Jump to content

Lambda point: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
more refs added, material rearranged
Citation bot (talk | contribs)
Alter: title, template type. Added chapter. Removed parameters. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Superfluidity | #UCB_Category 27/38
 
(22 intermediate revisions by 15 users not shown)
Line 1: Line 1:
{{Short description|Superfluid transition temperature of helium-4}}
[[File:Lambda transition.svg|thumb|250px|The plot of the specific heat capacity versus temperature.]]
[[File:Lambda transition.svg|thumb|250px|The plot of the specific heat capacity versus temperature.]]
The '''Lambda point''' is the [[temperature]] at which normal fluid [[helium]] (helium I) makes the transition to [[superfluid]] helium II (approximately 2.17 [[Kelvin|K]] at 1 [[atmosphere (unit)|atmosphere]]). The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II [[triple point]] at {{convert|2.1768|K|C}} and {{convert|5.048|kPa|atm|abbr=on}}, which is the "saturated [[vapor pressure]]" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in a [[Hermetic seal|hermetic]] container).<ref name=Donnelly>{{cite journal| title=The Observed Properties of Liquid Helium at the Saturated Vapor Pressure | first1=Russell J.| last1=Donnelly| first2=Carlo F.| last2=Barenghi | journal=[[Journal of Physical and Chemical Reference Data]]| year=1998| volume=27| issue=6| pages=1217–1274| doi=10.1063/1.556028|bibcode = 1998JPCRD..27.1217D }}</ref> The highest pressure at which He-I and He-II can coexist is the [[Body-centered cubic|bcc]]−He-I−He-II triple point with a helium solid at {{convert|1.762|K|C}}, {{convert|29.725|atm|kPa|abbr=on}}.<ref name=Hoffer>{{cite journal| title=Thermodynamic properties of <sup>4</sup>He. II. The bcc phase and the P-T and VT phase diagrams below 2 K | first1=J. K.| last1=Hoffer| first2=W. R.| last2=Gardner| first3=C. G.| last3=Waterfield| first4=N. E.| last4=Phillips| journal=[[Journal of Low Temperature Physics]]| date=April 1976| volume=23| issue=1| pages=63–102| doi=10.1007/BF00117245|bibcode = 1976JLTP...23...63H }}</ref>
The '''lambda point''' is the [[temperature]] at which normal fluid [[helium]] (helium I) makes the transition to [[superfluid]] state ([[helium II]]). At pressure of 1 [[atmosphere (unit)|atmosphere]], the transition occurs at approximately 2.17 [[Kelvin|K]]. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II [[triple point]] at {{convert|2.1768|K|C}} and {{convert|5.0418|kPa|atm|abbr=on}}, which is the "saturated [[vapor pressure]]" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in a [[Hermetic seal|hermetic]] container).<ref name=Donnelly>{{cite journal| title=The Observed Properties of Liquid Helium at the Saturated Vapor Pressure | first1=Russell J.| last1=Donnelly| first2=Carlo F.| last2=Barenghi | journal=[[Journal of Physical and Chemical Reference Data]]| year=1998| volume=27| issue=6| pages=1217–1274| doi=10.1063/1.556028|bibcode = 1998JPCRD..27.1217D }}</ref> The highest pressure at which He-I and He-II can coexist is the [[Body-centered cubic|bcc]]−He-I−He-II triple point with a helium solid at {{convert|1.762|K|C}}, {{convert|29.725|atm|kPa|abbr=on}}.<ref name=Hoffer>{{cite journal| title=Thermodynamic properties of <sup>4</sup>He. II. The bcc phase and the P-T and VT phase diagrams below 2 K | first1=J. K.| last1=Hoffer| first2=W. R.| last2=Gardner| first3=C. G.| last3=Waterfield| first4=N. E.| last4=Phillips| journal=[[Journal of Low Temperature Physics]]| date=April 1976| volume=23| issue=1| pages=63–102| doi=10.1007/BF00117245|bibcode = 1976JLTP...23...63H | s2cid=120473493}}</ref>


