Jump to content

Etendue: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
...which also share...
 
(37 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Measure of the "spread" of light in an optical system}}
'''Etendue''' or '''étendue''' ({{IPAc-en|ˌ|eɪ|t|ɒ|n|ˈ|d|uː}}; {{IPA-fr|etɑ̃dy}}) is a property of [[light]] in an [[optics|optical system]], which characterizes how "spread out" the light is in area and angle. It corresponds to the [[beam parameter product]] (BPP) in [[Gaussian beam]] optics.
{{Use dmy dates|date= October 2023}}
[[File:conservation_of_etendue.svg|thumb|Conservation of etendue]]
'''Etendue''' or '''étendue''' ({{IPAc-en|ˌ|eɪ|t|ɒ|n|ˈ|d|uː}}; {{IPA|fr|etɑ̃dy}}) is a property of [[light]] in an [[optics|optical system]], which characterizes how "spread out" the light is in area and angle. It corresponds to the [[beam parameter product]] (BPP) in [[Gaussian beam]] optics. Other names for etendue include '''acceptance''', '''throughput''', '''light grasp''', '''light-gathering power''', '''optical extent''',<ref name="e-ILV-etendue">{{cite web | title= Optical extent / Etendue |work= CIE e-ILV: International Lighting Vocabulary |edition= 2nd |publisher = [[International Commission on Illumination]] |url= https://cie.co.at/eilvterm/17-21-048 | access-date=2022-02-19 |id= 17-21-048}}</ref> and the '''A&Omega; product'''. ''Throughput'' and ''A&Omega; product'' are especially used in [[radiometry]] and radiative transfer where it is related to the [[view factor]] (or shape factor). It is a central concept in [[nonimaging optics]].<ref name="IntroNio2e">{{cite book |last= Chaves |first= Julio |date= 2015 |title= Introduction to Nonimaging Optics |edition= 2nd |url= https://books.google.com/books?id=e11ECgAAQBAJ |publisher= [[CRC Press]] |isbn= 978-1482206739}}</ref>{{Page needed|date=October 2023}}<ref name="NIO">{{cite book |last1= Winston |first1= Roland |last2= Minano |first2= Juan C. |last3= Benitez |first3= Pablo G. |date= 2004 |title= Nonimaging Optics |publisher= Academic Press |isbn= 978-0127597515}}</ref>{{Page needed|date=October 2023}}<ref name="Projection Displays">{{cite book |last1= Brennesholtz |first1= Matthew S. |last2= Stupp |first2= Edward H. |date= 2008 |title= Projection Displays |publisher= John Wiley & Sons |isbn= 978-0470518038}}</ref>{{Page needed|date=October 2023}}


From the source point of view, it is the product of the area of the source and the [[solid angle]] that the system's [[entrance pupil]] [[subtend]]s as seen from the source. Equivalently, from the system point of view, the etendue equals the area of the entrance pupil times the solid angle the source subtends as seen from the pupil. These definitions must be applied for infinitesimally small "elements" of area and solid angle, which must then be summed over both the source and the diaphragm as shown below. Etendue may be considered to be a volume in [[Hamiltonian optics#Phase space|phase space]].
From the source point of view, etendue is the product of the area of the source and the [[solid angle]] that the system's [[entrance pupil]] [[subtend]]s as seen from the source. Equivalently, from the system point of view, the etendue equals the area of the entrance pupil times the solid angle the source subtends as seen from the pupil. These definitions must be applied for infinitesimally small "elements" of area and solid angle, which must then be summed over both the source and the diaphragm as shown below. Etendue may be considered to be a volume in [[Hamiltonian optics#Phase space|phase space]].


Etendue never decreases in any optical system where optical power is conserved.<ref>[http://www.physics.csbsju.edu/370/photometry/etendue.pdf Lecture notes on Radiance]</ref> A perfect optical system produces an image with the same etendue as the source. The etendue is related to the [[Lagrange invariant]] and the [[optical invariant]], which share the property of being constant in an ideal optical system. The [[radiance]] of an optical system is equal to the derivative of the [[radiant flux]] with respect to the etendue.
Etendue never decreases in any optical system where optical power is conserved.<ref>{{cite web |title= Basic Optics: Radiance |series= Astronomy 525 |type= Lecture notes |publisher= College of Saint Benedict and Saint John's University |url= http://www.physics.csbsju.edu/370/photometry/etendue.pdf }}</ref> A perfect optical system produces an image with the same etendue as the source. The etendue is related to the [[Lagrange invariant]] and the [[optical invariant]], which also share the property of being constant in an ideal optical system. The [[radiance]] of an optical system is equal to the derivative of the [[radiant flux]] with respect to the etendue.

