Jump to content

Juerg Leuthold: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Awards and Honors: English style formatting
Tags: Mobile edit Mobile web edit
GreenC bot (talk | contribs)
Rescued 1 archive link. Wayback Medic 2.5 per WP:URLREQ#ieee.org pass 2
 
(40 intermediate revisions by 28 users not shown)
Line 1: Line 1:
{{Short description|Swiss physicist}}
{{Underlinked|date=September 2018}}
{{Infobox person
| name = Juerg Leuthold
|image = ETH-BIB-Leuthold, Jürg (1966-)-Portr 19581.jpg
|image_size =
|caption = Juerg Leuthold (2014)
| birth_name = Juerg Leuthold
| birth_date = {{birth date and age|1966|07|11}}
| birth_place = Zurich, Switzerland
| occupation = physicist
}}
'''Juerg Leuthold''' is a full professor at [[ETH Zurich]], [[Switzerland]].<ref>{{Cite web | url=http://www.ief.ee.ethz.ch/people/leuthold.html |title = Leuthold, Juerg, Prof. Dr}}</ref>


== Biography ==
'''Juerg Leuthold''' is a full Professor at [[ETH Zurich]], [[Switzerland]].<ref>{{Cite web | url=http://www.ief.ee.ethz.ch/people/leuthold.html |title = Leuthold, Juerg, Prof. Dr}}</ref>
Leuthold was born in 1966 in Switzerland. He received a Ph.D. degree in physics from [[ETH Zurich]] for work in the field of [[integrated optics]] and all-optical communications.


Leuthold was born in 1966 in Switzerland. He has a Ph.D. degree in physics from [[ETH Zurich]] for work in the field of [http://electron6.phys.utk.edu/optics421/modules/m8a/integrated_optics.htm integrated optics] and all-optical communications. From 1999 to 2004 he was affiliated with [https://de.wikipedia.org/wiki/Bell_Laboratories Bell Labs], Lucent Technologies in Holmdel, [[United States|USA]], where he performed device and system research with III/V semiconductor and silicon optical bench<ref>{{Cite journal|last=Gates|first=J.|last2=Muehlner|first2=D.|last3=Cappuzzo|first3=M.|last4=Fishteyn|first4=M.|last5=Gomez|first5=L.|last6=Henein|first6=G.|last7=Laskowski|first7=E.|last8=Ryazansky|first8=I.|last9=Shmulovich|first9=J.|date=May 1998|title=Hybrid integrated silicon optical bench planar lightguide circuits|journal=1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206)|pages=551–559|doi=10.1109/ECTC.1998.678749|isbn=0-7803-4526-6}}</ref> materials for applications in high-speed telecommunications. From 2004 to 2013 he was a full professor at [https://www.kit.edu/ Karlsruhe Institute of Technology], where he headed the Institute of Photonics and Quantum Electronics and the [[Helmholtz Association of German Research Centres|Helmholtz Institute]] of Microtechnology. Since March 2013 he has been a full professor at the ETH Zurich (Swiss Federal Institute of Technology), where he heads the [http://www.ief.ee.ethz.ch/ Institute of Electromagnetic Fields].
From 1999 to 2004 Leuthold was affiliated with [[Bell Labs]], Lucent Technologies in Holmdel, [[United States|USA]], where he performed device and system research with III/V [[semiconductor]] and silicon optical bench<ref>{{Cite book|last1=Gates|first1=J.|last2=Muehlner|first2=D.|last3=Cappuzzo|first3=M.|last4=Fishteyn|first4=M.|last5=Gomez|first5=L.|last6=Henein|first6=G.|last7=Laskowski|first7=E.|last8=Ryazansky|first8=I.|last9=Shmulovich|first9=J.|title=1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206) |chapter=Hybrid integrated silicon optical bench planar lightguide circuits |date=May 1998|pages=551–559|doi=10.1109/ECTC.1998.678749|isbn=0-7803-4526-6|s2cid=110382903}}</ref> materials for applications in high-speed telecommunications.


Leuthold is a fellow of the [[The Optical Society|Optical Society of America]] and of the [[Institute of Electrical and Electronics Engineers]]. When he was a professor at Karlsruhe, he was a member of the [[Helmholtz Association of German Research Centres|Helmholtz Association]] Think Tank and a member of the [[Heidelberg Academy of Sciences and Humanities|Heidelberg Academy of Science]]. He served on the board of directors of the [[The Optical Society|Optical Society of America]]. Leuthold has been and is serving the community as general chair and in many technical program committees.
From 2004 to 2013 Leuthold was a full professor at [[Karlsruhe Institute of Technology]], where he headed the Institute of Photonics and Quantum Electronics and the [[Helmholtz Association of German Research Centres|Helmholtz Institute]] of Microtechnology. Since March 2013 he has been a full professor at ETH Zurich, where he heads the Institute of Electromagnetic Fields.

== Affiliations ==
Leuthold is a fellow of the [[The Optical Society|Optical Society of America]] and of the [[Institute of Electrical and Electronics Engineers]]. When he was a professor at Karlsruhe, he was a member of the [[Helmholtz Association of German Research Centres|Helmholtz Association]] Think Tank and a member of the [[Heidelberg Academy of Sciences and Humanities|Heidelberg Academy of Science]]. He served on the board of directors of the Optical Society of America. Leuthold has been and is serving the community as general chair and in many technical program committees.


==Research Interests==
==Research Interests==
Leuthold interests are in the fields of photonics, terahertz and communications. His current activities are centered around"
Leuthold interests are in the fields of photonics, terahertz and communications. His current activities are centered around"


* High-speed optical communications and sensing
* High-speed [[optical communication]]s and sensing
* Microwave photonics and tetrahertz technologies
* Microwave [[photonics]] and terahertz technologies
* Plasmonics
* [[Plasmonics]]
* Integrated optics
* Integrated optics
* Atomic Scale Technologies (Memristive device research)
* Atomic Scale Technologies ([[Memristive neural network|Memristive]] device research)


; Research highlights include
=== Research ===
* Direct conversion of an [[Radio frequency|RF signal]] to an optical signal by means of plasmonic-antenna<ref>{{Cite journal|last1=Salamin|first1=Yannick|last2=Heni|first2=Wolfgang|last3=Haffner|first3=Christian|last4=Fedoryshyn|first4=Yuriy|last5=Hoessbacher|first5=Claudia|last6=Bonjour|first6=Romain|last7=Zahner|first7=Marco|last8=Hillerkuss|first8=David|last9=Leuchtmann|first9=Pascal|date=2015-12-09|title=Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna|journal=Nano Letters|volume=15|issue=12|pages=8342–8346|doi=10.1021/acs.nanolett.5b04025|pmid=26570995|issn=1530-6984|bibcode=2015NanoL..15.8342S|pmc=4710456}}</ref><ref>{{Cite journal|last1=Leuthold|first1=J.|last2=Dalton|first2=L. R.|last3=Elder|first3=D. L.|last4=Burla|first4=M.|last5=Watanabe|first5=T.|last6=Bonjour|first6=R.|last7=Haffner|first7=C.|last8=Fedoryshyn|first8=Y.|last9=Josten|first9=A.|date=December 2018|title=Microwave plasmonic mixer in a transparent fibre–wireless link|journal=Nature Photonics|volume=12|issue=12|pages=749–753|doi=10.1038/s41566-018-0281-6|pmid=30532800|pmc=6276987|issn=1749-4893|bibcode=2018NaPho..12..749S}}</ref>