The point's name derives from the graph (pictured) that results from plotting the [[specific heat capacity]] as a function of [[temperature]] (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the [[Greek language|Greek]] letter [[lambda]]. The specific heat capacity has a sharp peak as the temperature approaches the lambda point. The tip of the peak is so sharp that a critical exponent characterizing the divergence of the heat capacity can be measured precisely only in zero gravity, to provide a uniform density over a substantial volume of fluid. Hence the heat capacity was measured within 2&nbsp;nK below the transition in an experiment included in a [[Space Shuttle]] payload in 1992.<ref name=JPL>{{cite journal| title=Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point | first1=J.A.| last1=Lipa| first2=D. R.| last2=Swanson| first3=J. A.| last3=Nissen| first4=T. C. P.| last4=Chui| first5=U. E.| last5=Israelsson| journal=[[Physical Review Letters]]| year=1996| volume=76| issue=6| pages=944–7| doi=10.1103/PhysRevLett.76.944|bibcode = 1996PhRvL..76..944L| pmid=10061591| hdl=2060/19950007794}}</ref>{{unsolved|physics|Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponent {{math|''α''}} for the superfuid transition in Helium-4.<ref name="Rychkov"/>
The point's name derives from the graph (pictured) that results from plotting the [[specific heat capacity]] as a function of [[temperature]] (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the [[Greek language|Greek]] letter [[lambda]] <math>\lambda</math>. The specific heat capacity has a sharp peak as the temperature approaches the lambda point. The tip of the peak is so sharp that a critical exponent characterizing the divergence of the heat capacity can be measured precisely only in zero gravity, to provide a uniform density over a substantial volume of fluid. Hence, the heat capacity was measured within 2&nbsp;nK below the transition in an experiment included in a [[Space Shuttle]] payload in 1992.<ref name=JPL>{{cite journal| title=Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point | first1=J.A.| last1=Lipa| first2=D. R.| last2=Swanson| first3=J. A.| last3=Nissen| first4=T. C. P.| last4=Chui| first5=U. E.| last5=Israelsson| journal=[[Physical Review Letters]]| year=1996| volume=76| issue=6| pages=944–7| doi=10.1103/PhysRevLett.76.944|bibcode = 1996PhRvL..76..944L| pmid=10061591| hdl=2060/19950007794| s2cid=29876364| hdl-access=free}}</ref>{{unsolved|physics|Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponent {{math|''α''}} for the superfluid transition in helium-4.<ref name="Rychkov"/>
}}
}}


Although the heat capacity has a peak, it does not tend towards [[infinity]] (contrary to what the graph may suggest), but has finite limiting values when approaching the transition from above and below.<ref name=JPL /> The behavior of the heat capacity near the peak is described by the formula <math>C\approx A_\pm t^{-\alpha}+B_\pm</math> where <math>t=|1-T/T_c|</math> is the reduced temperature, <math>T_c</math> is the Lambda point temperature, <math>A_\pm,B_\pm</math> are constants (different above and below the transition temperature), and {{math|''α''}} is the [[critical exponent]]: <math>\alpha=-0.0127(3)</math>.<ref name=JPL /><ref>{{Cite journal|last=Lipa|first=J. A.|last2=Nissen|first2=J. A.|last3=Stricker|first3=D. A.|last4=Swanson|first4=D. R.|last5=Chui|first5=T. C. P.|date=2003-11-14|title=Specific heat of liquid helium in zero gravity very near the lambda point|url=https://link.aps.org/doi/10.1103/PhysRevB.68.174518|journal=Physical Review B|volume=68|issue=17|pages=174518|doi=10.1103/PhysRevB.68.174518}}</ref> Since this exponent is negative for the superfluid transition, specific heat remains finite.<ref>For other phase transitions <math>\alpha</math> may be negative (e.g. <math>\alpha\approx+0.1</math> for [[Critical point (thermodynamics)|the liquid-vapor critical point]] which has [[Ising critical exponents]]). For those phase transitions specific heat does tend to infinity. </ref>
Although the heat capacity has a peak, it does not tend towards [[infinity]] (contrary to what the graph may suggest), but has finite limiting values when approaching the transition from above and below.<ref name=JPL /> The behavior of the heat capacity near the peak is described by the formula <math>C\approx A_\pm t^{-\alpha}+B_\pm</math> where <math>t=|1-T/T_c|</math> is the reduced temperature, <math>T_c</math> is the Lambda point temperature, <math>A_\pm,B_\pm</math> are constants (different above and below the transition temperature), and {{math|''α''}} is the [[critical exponent]]: <math>\alpha=-0.0127(3)</math>.<ref name=JPL /><ref>{{Cite journal|last1=Lipa|first1=J. A.|last2=Nissen|first2=J. A.|last3=Stricker|first3=D. A.|last4=Swanson|first4=D. R.|last5=Chui|first5=T. C. P.|date=2003-11-14|title=Specific heat of liquid helium in zero gravity very near the lambda point|journal=Physical Review B|volume=68|issue=17|pages=174518|doi=10.1103/PhysRevB.68.174518|bibcode=2003PhRvB..68q4518L|arxiv=cond-mat/0310163|s2cid=55646571}}</ref> Since this exponent is negative for the superfluid transition, specific heat remains finite.<ref>For other phase transitions <math>\alpha</math> may be negative (e.g. <math>\alpha\approx+0.1</math> for [[Critical point (thermodynamics)|the liquid-vapor critical point]] which has [[Ising critical exponents]]). For those phase transitions specific heat does tend to infinity.</ref>


