Jump to content

Multiplication table: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Mobile edit Mobile web edit
Reverting edit(s) by 2600:480A:51D7:CD00:3BBC:E296:F261:A738 (talk) to rev. 1260255524 by Remsense: Non-constructive edit (UV 0.1.6)
 
(283 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Mathematical table}}
{{For|the Matthew Shipp album|The Multiplication Table}}
{{For|the Matthew Shipp album|The Multiplication Table{{!}}''The Multiplication Table''}}
{{Redirect|Times table|a table of departure and arrival times|Timetable (disambiguation)}}
{{Redirect|Times table|a table of departure and arrival times|Timetable (disambiguation)}}
[[File:multiplication_table_to_scale.svg|thumb|Multiplication table from 1 to 10 drawn to scale with the upper-right half labeled with prime factorisations|link={{filepath:multiplication_table_to_scale.svg}}]]
In [[mathematics]], a '''multiplication table''' (sometimes, less formally, a '''times table''') is a [[mathematical table]] used to define a [[multiplication]] [[binary operation|operation]] for an algebraic system. You can also divide.
In [[mathematics]], a '''multiplication table''' (sometimes, less formally, a '''times table''') is a [[mathematical table]] used to define a [[multiplication]] [[binary operation|operation]] for an algebraic system.


The [[decimal]] multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.<ref>{{citation|journal=For the Learning of Mathematics|volume=1|issue=1|year=1980|title=The Multiplication Table: To Be Memorized or Mastered!|first=John|last=Trivett|pages=21–25|jstor= 40247697}}.</ref>
The [[decimal]] multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.<ref>{{citation|journal=For the Learning of Mathematics|volume=1|issue=1|year=1980|title=The Multiplication Table: To Be Memorized or Mastered!|first=John|last=Trivett|pages=21–25|jstor= 40247697}}.</ref>


==History==
==History==

===Pre-modern times===
[[File:Qinghuajian, Suan Biao.jpg|thumb|right|180px|The [[Tsinghua Bamboo Slips]], Chinese [[Warring States]] era decimal multiplication table of 305&nbsp;BC]]
[[File:Qinghuajian, Suan Biao.jpg|thumb|right|180px|The [[Tsinghua Bamboo Slips]], Chinese [[Warring States]] era decimal multiplication table of 305&nbsp;BC]]
The oldest known multiplication tables were used by the [[Babylonian mathematics|Babylonians]] about 4000 years ago.<ref name=Qiu/> However, they used a base of 60.<ref name=Qiu>{{cite journal | author = Jane Qiu | title = Ancient times table hidden in Chinese bamboo strips | journal = Nature News | date = January 7, 2014 | doi = 10.1038/nature.2014.14482 | url = http://www.nature.com/news/ancient-times-table-hidden-in-chinese-bamboo-strips-1.14482}}</ref> The oldest known tables using a base of 10 are the [[Chinese mathematics|Chinese]] [[Tsinghua Bamboo Slips#Decimal multiplication table|decimal multiplication table on bamboo strips]] dating to about 305&nbsp;BC, during China's [[Warring States]] period.<ref name=Qiu/>
The oldest known multiplication tables were used by the [[Babylonian mathematics|Babylonians]] about 4000 years ago.<ref name=Qiu/> However, they used a base of 60.<ref name=Qiu>{{cite journal | first = Jane | last = Qiu | author-link = Jane Qiu | title = Ancient times table hidden in Chinese bamboo strips | journal = Nature News | date = January 7, 2014 | doi = 10.1038/nature.2014.14482 | s2cid = 130132289 | url = http://www.nature.com/news/ancient-times-table-hidden-in-chinese-bamboo-strips-1.14482| doi-access = free }}</ref> The oldest known tables using a base of 10 are the [[Chinese mathematics|Chinese]] [[Tsinghua Bamboo Slips#Decimal multiplication table|decimal multiplication table on bamboo strips]] dating to about 305&nbsp;BC, during China's [[Warring States]] period.<ref name=Qiu/>


[[File:PSM V26 D467 Table of pythagoras on slats.jpg|thumb|right|180px|"Table of Pythagoras" on [[Napier's bones]]<ref>[[Wikisource:Page:Popular Science Monthly Volume 26.djvu/467]]</ref> ]]
[[File:PSM V26 D467 Table of pythagoras on slats.jpg|thumb|right|180px|"Table of Pythagoras" on [[Napier's bones]]<ref>[[Wikisource:Page:Popular Science Monthly Volume 26.djvu/467]]</ref> ]]
The multiplication table is sometimes attributed to the ancient Greek mathematician [[Pythagoras]] (570–495&nbsp;BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and at one point even Russian), sometimes in English.<ref>for example in [https://books.google.com/books?id=TBBKAAAAMAAJ&pg=PA17&lpg=PA17&dq=%22table+of+pythagoras%22+-Montessori&source=bl&ots=TaXIEXCAic&sig=KiblQIMaPnnwRp-R0eW6CSEQUUk&hl=en&ei=IltFTezaDJH2sgatovGnDg&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCcQ6AEwAg#v=onepage&q=%22table%20of%20pythagoras%22%20-Montessori&f=false ''An Elementary Treatise on Arithmetic'' by [[John Farrar (scientist)|John Farrar]]]</ref> The [[Greco-Roman]] mathematician [[Nichomachus]] (60–120&nbsp;AD), a follower of [[Neopythagoreanism]], included a multiplication table in his ''[[Introduction to Arithmetic]]'', whereas the oldest surviving [[Greek mathematics|Greek]] multiplication table is on a wax tablet dated to the 1st century AD and currently housed in the [[British Museum]].<ref>David E. Smith (1958), ''History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics''. New York: Dover Publications (a reprint of the 1951 publication), {{isbn|0-486-20429-4}}, pp. 58, 129.</ref>
The multiplication table is sometimes attributed to the ancient Greek mathematician [[Pythagoras]] (570–495&nbsp;BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.<ref>for example in [https://archive.org/details/bub_gb_TBBKAAAAMAAJ/page/n10 <!-- pg=17 quote="table of pythagoras" -Montessori. --> ''An Elementary Treatise on Arithmetic''] by [[John Farrar (scientist)|John Farrar]]</ref> The [[Greco-Roman]] mathematician [[Nichomachus]] (60–120&nbsp;AD), a follower of [[Neopythagoreanism]], included a multiplication table in his ''[[Introduction to Arithmetic]]'', whereas the oldest surviving [[Greek mathematics|Greek]] multiplication table is on a wax tablet dated to the 1st century AD and currently housed in the [[British Museum]].<ref>David E. Smith (1958), ''History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics''. New York: Dover Publications (a reprint of the 1951 publication), {{isbn|0-486-20429-4}}, pp. 58, 129.</ref>