* Direct conversion of an RF signal to an optical signal by means of plasmonic-antenna<ref>{{Cite journal|last=Salamin|first=Yannick|last2=Heni|first2=Wolfgang|last3=Haffner|first3=Christian|last4=Fedoryshyn|first4=Yuriy|last5=Hoessbacher|first5=Claudia|last6=Bonjour|first6=Romain|last7=Zahner|first7=Marco|last8=Hillerkuss|first8=David|last9=Leuchtmann|first9=Pascal|date=2015-12-09|title=Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna|journal=Nano Letters|volume=15|issue=12|pages=8342–8346|doi=10.1021/acs.nanolett.5b04025|pmid=26570995|issn=1530-6984|bibcode=2015NanoL..15.8342S|pmc=4710456}}</ref><ref>{{Cite journal|last=Leuthold|first=J.|last2=Dalton|first2=L. R.|last3=Elder|first3=D. L.|last4=Burla|first4=M.|last5=Watanabe|first5=T.|last6=Bonjour|first6=R.|last7=Haffner|first7=C.|last8=Fedoryshyn|first8=Y.|last9=Josten|first9=A.|date=December 2018|title=Microwave plasmonic mixer in a transparent fibre–wireless link|journal=Nature Photonics|volume=12|issue=12|pages=749–753|doi=10.1038/s41566-018-0281-6|pmid=30532800|pmc=6276987|issn=1749-4893|bibcode=2018NaPho..12..749S}}</ref>
*Plasmonic detection with 100&nbsp;GHz and beyond bandwidth and high responsivity<ref>{{Cite journal|last1=Ma|first1=Ping|last2=Salamin|first2=Yannick|last3=Baeuerle|first3=Benedikt|last4=Josten|first4=Arne|last5=Heni|first5=Wolfgang|last6=Emboras|first6=Alexandros|last7=Leuthold|first7=Juerg|date=2019-01-16|title=Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size|journal=ACS Photonics|volume=6|issue=1|pages=154–161|doi=10.1021/acsphotonics.8b01234|doi-access=free|hdl=20.500.11850/311108|hdl-access=free}}</ref><ref>{{Cite journal|last1=Salamin|first1=Yannick|last2=Ma|first2=Ping|last3=Baeuerle|first3=Benedikt|last4=Emboras|first4=Alexandros|last5=Fedoryshyn|first5=Yuriy|last6=Heni|first6=Wolfgang|last7=Cheng|first7=Bojun|last8=Josten|first8=Arne|last9=Leuthold|first9=Juerg|date=2018-08-15|title=100 GHz Plasmonic Photodetector|journal=ACS Photonics|volume=5|issue=8|pages=3291–3297|doi=10.1021/acsphotonics.8b00525|doi-access=free|hdl=20.500.11850/283336|hdl-access=free}}</ref><ref>{{Cite journal|last1=Dorodnyy|first1=A.|last2=Salamin|first2=Y.|last3=Ma|first3=P.|last4=Plestina|first4=J. Vukajlovic|last5=Lassaline|first5=N.|last6=Mikulik|first6=D.|last7=Romero-Gomez|first7=P.|last8=Morral|first8=A. Fontcuberta i|last9=Leuthold|first9=J.|date=November 2018|title=Plasmonic Photodetectors|journal=IEEE Journal of Selected Topics in Quantum Electronics|volume=24|issue=6|pages=2840339|doi=10.1109/JSTQE.2018.2840339|issn=1077-260X|bibcode=2018IJSTQ..2440339D|s2cid=49540973|url=http://infoscience.epfl.ch/record/256668/files/PlasmonicPhotodetectors.pdf|doi-access=free}}</ref>
*Plasmonic detection with 100&nbsp;GHz and beyond bandwidth and high responsivity<ref>{{Cite journal|last=Ma|first=Ping|last2=Salamin|first2=Yannick|last3=Baeuerle|first3=Benedikt|last4=Josten|first4=Arne|last5=Heni|first5=Wolfgang|last6=Emboras|first6=Alexandros|last7=Leuthold|first7=Juerg|date=2019-01-16|title=Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size|journal=ACS Photonics|volume=6|issue=1|pages=154–161|doi=10.1021/acsphotonics.8b01234|doi-access=free}}</ref><ref>{{Cite journal|last=Salamin|first=Yannick|last2=Ma|first2=Ping|last3=Baeuerle|first3=Benedikt|last4=Emboras|first4=Alexandros|last5=Fedoryshyn|first5=Yuriy|last6=Heni|first6=Wolfgang|last7=Cheng|first7=Bojun|last8=Josten|first8=Arne|last9=Leuthold|first9=Juerg|date=2018-08-15|title=100 GHz Plasmonic Photodetector|journal=ACS Photonics|volume=5|issue=8|pages=3291–3297|doi=10.1021/acsphotonics.8b00525|doi-access=free}}</ref><ref>{{Cite journal|last=Dorodnyy|first=A.|last2=Salamin|first2=Y.|last3=Ma|first3=P.|last4=Plestina|first4=J. Vukajlovic|last5=Lassaline|first5=N.|last6=Mikulik|first6=D.|last7=Romero-Gomez|first7=P.|last8=Morral|first8=A. Fontcuberta i|last9=Leuthold|first9=J.|date=November 2018|title=Plasmonic Photodetectors|journal=IEEE Journal of Selected Topics in Quantum Electronics|volume=24|issue=6|pages=2840339|doi=10.1109/JSTQE.2018.2840339|issn=1077-260X|bibcode=2018IJSTQ..2440339D|url=http://infoscience.epfl.ch/record/256668/files/PlasmonicPhotodetectors.pdf}}</ref>
*The demonstration of the smallest and most compact plasmonic [[Modulation|modulators]]<ref>{{Cite journal |doi = 10.1126/science.aan5953|pmid = 29097545|title = High-speed plasmonic modulator in a single metal layer|journal = Science|volume = 358|issue = 6363|pages = 630–632|year = 2017|last1 = Ayata|first1 = Masafumi|last2 = Fedoryshyn|first2 = Yuriy|last3 = Heni|first3 = Wolfgang|last4 = Baeuerle|first4 = Benedikt|last5 = Josten|first5 = Arne|last6 = Zahner|first6 = Marco|last7 = Koch|first7 = Ueli|last8 = Salamin|first8 = Yannick|last9 = Hoessbacher|first9 = Claudia|last10 = Haffner|first10 = Christian|last11 = Elder|first11 = Delwin L.|last12 = Dalton|first12 = Larry R.|last13 = Leuthold|first13 = Juerg|bibcode = 2017Sci...358..630A|doi-access = free|hdl = 20.500.11850/222814|hdl-access = free}}</ref><ref>{{cite journal | doi = 10.1364/OE.25.001762 | pmid=29519029 | volume=25 | issue=3 | pages=1762–1768 | title=Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ | year=2017 | journal=Optics Express | last1 = Hoessbacher | first1 = C. | last2 = Josten | first2 = A. | last3 = Baeuerle | first3 = B. | last4 = Fedoryshyn | first4 = Y. | last5 = Hettrich | first5 = H. | last6 = Salamin | first6 = Y. | last7 = Heni | first7 = W. | last8 = Haffner | first8 = C. | last9 = Kaiser | first9 = C. | last10 = Schmid | first10 = R. | last11 = Elder | first11 = D. L. | last12 = Hillerkuss | first12 = D. | last13 = Möller | first13 = M. | last14 = Dalton | first14 = L. R. | last15 = Leuthold | first15 = J.| bibcode=2017OExpr..25.1762H | doi-access = free }}</ref><ref>{{cite journal | doi=10.1038/nphoton.2015.127 | title=All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale | year=2015 | last1=Haffner | first1=C. | last2=Heni | first2=W. | last3=Fedoryshyn | first3=Y. | last4=Niegemann | first4=J. | last5=Melikyan | first5=A. | last6=Elder | first6=D. L. | last7=Baeuerle | first7=B. | last8=Salamin | first8=Y. | last9=Josten | first9=A. | last10=Koch | first10=U. | last11=Hoessbacher | first11=C. | last12=Ducry | first12=F. | last13=Juchli | first13=L. | last14=Emboras | first14=A. | last15=Hillerkuss | first15=D. | last16=Kohl | first16=M. | last17=Dalton | first17=L. R. | last18=Hafner | first18=C. | last19=Leuthold | first19=J. | journal=Nature Photonics | volume=9 | issue=8 | pages=525–528 | bibcode=2015NaPho...9..525H | s2cid=124796059 }}</ref>