The term ''étendue'' comes from the French ''étendue géométrique'', meaning "geometrical extent". Other names for this property are '''acceptance''', '''throughput''', '''light grasp''', '''light-gathering''' or '''-collecting power''', '''optical extent''', '''geometric extent''', and the '''A&Omega; product'''. ''Throughput'' and ''A&Omega; product'' are especially used in [[radiometry]] and radiative transfer where it is related to the [[view factor]] (or shape factor). It is a central concept in [[nonimaging optics]].<ref name="IntroNio2e">{{cite book | first = Julio | last = Chaves | title = Introduction to Nonimaging Optics, Second Edition |url=https://books.google.com/books?id=e11ECgAAQBAJ | publisher = [[CRC Press]] | year = 2015 | isbn = 978-1482206739}}</ref><ref name="NIO">Roland Winston et al.,, ''Nonimaging Optics'', Academic Press, 2004 {{ISBN|978-0127597515}}</ref><ref name="Projection Displays">Matthew S. Brennesholtz, Edward H. Stupp, ''Projection Displays'', John Wiley & Sons Ltd, 2008 {{ISBN|978-0470518038}}</ref>


==Definition==
==Definition==
[[File:Etendue for differential surface element in 2D and 3D.png|right|thumb|400px|Etendue for a [[differential element|differential surface element]] in 2D (left) and 3D (right).]]
[[File:Etendue for differential surface element in 2D and 3D.png|right|thumb|400px|Etendue for a [[differential element|differential surface element]] in 2D (left) and 3D (right).]]
An infinitesimal surface element, dS, with normal '''n'''<sub>''S''</sub> is immersed in a medium of [[refractive index]] ''n''. The surface is crossed by (or reflects or emits) light confined to a solid angle, d''Ω'', at an angle ''θ'' with the normal '''n'''<sub>''S''</sub>. The area of d''S'' projected in the direction of the light propagation is {{nobreak|d''S'' cos ''θ''}}, per [[Lambert's cosine law]]. The etendue of this light crossing dS is defined as
An infinitesimal surface element, {{math|d''S''}}, with normal {{math|'''n'''{{sub|''S''}}}} is immersed in a medium of [[refractive index]] {{mvar|n}}. The surface is crossed by (or emits) light confined to a solid angle, {{math|d''Ω''}}, at an angle {{mvar|θ}} with the normal {{math|'''n'''{{sub|''S''}}}}. The area of {{math|d''S''}} projected in the direction of the light propagation is {{math|d''S'' cos ''θ''}}. The etendue of an infinitesimal bundle of light crossing {{math|d''S''}} is defined as
<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \cos \theta\, \mathrm{d}\Omega.</math>
Because angles, solid angles, and refractive indices are [[dimensionless quantity|dimensionless quantities]], etendue has units of area (given by dS).


<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \cos \theta\, \mathrm{d}\Omega\,.</math>
==Conservation of etendue==
As shown below, etendue is conserved as light travels through free space and at refractions or reflections. It is then also conserved as light travels through optical systems where it undergoes perfect reflections or refractions. However, if light was to hit, say, a [[Diffuser (optics)|diffuser]], its solid angle would increase, increasing the etendue. Etendue can then remain constant or it can increase as light propagates through an optic, but it cannot decrease. This is a direct result of increasing [[entropy]], which only can be reverted if a priori knowledge is used to reconstruct a phase-matched wave-front such as with [[phase conjugated mirror]]s.


Etendue is the product of geometric extent and the squared refractive index of a medium through which the beam propagates.<ref name="e-ILV-etendue" /> Because angles, solid angles, and refractive indices are [[dimensionless quantity|dimensionless quantities]], etendue is often expressed in units of area (given by {{math|d''S''}}). However, it can alternatively be expressed in units of area (square meters) multiplied by solid angle (steradians).<ref name="e-ILV-etendue"/><ref name="SI Brochure">{{cite book |author= Bureau International des Poids et Mesures |year= 2019 |title= The International System of Units (SI) Brochure |edition= 9th |url= https://www.bipm.org/en/publications/si-brochure |publisher= [[International Bureau of Weights and Measures]] |isbn= 978-92-822-2272-0}}</ref>
Conservation of etendue can be derived in different contexts, such as from optical first principles, from [[Hamiltonian optics]] or from the [[second law of thermodynamics]].<ref name="IntroNio2e"/>