The quoted experimental value of {{math|''α''}} is in a significant disagreement<ref>{{Cite journal|last=Vicari|first=Ettore|date=2008-03-21|title=Critical phenomena and renormalization-group flow of multi-parameter Phi4 theories|url=https://pos.sissa.it/042/023|journal=Proceedings of The XXV International Symposium on Lattice Field Theory — PoS(LATTICE 2007)|language=en|location=Regensburg, Germany|publisher=Sissa Medialab|pages=023|doi=10.22323/1.042.0023}}</ref><ref name="Rychkov">{{Cite journal|last=Rychkov|first=Slava|date=2020-01-31|title=Conformal bootstrap and the λ-point specific heat experimental anomaly|url=https://www.condmatjclub.org/?p=4037|journal=Journal Club for Condensed Matter Physics|language=en|doi=10.36471/JCCM_January_2020_02}}</ref> with the most precise theoretical determinations<ref>{{Cite journal|last=Campostrini|first=Massimo|last2=Hasenbusch|first2=Martin|last3=Pelissetto|first3=Andrea|last4=Vicari|first4=Ettore|date=2006-10-06|title=Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods|url=https://link.aps.org/doi/10.1103/PhysRevB.74.144506|journal=Physical Review B|volume=74|issue=14|pages=144506|doi=10.1103/PhysRevB.74.144506}}</ref><ref>{{Cite journal|last=Hasenbusch|first=Martin|date=2019-12-26|title=Monte Carlo study of an improved clock model in three dimensions|url=http://arxiv.org/abs/1910.05916|journal=Physical Review B|volume=100|issue=22|pages=224517|doi=10.1103/PhysRevB.100.224517|issn=2469-9950}}</ref><ref>{{Cite journal|last=Chester|first=Shai M.|last2=Landry|first2=Walter|last3=Liu|first3=Junyu|last4=Poland|first4=David|last5=Simmons-Duffin|first5=David|last6=Su|first6=Ning|last7=Vichi|first7=Alessandro|date=2019-12-06|title=Carving out OPE space and precise $O(2)$ model critical exponents|url=http://arxiv.org/abs/1912.03324|journal=arXiv:1912.03324 [cond-mat, physics:hep-lat, physics:hep-th]}}</ref> coming from high temperature expansion techniques, [[Monte Carlo method|Monte Carlo]] methods and the [[conformal bootstrap]].
The quoted experimental value of {{math|''α''}} is in a significant disagreement<ref>{{Cite book|last=Vicari|first=Ettore|chapter=Critical phenomena and renormalization-group flow of multi-parameter Phi4 theories |date=2008-03-21|title=Proceedings of the XXV International Symposium on Lattice Field Theory — PoS(LATTICE 2007)|volume=42|language=en|location=Regensburg, Germany|publisher=Sissa Medialab|pages=023|doi=10.22323/1.042.0023|doi-access=free}}</ref><ref name="Rychkov">{{Cite journal|last=Rychkov|first=Slava|date=2020-01-31|title=Conformal bootstrap and the λ-point specific heat experimental anomaly|url=https://www.condmatjclub.org/?p=4037|journal=Journal Club for Condensed Matter Physics|language=en|doi=10.36471/JCCM_January_2020_02|doi-access=free}}</ref> with the most precise theoretical determinations<ref>{{Cite journal|last1=Campostrini|first1=Massimo|last2=Hasenbusch|first2=Martin|last3=Pelissetto|first3=Andrea|last4=Vicari|first4=Ettore|date=2006-10-06|title=Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods|journal=Physical Review B|volume=74|issue=14|pages=144506|doi=10.1103/PhysRevB.74.144506|arxiv=cond-mat/0605083|s2cid=118924734}}</ref><ref>{{Cite journal|last=Hasenbusch|first=Martin|date=2019-12-26|title=Monte Carlo study of an improved clock model in three dimensions|arxiv=1910.05916|journal=Physical Review B|volume=100|issue=22|pages=224517|doi=10.1103/PhysRevB.100.224517|issn=2469-9950|bibcode=2019PhRvB.100v4517H|s2cid=204509042}}</ref><ref>{{cite journal|last1=Chester|first1=Shai M.|last2=Landry|first2=Walter|last3=Liu|first3=Junyu|last4=Poland|first4=David|last5=Simmons-Duffin|first5=David|last6=Su|first6=Ning|last7=Vichi|first7=Alessandro|title=Carving out OPE space and precise O(2) model critical exponents|journal=Journal of High Energy Physics|year=2020|volume=2020|issue=6|page=142|doi=10.1007/JHEP06(2020)142|arxiv=1912.03324|bibcode=2020JHEP...06..142C|s2cid=208910721}}</ref> coming from high temperature expansion techniques, [[Monte Carlo method|Monte Carlo]] methods and the [[conformal bootstrap]].