*The demonstration of the smallest and most compact plasmonic modulators<ref>{{Cite journal |doi = 10.1126/science.aan5953|pmid = 29097545|title = High-speed plasmonic modulator in a single metal layer|journal = Science|volume = 358|issue = 6363|pages = 630–632|year = 2017|last1 = Ayata|first1 = Masafumi|last2 = Fedoryshyn|first2 = Yuriy|last3 = Heni|first3 = Wolfgang|last4 = Baeuerle|first4 = Benedikt|last5 = Josten|first5 = Arne|last6 = Zahner|first6 = Marco|last7 = Koch|first7 = Ueli|last8 = Salamin|first8 = Yannick|last9 = Hoessbacher|first9 = Claudia|last10 = Haffner|first10 = Christian|last11 = Elder|first11 = Delwin L.|last12 = Dalton|first12 = Larry R.|last13 = Leuthold|first13 = Juerg|bibcode = 2017Sci...358..630A|doi-access = free}}</ref><ref>{{cite journal | doi = 10.1364/OE.25.001762 | pmid=29519029 | volume=25 | issue=3 | pages=1762–1768 | title=Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ | year=2017 | journal=Optics Express | last1 = Hoessbacher | first1 = C. | last2 = Josten | first2 = A. | last3 = Baeuerle | first3 = B. | last4 = Fedoryshyn | first4 = Y. | last5 = Hettrich | first5 = H. | last6 = Salamin | first6 = Y. | last7 = Heni | first7 = W. | last8 = Haffner | first8 = C. | last9 = Kaiser | first9 = C. | last10 = Schmid | first10 = R. | last11 = Elder | first11 = D. L. | last12 = Hillerkuss | first12 = D. | last13 = Möller | first13 = M. | last14 = Dalton | first14 = L. R. | last15 = Leuthold | first15 = J.| bibcode=2017OExpr..25.1762H }}</ref><ref>doi:10.1038/nphoton.2015.127</ref>
* Demonstration of single atom plasmonic switches (i.e. switches, where relocating a single atom performs [[optical switching]] operation in the order o 10&nbsp;dB) <ref>{{cite journal|doi=10.1021/acs.nanolett.5b04537 | pmid=26670551 | volume=16 | issue=1 | title=Atomic Scale Plasmonic Switch | year=2015 | journal=Nano Letters | pages=709–714 | last1 = Emboras | first1 = Alexandros | last2 = Niegemann | first2 = Jens | last3 = Ma | first3 = Ping | last4 = Haffner | first4 = Christian | last5 = Pedersen | first5 = Andreas | last6 = Luisier | first6 = Mathieu | last7 = Hafner | first7 = Christian | last8 = Schimmel | first8 = Thomas | last9 = Leuthold | first9 = Juerg| arxiv = 1508.07748 | s2cid=118518048 }}</ref>
* Record Encoding of 26&nbsp;Tbit/s of OFDM data onto a single laser<ref>{{Cite journal |doi = 10.1038/nphoton.2011.74|title = 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing|journal = Nature Photonics|volume = 5|issue = 6|pages = 364–371|year = 2011|last1 = Hillerkuss|first1 = D.|last2 = Schmogrow|first2 = R.|last3 = Schellinger|first3 = T.|last4 = Jordan|first4 = M.|last5 = Winter|first5 = M.|last6 = Huber|first6 = G.|last7 = Vallaitis|first7 = T.|last8 = Bonk|first8 = R.|last9 = Kleinow|first9 = P.|last10 = Frey|first10 = F.|last11 = Roeger|first11 = M.|last12 = Koenig|first12 = S.|last13 = Ludwig|first13 = A.|last14 = Marculescu|first14 = A.|last15 = Li|first15 = J.|last16 = Hoh|first16 = M.|last17 = Dreschmann|first17 = M.|last18 = Meyer|first18 = J.|last19 = Ben Ezra|first19 = S.|last20 = Narkiss|first20 = N.|last21 = Nebendahl|first21 = B.|last22 = Parmigiani|first22 = F.|last23 = Petropoulos|first23 = P.|last24 = Resan|first24 = B.|last25 = Oehler|first25 = A.|last26 = Weingarten|first26 = K.|last27 = Ellermeyer|first27 = T.|last28 = Lutz|first28 = J.|last29 = Moeller|first29 = M.|last30 = Huebner|first30 = M.| bibcode=2011NaPho...5..364H |display-authors = 29}}</ref> and Nyquist encoding of 30&nbsp;Tbit/s of data onto a single laser<ref>{{Cite journal |doi = 10.1364/JOCN.4.000715|title = Single-Laser 325 Tbit/S Nyquist WDM Transmission|journal = Journal of Optical Communications and Networking|volume = 4|issue = 10|pages = 715–723|year = 2012|last1 = Hillerkuss|first1 = David|last2 = Schmogrow|first2 = Rene|last3 = Meyer|first3 = Matthias|last4 = Wolf|first4 = Stefan|last5 = Jordan|first5 = Meinert|last6 = Kleinow|first6 = Philipp|last7 = Lindenmann|first7 = Nicole|last8 = Schindler|first8 = Philipp C.|last9 = Melikyan|first9 = Argishti|last10 = Yang|first10 = Xin|last11 = Ben-Ezra|first11 = Shalva|last12 = Nebendahl|first12 = Bend|last13 = Dreschmann|first13 = Michael|last14 = Meyer|first14 = Joachim|last15 = Parmigiani|first15 = Francesca|last16 = Petropoulos|first16 = Periklis|last17 = Resan|first17 = Bojan|last18 = Oehler|first18 = Andreas|last19 = Weingarten|first19 = Kurt|last20 = Altenhain|first20 = Lars|last21 = Ellermeyer|first21 = Tobias|last22 = Moeller|first22 = Michael|last23 = Huebner|first23 = Michael|last24 = Becker|first24 = Juergen|last25 = Koos|first25 = Christian|last26 = Freude|first26 = Wolfgang|last27 = Leuthold|first27 = Juerg|bibcode = 2012arXiv1203.2516H|arxiv = 1203.2516|s2cid = 116046996}}</ref>
* Demonstration of single atom plasmonic switches (i.e. switches, where reloacting a single atom performs optical switching operation in the order o 10&nbsp;dB) <ref>{{cite journal|doi=10.1021/acs.nanolett.5b04537 | pmid=26670551 | volume=16 | issue=1 | title=Atomic Scale Plasmonic Switch | year=2015 | journal=Nano Letters | pages=709–714 | last1 = Emboras | first1 = Alexandros | last2 = Niegemann | first2 = Jens | last3 = Ma | first3 = Ping | last4 = Haffner | first4 = Christian | last5 = Pedersen | first5 = Andreas | last6 = Luisier | first6 = Mathieu | last7 = Hafner | first7 = Christian | last8 = Schimmel | first8 = Thomas | last9 = Leuthold | first9 = Juerg| arxiv = 1508.07748 }}</ref>
