the {{convert|10|kW|hp}} dynamo using a twelve step drum [[rheostat]].<ref group="n" >The method of speed control by controlling the generator field excitation (magnetic field in the main generator) is also used in the [[Ward Leonard control|Ward Leonard motor control system]]</ref> The eight [[traction motor]]s were connected in parallel; for low speed control the motors could be series connected in two sets of four connected in parallel.<ref name="j1894c" /><ref group="n" >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/366/0/650/0/0 p. 366], ''"On se contente de coupler, suivant les besoins, les 8 moteurs electriques soit tous en tension, soit en quantité en 2 groupes de 4 en tension"''.</ref>
The steam engine drove directly a direct current dynamo,<ref name=Backtrack0108/> rated at approximately 500&nbsp;kW (1200[[Amperes|A]] @ 400[[Volts|V]]); it was a six pole machine with the armature constructed on the [[Gramme dynamo|Gramme dynamo principle]] with six [[Brush (electric)|brushes]].<ref name="j1894c">Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/365/0/650/0/0 pp.365-367]</ref> The generator's [[field coil]]s were energised by a separate [[Bipolar field|bipolar]] dynamo capable of generating 100A at 100V ({{convert|10|kW|hp}}), which was directly driven at approximately 300rpm by a 20 [[Metric horsepower|CV]] two cylinder vertical compound steam engine of similar design to the main engine. This secondary generator's output was also used to provide a supply for electric lighting in carriages.<ref name="j1894c"/>


The motors were located in two four-axle bogies,<ref name=Backtrack0108 /> with wheelset having a sealed axle mounted {{convert|80|to|100|CV|kW|lk=in}} electric motor;<ref name="j1894d" >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/367/0/650/0/0 pp. 367–368]</ref> giving a Do-Do wheel arrangement. Braking was by [[Westinghouse Air Brake Company|Westinghouse]] [[Railway air brake|air brakes]], with [[disc brake]]s fitted on all wheels.<ref name=Backtrack0108 >{{cite journal |first=Michael |last=Rutherford |title=Export or Die! British Diesel–Electric Manufacturers and Modernisation. Part One: Roots |journal=Backtrack |issue=January 2008 |pages=52–60 |publisher=Pendragon Publishing |location=Easingwold |url=http://www.pendragonpublishing.co.uk/Export_Or_Die.pdf}}</ref> The locomotive was a [[cab forward]] design.<ref name="Self, Heilmann" />
Electric speed and load control was obtained by reducing the main generator's field excitation current coming from the {{convert|10|kW|hp}} dynamo using a twelve step drum [[rheostat]].<ref group="n">The method of speed control by controlling the generator field excitation (magnetic field in the main generator) is also used in the [[Ward Leonard control|Ward Leonard motor control system]]</ref> The eight [[traction motor]]s were connected in parallel; for low speed control the motors could be series connected in two sets of four connected in parallel.<ref name="j1894c"/><ref group="n">Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/366/0/650/0/0 p.366], ''"On se contente de coupler, suivant les besoins, les 8 moteurs electriques soit tous en tension, soit en quantité en 2 groupes de 4 en tension"''.</ref>


The first official tests of the locomotive began on 2 February 1894; performing a return working from [[Le Havre]] to [[Beuzeville-la-Grenier|Bréauté-Beuzeville]] (on the [[Paris–Le Havre railway]]), chosen for its difficult gradients including an 8 ''[[per mille]]'' (1 in 125) gradient over more than {{convert|10|km|mi}}. The test train consisted of the locomotive (fully fueled to 118 tonnes), four new first class carriages, a [[dynamometer car]], and two vans containing one tonne of [[Battery (electricity)|batteries]] between them; the total train weight was 173 to 183 tonnes, depending on passenger levels. Speeds were increased over subsequent runs: the first run average {{convert|51.5|km/h|mph}}, on the fourth run the average speed was {{convert|59.4|km/h|mph}}, with speeds of {{convert|55|km/h|mph}} on the 8‰ slopes, and {{convert|70|km/h|mph}} on level track.<ref >Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/470/0/650/0/0 470–471], ''see also'' M.F. Drouin (1896), Les Locomotives Électriques (Système J.-J. Heilmann), [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/916/0/919/902/919 Plate 170, Fig. 5]: line gradients</ref>
The motors were located in two four-axle bogies,<ref name=Backtrack0108/> with wheelset having a sealed axle mounted {{convert|80|to|100|CV|kW|lk=in}} electric motor;<ref name="j1894d">Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/367/0/650/0/0 pp.367-368]</ref> giving a Do-Do wheel arrangement. Braking was by [[Westinghouse Air Brake Company|Westinghouse]] [[Railway air brake|air brakes]], with [[disc brake]]s fitted on all wheels.<ref name=Backtrack0108>{{cite journal |first=Michael |last=Rutherford |title=Export or Die! British Diesel-Electric Manufacturers and Modernisation. Part One: Roots |journal=Backtrack |issue=January 2008 |pages=52–60 |publisher=Pendragon Publishing |location=Easingwold |url=http://www.pendragonpublishing.co.uk/Export_Or_Die.pdf}}</ref> The locomotive was a [[cab forward]] design.<ref name=Heilmann/>