In 493&nbsp;AD, [[Victorius of Aquitaine]] wrote a 98-column multiplication table which gave (in [[Roman numerals]]) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."<ref>David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions". ''Classical Philology'', 96/4 (October 2001), p. 383.</ref>
In 493&nbsp;AD, [[Victorius of Aquitaine]] wrote a 98-column multiplication table which gave (in [[Roman numerals]]) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."<ref>David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions". ''Classical Philology'', 96/4 (October 2001), p. 383.</ref>


===Modern times===
In his 1820 book ''The Philosophy of Arithmetic'',<ref>{{cite book |last=Leslie |first=John |year=1820 |title=The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand |publisher=Abernethy & Walker |location=Edinburgh}}</ref> mathematician [[John Leslie (physicist)|John Leslie]] published a multiplication table up to 99 × 99, which allows numbers to be multiplied in pairs of digits at a time. Leslie also recommended that young pupils memorize the multiplication table up to 25 × 25. The illustration below shows a table up to 12 × 12, which is a size commonly used in schools.
In his 1820 book ''The Philosophy of Arithmetic'',<ref>{{cite book |last=Leslie |first=John |year=1820 |title=The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand |publisher=Abernethy & Walker |location=Edinburgh}}</ref> mathematician [[John Leslie (physicist)|John Leslie]] published a multiplication table up to 1000 × 1000, which allows numbers to be multiplied in triplets of digits at a time. Leslie also recommended that young pupils memorize the multiplication table up to 50 × 50.


The illustration below shows a table up to 12 × 12, which is a size commonly used nowadays in English-world schools.
{| class="wikitable" style="text-align: center;"

! ×
<div style="margin-left:4em">
! scope="column" | 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12
{|class="wikitable" style="text-align: right;"
!style="width:7.14%"|×
!style="text-align: right; width:7.14%"|1
!style="text-align: right; width:7.14%"|2
!style="text-align: right; width:7.14%"|3
!style="text-align: right; width:7.14%"|4
!style="text-align: right; width:7.14%"|5
!style="text-align: right; width:7.14%"|6
!style="text-align: right; width:7.14%"|7
!style="text-align: right; width:7.14%"|8
!style="text-align: right; width:7.14%"|9
!style="text-align: right; width:7.14%"|10
!style="text-align: right; width:7.14%"|11
!style="text-align: right; width:7.14%"|12
|-
|-
! scope="row" | 1
! style="text-align: right;" |1
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12
|-
|-
! scope="row" | 2
! style="text-align: right;" |2
| 2 || 4 ||6 || 8 || 10 || 12 || 14 || 16 || 18 || 20 || 22 || 24
| 2 || 4 || 6 || 8 || 10 || 12 || 14 || 16 || 18 || 20 || 22 || 24
|-
|-
! scope="row" | 3
! style="text-align: right;" |3
| 3 || 6 || 9 || 12 || 15 || 18 || 21 || 24 || 27 || 30 || 33 || 36
| 3 || 6 || 9 || 12 || 15 || 18 || 21|| 24 || 27 || 30 || 33 || 36
|-
|-
! scope="row" | 4
! style="text-align: right;" |4
| 4 || 8 || 12 || 16 || 20 || 24 || 28 || 32 || 36 || 40 || 44 || 48
| 4 || 8 || 12 || 16 || 20 || 24 || 28 || 32 || 36 || 40 || 44 || 48
|-
|-
! scope="row" | 5
! style="text-align: right;" |5
| 5 || 10 || 15 || 20 || 25 || 30 || 35 || 40 || 45 || 50 || 55 || 60
| 5 || 10 || 15 || 20 || 25 || 30 || 35 || 40 || 45 || 50 || 55 || 60
|-
|-
! scope="row" | 6
! style="text-align: right;" |6
| 6 || 12 || 18 || 24 || 30 || 36 || 42 || 48 || 54 || 60 || 66 || 72
| 6 || 12 || 18 || 24 || 30 || 36 || 42 || 48 || 54 || 60 || 66 || 72
|-
|-
! scope="row" | 7
! style="text-align: right;" |7
| 7 || 14 || 21 || 28 || 35 || 42 || 49 || 56 || 63 || 70 || 77 || 84
| 7 || 14 || 21 || 28 || 35 || 42 || 49 || 56 || 63 || 70 || 77 || 84
|-
|-
! scope="row" | 8
! style="text-align: right;" |8
| 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || 72 || 80 || 88 || 96
| 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || 72 || 80 || 88 || 96
|-
|-
! scope="row" | 9
! style="text-align: right;" |9
| 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 || 90 || 99 || 108
| 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 || 90 || 99 || 108
|-
|-
! scope="row" | 10
! style="text-align: right;" |10
| 10 || 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || 100 || 110 || 120
| 10 || 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || 100 || 110 || 120
|-
|-
! scope="row" | 11
! style="text-align: right;" |11
| 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99 || 110 || 121 || 132
| 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99 || 110 || 121 || 132
|-
|-
! scope="row" | 12
! style="text-align: right;" |12
| 12 || 24 || 36 || 48 || 60 || 72 || 84 || 96 || 108 || 120 || 132 || 144
| 12 || 24 || 36 || 48 || 60 || 72 || 84 || 96 || 108 || 120 || 132 || 144
|}
|}
</div>


Because multiplication of integers is [[commutative]], many schools use a smaller table as below. Some schools even remove the first column since 1 is the [[multiplicative identity]].{{cn|date=June 2024}}
The traditional rote learning of multiplication was based on memorization of columns in the table, in a form like
{{colbegin|2}}
<poem>
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90
</poem>
{{colend}}


<div style="margin-left:4em">
This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Bosnia and Herzegovina,{{citation needed|date=December 2016}} instead of the modern grid above.
{|class="wikitable" style="text-align: right;"
|-
!style="text-align: right;"|1
| 1 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=7, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|2
| 2 || 4 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=6, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;|3
| 3 || 6 || 9 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=5, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|4
| 4 || 8 || 12 || 16 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=4, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|5
| 5 || 10 || 15 || 20 || 25 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=3, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|6
| 6 || 12 || 18 || 24 || 30 || 36 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=2, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|7
| 7 || 14 || 21 || 28 || 35 || 42 || 49 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" |
|-
!style="text-align: right;"|8
| 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" |
|-
!style="text-align: right;"|9
| 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81
|-
!style="width:7.14%"|×
!style="text-align: right; width:7.14%"|1
!style="text-align: right; width:7.14%"|2
!style="text-align: right; width:7.14%"|3
!style="text-align: right; width:7.14%"|4
!style="text-align: right; width:7.14%"|5
!style="text-align: right; width:7.14%"|6
!style="text-align: right; width:7.14%"|7
!style="text-align: right; width:7.14%"|8
!style="text-align: right; width:7.14%"|9
|}
</div>

The traditional [[rote learning]] of multiplication was based on memorization of columns in the table, arranged as follows.