===In free space===
===In free space===
[[Image:Etendue-Free space.png|right|thumb|300px|Etendue in free space.]]
[[Image:Etendue.svg|right|thumb|300px|Etendue in free space.]]
Consider a light source ''Σ'', and a light detector ''S'', both of which are extended surfaces (rather than differential elements), and which are separated by a [[medium (optics)|medium]] of refractive index ''n'' that is perfectly [[transparency (optics)|transparent]] (shown). To compute the etendue of the system, one must consider the contribution of each point on the surface of the light source as they cast rays to each point on the receiver.<ref name="Wikilivre">[[Wikibooks:fr:Photographie/Photométrie/Notion d'étendue géométrique|''Wikilivre de Photographie'']], ''Notion d'étendue géométrique'' (in French). Accessed 27 Jan 2009.</ref>
Consider a light source {{math|Σ}}, and a light detector {{mvar|S}}, both of which are extended surfaces (rather than differential elements), and which are separated by a [[medium (optics)|medium]] of refractive index {{mvar|n}} that is perfectly [[transparency (optics)|transparent]] (shown). To compute the etendue of the system, one must consider the contribution of each point on the surface of the light source as they cast rays to each point on the receiver.<ref name="Wikilivre">{{cite book |title= Photographie |trans-title= Photography |chapter= Photométrie / Notion d'étendue géométrique |trans-chapter= Photometry / Notion of geometric extent |language= fr |url= https://fr.wikibooks.org/wiki/Photographie |chapter-url= https://fr.wikibooks.org/wiki/Photographie/Photom%C3%A9trie/Notion_d%27%C3%A9tendue_g%C3%A9om%C3%A9trique |access-date= 2009-01-27 |publisher= [[Wikibooks]]}}</ref>{{Better source needed|reason=Citation is a Wikibooks source (user generated).|date=October 2023}}

According to the definition above, the etendue of the light crossing {{math|dΣ}} towards {{math|d''S''}} is given by:

<math display="block">\mathrm{d}G_\Sigma = n^2\, \mathrm{d}\Sigma \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n^2\, \mathrm{d}\Sigma \cos \theta_\Sigma \frac{\mathrm{d}S \cos \theta_S}{d^2}\,,</math>

where {{math|d''Ω''{{sub|Σ}}}} is the solid angle defined by area {{math|d''S''}} at area {{math|dΣ}}, and {{mvar|d}} is the distance between the two areas. Similarly, the etendue of the light crossing {{math|d''S''}} coming from {{math|dΣ}} is given by:

<math display="block">\mathrm{d}G_S = n^2\, \mathrm{d}S \cos \theta_S\, \mathrm{d}\Omega_S = n^2\, \mathrm{d}S \cos \theta_S \frac{\mathrm{d}\Sigma \cos \theta_\Sigma}{d^2}\,,</math>

where {{math|d''Ω''{{sub|''S''}}}} is the solid angle defined by area {{math|dΣ}}. These expressions result in

<math display="block">\mathrm{d}G_\Sigma = \mathrm{d}G_S\,,</math>


According to the definition above, the etendue of the light crossing d''Σ'' towards d''S'' is given by:
<math display="block">\mathrm{d}G_\Sigma = n^2\, \mathrm{d}\Sigma \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n^2\, \mathrm{d}\Sigma \cos \theta_\Sigma \frac{\mathrm{d}S \cos \theta_S}{d^2}</math>
where d''Ω''<sub>Σ</sub> is the solid angle defined by area d''S'' at area d''Σ''. Similarly, the etendue of the light crossing d''S'' coming from d''Σ'' is given by:
<math display="block">\mathrm{d}G_S = n^2\, \mathrm{d}S \cos \theta_S\, \mathrm{d}\Omega_S = n^2\, \mathrm{d}S \cos \theta_S \frac{\mathrm{d}\Sigma \cos \theta_\Sigma}{d^2},</math>
where d''Ω''<sub>''S''</sub> is the solid angle defined by area dΣ. These expressions result in
<math display="block">\mathrm{d}G_\Sigma = \mathrm{d}G_S,</math>
showing that etendue is conserved as light propagates in free space.
showing that etendue is conserved as light propagates in free space.


The etendue of the whole system is then:
The etendue of the whole system is then:
<math display="block">G = \int_\Sigma\!\int_S \mathrm{d}G.</math>


<math display="block">G = \int_\Sigma\!\int_S \mathrm{d}G\,.</math>
If both surfaces d''Σ'' and d''S'' are immersed in air (or in vacuum), {{nobreak|1=''n'' = 1}} and the expression above for the etendue may be written as

<math display="block">\mathrm{d}G = \mathrm{d}\Sigma\, \cos \theta_\Sigma\, \frac{\mathrm{d}S\, \cos \theta_S}{d^2} = \pi\, \mathrm{d}\Sigma\,\left(\frac{\cos \theta_\Sigma \cos \theta_S}{\pi d^2}\, \mathrm{d}S\right) = \pi\, \mathrm{d}\Sigma\, F_{\mathrm{d}\Sigma \rarr \mathrm{d}S},</math>
If both surfaces {{math|dΣ}} and {{math|d''S''}} are immersed in air (or in vacuum), {{math|1=''n'' = 1}} and the expression above for the etendue may be written as
where ''F''<sub>d''Σ''→d''S''</sub> is the [[view factor]] between differential surfaces d''Σ'' and d''S''. Integration on d''Σ'' and d''S'' results in ''G'' = π''Σ'' ''F''<sub>''Σ''→''S''</sub> which allows the etendue between two surfaces to be obtained from the view factors between those surfaces, as provided in a [http://www.me.utexas.edu/~howell/tablecon.html list of view factors for specific geometry cases] or in several [[heat transfer]] textbooks.