* Record nonlinear conversion in a short silicon [[Slot-waveguide|slot waveguide]]<ref>{{Cite journal |doi = 10.1038/nphoton.2009.25|title = All-optical high-speed signal processing with silicon–organic hybrid slot waveguides|journal = Nature Photonics|volume = 3|issue = 4|pages = 216–219|year = 2009|last1 = Koos|first1 = C.|last2 = Vorreau|first2 = P.|last3 = Vallaitis|first3 = T.|last4 = Dumon|first4 = P.|last5 = Bogaerts|first5 = W.|last6 = Baets|first6 = R.|last7 = Esembeson|first7 = B.|last8 = Biaggio|first8 = I.|last9 = Michinobu|first9 = T.|last10 = Diederich|first10 = F.|last11 = Freude|first11 = W.|last12 = Leuthold|first12 = J.|bibcode = 2009NaPho...3..216K}}</ref>
* Record Encoding of 26 Tbit/s of OFDM data onto a single laser<ref>{{Cite journal |doi = 10.1038/nphoton.2011.74|title = 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing|journal = Nature Photonics|volume = 5|issue = 6|pages = 364–371|year = 2011|last1 = Hillerkuss|first1 = D.|last2 = Schmogrow|first2 = R.|last3 = Schellinger|first3 = T.|last4 = Jordan|first4 = M.|last5 = Winter|first5 = M.|last6 = Huber|first6 = G.|last7 = Vallaitis|first7 = T.|last8 = Bonk|first8 = R.|last9 = Kleinow|first9 = P.|last10 = Frey|first10 = F.|last11 = Roeger|first11 = M.|last12 = Koenig|first12 = S.|last13 = Ludwig|first13 = A.|last14 = Marculescu|first14 = A.|last15 = Li|first15 = J.|last16 = Hoh|first16 = M.|last17 = Dreschmann|first17 = M.|last18 = Meyer|first18 = J.|last19 = Ben Ezra|first19 = S.|last20 = Narkiss|first20 = N.|last21 = Nebendahl|first21 = B.|last22 = Parmigiani|first22 = F.|last23 = Petropoulos|first23 = P.|last24 = Resan|first24 = B.|last25 = Oehler|first25 = A.|last26 = Weingarten|first26 = K.|last27 = Ellermeyer|first27 = T.|last28 = Lutz|first28 = J.|last29 = Moeller|first29 = M.|last30 = Huebner|first30 = M.|displayauthors = 29}}</ref> and Nyquist encoding of 30 Tbit/s of data onto a single laser<ref>{{Cite journal |doi = 10.1364/JOCN.4.000715|title = Single-Laser 325 Tbit/S Nyquist WDM Transmission|journal = Journal of Optical Communications and Networking|volume = 4|issue = 10|pages = 715–723|year = 2012|last1 = Hillerkuss|first1 = David|last2 = Schmogrow|first2 = Rene|last3 = Meyer|first3 = Matthias|last4 = Wolf|first4 = Stefan|last5 = Jordan|first5 = Meinert|last6 = Kleinow|first6 = Philipp|last7 = Lindenmann|first7 = Nicole|last8 = Schindler|first8 = Philipp C.|last9 = Melikyan|first9 = Argishti|last10 = Yang|first10 = Xin|last11 = Ben-Ezra|first11 = Shalva|last12 = Nebendahl|first12 = Bend|last13 = Dreschmann|first13 = Michael|last14 = Meyer|first14 = Joachim|last15 = Parmigiani|first15 = Francesca|last16 = Petropoulos|first16 = Periklis|last17 = Resan|first17 = Bojan|last18 = Oehler|first18 = Andreas|last19 = Weingarten|first19 = Kurt|last20 = Altenhain|first20 = Lars|last21 = Ellermeyer|first21 = Tobias|last22 = Moeller|first22 = Michael|last23 = Huebner|first23 = Michael|last24 = Becker|first24 = Juergen|last25 = Koos|first25 = Christian|last26 = Freude|first26 = Wolfgang|last27 = Leuthold|first27 = Juerg|bibcode = 2012arXiv1203.2516H|arxiv = 1203.2516}}</ref>
* Record nonlinear conversion in a short silicon slot waveguide<ref>{{Cite journal |doi = 10.1038/nphoton.2009.25|title = All-optical high-speed signal processing with silicon–organic hybrid slot waveguides|journal = Nature Photonics|volume = 3|issue = 4|pages = 216–219|year = 2009|last1 = Koos|first1 = C.|last2 = Vorreau|first2 = P.|last3 = Vallaitis|first3 = T.|last4 = Dumon|first4 = P.|last5 = Bogaerts|first5 = W.|last6 = Baets|first6 = R.|last7 = Esembeson|first7 = B.|last8 = Biaggio|first8 = I.|last9 = Michinobu|first9 = T.|last10 = Diederich|first10 = F.|last11 = Freude|first11 = W.|last12 = Leuthold|first12 = J.|bibcode = 2009NaPho...3..216K}}</ref>
* First 100&nbsp;Gbit/s single carrier wireless transmission demonstration<ref>{{Cite journal | doi=10.1038/nphoton.2013.275| title=Wireless sub-THZ communication system with high data rate| journal=Nature Photonics| volume=7| issue=12| pages=977–981| year=2013| last1=Koenig| first1=S.| last2=Lopez-Diaz| first2=D.| last3=Antes| first3=J.| last4=Boes| first4=F.| last5=Henneberger| first5=R.| last6=Leuther| first6=A.| last7=Tessmann| first7=A.| last8=Schmogrow| first8=R.| last9=Hillerkuss| first9=D.| last10=Palmer| first10=R.| last11=Zwick| first11=T.| last12=Koos| first12=C.| last13=Freude| first13=W.| last14=Ambacher| first14=O.| last15=Leuthold| first15=J.| last16=Kallfass| first16=I.| bibcode=2013NaPho...7..977K| s2cid=36536694}}</ref>
* Development of [[DPSK]] Transmission system<ref>{{Cite web | url=https://www.osapublishing.org/abstract.cfm?uri=ofc-2002-FC2 |title = 2.5 Tb/S (64x42.7 Gb/S) Transmission over 40x100 km NZDSF Using RZ-DPSK Format and All-Raman-Amplified Spans|pages = FC2|date = 2002-03-17}}</ref>
* First 100 Gbit/s single carrier wireless transmission demonstration<ref>{{Cite journal | doi=10.1038/nphoton.2013.275| title=Wireless sub-THZ communication system with high data rate| journal=Nature Photonics| volume=7| issue=12| pages=977–981| year=2013| last1=Koenig| first1=S.| last2=Lopez-Diaz| first2=D.| last3=Antes| first3=J.| last4=Boes| first4=F.| last5=Henneberger| first5=R.| last6=Leuther| first6=A.| last7=Tessmann| first7=A.| last8=Schmogrow| first8=R.| last9=Hillerkuss| first9=D.| last10=Palmer| first10=R.| last11=Zwick| first11=T.| last12=Koos| first12=C.| last13=Freude| first13=W.| last14=Ambacher| first14=O.| last15=Leuthold| first15=J.| last16=Kallfass| first16=I.| bibcode=2013NaPho...7..977K}}</ref>