<div style="margin-left:4em">
{|
!style="text-align: right; width:5%"|
!style="text-align: right; width:5%"|
!style="text-align: right; width:5%"|
!style="text-align: right; width:5%"|
!style="text-align: right; width:5%"|
|-
|
{{figure space}}0&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}2&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}3&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}4&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}5&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}6&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}7&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}8&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
{{figure space}}9&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
10&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
11&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
12&nbsp;×&nbsp;0&nbsp;=&nbsp;0<br>
|
{{figure space}}0&nbsp;×&nbsp;1&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;1&nbsp;=&nbsp;1<br>
{{figure space}}2&nbsp;×&nbsp;1&nbsp;=&nbsp;2<br>
{{figure space}}3&nbsp;×&nbsp;1&nbsp;=&nbsp;3<br>
{{figure space}}4&nbsp;×&nbsp;1&nbsp;=&nbsp;4<br>
{{figure space}}5&nbsp;×&nbsp;1&nbsp;=&nbsp;5<br>
{{figure space}}6&nbsp;×&nbsp;1&nbsp;=&nbsp;6<br>
{{figure space}}7&nbsp;×&nbsp;1&nbsp;=&nbsp;7<br>
{{figure space}}8&nbsp;×&nbsp;1&nbsp;=&nbsp;8<br>
{{figure space}}9&nbsp;×&nbsp;1&nbsp;=&nbsp;9<br>
10&nbsp;×&nbsp;1&nbsp;=&nbsp;10<br>
11&nbsp;×&nbsp;1&nbsp;=&nbsp;11<br>
12&nbsp;×&nbsp;1&nbsp;=&nbsp;12<br>
|
{{figure space}}0&nbsp;×&nbsp;2&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;2&nbsp;=&nbsp;2<br>
{{figure space}}2&nbsp;×&nbsp;2&nbsp;=&nbsp;4<br>
{{figure space}}3&nbsp;×&nbsp;2&nbsp;=&nbsp;6<br>
{{figure space}}4&nbsp;×&nbsp;2&nbsp;=&nbsp;8<br>
{{figure space}}5&nbsp;×&nbsp;2&nbsp;=&nbsp;10<br>
{{figure space}}6&nbsp;×&nbsp;2&nbsp;=&nbsp;12<br>
{{figure space}}7&nbsp;×&nbsp;2&nbsp;=&nbsp;14<br>
{{figure space}}8&nbsp;×&nbsp;2&nbsp;=&nbsp;16<br>
{{figure space}}9&nbsp;×&nbsp;2&nbsp;=&nbsp;18<br>
10&nbsp;×&nbsp;2&nbsp;=&nbsp;20<br>
11&nbsp;×&nbsp;2&nbsp;=&nbsp;22<br>
12&nbsp;×&nbsp;2&nbsp;=&nbsp;24<br>
|
{{figure space}}0&nbsp;×&nbsp;3&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;3&nbsp;=&nbsp;3<br>
{{figure space}}2&nbsp;×&nbsp;3&nbsp;=&nbsp;6<br>
{{figure space}}3&nbsp;×&nbsp;3&nbsp;=&nbsp;9<br>
{{figure space}}4&nbsp;×&nbsp;3&nbsp;=&nbsp;12<br>
{{figure space}}5&nbsp;×&nbsp;3&nbsp;=&nbsp;15<br>
{{figure space}}6&nbsp;×&nbsp;3&nbsp;=&nbsp;18<br>
{{figure space}}7&nbsp;×&nbsp;3&nbsp;=&nbsp;21<br>
{{figure space}}8&nbsp;×&nbsp;3&nbsp;=&nbsp;24<br>
{{figure space}}9&nbsp;×&nbsp;3&nbsp;=&nbsp;27<br>
10&nbsp;×&nbsp;3&nbsp;=&nbsp;30<br>
11&nbsp;×&nbsp;3&nbsp;=&nbsp;33<br>
12&nbsp;×&nbsp;3&nbsp;=&nbsp;36<br>
|
{{figure space}}0&nbsp;×&nbsp;4&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;4&nbsp;=&nbsp;4<br>
{{figure space}}2&nbsp;×&nbsp;4&nbsp;=&nbsp;8<br>
{{figure space}}3&nbsp;×&nbsp;4&nbsp;=&nbsp;12<br>
{{figure space}}4&nbsp;×&nbsp;4&nbsp;=&nbsp;16<br>
{{figure space}}5&nbsp;×&nbsp;4&nbsp;=&nbsp;20<br>
{{figure space}}6&nbsp;×&nbsp;4&nbsp;=&nbsp;24<br>
{{figure space}}7&nbsp;×&nbsp;4&nbsp;=&nbsp;28<br>
{{figure space}}8&nbsp;×&nbsp;4&nbsp;=&nbsp;32<br>
{{figure space}}9&nbsp;×&nbsp;4&nbsp;=&nbsp;36<br>
10&nbsp;×&nbsp;4&nbsp;=&nbsp;40<br>
11&nbsp;×&nbsp;4&nbsp;=&nbsp;44<br>
12&nbsp;×&nbsp;4&nbsp;=&nbsp;48<br>
|-
|
{{figure space}}0&nbsp;×&nbsp;5&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;5&nbsp;=&nbsp;5<br>
{{figure space}}2&nbsp;×&nbsp;5&nbsp;=&nbsp;10<br>
{{figure space}}3&nbsp;×&nbsp;5&nbsp;=&nbsp;15<br>
{{figure space}}4&nbsp;×&nbsp;5&nbsp;=&nbsp;20<br>
{{figure space}}5&nbsp;×&nbsp;5&nbsp;=&nbsp;25<br>
{{figure space}}6&nbsp;×&nbsp;5&nbsp;=&nbsp;30<br>
{{figure space}}7&nbsp;×&nbsp;5&nbsp;=&nbsp;35<br>
{{figure space}}8&nbsp;×&nbsp;5&nbsp;=&nbsp;40<br>
{{figure space}}9&nbsp;×&nbsp;5&nbsp;=&nbsp;45<br>
10&nbsp;×&nbsp;5&nbsp;=&nbsp;50<br>
11&nbsp;×&nbsp;5&nbsp;=&nbsp;55<br>
12&nbsp;×&nbsp;5&nbsp;=&nbsp;60<br>
|
{{figure space}}0&nbsp;×&nbsp;6&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;6&nbsp;=&nbsp;6<br>
{{figure space}}2&nbsp;×&nbsp;6&nbsp;=&nbsp;12<br>
{{figure space}}3&nbsp;×&nbsp;6&nbsp;=&nbsp;18<br>