On 9 May 1894, ''La Fusée Electrique'' made a trial run from [[Gare Saint-Lazare|Saint-Lazare station]], [[Paris]] to [[Gare de Mantes-la-Jolie|Mantes-la-Jolie]], hauling a train consisting eight carriages.<ref >Sources:
The first official tests of the locomotive began on 2 February 1894; performing a return working from [[Le Havre]] to [[Beuzeville-la-Grenier|Bréauté-Beuzeville]] (on the [[Paris–Le Havre railway]]), chosen for its difficult gradients including a 8 ''[[per mil]]le'' (1 in 125) gradient over more than {{convert|10|km|mi}}. The test train consisted of the locomotive (fully fueled to 118 tonnes), four new first class carriages, a [[dynamometer car]], and two vans containing one tonne of [[Battery (electricity)|batteries]] between them; the total train weight was 173 to 183 tonnes, depending on passenger levels. Speeds were increased over subsequent runs: the first run average {{convert|51.5|km/h|mph}}, on the fourth run the average speed was {{convert|59.4|km/h|mph}}, with speeds of {{convert|55|km/h|mph}} on the 8‰ slopes, and {{convert|70|km/h|mph}} on level track.<ref>Ch. Jacquin (1894), "La locomotive électrique Heilmann", [http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/470/0/650/0/0 470-471], ''see also'' M.F. Drouin (1896), Les Locomotives Électriques (Système J.-J. Heilmann), [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/916/0/919/902/919 Plate 170, Fig. 5] : line gradients</ref>

On 9 May 1894, ''La Fusée Electrique'' made a trial run from [[Gare Saint-Lazare|Saint-Lazare station]], [[Paris]] to [[Gare de Mantes-la-Jolie|Mantes-la-Jolie]], hauling a train consisting eight carriages.<ref>Sources:
*{{citation
*{{citation
|author= R. Colombier
|author = R. Colombier
|year =2010
|year = 2010
|chapterurl = https://books.google.com/books?id=Vlqu_XJAgCEC&pg=PA150&lpg=PA150&dq=locomotive+heilmann+mantes+voitures&source=bl&ots=KYaKWnTPta&sig=c_fQtNiP1xnbZQIBSd9gi5uFp_I&hl=fr&ei=FCelTtKOM8GgOozr-K0C&sa=X&oi=book_result&ct=result&resnum=6&sqi=2&ved=0CE4Q6AEwBQ#v=onepage&q=locomotive%20heilmann%20mantes%20voitures&f=false
|chapter-url = https://books.google.com/books?id=Vlqu_XJAgCEC&q=locomotive+heilmann+mantes+voitures&pg=PA150
|chapter = p.150 (citing ''L'Illustration'', 1894)
|chapter = p. 150 (citing ''L'Illustration'', 1894)
|title = Les Origines du chemin de fer dans le Mantois
|title = Les Origines du chemin de fer dans le Mantois
|url=https://books.google.com/books?id=Vlqu_XJAgCEC
|url = https://books.google.com/books?id=Vlqu_XJAgCEC
|language=French
|language = fr
|publisher= L'Harmattan, Paris
|publisher = L'Harmattan, Paris
|isbn = 978-2-296-12506-3
|isbn = 978-2-296-12506-3
}}
}}
*{{citation
*{{citation
|title=La Fusée électrique de Heilmann
|title=La Fusée électrique de Heilmann
|url=http://www.histoire-entreprises.fr/he-le-magazine/la-fusee-electrique-de-heilmann/
|url=http://www.histoire-entreprises.fr/he-le-magazine/la-fusee-electrique-de-heilmann/
|journal= HE Magazine
|journal=Histoire d'Entreprises
|number=1
|number=1
|date=September 2006
|date=September 2006
|language=French
|language=fr
|access-date=27 October 2011
|publisher = reprinted from original in ''Histoire d'entreprises''
|archive-url=https://web.archive.org/web/20161011035937/http://www.histoire-entreprises.fr/he-le-magazine/la-fusee-electrique-de-heilmann/
}}</ref> The {{convert|53|km|mi}} journey took 55 minutes.<ref name=GH100594/> A speed of {{convert|107|km/h|mph}} was reported to have been achieved.<ref name=Heilmann/> Following the test run, the locomotive hauled a regular service train back to Paris.<ref name=GH100594>{{cite news |title=Our London Correspondence |newspaper=Glasgow Herald |date=10 May 1894 |page=3 |issue=112}}</ref> Trials showed that the engine used 15% less coal than a conventional steam engine. The locomotive was said to ride "like a [[Pullman (car or coach)|Pullman carriage]]." Criticisms of the locomotive were that it was "too complicated, too costly, too heavy". These same arguments would be repeated with the introduction of main-line diesel-electric locomotives some half a century later.<ref name=Backtrack0108/> The locomotive completed around {{convert|2000|km|mi}} of test runs. Two larger locomotives were ordered for further trials on the CF de l'Ouest.<ref name=Heilmann/> ''La Fusée Electrique'' had been dismantled by 1897, with the bogies being used for two [[0-8-0]] electric locomotives which were employed on the {{convert|4|km|mi}} underground railway between [[Gare de Saint-Germain-en-Laye Ouest|Saint-Germain Ouest]] and [[Gare de Saint-Germain-en-Laye Grande-Ceinture|Grande-Ceinture]].<ref name=Backtrack0108/><ref name=TPMG200197>{{cite news |title=The Locomotive of the Future |newspaper=The Pall Mall Gazette |date=20 January 1897 |page=3 |issue=9928 }}</ref>
|archive-date=11 October 2016
|url-status=dead
}}</ref> The {{convert|53|km|mi}} journey took 55 minutes.<ref name=GH100594/> A speed of {{convert|107|km/h|mph}} was reported to have been achieved.<ref name="Self, Heilmann" /> Following the test run, the locomotive hauled a regular service train back to Paris.<ref name=GH100594 >{{cite news|title=Our London Correspondence |newspaper=Glasgow Herald |date=10 May 1894 |page=3 |issue=112}}</ref> Trials showed that the engine used 15% less coal than a conventional steam engine. The locomotive was said to ride "like a [[Pullman (car or coach)|Pullman carriage]]." Criticisms of the locomotive were that it was "too complicated, too costly, too heavy". These same arguments would be repeated with the introduction of main-line diesel–electric locomotives some half a century later.<ref name=Backtrack0108 /> The locomotive completed around {{convert|2000|km|mi}} of test runs. Two larger locomotives were ordered for further trials on the CF de l'Ouest.<ref name="Self, Heilmann" /> ''La Fusée Electrique'' had been dismantled by 1897, with the bogies being used for two [[0-8-0]] electric locomotives which were employed on the {{convert|4|km|mi}} underground railway between [[Gare de Saint-Germain-en-Laye Ouest|Saint-Germain Ouest]] and [[Gare de Saint-Germain-en-Laye Grande-Ceinture|Grande-Ceinture]].<ref name=Backtrack0108 /><ref name=TPMG200197 >{{cite news|title=The Locomotive of the Future |newspaper=The Pall Mall Gazette |date=20 January 1897 |page=3 |issue=9928}}</ref>