<math display="block">\mathrm{d}G = \mathrm{d}\Sigma\, \cos \theta_\Sigma\, \frac{\mathrm{d}S\, \cos \theta_S}{d^2} = \pi\, \mathrm{d}\Sigma\,\left(\frac{\cos \theta_\Sigma \cos \theta_S}{\pi d^2}\, \mathrm{d}S\right) = \pi\, \mathrm{d}\Sigma\, F_{\mathrm{d}\Sigma \rarr \mathrm{d}S}\,,</math>

where {{math|''F''{{sub|dΣ→d''S''}}}} is the [[view factor]] between differential surfaces {{math|dΣ}} and {{math|d''S''}}. Integration on {{math|dΣ}} and {{math|d''S''}} results in {{math|1=''G'' = ''π''Σ ''F''{{sub|Σ→''S''}}}} which allows the etendue between two surfaces to be obtained from the view factors between those surfaces, as provided in a [http://www.me.utexas.edu/~howell/tablecon.html list of view factors for specific geometry cases] or in several [[heat transfer]] textbooks.

==Conservation==
The etendue of a given bundle of light is conserved: etendue can be increased, but not decreased in any optical system. This means that any system that concentrates light from some source onto a smaller area must always increase the solid angle of incidence (that is, the area of the sky that the source subtends). For example, a magnifying glass can increase the intensity of sunlight onto a small spot, but does so because, viewed from the spot that the light is concentrated onto, the apparent size of the sun is increased proportional to the concentration.

As shown below, etendue is conserved as light travels through free space and at refractions or reflections. It is then also conserved as light travels through optical systems where it undergoes perfect reflections or refractions. However, if light was to hit, say, a [[Diffuser (optics)|diffuser]], its solid angle would increase, increasing the etendue. Etendue can then remain constant or it can increase as light propagates through an optic, but it cannot decrease. This is a direct result of the fact that [[entropy]] must be constant or increasing.

Conservation of etendue can be derived in different contexts, such as from optical first principles, from [[Hamiltonian optics]] or from the [[second law of thermodynamics]].<ref name="IntroNio2e"/>{{Page needed|date=October 2023}}

From the perspective of thermodynamics, etendue is a form of entropy. Specifically, the etendue of a bundle of light contributes to the entropy of it by <math>S_{etendue} = k_B\ln \Omega</math>. Etendue may be exponentially decreased by an increase in entropy elsewhere. For example, a material might absorb photons and emit lower-frequency photons, and emit the difference in energy as heat. This increases entropy due to heat, allowing a corresponding decrease in etendue.<ref>{{Cite journal |last=Winston |first=Roland |last2=Wang |first2=Chunhua |last3=Zhang |first3=Weiya |date=2009-08-20 |editor-last=Winston |editor-first=Roland |editor2-last=Gordon |editor2-first=Jeffrey M. |title=Beating the optical Liouville theorem: How does geometrical optics know the second law of thermodynamics? |url=http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.836029 |pages=742309 |doi=10.1117/12.836029}}</ref><ref>{{Cite journal |last=Markvart |first=T |date=2008-01-01 |title=The thermodynamics of optical étendue |url=https://iopscience.iop.org/article/10.1088/1464-4258/10/01/015008 |journal=Journal of Optics A: Pure and Applied Optics |volume=10 |issue=1 |pages=015008 |doi=10.1088/1464-4258/10/01/015008 |issn=1464-4258}}</ref>


The conservation of etendue in free space is related to the [[View factor#View factors of differential areas|reciprocity theorem for view factors]].
The conservation of etendue in free space is related to the [[View factor#View factors of differential areas|reciprocity theorem for view factors]].
Line 42: Line 58:
[[File:Etendue in refraction.png|right|thumb|300px|Etendue in refraction.]]
[[File:Etendue in refraction.png|right|thumb|300px|Etendue in refraction.]]


The conservation of etendue discussed above applies to the case of light propagation in free space, or more generally, in a medium in which the [[refractive index]] is constant. However, etendue is also conserved in refractions and reflections.<ref name="IntroNio2e"/> Figure "etendue in refraction" shows an infinitesimal surface d''S'' on the ''xy'' plane separating two media of refractive indices ''n''<sub>''Σ''</sub> and ''n''<sub>''S''</sub>.
The conservation of etendue discussed above applies to the case of light propagation in free space, or more generally, in a medium of any [[refractive index]]. In particular, etendue is conserved in refractions and reflections.<ref name="IntroNio2e"/>{{Page needed|date=October 2023}} Figure "etendue in refraction" shows an infinitesimal surface {{math|d''S''}} on the {{mvar|x-y}} plane separating two media of refractive indices {{math|''n''{{sub|Σ}}}} and {{math|''n''{{sub|''S''}}}}.