{{figure space}}4&nbsp;×&nbsp;6&nbsp;=&nbsp;24<br>
{{figure space}}5&nbsp;×&nbsp;6&nbsp;=&nbsp;30<br>
{{figure space}}6&nbsp;×&nbsp;6&nbsp;=&nbsp;36<br>
{{figure space}}7&nbsp;×&nbsp;6&nbsp;=&nbsp;42<br>
{{figure space}}8&nbsp;×&nbsp;6&nbsp;=&nbsp;48<br>
{{figure space}}9&nbsp;×&nbsp;6&nbsp;=&nbsp;54<br>
10&nbsp;×&nbsp;6&nbsp;=&nbsp;60<br>
11&nbsp;×&nbsp;6&nbsp;=&nbsp;66<br>
12&nbsp;×&nbsp;6&nbsp;=&nbsp;72<br>
|
{{figure space}}0&nbsp;×&nbsp;7&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;7&nbsp;=&nbsp;7<br>
{{figure space}}2&nbsp;×&nbsp;7&nbsp;=&nbsp;14<br>
{{figure space}}3&nbsp;×&nbsp;7&nbsp;=&nbsp;21<br>
{{figure space}}4&nbsp;×&nbsp;7&nbsp;=&nbsp;28<br>
{{figure space}}5&nbsp;×&nbsp;7&nbsp;=&nbsp;35<br>
{{figure space}}6&nbsp;×&nbsp;7&nbsp;=&nbsp;42<br>
{{figure space}}7&nbsp;×&nbsp;7&nbsp;=&nbsp;49<br>
{{figure space}}8&nbsp;×&nbsp;7&nbsp;=&nbsp;56<br>
{{figure space}}9&nbsp;×&nbsp;7&nbsp;=&nbsp;63<br>
10&nbsp;×&nbsp;7&nbsp;=&nbsp;70<br>
11&nbsp;×&nbsp;7&nbsp;=&nbsp;77<br>
12&nbsp;×&nbsp;7&nbsp;=&nbsp;84<br>
|
{{figure space}}0&nbsp;×&nbsp;8&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;8&nbsp;=&nbsp;8<br>
{{figure space}}2&nbsp;×&nbsp;8&nbsp;=&nbsp;16<br>
{{figure space}}3&nbsp;×&nbsp;8&nbsp;=&nbsp;24<br>
{{figure space}}4&nbsp;×&nbsp;8&nbsp;=&nbsp;32<br>
{{figure space}}5&nbsp;×&nbsp;8&nbsp;=&nbsp;40<br>
{{figure space}}6&nbsp;×&nbsp;8&nbsp;=&nbsp;48<br>
{{figure space}}7&nbsp;×&nbsp;8&nbsp;=&nbsp;56<br>
{{figure space}}8&nbsp;×&nbsp;8&nbsp;=&nbsp;64<br>
{{figure space}}9&nbsp;×&nbsp;8&nbsp;=&nbsp;72<br>
10&nbsp;×&nbsp;8&nbsp;=&nbsp;80<br>
11&nbsp;×&nbsp;8&nbsp;=&nbsp;88<br>
12&nbsp;×&nbsp;8&nbsp;=&nbsp;96<br>
|
{{figure space}}0&nbsp;×&nbsp;9&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;9&nbsp;=&nbsp;9<br>
{{figure space}}2&nbsp;×&nbsp;9&nbsp;=&nbsp;18<br>
{{figure space}}3&nbsp;×&nbsp;9&nbsp;=&nbsp;27<br>
{{figure space}}4&nbsp;×&nbsp;9&nbsp;=&nbsp;36<br>
{{figure space}}5&nbsp;×&nbsp;9&nbsp;=&nbsp;45<br>
{{figure space}}6&nbsp;×&nbsp;9&nbsp;=&nbsp;54<br>
{{figure space}}7&nbsp;×&nbsp;9&nbsp;=&nbsp;63<br>
{{figure space}}8&nbsp;×&nbsp;9&nbsp;=&nbsp;72<br>
{{figure space}}9&nbsp;×&nbsp;9&nbsp;=&nbsp;81<br>
10&nbsp;×&nbsp;9&nbsp;=&nbsp;90<br>
11&nbsp;×&nbsp;9&nbsp;=&nbsp;99<br>
12&nbsp;×&nbsp;9&nbsp;=&nbsp;108<br>
|-
|
{{figure space}}0&nbsp;×&nbsp;10&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;10&nbsp;=&nbsp;10<br>
{{figure space}}2&nbsp;×&nbsp;10&nbsp;=&nbsp;20<br>
{{figure space}}3&nbsp;×&nbsp;10&nbsp;=&nbsp;30<br>
{{figure space}}4&nbsp;×&nbsp;10&nbsp;=&nbsp;40<br>
{{figure space}}5&nbsp;×&nbsp;10&nbsp;=&nbsp;50<br>
{{figure space}}6&nbsp;×&nbsp;10&nbsp;=&nbsp;60<br>
{{figure space}}7&nbsp;×&nbsp;10&nbsp;=&nbsp;70<br>
{{figure space}}8&nbsp;×&nbsp;10&nbsp;=&nbsp;80<br>
{{figure space}}9&nbsp;×&nbsp;10&nbsp;=&nbsp;90<br>
10&nbsp;×&nbsp;10&nbsp;=&nbsp;100<br>
11&nbsp;×&nbsp;10&nbsp;=&nbsp;110<br>
12&nbsp;×&nbsp;10&nbsp;=&nbsp;120<br>
|
{{figure space}}0&nbsp;×&nbsp;11&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;11&nbsp;=&nbsp;11<br>
{{figure space}}2&nbsp;×&nbsp;11&nbsp;=&nbsp;22<br>
{{figure space}}3&nbsp;×&nbsp;11&nbsp;=&nbsp;33<br>
{{figure space}}4&nbsp;×&nbsp;11&nbsp;=&nbsp;44<br>
{{figure space}}5&nbsp;×&nbsp;11&nbsp;=&nbsp;55<br>
{{figure space}}6&nbsp;×&nbsp;11&nbsp;=&nbsp;66<br>
{{figure space}}7&nbsp;×&nbsp;11&nbsp;=&nbsp;77<br>
{{figure space}}8&nbsp;×&nbsp;11&nbsp;=&nbsp;88<br>
{{figure space}}9&nbsp;×&nbsp;11&nbsp;=&nbsp;99<br>
10&nbsp;×&nbsp;11&nbsp;=&nbsp;110<br>
11&nbsp;×&nbsp;11&nbsp;=&nbsp;121<br>
12&nbsp;×&nbsp;11&nbsp;=&nbsp;132<br>
|
{{figure space}}0&nbsp;×&nbsp;12&nbsp;=&nbsp;0<br>
{{figure space}}1&nbsp;×&nbsp;12&nbsp;=&nbsp;12<br>
{{figure space}}2&nbsp;×&nbsp;12&nbsp;=&nbsp;24<br>
{{figure space}}3&nbsp;×&nbsp;12&nbsp;=&nbsp;36<br>
{{figure space}}4&nbsp;×&nbsp;12&nbsp;=&nbsp;48<br>
{{figure space}}5&nbsp;×&nbsp;12&nbsp;=&nbsp;60<br>
{{figure space}}6&nbsp;×&nbsp;12&nbsp;=&nbsp;72<br>
{{figure space}}7&nbsp;×&nbsp;12&nbsp;=&nbsp;84<br>
{{figure space}}8&nbsp;×&nbsp;12&nbsp;=&nbsp;96<br>
{{figure space}}9&nbsp;×&nbsp;12&nbsp;=&nbsp;108<br>
10&nbsp;×&nbsp;12&nbsp;=&nbsp;120<br>
11&nbsp;×&nbsp;12&nbsp;=&nbsp;132<br>
12&nbsp;×&nbsp;12&nbsp;=&nbsp;144<br>
|
|
|}
</div>