== See also ==
== See also ==
Line 16: Line 17:


== External links ==
== External links ==
* [http://www.egglescliffe.org.uk/physics/supercond/supfluid/superfluids.html What is superfluidity?]
* [https://web.archive.org/web/20130927063921/http://www.egglescliffe.org.uk/physics/supercond/supfluid/superfluids.html What is superfluidity?]


{{states of matter}}
{{states of matter}}


[[Category:Threshold temperatures]]
[[Category:Threshold temperatures]]
[[Category:Superfluidity]]
[[Category:Liquid helium]]

Latest revision as of 02:00, 14 December 2024

The plot of the specific heat capacity versus temperature.

The lambda point is the temperature at which normal fluid helium (helium I) makes the transition to superfluid state (helium II). At pressure of 1 atmosphere, the transition occurs at approximately 2.17 K. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II triple point at 2.1768 K (−270.9732 °C) and 5.0418 kPa (0.049759 atm), which is the "saturated vapor pressure" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in a hermetic container).[1] The highest pressure at which He-I and He-II can coexist is the bcc−He-I−He-II triple point with a helium solid at 1.762 K (−271.388 °C), 29.725 atm (3,011.9 kPa).[2]

The point's name derives from the graph (pictured) that results from plotting the specific heat capacity as a function of temperature (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the Greek letter lambda . The specific heat capacity has a sharp peak as the temperature approaches the lambda point. The tip of the peak is so sharp that a critical exponent characterizing the divergence of the heat capacity can be measured precisely only in zero gravity, to provide a uniform density over a substantial volume of fluid. Hence, the heat capacity was measured within 2 nK below the transition in an experiment included in a Space Shuttle payload in 1992.[3]

Unsolved problem in physics:
Explain the discrepancy between the experimental and theoretical determinations of the heat capacity critical exponent α for the superfluid transition in helium-4.[4]

Although the heat capacity has a peak, it does not tend towards infinity (contrary to what the graph may suggest), but has finite limiting values when approaching the transition from above and below.[3] The behavior of the heat capacity near the peak is described by the formula where is the reduced temperature, is the Lambda point temperature, are constants (different above and below the transition temperature), and α is the critical exponent: .[3][5] Since this exponent is negative for the superfluid transition, specific heat remains finite.[6]

The quoted experimental value of α is in a significant disagreement[7][4] with the most precise theoretical determinations[8][9][10] coming from high temperature expansion techniques, Monte Carlo methods and the conformal bootstrap.