A {{frac|1|10}} scale model of the prototype locomotive made in 1903 is in the collection of the [[Conservatoire National des Arts et Métiers]], Paris, donated by Heilmann.<ref name=Heilmann/><ref>{{citation|chapterurl= https://archive.org/stream/cataloguedescol01commgoog#page/n400/mode/2up |title = Catalogue des collections : Premier fascicule : Mécanique| author = Conservatoire national des arts et métiers |publisher = E. Bernard| year=1905|page=392|chapter = Locomotion et Transports : Locomotives|url = https://archive.org/details/cataloguedescol01commgoog}}, ''([http://cnum.cnam.fr/CGI/gpage.cgi?p1=392&p3=M7753%2F100%2F443%2F0%2F0 alternative link])''</ref> <!--NOTE one source says made by Heilmann, but is source 100% reliable? (claims made by Heilman whilst another reliable source states a 1:10 loco as a donation .. ?? (image of model in suspect source also looks to small for 1:5 -->
A {{frac|1|10}} scale model of the prototype locomotive made in 1903 is in the collection of the ''[[Conservatoire national des arts et métiers]]'', Paris, donated by Heilmann.<ref name="Self, Heilmann" /><ref >{{citation|chapter-url= https://archive.org/stream/cataloguedescol01commgoog#page/n400/mode/2up |title = Catalogue des collections: Premier fascicule: Mécanique| author = Conservatoire national des arts et métiers |publisher = E. Bernard| year=1905|page=392|chapter = Locomotion et Transports: Locomotives|url = https://archive.org/details/cataloguedescol01commgoog}}, ''([http://cnum.cnam.fr/CGI/gpage.cgi?p1=392&p3=M7753%2F100%2F443%2F0%2F0 alternative link])''</ref> <!--NOTE one source says made by Heilmann, but is source 100% reliable? (claims made by Heilman whilst another reliable source states a 1:10 loco as a donation .. ?? (image of model in suspect source also looks to small for 1:5 -->


==CF de l'Ouest 8001 and 8002==
==CF de l'Ouest 8001 and 8002==
{{Infobox locomotive
{{Infobox locomotive
| name = CF de l'Ouest Nos 8001 and 8002
| name = CF de l'Ouest Nos 8001 and 8002
| powertype =Steam-electric
| powertype =Steam–electric
| image = Heilmann-2.jpg
| image = Heilmann-2.jpg
| alt =
| alt =
Line 157: Line 166:
| aarwheels = <!-- D-D -->
| aarwheels = <!-- D-D -->
| uicclass = Do'Do'
| uicclass = Do'Do'
| gauge = {{track gauge|4ft8.5in}}
| gauge = {{track gauge|4ft8.5in|allk=on}}
| leadingdiameter =
| leadingdiameter =
| driverdiameter = {{convert|1160|mm|ftin|abbr=on}}
| driverdiameter = {{convert|1160|mm|ftin||frac=8|abbr=on}}
| trailingdiameter =
| trailingdiameter =
| minimumcurve =
| minimumcurve =
| wheelbase =
| wheelbase =
| length = {{convert|28.35|m|ftin|abbr=on}}
| length = {{convert|28.35|m|ftin|frac=8|abbr=on}}
| width = {{convert|2.74|m|ftin|abbr=on}}
| width = {{convert|2.74|m|ftin|frac=8|abbr=on}}
| height = {{convert|4.19|m|ftin|abbr=on}}
| height = {{convert|4.19|m|ftin|frac=8|abbr=on}}
| axleload =
| axleload =
| weightondrivers =
| weightondrivers =
| locoweight = {{convert|124|t|LT|abbr=on}}
| locoweight = {{convert|124|t|LT ST|abbr=on}}
| tenderweight =
| tenderweight =
| locotenderweight =
| locotenderweight =
Line 174: Line 183:
| fueltype =
| fueltype =
| fuelcap =
| fuelcap =
| watercap = {{convert|20000|l|impgal|abbr=on}}
| watercap = {{convert|20000|L|impgal USgal|abbr=on}}
| tendercap =
| tendercap =
| sandcap =
| sandcap =
| boilerpressure = {{convert|14|atm|kg/cm2 kPa psi|2|abbr=on|lk=on}}
| boiler =
| boilerpressure = {{convert|14|atm|lb/in2|abbr=on}}
| feedwaterheater =
| firearea =
| tubearea =
| tubearea =
| fluearea =
| fluearea =
Line 235: Line 241:
}}
}}