* Record all-optical signal processing: Most compact and fast 100&nbsp;Gbit/s all-optical wavelength converter,<ref>{{Cite web | url=https://www.osapublishing.org/abstract.cfm?uri=OAA-2000-OWB3 | title=100 Gbit/S All-Optical Wavelength Conversion with an Integrated SOA Delayed-Interference Configuration| pages=OWB3| date=2000-07-09}}</ref> and demonstration of 1'000'000&nbsp;km transmission <ref>{{Cite journal |doi = 10.1049/el:20020595|title = 40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km|journal = Electronics Letters|volume = 38|issue = 16|pages = 890|year = 2002|last1 = Leuthold|first1 = J.|last2 = Raybon|first2 = G.|last3 = Su|first3 = Y.|last4 = Essiambre|first4 = R.|last5 = Cabot|first5 = S.|last6 = Jaques|first6 = J.|last7 = Kauer|first7 = M.| bibcode=2002ElL....38..890L }}</ref>
* Development of DPSK Transmission system<ref>{{Cite document | url=https://www.osapublishing.org/abstract.cfm?uri=ofc-2002-FC2 |title = 2.5 Tb/S (64x42.7 Gb/S) Transmission over 40x100 km NZDSF Using RZ-DPSK Format and All-Raman-Amplified Spans|pages = FC2|date = 2002-03-17}}</ref>
* Record all-optical signal processing: Most compact and fast 100 Gbit/s all-optical wavelength converter,<ref>{{Cite document | url=https://www.osapublishing.org/abstract.cfm?uri=OAA-2000-OWB3 | title=100 Gbit/S All-Optical Wavelength Conversion with an Integrated SOA Delayed-Interference Configuration| pages=OWB3| date=2000-07-09}}</ref> and demonstration of 1'000'000&nbsp;km transmission <ref>{{Cite journal |doi = 10.1049/el:20020595|title = 40 Gbit∕s transmission and cascaded all-optical wavelength conversion over 1 000 000 km|journal = Electronics Letters|volume = 38|issue = 16|pages = 890|year = 2002|last1 = Leuthold|first1 = J.|last2 = Raybon|first2 = G.|last3 = Su|first3 = Y.|last4 = Essiambre|first4 = R.|last5 = Cabot|first5 = S.|last6 = Jaques|first6 = J.|last7 = Kauer|first7 = M.}}</ref>
* Theory and demonstration of "most perfect" [[Semiconductor Optical Amplifier|semiconductor-optical amplifier]] (SOA) based all-optical signal wavelength conversion scheme<ref>{{Cite journal | url=https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-22-1-186 | title=All-Optical Wavelength Conversion Using aPulse Reformatting Optical Filter| journal=Journal of Lightwave Technology| volume=22| issue=1| pages=186| date=January 2004| last1=Giles| first1=C. Randy| last2=Ryf| first2=Roland| last3=Jaques| first3=James J.| last4=Cabot| first4=Steven| last5=Marom| first5=Dan M.| last6=Leuthold| first6=Juerg| doi=10.1109/JLT.2003.822158| bibcode=2004JLwT...22..186L| s2cid=46302586}}</ref>
* Theory and demonstration of "most perfect" semiconductor-optical amplifier (SOA) based all-optical signal wavelength conversion scheme<ref>{{Cite journal | url=https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-22-1-186 | title=All-Optical Wavelength Conversion Using aPulse Reformatting Optical Filter| journal=Journal of Lightwave Technology| volume=22| issue=1| pages=186| date=January 2004| last1=Giles| first1=C. Randy| last2=Ryf| first2=Roland| last3=Jaques| first3=James J.| last4=Cabot| first4=Steven| last5=Marom| first5=Dan M.| last6=Leuthold| first6=Juerg| doi=10.1109/JLT.2003.822158| bibcode=2004JLwT...22..186L}}</ref>
* Contributions to the development of Multimode-Interference (MMI) Couplers: Introduction of higher-order mode converters,<ref>{{Cite journal | url=https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-16-7-1228 |title = Multimode Interference Couplers for the Conversion and Combining of Zero- and First-Order Modes|journal = Journal of Lightwave Technology|volume = 16|issue = 7|pages = 1228|date = July 1998|last1 = Melchior|first1 = Hans|last2 = Besse|first2 = Pierre A.|last3 = Gamper|first3 = Emil|last4 = Eckner|first4 = Juerg|last5 = Leuthold|first5 = Juerg|doi = 10.1109/50.701401|bibcode = 1998JLwT...16.1228L}}</ref> spatial mode filters realized by MMIs,<ref>{{Cite journal |doi = 10.1364/OL.21.000836|pmid = 19876175|title = Spatial mode filters realized with multimode interference couplers|journal = Optics Letters|volume = 21|issue = 11|pages = 836–8|year = 1996|last1 = Leuthold|first1 = J.|last2 = Hess|first2 = R.|last3 = Eckner|first3 = J.|last4 = Besse|first4 = P. A.|last5 = Melchior|first5 = H.|bibcode = 1996OptL...21..836L}}</ref> or MMI couplers with tunable splitting ratios<ref>{{Cite journal |doi = 10.1109/50.923483|title = Multimode interference couplers with tunable power splitting ratios|journal = Journal of Lightwave Technology|volume = 19|issue = 5|pages = 700–707|year = 2001|last1 = Leuthold|first1 = J.|last2 = Joyner|first2 = C.W.|bibcode = 2001JLwT...19..700L}}</ref>
* Contributions to the development of Multimode-Interference (MMI) Couplers: Introduction of higher-order mode converters,<ref>{{Cite journal | url=https://www.osapublishing.org/jlt/abstract.cfm?uri=JLT-16-7-1228 |title = Multimode Interference Couplers for the Conversion and Combining of Zero- and First-Order Modes|journal = Journal of Lightwave Technology|volume = 16|issue = 7|pages = 1228|date = July 1998|last1 = Melchior|first1 = Hans|last2 = Besse|first2 = Pierre A.|last3 = Gamper|first3 = Emil|last4 = Eckner|first4 = Juerg|last5 = Leuthold|first5 = Juerg|doi = 10.1109/50.701401|bibcode = 1998JLwT...16.1228L}}</ref> spatial mode filters realized by MMIs,<ref>{{Cite journal |doi = 10.1364/OL.21.000836|pmid = 19876175|title = Spatial mode filters realized with multimode interference couplers|journal = Optics Letters|volume = 21|issue = 11|pages = 836–8|year = 1996|last1 = Leuthold|first1 = J.|last2 = Hess|first2 = R.|last3 = Eckner|first3 = J.|last4 = Besse|first4 = P. A.|last5 = Melchior|first5 = H.|bibcode = 1996OptL...21..836L}}</ref> or MMI couplers with tunable splitting ratios<ref>{{Cite journal |doi = 10.1109/50.923483|title = Multimode interference couplers with tunable power splitting ratios|journal = Journal of Lightwave Technology|volume = 19|issue = 5|pages = 700–707|year = 2001|last1 = Leuthold|first1 = J.|last2 = Joyner|first2 = C.W.|bibcode = 2001JLwT...19..700L}}</ref>