The normal to {{math|d''S''}} points in the direction of the {{mvar|z}}-axis. Incoming light is confined to a solid angle {{math|d''Ω''{{sub|Σ}}}} and reaches {{math|d''S''}} at an angle {{math|''θ''{{sub|Σ}}}} to its normal. Refracted light is confined to a solid angle {{math|d''Ω''{{sub|''S''}}}} and leaves {{math|d''S''}} at an angle {{math|''θ''{{sub|''S''}}}} to its normal. The directions of the incoming and refracted light are contained in a plane making an angle {{mvar|φ}} to the {{mvar|x}}-axis, defining these directions in a [[spherical coordinate system]]. With these definitions, [[Snell's law]] of refraction can be written as

<math display="block">n_\Sigma \sin \theta_\Sigma = n_S \sin \theta_S\,,</math>

and its derivative relative to {{mvar|θ}}

<math display="block">n_\Sigma \cos \theta_\Sigma\, \mathrm{d}\theta_\Sigma = n_S \cos \theta_S \mathrm{d}\theta_S\,,</math>


The normal to d''S'' points in the direction of the ''z'' axis. Incoming light is confined to a solid angle d''Ω''<sub>''Σ''</sub> and reaches d''S'' at an angle ''θ''<sub>''Σ''</sub> to its normal. Refracted light is confined to a solid angle d''Ω''<sub>''S''</sub> and leaves d''S'' at an angle ''θ''<sub>''S''</sub> to its normal. The directions of the incoming and refracted light are contained in a plane making an angle ''φ'' to the ''x'' axis, defining these directions in a [[spherical coordinate system]]. With these definitions, [[Snell's law]] of refraction can be written as
<math display="block">n_\Sigma \sin \theta_\Sigma = n_S \sin \theta_S,</math>
and its derivative relative to ''θ''
<math display="block">n_\Sigma \cos \theta_\Sigma\, \mathrm{d}\theta_\Sigma = n_S \cos \theta_S \mathrm{d}\theta_S,</math>
multiplied by each other result in
multiplied by each other result in

<math display="block">n_\Sigma^2 \cos \theta_\Sigma\!\left(\sin \theta_\Sigma\, \mathrm{d}\theta_\Sigma\, \mathrm{d}\varphi\right) = n_S^2 \cos \theta_S\!\left(\sin \theta_S\, \mathrm{d}\theta_S\, \mathrm{d}\varphi\right),</math>
<math display="block">n_\Sigma^2 \cos \theta_\Sigma\!\left(\sin \theta_\Sigma\, \mathrm{d}\theta_\Sigma\, \mathrm{d}\varphi\right) = n_S^2 \cos \theta_S\!\left(\sin \theta_S\, \mathrm{d}\theta_S\, \mathrm{d}\varphi\right)\,,</math>
where both sides of the equation were also multiplied by d''φ'' which does not change on refraction. This expression can now be written as

<math display="block">n_\Sigma^2 \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n_S^2 \cos \theta_S\, \mathrm{d}\Omega_S,</math>
where both sides of the equation were also multiplied by {{math|d''φ''}} which does not change on refraction. This expression can now be written as
and multiplying both sides by d''S'' we get

<math display="block">n_\Sigma^2\, \mathrm{d}S \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n_S^2\, \mathrm{d}S \cos \theta_S\, \mathrm{d}\Omega_S</math>
<math display="block">n_\Sigma^2 \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n_S^2 \cos \theta_S\, \mathrm{d}\Omega_S\,.</math>

Multiplying both sides by {{math|d''S''}} we get

<math display="block">n_\Sigma^2\, \mathrm{d}S \cos \theta_\Sigma\, \mathrm{d}\Omega_\Sigma = n_S^2\, \mathrm{d}S \cos \theta_S\, \mathrm{d}\Omega_S\,;</math>

that is
that is

<math display="block">\mathrm{d}G_\Sigma = \mathrm{d}G_S,</math>
<math display="block">\mathrm{d}G_\Sigma = \mathrm{d}G_S\,,</math>
showing that the etendue of the light refracted at d''S'' is conserved. The same result is also valid for the case of a reflection at a surface d''S'', in which case {{nobreak|1=''n''<sub>''Σ''</sub> = ''n''<sub>S</sub>}} and ''θ''<sub>''Σ''</sub> = ''θ''<sub>S</sub>.

showing that the etendue of the light refracted at {{math|d''S''}} is conserved. The same result is also valid for the case of a reflection at a surface {{math|d''S''}}, in which case {{math|1=''n''{{sub|Σ}} = ''n''{{sub|S}}}} and {{math|1=''θ''{{sub|Σ}} = ''θ''{{sub|S}}}}.