In 1897, two larger locomotives were built. They were numbered 8001 and 8002. The locomotives had standard Belpaire fireboxes,<ref name=Backtrack0108/> with a grate area of {{convert|3.34|m2|sqft}}.<ref name=Heilmann/> The steam engines were built by [[Willans & Robinson]], [[Rugby, Warwickshire|Rugby]], [[Warwickshire]], United Kingdom.<ref name=Backtrack0108/> The boiler had a heating area of {{convert|185.50|m2|sqft}} and worked at a pressure of {{convert|14|atm|lb/in2}}. The locomotive weighed {{convert|124|t|LT}}. The driving wheels were arranged in two four-axle bogies as per ''La Fusée''. They had a diameter of {{convert|1160|mm|ftin}}.<ref name=Heilmann/> The locomotives were {{convert|28.35|m|ftin}} long, {{convert|2.74|m|ftin}} wide and {{convert|4.19|m|ftin}} high.<ref name=GH151097>{{Cite news|title=Shipbuilding and Engineering |newspaper=Glasgow Herald |page=7 |issue=247 |date=15 October 1897}}</ref> Water capacity was {{convert|20000|l|impgal}}.<ref name=Heilmann/>
In 1897, two larger locomotives were built. They were numbered 8001 and 8002. The locomotives had standard [[Belpaire firebox]]es,<ref name=Backtrack0108/> with a grate area of {{convert|3.34|m2|sqft}}.<ref name="Self, Heilmann" /> The steam engines were built by [[Willans & Robinson]], [[Rugby, Warwickshire|Rugby]], [[Warwickshire]], United Kingdom.<ref name=Backtrack0108/> The boiler had a heating area of {{convert|185.50|m2|sqft}} and working pressure of {{convert|14|atm|lb/in2}}. The locomotive weighed {{convert|124|t|LT}}. The driving wheels had a diameter of {{convert|1160|mm|ftin}} and were arranged in two four-axle bogies as per ''La Fusée''.<ref name="Self, Heilmann" /> The locomotives were {{convert|28.35|m|ftin}} long, {{convert|2.74|m|ftin}} wide and {{convert|4.19|m|ftin}} high.<ref name=GH151097 >{{Cite news|title=Shipbuilding and Engineering|newspaper=[[Glasgow Herald]] |page=7 |issue=247 |date=15 October 1897}}</ref> Water capacity was {{convert|20000|L|impgal}}.<ref name="Self, Heilmann" />


On 12 November 1897, a test run was made between the [[Gare Saint-Lazare|Saint-Lazare]], Paris and [[Gare de Mantes-la-Jolie|Mantes-la-Jolie]] and return.<ref name=TMP131197>{{Cite news|title=France |newspaper=The Morning Post |issue=39138 |page=5 |date=13 November 1897 }}</ref> On 18 November 1897, a {{convert|115|km|mi|adj=on}} test run was made with speeds kept down to {{convert|30|km/h|mph}} hauling a {{convert|50|t|LT|adj=on}} load. On a later run hauling a {{convert|250|t|LT|adj=on}} load, a speed of {{convert|100|km/h|mph}} was attained.<ref name=Heilmann/>
On 12 November 1897, a test run was made between the [[Gare Saint-Lazare|Saint-Lazare]], Paris and [[Gare de Mantes-la-Jolie|Mantes-la-Jolie]] and return.<ref name=TMP131197 >{{Cite news|title=France |newspaper=The Morning Post |issue=39138 |page=5 |date=13 November 1897 }}</ref> On 18 November 1897, a {{convert|115|km|mi|adj=on}} test run was made with speeds kept down to {{convert|30|km/h|mph}} hauling a {{convert|50|t|LT|adj=on}} load. A speed of {{convert|100|km/h|mph}} was attained on a later run while hauling a {{convert|250|t|LT|adj=on}} load.<ref name="Self, Heilmann" /> Although other railway companies, such as the Ohio River, Madison & Southern Railway in the United States and the Southern Railway in Russia, as well as at least one from Germany, showed interest in steam–electric locomotives,<ref name="Self, Heilmann" /> the two locomotives were nonetheless scrapped.


Although other railway companies, such as the Ohio River, Madison & Southern Railway in the United States and the Southern Railway in Russia, as well as at least one from Germany, showed interest in steam-electric locomotives,<ref name=Heilmann/> the two locomotives suffered the same fate as their predecessor. They were the ancestors of [[diesel-electric locomotive|diesel-electric]], and those [[Gas turbine-electric locomotive|gas turbine]] and [[steam turbine locomotive]]s which use an electric transmission.<ref name=Backtrack0108/> When one of the first diesel-electric locomotives was reported in 1905, the Automotor Journal stated it ''appears to be something on the Heilmann principle, that is to say the engine is employed to operate a dynamo which in turn supplies electric current to motors geared to the driving wheels''.<ref>"The Diesel Engine in a New Sphere", The Automotor and Horseless Carriage Journal, 4 March 1905, p275</ref>
These engines laid work for the [[diesel–electric transmission]], and for [[Gas turbine–electric locomotive|gas turbine]] and [[steam turbine locomotive]]s that used an electric transmission.<ref name=Backtrack0108/> When one of the first diesel–electric locomotives was reported in 1905, the Automotor Journal stated it ''appears to be something on the Heilmann principle, that is to say the engine is employed to operate a dynamo which in turn supplies electric current to motors geared to the driving wheels''.<ref>"The Diesel Engine in a New Sphere", The Automotor and Horseless Carriage Journal, 4 March 1905, p275</ref>


==See also==
==See also==
* [[Electric-steam locomotive]]
* [[Electric–steam locomotive]]
* [[Steam turbine locomotive#Electric transmission|Steam turbine electric locomotive]]
* [[Steam turbine locomotive#Electric transmission|Steam turbine electric locomotive]]