See also

[edit]

References

[edit]
  1. ^ Donnelly, Russell J.; Barenghi, Carlo F. (1998). "The Observed Properties of Liquid Helium at the Saturated Vapor Pressure". Journal of Physical and Chemical Reference Data. 27 (6): 1217–1274. Bibcode:1998JPCRD..27.1217D. doi:10.1063/1.556028.
  2. ^ Hoffer, J. K.; Gardner, W. R.; Waterfield, C. G.; Phillips, N. E. (April 1976). "Thermodynamic properties of 4He. II. The bcc phase and the P-T and VT phase diagrams below 2 K". Journal of Low Temperature Physics. 23 (1): 63–102. Bibcode:1976JLTP...23...63H. doi:10.1007/BF00117245. S2CID 120473493.
  3. ^ a b c Lipa, J.A.; Swanson, D. R.; Nissen, J. A.; Chui, T. C. P.; Israelsson, U. E. (1996). "Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point". Physical Review Letters. 76 (6): 944–7. Bibcode:1996PhRvL..76..944L. doi:10.1103/PhysRevLett.76.944. hdl:2060/19950007794. PMID 10061591. S2CID 29876364.
  4. ^ a b Rychkov, Slava (2020-01-31). "Conformal bootstrap and the λ-point specific heat experimental anomaly". Journal Club for Condensed Matter Physics. doi:10.36471/JCCM_January_2020_02.
  5. ^ Lipa, J. A.; Nissen, J. A.; Stricker, D. A.; Swanson, D. R.; Chui, T. C. P. (2003-11-14). "Specific heat of liquid helium in zero gravity very near the lambda point". Physical Review B. 68 (17): 174518. arXiv:cond-mat/0310163. Bibcode:2003PhRvB..68q4518L. doi:10.1103/PhysRevB.68.174518. S2CID 55646571.
  6. ^ For other phase transitions may be negative (e.g. for the liquid-vapor critical point which has Ising critical exponents). For those phase transitions specific heat does tend to infinity.
  7. ^ Vicari, Ettore (2008-03-21). "Critical phenomena and renormalization-group flow of multi-parameter Phi4 theories". Proceedings of the XXV International Symposium on Lattice Field Theory — PoS(LATTICE 2007). Vol. 42. Regensburg, Germany: Sissa Medialab. p. 023. doi:10.22323/1.042.0023.
  8. ^ Campostrini, Massimo; Hasenbusch, Martin; Pelissetto, Andrea; Vicari, Ettore (2006-10-06). "Theoretical estimates of the critical exponents of the superfluid transition in $^{4}\mathrm{He}$ by lattice methods". Physical Review B. 74 (14): 144506. arXiv:cond-mat/0605083. doi:10.1103/PhysRevB.74.144506. S2CID 118924734.
  9. ^ Hasenbusch, Martin (2019-12-26). "Monte Carlo study of an improved clock model in three dimensions". Physical Review B. 100 (22): 224517. arXiv:1910.05916. Bibcode:2019PhRvB.100v4517H. doi:10.1103/PhysRevB.100.224517. ISSN 2469-9950. S2CID 204509042.
  10. ^ Chester, Shai M.; Landry, Walter; Liu, Junyu; Poland, David; Simmons-Duffin, David; Su, Ning; Vichi, Alessandro (2020). "Carving out OPE space and precise O(2) model critical exponents". Journal of High Energy Physics. 2020 (6): 142. arXiv:1912.03324. Bibcode:2020JHEP...06..142C. doi:10.1007/JHEP06(2020)142. S2CID 208910721.
[edit]