===Brightness theorem===

A consequence of the conservation of etendue is the ''brightness theorem'', which states that no linear optical system can increase the [[brightness]] of the light emitted from a source to a higher value than the brightness of the surface of that source (where "brightness" is defined as the optical power emitted per unit solid angle per unit emitting or receiving area).<ref name="quimby">{{cite book |last= Quimby |first= R. S. |date= 17 March 2006 |title= Photonics and Lasers: An Introduction |chapter= Appendix A: Solid Angle and the Brightness Theorem |pages= 495–498 |chapter-url= https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471791598.app1 |publisher= Wiley Science Library |doi= 10.1002/0471791598.app1 |isbn= 9780471719748 |access-date= 13 September 2022}}</ref>


==Conservation of basic radiance==
==Conservation of basic radiance==
[[Radiance]] of a surface is related to étendue by:
[[Radiance]] of a surface is related to etendue by:

<math display="block">L_{\mathrm{e},\Omega} = n^2 \frac{\partial \Phi_\mathrm{e}}{\partial G},</math>
<math display="block">L_{\mathrm{e},\Omega} = n^2 \frac{\partial \Phi_\mathrm{e}}{\partial G}\,,</math>

where
where
*<math>\Phi_\mathrm{e}</math> is the [[radiant flux]] emitted, reflected, transmitted or received;
* {{math{{sub|e}}}} is the [[radiant flux]] emitted, reflected, transmitted or received;
*''n'' is the refractive index in which that surface is immersed;
* {{mvar|n}} is the refractive index in which that surface is immersed;
*''G'' is the étendue of the light beam.
* {{mvar|G}} is the étendue of the light beam.

As the light travels through an ideal optical system, both the etendue and the radiant flux are conserved. Therefore, ''basic radiance'' defined as:<ref>{{cite book |last= McCluney |first= William Ross |date= 1994 |title= Introduction to Radiometry and Photometry |publisher= Artech House |location= Boston |isbn= 978-0890066782}}</ref>{{Page needed|date=October 2023}}


As the light travels through an ideal optical system, both the étendue and the radiant flux are conserved. Therefore, ''basic radiance'' defined as:<ref>William Ross McCluney, ''Introduction to Radiometry and Photometry'', Artech House, Boston, MA, 1994 {{ISBN|978-0890066782}}</ref>
<math display="block">L_{\mathrm{e},\Omega}^* = \frac{L_{\mathrm{e},\Omega}}{n^2}</math>
<math display="block">L_{\mathrm{e},\Omega}^* = \frac{L_{\mathrm{e},\Omega}}{n^2}</math>
is also conserved. In real systems, the étendue may increase (for example due to scattering) or the radiant flux may decrease (for example due to absorption) and, therefore, basic radiance may decrease. However, étendue may not decrease and radiant flux may not increase and, therefore, basic radiance may not increase.


is also conserved. In real systems, the etendue may increase (for example due to scattering) or the radiant flux may decrease (for example due to absorption) and, therefore, basic radiance may decrease. However, etendue may not decrease and radiant flux may not increase and, therefore, basic radiance may not increase.
==Etendue as a volume in phase space==

==As a volume in phase space==
[[File:Etendue and optical momentum.png|200px|thumb|right|Optical momentum.]]
[[File:Etendue and optical momentum.png|200px|thumb|right|Optical momentum.]]


In the context of [[Hamiltonian optics]], at a point in space, a light ray may be completely defined by a point {{nobreak|1='''r''' = (''x'', ''y'', ''z'')}}, a unit [[Euclidean vector]] {{nobreak|1='''v''' = (cos ''α''<sub>''X''</sub>, cos ''α''<sub>''Y''</sub>, cos ''α''<sub>''Z''</sub>)}} indicating its direction and the refractive index ''n'' at point '''r'''. The optical momentum of the ray at that point is defined by
In the context of [[Hamiltonian optics]], at a point in space, a light ray may be completely defined by a point {{math|1='''r''' = (''x'', ''y'', ''z'')}}, a unit [[Euclidean vector]] {{math|1='''v''' = (cos ''α{{sub|X}}'', cos ''α{{sub|Y}}'', cos ''α{{sub|Z}}'')}} indicating its direction and the refractive index {{mvar|n}} at point {{math|'''r'''}}. The optical momentum of the ray at that point is defined by

<math display="block">\mathbf{p} = n(\cos \alpha_X, \cos \alpha_Y, \cos \alpha_Z) = (p, q, r),</math>
<math display="block">\mathbf{p} = n(\cos \alpha_X, \cos \alpha_Y, \cos \alpha_Z) = (p, q, r)\,,</math>
where {{nobreak|1={{norm|'''p'''}} = ''n''}}. The geometry of the optical momentum vector is illustrated in figure "optical momentum".

where {{math|1={{norm|'''p'''}} = ''n''}}. The geometry of the optical momentum vector is illustrated in figure "optical momentum".