Line 253: Line 259:
===Sources===
===Sources===
{{refbegin}}
{{refbegin}}
*{{citation|journal=Mémoires et compte rendu des travaux de la Société des ingénieurs civils|volume = 55 | issue = 1 |year= 1891|language=French|author = J.-J. Heilmann|title = Nouveau chemin de fer électricque : Système J.-J. Heilmann|pages=149–162|url=http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/146/0/884/870/884}}
*{{citation|journal=Mémoires et compte rendu des travaux de la Société des ingénieurs civils|volume = 55 | issue = 1 |year= 1891|language=fr|author = J.-J. Heilmann|title = Nouveau chemin de fer électricque: Système J.-J. Heilmann|pages=149–162|url=http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/146/0/884/870/884}}
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/102/100/884/870/884 Séance du 20 Février 1891 p.105]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/102/100/884/870/884 Séance du 20 Février 1891 p. 105]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/872/0/884/870/884 Plate 31], [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/873/0/884/870/884 Plate 32]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/872/0/884/870/884 Plate 31], [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.54/873/0/884/870/884 Plate 32]
*{{citation|journal = La Lumière électrique : journal universel d'electricité|volume = 51| issue=8|year=1894|title = La locomotive électrique Heilmann|pages=360–368|author = Ch. Jacquin|language=French|url=http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/360/0/650/0/0 }}
*{{citation|journal = La Lumière électrique: Journal Universel d'Electricité|volume = 51| issue=8|year=1894|title = La locomotive électrique Heilmann|pages=360–368|author = Ch. Jacquin|language=fr|url=http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/360/0/650/0/0 }}
*{{citation|journal = La Lumière électrique : journal universel d'electricité|volume = 51| issue=10|year=1894|title = La locomotive électrique Heilmann|pages=470–477|author = Ch. Jacquin|language=French|url=http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/470/0/650/0/0}}
*{{citation|journal = La Lumière électrique: Journal Universel d'Electricité|volume = 51| issue=10|year=1894|title = La locomotive électrique Heilmann|pages=470–477|author = Ch. Jacquin|language=fr|url=http://cnum.cnam.fr/CGI/fpage.cgi?P84.51/470/0/650/0/0}}
*{{citation|url = http://cnum.cnam.fr/PDF/cnum_4KY28.42.pdf|journal = La Nature| editor = Gaston Tissandier| editor2= Henri Parville| year = 1894 |volume= 22 |issue= 1070–1095|title = La locomotive électrique de M. J.-J. Heilmann | author = E. Hospitalier|pages = 162–163, 178–182|language=French}}, ''([http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.42/166/100/536/0/0 p.162], [http://cnum.cnam.fr/CGI/gpage.cgi?p1=178&p3=4KY28.42%2F100%2F536%2F0%2F0 p.178] alternative links)''
*{{citation|url = http://cnum.cnam.fr/PDF/cnum_4KY28.42.pdf|journal = La Nature| editor = Gaston Tissandier| editor2= Henri Parville| year = 1894 |volume= 22 |issue= 1070–1095|title = La locomotive électrique de M. J.-J. Heilmann | author = E. Hospitalier|pages = 162–163, 178–182|language=fr}}, ''([http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.42/166/100/536/0/0 p. 162], [http://cnum.cnam.fr/CGI/gpage.cgi?p1=178&p3=4KY28.42%2F100%2F536%2F0%2F0 p. 178] alternative links)''
*{{cite book|chapter = Les Locomotives Électriques (Système J.-J. Heilmann)|author = M.F. Drouin|pages=807–826|journal =Mémoirs et compte rendu des travaux des Société des Ingénieurs civils de France| year=1896| volume=65 | issue = 1 | url= http://cnum.cnam.fr/fSYN/ECCMC6.64.html| language=French|title=Mémoires et compte rendu des travaux de la Société des ingénieurs civils| chapterurl=http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/796/100/919/902/919}}
*{{cite book|chapter = Les Locomotives Électriques (Système J.-J. Heilmann)|author = M.F. Drouin|pages=807–826|journal =Mémoirs et compte rendu des travaux des Société des Ingénieurs civils de France| year=1896| volume=65 | issue = 1 | url= http://cnum.cnam.fr/fSYN/ECCMC6.64.html| language=fr|title=Mémoires et compte rendu des travaux de la Société des ingénieurs civils| chapter-url=http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/796/100/919/902/919}}
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/773/0/919/902/919 Procès-verbal de la séance du 5 Juin 1896 (Minutes of 5 June 1896 session), p.784]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/773/0/919/902/919 Procès-verbal de la séance du 5 Juin 1896 (Minutes of 5 June 1896 session), p. 784]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/916/0/919/902/919 Plate 170], [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/917/0/919/902/919 Plate 171]
**[http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/916/0/919/902/919 Plate 170], [http://cnum.cnam.fr/CGI/fpage.cgi?ECCMC6.64/917/0/919/902/919 Plate 171]
*{{citation|url=http://cnum.cnam.fr/PDF/cnum_4KY28.50.pdf| journal = La Nature| editor= Gaston Tissandier| editor2=Henri de Parville|year = 1898|volume=26 | issue = 1279–1304|title = Nouvelle locomotive électrique de M. J.-J. Heilmann|pages = 19–22| author = E. Hospitalier|language= French}}, ''([http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.50/23/100/536/0/0 alternative link])''
*{{citation|url=http://cnum.cnam.fr/PDF/cnum_4KY28.50.pdf| journal = La Nature| editor= Gaston Tissandier| editor2=Henri de Parville|year = 1898|volume=26 | issue = 1279–1304|title = Nouvelle locomotive électrique de M. J.-J. Heilmann|pages = 19–22| author = E. Hospitalier|language= fr}}, ''([http://cnum.cnam.fr/CGI/fpage.cgi?4KY28.50/23/100/536/0/0 alternative link])''
*{{cite book |title = Electric railways 1880-1990| author = Michael C. Duffy|publisher = The Institution of Engineering and Technology | year = 2003| url =https://books.google.com/books?id=cpFEm3aqz_MC| series= History of Technology Series 31| chapter =4. Heilmann, Ward Leonard and the electric railway|pages = 35–51|chapterurl= https://books.google.com/books?id=cpFEm3aqz_MC&lpg=PP1&pg=PA35#v=onepage&q&f=false| work = books.google.co.uk| isbn = 9780852968055}}
*{{cite book |title = Electric railways 1880–1990| author = Michael C. Duffy|publisher = The Institution of Engineering and Technology | year = 2003| url =https://books.google.com/books?id=cpFEm3aqz_MC| series= History of Technology Series 31| chapter =4. Heilmann, Ward Leonard and the electric railway|pages = 35–51|chapter-url= https://books.google.com/books?id=cpFEm3aqz_MC&pg=PA35| isbn = 9780852968055}}