==Awards and honors==
==Publications==
* 2018 Doron Prize

* 2015 ERC Advanced Research Grant
Link to a [https://scholar.google.ch/citations?user=-mnHouQAAAAJ List of Publications]
* 2013 Elevated to the rank of a Fellow of the [[Institute of Electrical and Electronics Engineers]]<ref>{{Cite web|url=https://www.ieee.org/documents/fellows_class_2013.pdf|archive-url=https://web.archive.org/web/20121224013123/http://www.ieee.org/documents/fellows_class_2013.pdf|url-status=dead|archive-date=December 24, 2012|title=2013 elevated fellow|website=IEEE Fellows Directory}}</ref> ''for contributions to high-speed optical communications''

* 2011 Hector Fellow Research Price
==Awards and Honors==
* 2010 Member of the [[Heidelberg Academy of Sciences and Humanities|Heidelberg Academy of Sciences]]
* 2018 [https://doron-prize.ch/de/preistraeger/ Doron Prize]
* 2009 {{ill|Landesforschungspreis Baden-Württemberg|de}} for achievements in silicon [[nanotechnology]]. This is the highest funded research prize of a German state and entitles to an extra research fund worth €100,000.
* 2015 [https://cordis.europa.eu/project/rcn/198483_en.html ERC Advanced Research Grant]
* 2009 Elevation to the rank of Fellow of the Optical Society (OSA)
* 2013 Elevated to the rank of a [[Fellow of the Institute of Electrical and Electronics Engineers]]<ref>{{Cite web|url=https://www.ieee.org/documents/fellows_class_2013.pdf|title=2013 elevated fellow|website=IEEE Fellows Directory}}</ref> ''for contributions to high-speed optical communications''
* 2011 [https://www.hector-fellow-academy.de/hector-fellows/profile/juerg-leuthold.html Hector Fellow] Research Price
* 2010 [http://www.haw.uni-heidelberg.de/akademie/member.en.html?id=886 Member of the Heidelberg Academy of Sciences]
* 2009 Award of the [https://de.wikipedia.org/wiki/Landesforschungspreis_Baden-W%C3%BCrttemberg „Landesforschungspreis“ of the state of Baden-Württemberg] for achievements in silicon nanotechnology. This is the highest funded research prize of a German state and entitles to an extra research fund worth €100,000.
* 2009 Elevation to the rank of [https://www.osa.org/en-us/awards_and_grants/fellow_members/recent_fellows/2009_fellows/ Fellow of the Optical Society (OSA)]
* 2007 Election to "Top five Innovators in the field of Optics in Germany of the year 2007" by the German VDI
* 2007 Election to "Top five Innovators in the field of Optics in Germany of the year 2007" by the German VDI
* 2002 Central Bell Labs Teamwork Awards" for the development of the&nbsp; "RZ-DPSK System"
* 2002 Central Bell Labs Teamwork Awards" for the development of the&nbsp; "RZ-DPSK System"
* 1999 Award of the "1999 Lucent President's Award for Team Excellence" (In recognition of the first fully integrated 100 Gbit/s InP optic chip for data encryption)
* 1999 Award of the "1999 Lucent President's Award for Team Excellence" (In recognition of the first fully integrated 100&nbsp;Gbit/s InP optic chip for [[data encryption]])

== External links ==

* [http://electron6.phys.utk.edu/optics421/modules/m8a/integrated_optics.htm integrated optics]
* [https://www.kit.edu/ Karlsruhe Institute of Technology],
* [https://scholar.google.ch/citations?user=-mnHouQAAAAJ List of Publications]
* [http://www.ief.ee.ethz.ch/ Institute of Electromagnetic Fields].