In a [[spherical coordinate system]] {{math|'''p'''}} may be written as

<math display="block">\mathbf{p} = n\!\left(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta \right)\,,</math>


In a [[spherical coordinate system]] '''p''' may be written as
<math display="block">\mathbf{p} = n\!\left(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta \right),</math>
from which
from which

<math display="block">\mathrm{d}p\, \mathrm{d}q = \frac{\partial(p, q)}{\partial(\theta, \varphi)} \mathrm{d}\theta\, \mathrm{d}\varphi = \left(\frac{\partial p}{\partial \theta} \frac{\partial q}{\partial \varphi} - \frac{\partial p}{\partial \varphi} \frac{\partial q}{\partial \theta}\right) \mathrm{d}\theta\, \mathrm{d}\varphi = n^2 \cos \theta \sin \theta\, \mathrm{d}\theta\, \mathrm{d}\varphi = n^2 \cos \theta\, \mathrm{d}\Omega,</math>
<math display="block">\mathrm{d}p\, \mathrm{d}q = \frac{\partial(p, q)}{\partial(\theta, \varphi)} \mathrm{d}\theta\, \mathrm{d}\varphi = \left(\frac{\partial p}{\partial \theta} \frac{\partial q}{\partial \varphi} - \frac{\partial p}{\partial \varphi} \frac{\partial q}{\partial \theta}\right) \mathrm{d}\theta\, \mathrm{d}\varphi = n^2 \cos \theta \sin \theta\, \mathrm{d}\theta\, \mathrm{d}\varphi = n^2 \cos \theta\, \mathrm{d}\Omega\,,</math>
and therefore, for an infinitesimal area d''S'' = d''x'' d''y'' on the ''xy'' plane immersed in a medium of refractive index ''n'', the etendue is given by

<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \cos \theta\, \mathrm{d}\Omega = \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}p\, \mathrm{d}q,</math>
and therefore, for an infinitesimal area {{math|1=d''S'' = d''x'' d''y''}} on the {{mvar|xy}}-plane immersed in a medium of refractive index {{mvar|n}}, the etendue is given by
which is an infinitesimal volume in phase space ''x'', ''y'', ''p'', ''q''. Conservation of etendue in phase space is the equivalent in optics to [[Liouville's theorem (Hamiltonian)|Liouville's theorem]] in classical mechanics.<ref name="IntroNio2e"/> Etendue as volume in phase space is commonly used in [[nonimaging optics]].

<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \cos \theta\, \mathrm{d}\Omega = \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}p\, \mathrm{d}q\,,</math>

which is an infinitesimal volume in phase space {{math|''x'', ''y'', ''p'', ''q''}}. Conservation of etendue in phase space is the equivalent in optics to [[Liouville's theorem (Hamiltonian)|Liouville's theorem]] in classical mechanics.<ref name="IntroNio2e"/>{{Page needed|date=October 2023}} Etendue as volume in phase space is commonly used in [[nonimaging optics]].


==Maximum concentration==
==Maximum concentration==
[[File:Etendue for a large solid angle.png|right|thumb|200px|Etendue for a large solid angle.]]
[[File:Etendue for a large solid angle.png|right|thumb|200px|Etendue for a large solid angle.]]


Consider an infinitesimal surface d''S'', immersed in a medium of refractive index ''n'' crossed by (or emitting) light inside a cone of angle ''α''. The etendue of this light is given by
Consider an infinitesimal surface {{math|d''S''}}, immersed in a medium of refractive index {{mvar|n}} crossed by (or emitting) light inside a cone of angle {{mvar|α}}. The etendue of this light is given by
<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \int \cos \theta\, \mathrm{d}\Omega = n^2 dS \int_0^{2\pi}\!\int_0^\alpha \cos \theta \sin \theta\, \mathrm{d}\theta\, \mathrm{d}\varphi = \pi n^2 \mathrm{d}S \sin^2 \alpha.</math>


<math display="block">\mathrm{d}G = n^2\, \mathrm{d}S \int \cos \theta\, \mathrm{d}\Omega = n^2 \mathrm{d}S \int_0^{2\pi}\!\int_0^\alpha \cos \theta \sin \theta\, \mathrm{d}\theta\, \mathrm{d}\varphi = \pi n^2 \mathrm{d}S \sin^2 \alpha\,.</math>
Noting that ''n'' sin ''α'' is the [[numerical aperture]] ''NA'', of the beam of light, this can also be expressed as
<math display="block">\mathrm{d}G = \pi\, \mathrm{d}S\, \mathrm{NA}^2.</math>


Noting that {{math|''n'' sin ''α''}} is the [[numerical aperture]] ''NA'', of the beam of light, this can also be expressed as
Note that d''Ω'' is expressed in a [[spherical coordinate system]]. Now, if a large surface ''S'' is crossed by (or emits) light also confined to a cone of angle ''α'', the etendue of the light crossing ''S'' is