{{refend}}
{{refend}}
Line 269: Line 275:
==External links==
==External links==
{{Commons category|Heilmann locomotives}}
{{Commons category|Heilmann locomotives}}
*{{cite web |url= http://www.archivesnationales.culture.gouv.fr/camt/fr/egf/donnees_efg/2005_060/2005_060_INV.pdf| language=French| title = Fonds Jean-Jacques Heilmann, ingénieur-électricien (1853-1922)|publisher = Centre des archives du monde du travail|work = www.archivesnationales.culture.gouv.fr}}
*{{cite web |url= http://www.archivesnationales.culture.gouv.fr/camt/fr/egf/donnees_efg/2005_060/2005_060_INV.pdf| language=fr| title = Fonds Jean-Jacques Heilmann, ingénieur-électricien (1853–1922)|publisher = Centre des archives du monde du travail|work = www.archivesnationales.culture.gouv.fr}}
*{{citation|title= The Heilmann Electric Locomotive| journal = [[Scientific American]]| date = 4 September 1897|url=https://archive.org/details/scientific-american-1897-09-04| work = |volume = 77| number = 10|pages = 145, 152}}
*{{citation|title= The Heilmann Electric Locomotive| journal = [[Scientific American]]| date = 4 September 1897|url=https://archive.org/details/scientific-american-1897-09-04|volume = 77| number = 10|pages = 145, 152}}
*{{citation|url=https://archive.org/details/latractionlectr01paulgoog| title = La traction électrique sur voies ferrées - matériel roulant - traction|author = André Blondel|author2 = F. Paul-Dubois|publisher = Library Polytechnique Baudry et Cie.| year = 1898|pages = 467–478, fig. 230 (p.252); fig 388 (p.427); fig.400–401 (pp.446–448)|language= French}}
*{{citation|url=https://archive.org/details/latractionlectr01paulgoog| title = La traction électrique sur voies ferrées - matériel roulant - traction|author = André Blondel|author2 = F. Paul-Dubois|publisher = Library Polytechnique Baudry et Cie.| year = 1898|pages = 467–478, fig. 230 (p. 252); fig 388 (p. 427); fig. 400–401 (pp. 446–448)|language= fr}}
*{{citation| url=http://www.trielmemoirehistoire.fr/index.php?option=com_content&view=article&id=189:le-chemin-de-fer-dargenteuil-a-mantes-quatrieme-partie-une-machine-davant-garde&catid=18:sur-lhistoire-locale-et-trielloise&Itemid=25|title = Le chemin de fer d'Argenteuil à Mantes - Quatrième partie – Une machine d'avant-garde| work = www.trielmemoirehistoire.fr|language= French|publisher = Triel Mémoire & Histoire}}
*{{citation| url=http://www.trielmemoirehistoire.fr/index.php?option=com_content&view=article&id=189:le-chemin-de-fer-dargenteuil-a-mantes-quatrieme-partie-une-machine-davant-garde&catid=18:sur-lhistoire-locale-et-trielloise&Itemid=25|title = Le chemin de fer d'Argenteuil à Mantes - Quatrième partie – Une machine d'avant-garde| work = www.trielmemoirehistoire.fr|language= fr|publisher = Triel Mémoire & Histoire}}


[[Category:Steam locomotives of France]]
[[Category:Steam locomotives of France]]

Latest revision as of 05:54, 31 October 2024

The Heilmann locomotives were a series of three experimental steam–electric locomotives produced in the 1890s for the French Chemins de fer de l'Ouest (CF de l'Ouest). A prototype was built in 1894 and two larger locomotives were built in 1897. These locomotives used electric transmission, much like later-popular diesel–electric locomotives and various other self-powered locomotives.

La Fusée Electrique

[edit]
La Fusée Electrique
Type and origin
Power typeSteam–electric
DesignerJean Jacques Heilmann [fr]
BuilderForges et Chantiers de la Méditerranée
Build date1892–1893
Total produced1
Specifications
Configuration:
 • UICDo'Do'
Gauge4 ft 8+12 in (1,435 mm) standard gauge*
Wheel diameter1.2 m (3 ft 11+14 in)
Length16.5 m (54 ft 1+58 in) (frame)
Loco weight100 t (98 long tons; 110 short tons) (empty)
Fuel typecoal
Fuel capacity6 t (5.9 long tons; 6.6 short tons)
Water cap.12,000 L (2,600 imp gal; 3,200 US gal)
Traction motorsEight axle mounted motors
Firebox:
 • Grate area2.25 m2 (24.2 sq ft)
Boiler pressure
13 kg/cm2 (12.58 atm; 184.90 lbf/in2)
Heating surface:
 • Tubes145 m2 (1,560 sq ft)
Cylinders2
High-pressure cylinder425 mm × 300 mm (16.73 in × 11.81 in)
Low-pressure cylinder650 mm × 300 mm (25.59 in × 11.81 in)
Loco brakeAir, Disc brakes
Performance figures
Maximum speed107 km/h (66 mph)*
Power output80 to 100 CV (59 to 74 kW; 79 to 99 hp) / traction motor
Sources:[1][2][3] except *
Cutaway view