== References ==
== References ==
{{Reflist}}
{{Reflist}}

{{Authority control}}


{{DEFAULTSORT:Leuthold, Juerg}}
{{DEFAULTSORT:Leuthold, Juerg}}
[[Category:ETH Zurich faculty]]
[[Category:Academic staff of ETH Zurich]]
[[Category:Fellow Members of the IEEE]]
[[Category:Fellows of the IEEE]]
[[Category:Fellows of the Optical Society]]
[[Category:Fellows of Optica (society)]]
[[Category:1966 births]]
[[Category:Living people]]
[[Category:Living people]]
[[Category:Year of birth missing (living people)]]
[[Category:Optical engineers]]
[[Category:20th-century Swiss physicists]]
[[Category:21st-century Swiss physicists]]

Latest revision as of 17:21, 4 September 2024

Juerg Leuthold
Juerg Leuthold (2014)
Born
Juerg Leuthold

(1966-07-11) July 11, 1966 (age 58)
Zurich, Switzerland
Occupationphysicist

Juerg Leuthold is a full professor at ETH Zurich, Switzerland.[1]

Biography

[edit]

Leuthold was born in 1966 in Switzerland. He received a Ph.D. degree in physics from ETH Zurich for work in the field of integrated optics and all-optical communications.

From 1999 to 2004 Leuthold was affiliated with Bell Labs, Lucent Technologies in Holmdel, USA, where he performed device and system research with III/V semiconductor and silicon optical bench[2] materials for applications in high-speed telecommunications.

From 2004 to 2013 Leuthold was a full professor at Karlsruhe Institute of Technology, where he headed the Institute of Photonics and Quantum Electronics and the Helmholtz Institute of Microtechnology. Since March 2013 he has been a full professor at ETH Zurich, where he heads the Institute of Electromagnetic Fields.

Affiliations

[edit]

Leuthold is a fellow of the Optical Society of America and of the Institute of Electrical and Electronics Engineers. When he was a professor at Karlsruhe, he was a member of the Helmholtz Association Think Tank and a member of the Heidelberg Academy of Science. He served on the board of directors of the Optical Society of America. Leuthold has been and is serving the community as general chair and in many technical program committees.

Research Interests

[edit]

Leuthold interests are in the fields of photonics, terahertz and communications. His current activities are centered around"

Research

[edit]
  • Direct conversion of an RF signal to an optical signal by means of plasmonic-antenna[3][4]
  • Plasmonic detection with 100 GHz and beyond bandwidth and high responsivity[5][6][7]
  • The demonstration of the smallest and most compact plasmonic modulators[8][9][10]
  • Demonstration of single atom plasmonic switches (i.e. switches, where relocating a single atom performs optical switching operation in the order o 10 dB) [11]
  • Record Encoding of 26 Tbit/s of OFDM data onto a single laser[12] and Nyquist encoding of 30 Tbit/s of data onto a single laser[13]
  • Record nonlinear conversion in a short silicon slot waveguide[14]
  • First 100 Gbit/s single carrier wireless transmission demonstration[15]
  • Development of DPSK Transmission system[16]
  • Record all-optical signal processing: Most compact and fast 100 Gbit/s all-optical wavelength converter,[17] and demonstration of 1'000'000 km transmission [18]
  • Theory and demonstration of "most perfect" semiconductor-optical amplifier (SOA) based all-optical signal wavelength conversion scheme[19]
  • Contributions to the development of Multimode-Interference (MMI) Couplers: Introduction of higher-order mode converters,[20] spatial mode filters realized by MMIs,[21] or MMI couplers with tunable splitting ratios[22]

Awards and honors

[edit]
  • 2018 Doron Prize
  • 2015 ERC Advanced Research Grant
  • 2013 Elevated to the rank of a Fellow of the Institute of Electrical and Electronics Engineers[23] for contributions to high-speed optical communications
  • 2011 Hector Fellow Research Price
  • 2010 Member of the Heidelberg Academy of Sciences
  • 2009 Landesforschungspreis Baden-Württemberg [de] for achievements in silicon nanotechnology. This is the highest funded research prize of a German state and entitles to an extra research fund worth €100,000.
  • 2009 Elevation to the rank of Fellow of the Optical Society (OSA)
  • 2007 Election to "Top five Innovators in the field of Optics in Germany of the year 2007" by the German VDI
  • 2002 Central Bell Labs Teamwork Awards" for the development of the  "RZ-DPSK System"
  • 1999 Award of the "1999 Lucent President's Award for Team Excellence" (In recognition of the first fully integrated 100 Gbit/s InP optic chip for data encryption)
[edit]