This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Bosnia and Herzegovina,{{citation needed|date=December 2016}} instead of the modern grids above.


==Patterns in the tables==
==Patterns in the tables==
There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:
There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:
<div style="margin-left:4em">
<!--
<!--
→ →
→ →
Line 86: Line 336:
-->
-->
{| cellpadding="0" cellspacing="0" style="text-align:center;width:20em;"
{| cellpadding="0" cellspacing="0" style="text-align:center;width:20em;"
| colspan="5" style="font-size:200%;"|&rarr;
| colspan="5" style="font-size:200%;"|
| rowspan="7" style="padding:1em;"|&nbsp;
| rowspan="7" style="padding:1em;"|&nbsp;
| colspan="5" style="font-size:200%;"|&rarr;
| colspan="5" style="font-size:200%;"|
|-
|-
| rowspan="3" style="font-size:200%;"|&uarr;
| rowspan="3" style="font-size:200%;"|
! style="border:1px solid silver;border-radius:1em;"|1
! style="border:1px solid silver;border-radius:1em;"|1
! 2
! 2
! style="border:1px solid silver;border-radius:1em;"|3
! style="border:1px solid silver;border-radius:1em;"|3
| rowspan="3" style="font-size:200%;"|&darr;
| rowspan="3" style="font-size:200%;"|
| rowspan="3" style="font-size:200%;"|&uarr;
| rowspan="3" style="font-size:200%;"|
! style="border:1px solid silver;border-radius:1em;"|2
! style="border:1px solid silver;border-radius:1em;"|2
! &nbsp;
!
! style="border:1px solid silver;border-radius:1em;"|4
! style="border:1px solid silver;border-radius:1em;"|4
| rowspan="3" style="font-size:200%;"|&darr;
| rowspan="3" style="font-size:200%;"|
|-
|-
! 4 || 5 || 6
! 4 || 5 || 6
! &nbsp; || &nbsp; || &nbsp;
! || ||
|-
|-
! style="border:1px solid silver;border-radius:1em;"|7
! style="border:1px solid silver;border-radius:1em;"|7
Line 108: Line 358:
! style="border:1px solid silver;border-radius:1em;"|9
! style="border:1px solid silver;border-radius:1em;"|9
! style="border:1px solid silver;border-radius:1em;"|6
! style="border:1px solid silver;border-radius:1em;"|6
! &nbsp;
!
! style="border:1px solid silver;border-radius:1em;"|8
! style="border:1px solid silver;border-radius:1em;"|8
|-
|-
| colspan="5" style="font-size:200%;"|&larr;
| colspan="5" style="font-size:200%;"|
| colspan="5" style="font-size:200%;"|&larr;
| colspan="5" style="font-size:200%;"|
|-
|-
| &nbsp;
|
! 0 || &nbsp;
! 0 ||
! style="border:1px solid silver;border-radius:1em;"|5
! style="border:1px solid silver;border-radius:1em;"|5
| &nbsp;
|
| colspan="2"|&nbsp;
| colspan="2"|&nbsp;
! style="border:1px solid silver;border-radius:1em;"|0
! style="border:1px solid silver;border-radius:1em;"|0
Line 125: Line 375:
| colspan="5"|Figure 2: Even
| colspan="5"|Figure 2: Even
|}
|}
</div>

[[File:Multiplication_mnemonic.svg|thumb|250px|Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a [[telephone keypad]] ]]
Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle). The pattern also works with multiples of 10, by starting at 1 and simply adding 0, giving you 10, then just apply every number in the pattern to the "tens" unit as you would normally do as usual to the "ones" unit.
Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle). The pattern also works with multiples of 10, by starting at 1 and simply adding 0, giving you 10, then just apply every number in the pattern to the "tens" unit as you would normally do as usual to the "ones" unit.


[[File:Multiplication_mnemonic_7.svg|thumb|120px|Using the mnemonic to recall multiples of 7]]
<!-- [[File:Multiplication_mnemonic_7.svg|thumb|120px|Using the mnemonic to recall multiples of 7]] -->
For example, to recall all the multiples of 7:
For example, to recall all the multiples of 7:


Line 141: Line 392:


==In abstract algebra==
==In abstract algebra==
Tables can also define binary operations on [[group (mathematics)|group]]s, [[field (mathematics)|field]]s, [[ring (mathematics)|ring]]s, and other [[Abstract algebra|algebraic systems]]. In such contexts they can be called [[Cayley table]]s. Here are the addition and multiplication tables for the [[finite field]] '''Z<sub>5</sub>'''.
Tables can also define binary operations on [[group (mathematics)|group]]s, [[field (mathematics)|field]]s, [[ring (mathematics)|ring]]s, and other [[Abstract algebra|algebraic systems]]. In such contexts they are called [[Cayley table]]s.

For every natural number ''n'', addition and multiplication in '''Z<sub>''n''</sub>''', the ring of integers modulo ''n'', is described by an ''n'' by ''n'' table. (See [[Modular arithmetic]].) For example, the tables for '''Z<sub>5</sub>''' are:


For every natural number ''n'', there are also addition and multiplication tables for the ring '''Z<sub>''n''</sub>'''.
{{col-begin|width=auto}}
{{col-begin|width=auto}}
{{col-break|gap=2em}}
{{col-break|gap=2em}}
Line 196: Line 448:
|}
|}
{{col-end}}
{{col-end}}
For other examples, see [[group (mathematics)|group]], and [[octonion]].


For other examples, see [[group (mathematics)|group]].
==Chinese multiplication table==

===Hypercomplex numbers===
[[Hypercomplex number]] multiplication tables show the non-[[commutative]] results of multiplying two hypercomplex imaginary units. The simplest example is that of the [[quaternion]] multiplication table.

:{|class="wikitable"
|+Quaternion multiplication table
|-
!width=15 nowrap|↓ × →
!width=15|{{math|1}}
!width=15|{{math|'''i'''}}
!width=15|{{math|'''j'''}}
!width=15|{{math|'''k'''}}
|-
!{{math|1}}
|{{math|1}}
|{{math|'''i'''}}
|{{math|'''j'''}}
|{{math|'''k'''}}
|-
!{{math|'''i'''}}
|{{math|'''i'''}}
|{{math|−1}}
|{{math|'''k'''}}
|{{math|−'''j'''}}
|-
!{{math|'''j'''}}
|{{math|'''j'''}}
|{{math|−'''k'''}}
|{{math|−1}}
|{{math|'''i'''}}
|-
!{{math|'''k'''}}
|{{math|'''k'''}}
|{{math|'''j'''}}
|{{math|−'''i'''}}
|{{math|−1}}
|}

For further examples, see {{section link|Octonion|Multiplication}}, {{section link|Sedenion|Multiplication}}, and {{section link|Trigintaduonion|Multiplication}}.