In 1890, Jean Jacques Heilmann [fr] registered a patent (France №. 207055) for a self powered electric vehicle; the design was intended to eliminate the unbalanced oscillatory moments and "hammer blow" caused by the cranked action of a conventional mechanical steam locomotive.[4] His design used a balanced steam engine to drive the locomotive via an electrical transmission (an electrical generator driving electric motors via controlling rheostats and switches).[5] Heilmann wished to create a machine specifically suited for high-speed trains without the high costs of an electrified infrastructure. His earliest design was of a trainset consisting of a vehicle with a triple expansion steam engine of 600 horsepower (450 kW)[n 1] and generator providing 480 horsepower (360 kW) @ 80% expected efficiency, a tender and three carriages. The entire train was to run on bogies and use a distributed traction system provided by 12 axle-mounted electric motors in the three carriages.[6]

The first real locomotive built to Heilmann's design was a prototype steam–electric locomotive, with boiler, steam engine, generator and motors built into a single locomotive; construction began in 1892 and was completed in August 1893.[1] On completion it was named Fusée (also known as La Fusée Électrique;[4] English: The Electric Rocket),[7] a reference to the 1830 Stephenson locomotive "Rocket".[8]

The steam engine (designed by Swiss Locomotive and Machine Works (SLM) at Winterthur, Switzerland.[7]) and boiler were built at the Forges et Chantiers de la Méditerranée in Le Havre, the electrical equipment was designed and built at Brown, Boveri & Compagnie of Baden, Switzerland, whilst the locomotive frame and bogies were built at the Compagnie de Materiel de Chemins de Fer.[9]

The locomotive had a 600 to 800 metric horsepower (440 to 590 kW)[n 1] (@ 300 to 400 rpm) two-cylinder horizontal compound steam engine with transversely mounted cylinders of 425 and 650 millimetres (16.7 and 25.6 in) diameter by 300 mm (1145 in) stroke. It was supplied with steam by a Lentz-type boiler, operating at a pressure of 12.6 standard atmospheres (185 lbf/in2),[1] with a firebox of a stayless corrugated type.[7] It had a grate area of 2.25 square metres (24.2 sq ft). The boiler had a total surface area of 145 square metres (1,560 sq ft).[1] The engine had a fixed cutoff with no reversing mechanism, and no speed governor excluding a centrifugal overspeed safety device.[2]

The steam engine drove directly a direct current dynamo,[7] rated at approximately 500 kW (1,200 A @ 400 V); it was a six pole machine with the armature constructed on the Gramme dynamo principle with six brushes.[10] The generator's field coils were energised by a separate bipolar dynamo capable of generating 100 A at 100 V (10 kilowatts (13 hp)), which was directly driven at approximately 300 rpm by a 20 CV two cylinder vertical compound steam engine of similar design to the main engine. This secondary generator's output was also used to provide a supply for electric lighting in carriages.[10]

Electric speed and load control was obtained by reducing the main generator's field excitation current coming from the 10 kilowatts (13 hp) dynamo using a twelve step drum rheostat.[n 2] The eight traction motors were connected in parallel; for low speed control the motors could be series connected in two sets of four connected in parallel.[10][n 3]

The motors were located in two four-axle bogies,[7] with wheelset having a sealed axle mounted 80 to 100 metric horsepower (59 to 74 kW) electric motor;[3] giving a Do-Do wheel arrangement. Braking was by Westinghouse air brakes, with disc brakes fitted on all wheels.[7] The locomotive was a cab forward design.[5]

The first official tests of the locomotive began on 2 February 1894; performing a return working from Le Havre to Bréauté-Beuzeville (on the Paris–Le Havre railway), chosen for its difficult gradients including an 8 per mille (1 in 125) gradient over more than 10 kilometres (6.2 mi). The test train consisted of the locomotive (fully fueled to 118 tonnes), four new first class carriages, a dynamometer car, and two vans containing one tonne of batteries between them; the total train weight was 173 to 183 tonnes, depending on passenger levels. Speeds were increased over subsequent runs: the first run average 51.5 kilometres per hour (32.0 mph), on the fourth run the average speed was 59.4 kilometres per hour (36.9 mph), with speeds of 55 kilometres per hour (34 mph) on the 8‰ slopes, and 70 kilometres per hour (43 mph) on level track.[11]

On 9 May 1894, La Fusée Electrique made a trial run from Saint-Lazare station, Paris to Mantes-la-Jolie, hauling a train consisting eight carriages.[12] The 53 kilometres (33 mi) journey took 55 minutes.[13] A speed of 107 kilometres per hour (66 mph) was reported to have been achieved.[5] Following the test run, the locomotive hauled a regular service train back to Paris.[13] Trials showed that the engine used 15% less coal than a conventional steam engine. The locomotive was said to ride "like a Pullman carriage." Criticisms of the locomotive were that it was "too complicated, too costly, too heavy". These same arguments would be repeated with the introduction of main-line diesel–electric locomotives some half a century later.[7] The locomotive completed around 2,000 kilometres (1,200 mi) of test runs. Two larger locomotives were ordered for further trials on the CF de l'Ouest.[5] La Fusée Electrique had been dismantled by 1897, with the bogies being used for two 0-8-0 electric locomotives which were employed on the 4 kilometres (2.5 mi) underground railway between Saint-Germain Ouest and Grande-Ceinture.[7][14]