References

[edit]
  1. ^ "Leuthold, Juerg, Prof. Dr".
  2. ^ Gates, J.; Muehlner, D.; Cappuzzo, M.; Fishteyn, M.; Gomez, L.; Henein, G.; Laskowski, E.; Ryazansky, I.; Shmulovich, J. (May 1998). "Hybrid integrated silicon optical bench planar lightguide circuits". 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206). pp. 551–559. doi:10.1109/ECTC.1998.678749. ISBN 0-7803-4526-6. S2CID 110382903.
  3. ^ Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal (2015-12-09). "Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna". Nano Letters. 15 (12): 8342–8346. Bibcode:2015NanoL..15.8342S. doi:10.1021/acs.nanolett.5b04025. ISSN 1530-6984. PMC 4710456. PMID 26570995.
  4. ^ Leuthold, J.; Dalton, L. R.; Elder, D. L.; Burla, M.; Watanabe, T.; Bonjour, R.; Haffner, C.; Fedoryshyn, Y.; Josten, A. (December 2018). "Microwave plasmonic mixer in a transparent fibre–wireless link". Nature Photonics. 12 (12): 749–753. Bibcode:2018NaPho..12..749S. doi:10.1038/s41566-018-0281-6. ISSN 1749-4893. PMC 6276987. PMID 30532800.
  5. ^ Ma, Ping; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Heni, Wolfgang; Emboras, Alexandros; Leuthold, Juerg (2019-01-16). "Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size". ACS Photonics. 6 (1): 154–161. doi:10.1021/acsphotonics.8b01234. hdl:20.500.11850/311108.
  6. ^ Salamin, Yannick; Ma, Ping; Baeuerle, Benedikt; Emboras, Alexandros; Fedoryshyn, Yuriy; Heni, Wolfgang; Cheng, Bojun; Josten, Arne; Leuthold, Juerg (2018-08-15). "100 GHz Plasmonic Photodetector". ACS Photonics. 5 (8): 3291–3297. doi:10.1021/acsphotonics.8b00525. hdl:20.500.11850/283336.
  7. ^ Dorodnyy, A.; Salamin, Y.; Ma, P.; Plestina, J. Vukajlovic; Lassaline, N.; Mikulik, D.; Romero-Gomez, P.; Morral, A. Fontcuberta i; Leuthold, J. (November 2018). "Plasmonic Photodetectors" (PDF). IEEE Journal of Selected Topics in Quantum Electronics. 24 (6): 2840339. Bibcode:2018IJSTQ..2440339D. doi:10.1109/JSTQE.2018.2840339. ISSN 1077-260X. S2CID 49540973.
  8. ^ Ayata, Masafumi; Fedoryshyn, Yuriy; Heni, Wolfgang; Baeuerle, Benedikt; Josten, Arne; Zahner, Marco; Koch, Ueli; Salamin, Yannick; Hoessbacher, Claudia; Haffner, Christian; Elder, Delwin L.; Dalton, Larry R.; Leuthold, Juerg (2017). "High-speed plasmonic modulator in a single metal layer". Science. 358 (6363): 630–632. Bibcode:2017Sci...358..630A. doi:10.1126/science.aan5953. hdl:20.500.11850/222814. PMID 29097545.
  9. ^ Hoessbacher, C.; Josten, A.; Baeuerle, B.; Fedoryshyn, Y.; Hettrich, H.; Salamin, Y.; Heni, W.; Haffner, C.; Kaiser, C.; Schmid, R.; Elder, D. L.; Hillerkuss, D.; Möller, M.; Dalton, L. R.; Leuthold, J. (2017). "Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ". Optics Express. 25 (3): 1762–1768. Bibcode:2017OExpr..25.1762H. doi:10.1364/OE.25.001762. PMID 29519029.
  10. ^ Haffner, C.; Heni, W.; Fedoryshyn, Y.; Niegemann, J.; Melikyan, A.; Elder, D. L.; Baeuerle, B.; Salamin, Y.; Josten, A.; Koch, U.; Hoessbacher, C.; Ducry, F.; Juchli, L.; Emboras, A.; Hillerkuss, D.; Kohl, M.; Dalton, L. R.; Hafner, C.; Leuthold, J. (2015). "All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale". Nature Photonics. 9 (8): 525–528. Bibcode:2015NaPho...9..525H. doi:10.1038/nphoton.2015.127. S2CID 124796059.
  11. ^ Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg (2015). "Atomic Scale Plasmonic Switch". Nano Letters. 16 (1): 709–714. arXiv:1508.07748. doi:10.1021/acs.nanolett.5b04537. PMID 26670551. S2CID 118518048.
  12. ^ Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F.; Roeger, M.; Koenig, S.; Ludwig, A.; Marculescu, A.; Li, J.; Hoh, M.; Dreschmann, M.; Meyer, J.; Ben Ezra, S.; Narkiss, N.; Nebendahl, B.; Parmigiani, F.; Petropoulos, P.; Resan, B.; Oehler, A.; Weingarten, K.; Ellermeyer, T.; Lutz, J.; Moeller, M.; et al. (2011). "26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing". Nature Photonics. 5 (6): 364–371. Bibcode:2011NaPho...5..364H. doi:10.1038/nphoton.2011.74.
  13. ^ Hillerkuss, David; Schmogrow, Rene; Meyer, Matthias; Wolf, Stefan; Jordan, Meinert; Kleinow, Philipp; Lindenmann, Nicole; Schindler, Philipp C.; Melikyan, Argishti; Yang, Xin; Ben-Ezra, Shalva; Nebendahl, Bend; Dreschmann, Michael; Meyer, Joachim; Parmigiani, Francesca; Petropoulos, Periklis; Resan, Bojan; Oehler, Andreas; Weingarten, Kurt; Altenhain, Lars; Ellermeyer, Tobias; Moeller, Michael; Huebner, Michael; Becker, Juergen; Koos, Christian; Freude, Wolfgang; Leuthold, Juerg (2012). "Single-Laser 325 Tbit/S Nyquist WDM Transmission". Journal of Optical Communications and Networking. 4 (10): 715–723. arXiv:1203.2516. Bibcode:2012arXiv1203.2516H. doi:10.1364/JOCN.4.000715. S2CID 116046996.
  14. ^ Koos, C.; Vorreau, P.; Vallaitis, T.; Dumon, P.; Bogaerts, W.; Baets, R.; Esembeson, B.; Biaggio, I.; Michinobu, T.; Diederich, F.; Freude, W.; Leuthold, J. (2009). "All-optical high-speed signal processing with silicon–organic hybrid slot waveguides". Nature Photonics. 3 (4): 216–219. Bibcode:2009NaPho...3..216K. doi:10.1038/nphoton.2009.25.
  15. ^ Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; Zwick, T.; Koos, C.; Freude, W.; Ambacher, O.; Leuthold, J.; Kallfass, I. (2013). "Wireless sub-THZ communication system with high data rate". Nature Photonics. 7 (12): 977–981. Bibcode:2013NaPho...7..977K. doi:10.1038/nphoton.2013.275. S2CID 36536694.
  16. ^ "2.5 Tb/S (64x42.7 Gb/S) Transmission over 40x100 km NZDSF Using RZ-DPSK Format and All-Raman-Amplified Spans". 2002-03-17. pp. FC2.
  17. ^ "100 Gbit/S All-Optical Wavelength Conversion with an Integrated SOA Delayed-Interference Configuration". 2000-07-09. pp. OWB3.
  18. ^ Leuthold, J.; Raybon, G.; Su, Y.; Essiambre, R.; Cabot, S.; Jaques, J.; Kauer, M. (2002). "40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km". Electronics Letters. 38 (16): 890. Bibcode:2002ElL....38..890L. doi:10.1049/el:20020595.
  19. ^ Giles, C. Randy; Ryf, Roland; Jaques, James J.; Cabot, Steven; Marom, Dan M.; Leuthold, Juerg (January 2004). "All-Optical Wavelength Conversion Using aPulse Reformatting Optical Filter". Journal of Lightwave Technology. 22 (1): 186. Bibcode:2004JLwT...22..186L. doi:10.1109/JLT.2003.822158. S2CID 46302586.
  20. ^ Melchior, Hans; Besse, Pierre A.; Gamper, Emil; Eckner, Juerg; Leuthold, Juerg (July 1998). "Multimode Interference Couplers for the Conversion and Combining of Zero- and First-Order Modes". Journal of Lightwave Technology. 16 (7): 1228. Bibcode:1998JLwT...16.1228L. doi:10.1109/50.701401.
  21. ^ Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H. (1996). "Spatial mode filters realized with multimode interference couplers". Optics Letters. 21 (11): 836–8. Bibcode:1996OptL...21..836L. doi:10.1364/OL.21.000836. PMID 19876175.
  22. ^ Leuthold, J.; Joyner, C.W. (2001). "Multimode interference couplers with tunable power splitting ratios". Journal of Lightwave Technology. 19 (5): 700–707. Bibcode:2001JLwT...19..700L. doi:10.1109/50.923483.
  23. ^ "2013 elevated fellow" (PDF). IEEE Fellows Directory. Archived from the original (PDF) on December 24, 2012.