==Chinese and Japanese multiplication tables==
{{Main|Chinese multiplication table}}
{{Main|Chinese multiplication table}}
[[Mokkan]] discovered at [[Heijō Palace]] suggest that the multiplication table may have been introduced to Japan through Chinese mathematical treatises such as the [[Sunzi Suanjing]], because their expression of the multiplication table share the character {{lang|zh|如}} in products less than ten.<ref>{{cite web |title=「九九」は中国伝来...平城宮跡から木簡出土 |url=https://www.yomiuri.co.jp/kyoiku/news/20101204-OYT8T00242.htm |publisher=Yomiuri Shimbun |archive-url=https://web.archive.org/web/20101207102108/https://www.yomiuri.co.jp/kyoiku/news/20101204-OYT8T00242.htm |archive-date=December 7, 2010 |date=December 4, 2010}}</ref> Chinese and Japanese share a similar system of eighty-one short, easily memorable sentences taught to students to help them learn the multiplication table up to 9 × 9. In current usage, the sentences that express products less than ten include an additional particle in both languages. In the case of modern Chinese, this is {{lang|zh|得}} ({{transliteration|zh|dé}}); and in Japanese, this is {{lang|ja|が}} ({{transliteration|ja|ga}}). This is useful for those who practice calculation with a [[suanpan]] or a [[soroban]], because the sentences remind them to shift one column to the right when inputting a product that does not begin with a [[Numerical digit|tens digit]]. In particular, the Japanese multiplication table uses non-standard pronunciations for numbers in some specific instances (such as the replacement of ''san roku'' with ''saburoku'').
The Chinese multiplication table consists of eighty-one sentences with five Chinese characters per sentence, making it is easy for children to learn by heart. A shorter version of the table consists of only forty-five sentences, as terms such as "nine eights beget seventy-two" are identical to "eight nines beget seventy-two" so there is no need to learn them twice.

{| class="wikitable plainrowheaders"
|+ The Japanese multiplication table
!1 ''ichi''
!2 ''ni''
!3 ''san''
!4 ''shi''
!5 ''go''
!6 ''roku''
!7 ''shichi''
!8 ''ha''
!9 ''ku''
|-
!1 ''in''
|''in'ichi ga ichi''
|''inni ga ni''
|''insan ga san''
|''inshi ga shi''
|''ingo ga go''
|''inroku ga roku''
|''inshichi ga shichi''
|''inhachi ga hachi''
|''inku ga ku''
|-
!2 ''ni''
|''ni ichi ga ni''
|''ni nin ga shi''
|''ni san ga roku''
|''ni shi ga hachi''
|''ni go jū''
|''ni roku jūni''
|''ni shichi jūshi''
|''ni hachi jūroku''
|''ni ku jūhachi''
|-
!3 ''san''
|''san ichi ga san''
|''san ni ga roku''
|''sazan ga ku''
|''san shi jūni''
|''san go jūgo''
|''saburoku jūhachi''
|''san shichi nijūichi''
|''sanpa nijūshi''
|''san ku nijūshichi''
|-
!4 ''shi''
|''shi ichi ga shi''
|''shi ni ga hachi''
|''shi san jūni''
|''shi shi jūroku''
|''shi go nijū''
|''shi roku nijūshi''
|''shi shichi nijūhachi''
|''shi ha sanjūni''
|''shi ku sanjūroku''
|-
!5 ''go''
|''go ichi ga go''
|''go ni jū''
|''go san jūgo''
|''go shi nijū''
|''go go nijūgo''
|''go roku sanjū''
|''go shichi sanjūgo''
|''go ha shijū''
|''gokku shijūgo''
|-
!6 ''roku''
|''roku ichi ga roku''
|''roku ni jūni''
|''roku san jūhachi''
|''roku shi nijūshi''
|''roku go sanjū''
|''roku roku sanjūroku''
|''roku shichi shijūni''
|''roku ha shijūhachi''
|''rokku gojūshi''
|-
!7 ''shichi''
|''shichi ichi ga shichi''
|''shichi ni jūshi''
|''shichi san nijūichi''
|''shichi shi nijūhachi''
|''shichi go sanjūgo''
|''shichi roku shijūni''
|''shichi shichi shijūku''
|''shichi ha gojūroku''
|''shichi ku rokujūsan''
|-
!8 ''hachi''
|''hachi ichi ga hachi''
|''hachi ni jūroku''
|''hachi san nijūshi''
|''hachi shi sanjūni''
|''hachi go shijū''
|''hachi roku shijūhachi''
|''hachi shichi gojūroku''
|''happa rokujūshi''
|''hakku shichijūni''
|-
!9 ''ku''
|''ku ichi ga ku''
|''ku ni jūhachi''
|''ku san nijūshichi''
|''ku shi sanjūroku''
|''ku go shijūgo''
|''ku roku gojūshi''
|''ku shichi rokujūsan''
|''ku ha shichijūni''
|''ku ku hachijūichi''
|}


==Warring States decimal multiplication bamboo slips==
==Warring States decimal multiplication bamboo slips==
A bundle of 21 bamboo slips dated 305&nbsp;BC in the [[Warring States]] period in the [[Tsinghua Bamboo Slips]] (清华简) collection is the world's earliest known example of a decimal multiplication table.<ref>''Nature'' article [http://www.nature.com/news/ancient-times-table-hidden-in-chinese-bamboo-strips-1.14482 The 2,300-year-old matrix is the world's oldest decimal multiplication table]</ref>
A bundle of 21 bamboo slips dated 305&nbsp;BC in the [[Warring States]] period in the [[Tsinghua Bamboo Slips]] (清華簡) collection is the world's earliest known example of a decimal multiplication table.<ref>''Nature'' article [http://www.nature.com/news/ancient-times-table-hidden-in-chinese-bamboo-strips-1.14482 The 2,300-year-old matrix is the world's oldest decimal multiplication table]</ref>
{{wide image|Decimal calculation table example.JPG|800px|A diagram of Warring States decimal multiplication table to calculate 22 × 35}}
{{wide image|Qinghuajian_Suan_Biao_example.svg|600px|A modern representation of the Warring States decimal multiplication table used to calculate 12 × 34.5}}


==Standards-based mathematics reform in the US==
==Standards-based mathematics reform in the US==
In 1989, the [[National Council of Teachers of Mathematics]] (NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, and which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such as [[Investigations in Numbers, Data, and Space]] (widely known as [[Technical Education Research Centers|TERC]] after its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006 [[Principles and Standards for School Mathematics#Curriculum Focal Points|Focal Points]] that basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method.
In 1989, the [[National Council of Teachers of Mathematics]] (NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such as [[Investigations in Numbers, Data, and Space]] (widely known as [[Technical Education Research Centers|TERC]] after its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006 [[Principles and Standards for School Mathematics#Curriculum Focal Points|Focal Points]] that basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method. In recent years, a number of nontraditional methods have been devised to help children learn multiplication facts, including video-game style apps and books that aim to teach times tables through character-based stories.