A 110 scale model of the prototype locomotive made in 1903 is in the collection of the Conservatoire national des arts et métiers, Paris, donated by Heilmann.[5][15]

CF de l'Ouest 8001 and 8002

[edit]
CF de l'Ouest Nos 8001 and 8002
Type and origin
Power typeSteam–electric
DesignerJean Jacques Heilmann
BuilderSociété Industriel de Moteurs Electrique et à Vapeur
Serial number8001, 8002
Build date1897
Total produced2
Specifications
Configuration:
 • UICDo'Do'
Gauge4 ft 8+12 in (1,435 mm) standard gauge
Driver dia.1,160 mm (3 ft 9+58 in)
Length28.35 m (93 ft 18 in)
Width2.74 m (8 ft 11+78 in)
Height4.19 m (13 ft 9 in)
Loco weight124 t (122 long tons; 137 short tons)
Water cap.20,000 L (4,400 imp gal; 5,300 US gal)
Boiler pressure14 atm (14.47 kg/cm2; 1,418.55 kPa; 205.74 psi)
Heating surface:
 • Firebox3.34 m2 (36.0 sq ft)
 • Total surface185.50 m2 (1,996.7 sq ft)
Career
Number in class2

In 1897, two larger locomotives were built. They were numbered 8001 and 8002. The locomotives had standard Belpaire fireboxes,[7] with a grate area of 3.34 square metres (36.0 sq ft).[5] The steam engines were built by Willans & Robinson, Rugby, Warwickshire, United Kingdom.[7] The boiler had a heating area of 185.50 square metres (1,996.7 sq ft) and working pressure of 14 standard atmospheres (210 lbf/in2). The locomotive weighed 124 tonnes (122 long tons). The driving wheels had a diameter of 1,160 millimetres (3 ft 10 in) and were arranged in two four-axle bogies as per La Fusée.[5] The locomotives were 28.35 metres (93 ft 0 in) long, 2.74 metres (9 ft 0 in) wide and 4.19 metres (13 ft 9 in) high.[16] Water capacity was 20,000 litres (4,400 imp gal).[5]

On 12 November 1897, a test run was made between the Saint-Lazare, Paris and Mantes-la-Jolie and return.[17] On 18 November 1897, a 115-kilometre (71 mi) test run was made with speeds kept down to 30 kilometres per hour (19 mph) hauling a 50-tonne (49-long-ton) load. A speed of 100 kilometres per hour (62 mph) was attained on a later run while hauling a 250-tonne (250-long-ton) load.[5] Although other railway companies, such as the Ohio River, Madison & Southern Railway in the United States and the Southern Railway in Russia, as well as at least one from Germany, showed interest in steam–electric locomotives,[5] the two locomotives were nonetheless scrapped.

These engines laid work for the diesel–electric transmission, and for gas turbine and steam turbine locomotives that used an electric transmission.[7] When one of the first diesel–electric locomotives was reported in 1905, the Automotor Journal stated it appears to be something on the Heilmann principle, that is to say the engine is employed to operate a dynamo which in turn supplies electric current to motors geared to the driving wheels.[18]

See also

[edit]

Notes

[edit]
  1. ^ a b The horsepower figure is given as chevaux and likely to be metric horsepower, which is ~736W, and not the figure for mechanical horsepower of 746W.
  2. ^ The method of speed control by controlling the generator field excitation (magnetic field in the main generator) is also used in the Ward Leonard motor control system
  3. ^ Ch. Jacquin (1894), "La locomotive électrique Heilmann", p. 366, "On se contente de coupler, suivant les besoins, les 8 moteurs electriques soit tous en tension, soit en quantité en 2 groupes de 4 en tension".

References

[edit]
  1. ^ a b c d Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp. 361–364
  2. ^ a b Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp. 364–365
  3. ^ a b Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp. 367–368
  4. ^ a b Base Palissy: Locomotive thermo-électrique dite la fusée électrique, Ministère français de la Culture. (in French)
  5. ^ a b c d e f g h i j Douglas Self. "The Heilmann Locomotive". Retrieved 9 March 2023.
  6. ^ J.-J. Heilmann (1891), "Un nouveau chemin de fer électrique", Séance du 20 Février 1891 p. 105–106
  7. ^ a b c d e f g h i j k Rutherford, Michael. "Export or Die! British Diesel–Electric Manufacturers and Modernisation. Part One: Roots" (PDF). Backtrack (January 2008). Easingwold: Pendragon Publishing: 52–60.
  8. ^ E. Hospitalier (1897), "Nouvelle locomotive électrique de M. J.-J. Heilmann", p. 19
  9. ^ Michael C. Duffy (2003), p. 43
  10. ^ a b c Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp. 365–367
  11. ^ Ch. Jacquin (1894), "La locomotive électrique Heilmann", 470–471, see also M.F. Drouin (1896), Les Locomotives Électriques (Système J.-J. Heilmann), Plate 170, Fig. 5: line gradients
  12. ^ Sources:
  13. ^ a b "Our London Correspondence". Glasgow Herald. No. 112. 10 May 1894. p. 3.
  14. ^ "The Locomotive of the Future". The Pall Mall Gazette. No. 9928. 20 January 1897. p. 3.
  15. ^ Conservatoire national des arts et métiers (1905), "Locomotion et Transports: Locomotives", Catalogue des collections: Premier fascicule: Mécanique, E. Bernard, p. 392, (alternative link)
  16. ^ "Shipbuilding and Engineering". Glasgow Herald. No. 247. 15 October 1897. p. 7.
  17. ^ "France". The Morning Post. No. 39138. 13 November 1897. p. 5.
  18. ^ "The Diesel Engine in a New Sphere", The Automotor and Horseless Carriage Journal, 4 March 1905, p275

Sources

[edit]
[edit]