==See also==
==See also==
* [[Chinese multiplication table]]
* [[Vedic square]]
* [[Vedic square]]
* [[IBM 1620]], an early computer that used tables stored in memory to perform addition and multiplication
* [[IBM 1620]], an early computer that used tables stored in memory to perform addition and multiplication
{{commons}}


==References==
==References==
{{reflist}}
{{Reflist}}
{{Authority control}}


[[Category:Multiplication]]
[[Category:Multiplication]]
[[Category:Mathematics education]]
[[Category:Mathematics education]]
[[Category:Conceptual models]]
[[Category:Mathematical tables]]

Latest revision as of 22:22, 9 January 2025

Multiplication table from 1 to 10 drawn to scale with the upper-right half labeled with prime factorisations

In mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication operation for an algebraic system.

The decimal multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.[1]

History

[edit]

Pre-modern times

[edit]
The Tsinghua Bamboo Slips, Chinese Warring States era decimal multiplication table of 305 BC

The oldest known multiplication tables were used by the Babylonians about 4000 years ago.[2] However, they used a base of 60.[2] The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period.[2]

"Table of Pythagoras" on Napier's bones[3]

The multiplication table is sometimes attributed to the ancient Greek mathematician Pythagoras (570–495 BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.[4] The Greco-Roman mathematician Nichomachus (60–120 AD), a follower of Neopythagoreanism, included a multiplication table in his Introduction to Arithmetic, whereas the oldest surviving Greek multiplication table is on a wax tablet dated to the 1st century AD and currently housed in the British Museum.[5]

In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."[6]

Modern times

[edit]

In his 1820 book The Philosophy of Arithmetic,[7] mathematician John Leslie published a multiplication table up to 1000 × 1000, which allows numbers to be multiplied in triplets of digits at a time. Leslie also recommended that young pupils memorize the multiplication table up to 50 × 50.

The illustration below shows a table up to 12 × 12, which is a size commonly used nowadays in English-world schools.

× 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22 24
3 3 6 9 12 15 18 21 24 27 30 33 36
4 4 8 12 16 20 24 28 32 36 40 44 48
5 5 10 15 20 25 30 35 40 45 50 55 60
6 6 12 18 24 30 36 42 48 54 60 66 72
7 7 14 21 28 35 42 49 56 63 70 77 84
8 8 16 24 32 40 48 56 64 72 80 88 96
9 9 18 27 36 45 54 63 72 81 90 99 108
10 10 20 30 40 50 60 70 80 90 100 110 120
11 11 22 33 44 55 66 77 88 99 110 121 132
12 12 24 36 48 60 72 84 96 108 120 132 144

Because multiplication of integers is commutative, many schools use a smaller table as below. Some schools even remove the first column since 1 is the multiplicative identity.[citation needed]

1 1
2 2 4
3 3 6 9
4 4 8 12 16
5 5 10 15 20 25
6 6 12 18 24 30 36
7 7 14 21 28 35 42 49
8 8 16 24 32 40 48 56 64
9 9 18 27 36 45 54 63 72 81
× 1 2 3 4 5 6 7 8 9

The traditional rote learning of multiplication was based on memorization of columns in the table, arranged as follows.

0 × 0 = 0
1 × 0 = 0
2 × 0 = 0
3 × 0 = 0
4 × 0 = 0
5 × 0 = 0
6 × 0 = 0
7 × 0 = 0
8 × 0 = 0
9 × 0 = 0
10 × 0 = 0
11 × 0 = 0
12 × 0 = 0

0 × 1 = 0
1 × 1 = 1
2 × 1 = 2
3 × 1 = 3
4 × 1 = 4
5 × 1 = 5
6 × 1 = 6
7 × 1 = 7
8 × 1 = 8
9 × 1 = 9
10 × 1 = 10
11 × 1 = 11
12 × 1 = 12

0 × 2 = 0
1 × 2 = 2
2 × 2 = 4
3 × 2 = 6
4 × 2 = 8
5 × 2 = 10
6 × 2 = 12
7 × 2 = 14
8 × 2 = 16
9 × 2 = 18
10 × 2 = 20
11 × 2 = 22
12 × 2 = 24

0 × 3 = 0
1 × 3 = 3
2 × 3 = 6
3 × 3 = 9
4 × 3 = 12
5 × 3 = 15
6 × 3 = 18
7 × 3 = 21
8 × 3 = 24
9 × 3 = 27
10 × 3 = 30
11 × 3 = 33
12 × 3 = 36

0 × 4 = 0
1 × 4 = 4
2 × 4 = 8
3 × 4 = 12
4 × 4 = 16
5 × 4 = 20
6 × 4 = 24
7 × 4 = 28
8 × 4 = 32
9 × 4 = 36
10 × 4 = 40
11 × 4 = 44
12 × 4 = 48

0 × 5 = 0
1 × 5 = 5
2 × 5 = 10
3 × 5 = 15
4 × 5 = 20
5 × 5 = 25
6 × 5 = 30
7 × 5 = 35
8 × 5 = 40
9 × 5 = 45
10 × 5 = 50
11 × 5 = 55
12 × 5 = 60

0 × 6 = 0
1 × 6 = 6
2 × 6 = 12
3 × 6 = 18
4 × 6 = 24
5 × 6 = 30
6 × 6 = 36
7 × 6 = 42
8 × 6 = 48
9 × 6 = 54
10 × 6 = 60
11 × 6 = 66
12 × 6 = 72

0 × 7 = 0
1 × 7 = 7
2 × 7 = 14
3 × 7 = 21
4 × 7 = 28
5 × 7 = 35
6 × 7 = 42
7 × 7 = 49
8 × 7 = 56
9 × 7 = 63
10 × 7 = 70
11 × 7 = 77
12 × 7 = 84

0 × 8 = 0
1 × 8 = 8
2 × 8 = 16
3 × 8 = 24
4 × 8 = 32
5 × 8 = 40
6 × 8 = 48
7 × 8 = 56
8 × 8 = 64
9 × 8 = 72
10 × 8 = 80
11 × 8 = 88
12 × 8 = 96

0 × 9 = 0
1 × 9 = 9
2 × 9 = 18
3 × 9 = 27
4 × 9 = 36
5 × 9 = 45
6 × 9 = 54
7 × 9 = 63
8 × 9 = 72
9 × 9 = 81
10 × 9 = 90
11 × 9 = 99
12 × 9 = 108

0 × 10 = 0
1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90
10 × 10 = 100
11 × 10 = 110
12 × 10 = 120

0 × 11 = 0
1 × 11 = 11
2 × 11 = 22
3 × 11 = 33
4 × 11 = 44
5 × 11 = 55
6 × 11 = 66
7 × 11 = 77
8 × 11 = 88
9 × 11 = 99
10 × 11 = 110
11 × 11 = 121
12 × 11 = 132

0 × 12 = 0
1 × 12 = 12
2 × 12 = 24
3 × 12 = 36
4 × 12 = 48
5 × 12 = 60
6 × 12 = 72
7 × 12 = 84
8 × 12 = 96
9 × 12 = 108
10 × 12 = 120
11 × 12 = 132
12 × 12 = 144

This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Bosnia and Herzegovina,[citation needed] instead of the modern grids above.

Patterns in the tables

[edit]

There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:

 
1 2 3 2 4
4 5 6
7 8 9 6 8
0 5   0  
Figure 1: Odd Figure 2: Even
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad

Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle). The pattern also works with multiples of 10, by starting at 1 and simply adding 0, giving you 10, then just apply every number in the pattern to the "tens" unit as you would normally do as usual to the "ones" unit.

For example, to recall all the multiples of 7:

  1. Look at the 7 in the first picture and follow the arrow.
  2. The next number in the direction of the arrow is 4. So think of the next number after 7 that ends with 4, which is 14.
  3. The next number in the direction of the arrow is 1. So think of the next number after 14 that ends with 1, which is 21.
  4. After coming to the top of this column, start with the bottom of the next column, and travel in the same direction. The number is 8. So think of the next number after 21 that ends with 8, which is 28.
  5. Proceed in the same way until the last number, 3, corresponding to 63.
  6. Next, use the 0 at the bottom. It corresponds to 70.
  7. Then, start again with the 7. This time it will correspond to 77.
  8. Continue like this.

In abstract algebra

[edit]

Tables can also define binary operations on groups, fields, rings, and other algebraic systems. In such contexts they are called Cayley tables.

For every natural number n, addition and multiplication in Zn, the ring of integers modulo n, is described by an n by n table. (See Modular arithmetic.) For example, the tables for Z5 are:

For other examples, see group.

Hypercomplex numbers

[edit]

Hypercomplex number multiplication tables show the non-commutative results of multiplying two hypercomplex imaginary units. The simplest example is that of the quaternion multiplication table.

Quaternion multiplication table
↓ × → 1 i j k
1 1 i j k
i i −1 k j
j j k −1 i
k k j i −1

For further examples, see Octonion § Multiplication, Sedenion § Multiplication, and Trigintaduonion § Multiplication.

Chinese and Japanese multiplication tables

[edit]

Mokkan discovered at Heijō Palace suggest that the multiplication table may have been introduced to Japan through Chinese mathematical treatises such as the Sunzi Suanjing, because their expression of the multiplication table share the character in products less than ten.[8] Chinese and Japanese share a similar system of eighty-one short, easily memorable sentences taught to students to help them learn the multiplication table up to 9 × 9. In current usage, the sentences that express products less than ten include an additional particle in both languages. In the case of modern Chinese, this is (); and in Japanese, this is (ga). This is useful for those who practice calculation with a suanpan or a soroban, because the sentences remind them to shift one column to the right when inputting a product that does not begin with a tens digit. In particular, the Japanese multiplication table uses non-standard pronunciations for numbers in some specific instances (such as the replacement of san roku with saburoku).

The Japanese multiplication table
× 1 ichi 2 ni 3 san 4 shi 5 go 6 roku 7 shichi 8 ha 9 ku
1 in in'ichi ga ichi inni ga ni insan ga san inshi ga shi ingo ga go inroku ga roku inshichi ga shichi inhachi ga hachi inku ga ku
2 ni ni ichi ga ni ni nin ga shi ni san ga roku ni shi ga hachi ni go jū ni roku jūni ni shichi jūshi ni hachi jūroku ni ku jūhachi
3 san san ichi ga san san ni ga roku sazan ga ku san shi jūni san go jūgo saburoku jūhachi san shichi nijūichi sanpa nijūshi san ku nijūshichi
4 shi shi ichi ga shi shi ni ga hachi shi san jūni shi shi jūroku shi go nijū shi roku nijūshi shi shichi nijūhachi shi ha sanjūni shi ku sanjūroku
5 go go ichi ga go go ni jū go san jūgo go shi nijū go go nijūgo go roku sanjū go shichi sanjūgo go ha shijū gokku shijūgo
6 roku roku ichi ga roku roku ni jūni roku san jūhachi roku shi nijūshi roku go sanjū roku roku sanjūroku roku shichi shijūni roku ha shijūhachi rokku gojūshi
7 shichi shichi ichi ga shichi shichi ni jūshi shichi san nijūichi shichi shi nijūhachi shichi go sanjūgo shichi roku shijūni shichi shichi shijūku shichi ha gojūroku shichi ku rokujūsan
8 hachi hachi ichi ga hachi hachi ni jūroku hachi san nijūshi hachi shi sanjūni hachi go shijū hachi roku shijūhachi hachi shichi gojūroku happa rokujūshi hakku shichijūni
9 ku ku ichi ga ku ku ni jūhachi ku san nijūshichi ku shi sanjūroku ku go shijūgo ku roku gojūshi ku shichi rokujūsan ku ha shichijūni ku ku hachijūichi

Warring States decimal multiplication bamboo slips

[edit]

A bundle of 21 bamboo slips dated 305 BC in the Warring States period in the Tsinghua Bamboo Slips (清華簡) collection is the world's earliest known example of a decimal multiplication table.[9]

A modern representation of the Warring States decimal multiplication table used to calculate 12 × 34.5

Standards-based mathematics reform in the US

[edit]

In 1989, the National Council of Teachers of Mathematics (NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such as Investigations in Numbers, Data, and Space (widely known as TERC after its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006 Focal Points that basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method. In recent years, a number of nontraditional methods have been devised to help children learn multiplication facts, including video-game style apps and books that aim to teach times tables through character-based stories.

See also

[edit]
  • Vedic square
  • IBM 1620, an early computer that used tables stored in memory to perform addition and multiplication

References

[edit]
  1. ^ Trivett, John (1980), "The Multiplication Table: To Be Memorized or Mastered!", For the Learning of Mathematics, 1 (1): 21–25, JSTOR 40247697.
  2. ^ a b c Qiu, Jane (January 7, 2014). "Ancient times table hidden in Chinese bamboo strips". Nature News. doi:10.1038/nature.2014.14482. S2CID 130132289.
  3. ^ Wikisource:Page:Popular Science Monthly Volume 26.djvu/467
  4. ^ for example in An Elementary Treatise on Arithmetic by John Farrar
  5. ^ David E. Smith (1958), History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics. New York: Dover Publications (a reprint of the 1951 publication), ISBN 0-486-20429-4, pp. 58, 129.
  6. ^ David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions". Classical Philology, 96/4 (October 2001), p. 383.
  7. ^ Leslie, John (1820). The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand. Edinburgh: Abernethy & Walker.
  8. ^ "「九九」は中国伝来...平城宮跡から木簡出土". Yomiuri Shimbun. December 4, 2010. Archived from the original on December 7, 2010.
  9. ^ Nature article The 2,300-year-old matrix is the world's oldest decimal multiplication table