<math display="block">G = \pi n^2 \sin^2 \alpha \int \mathrm{d}S = \pi n^2 S \sin^2 \alpha = \pi S \,\mathrm{NA}^2.</math>
<math display="block">\mathrm{d}G = \pi\, \mathrm{d}S\, \mathrm{NA}^2\,.</math>

Note that {{math|dΩ}} is expressed in a [[spherical coordinate system]]. Now, if a large surface {{mvar|S}} is crossed by (or emits) light also confined to a cone of angle {{mvar|α}}, the etendue of the light crossing {{mvar|S}} is

<math display="block">G = \pi n^2 \sin^2 \alpha \int \mathrm{d}S = \pi n^2 S \sin^2 \alpha = \pi S \,\mathrm{NA}^2\,.</math>


[[File:Etendue conservation at maximum possible concentration.png|left|thumb|250px|Etendue and ideal concentration.]]
[[File:Etendue conservation at maximum possible concentration.png|left|thumb|250px|Etendue and ideal concentration.]]


The limit on maximum concentration (shown) is an optic with an entrance aperture ''S'', in air ({{nobreak|1=''n''<sub>i</sub> = 1}}) collecting light within a solid angle of angle 2''α'' (its [[Acceptance angle (solar concentrator)|acceptance angle]]) and sending it to a smaller area receiver ''Σ'' immersed in a medium of refractive index ''n'', whose points are illuminated within a solid angle of angle 2''β''. From the above expression, the etendue of the incoming light is
The limit on maximum concentration (shown) is an optic with an entrance aperture {{mvar|S}}, in air ({{nobreak|1=''n''<sub>i</sub> = 1}}) collecting light within a solid angle of angle {{math|2''α''}} (its [[Acceptance angle (solar concentrator)|acceptance angle]]) and sending it to a smaller area receiver {{math|Σ}} immersed in a medium of refractive index {{mvar|n}}, whose points are illuminated within a solid angle of angle {{math|2''β''}}. From the above expression, the etendue of the incoming light is

<math display="block">G_\mathrm{i} = \pi S \sin^2 \alpha</math>
<math display="block">G_\mathrm{i} = \pi S \sin^2 \alpha</math>

and the etendue of the light reaching the receiver is
and the etendue of the light reaching the receiver is
<math display="block">G_\mathrm{r} = \pi n^2 \Sigma \sin^2 \beta.</math>


<math display="block">G_\mathrm{r} = \pi n^2 \Sigma \sin^2 \beta\,.</math>
Conservation of etendue {{nobreak|1=''G''<sub>i</sub> = ''G''<sub>r</sub>}} then gives

<math display="block">C = \frac{S}{\Sigma} = n^2 \frac{\sin^2 \beta}{\sin^2 \alpha},</math>
Conservation of etendue {{math|1=''G''{{sub|i}} = ''G''{{sub|r}}}} then gives
where ''C'' is the concentration of the optic. For a given angular aperture ''α'', of the incoming light, this concentration will be maximum for the maximum value of sin ''β'', that is ''β'' = π/2. The maximum possible concentration is then<ref name="IntroNio2e"/><ref name="NIO"/>

<math display="block">C_\mathrm{max} = \frac{n^2}{\sin^2 \alpha}.</math>
<math display="block">C = \frac{S}{\Sigma} = n^2 \frac{\sin^2 \beta}{\sin^2 \alpha}\,,</math>

where {{mvar|C}} is the concentration of the optic. For a given angular aperture {{mvar|α}}, of the incoming light, this concentration will be maximum for the maximum value of {{math|sin ''β''}}, that is {{math|1=''β'' = ''π''/2}}. The maximum possible concentration is then<ref name="IntroNio2e"/>{{Page needed|date=October 2023}}<ref name="NIO"/>

<math display="block">C_\mathrm{max} = \frac{n^2}{\sin^2 \alpha}\,.</math>


In the case that the incident index is not unity, we have
In the case that the incident index is not unity, we have

<math display="block">G_\mathrm{i} = \pi n_\mathrm{i} S \sin^2 \alpha = G_\mathrm{r} = \pi n_\mathrm{r} \Sigma \sin^2 \beta,</math>
<math display="block">G_\mathrm{i} = \pi n_\mathrm{i} S \sin^2 \alpha = G_\mathrm{r} = \pi n_\mathrm{r} \Sigma \sin^2 \beta\,,</math>

and so
and so
<math display="block">C = \left(\frac{\mathrm{NA}_\mathrm{r}}{\mathrm{NA}_\mathrm{i}}\right)^2,</math>
and in the best-case limit of ''β'' = π/2, this becomes
<math display="block">C_\mathrm{max} = \frac{n_\mathrm{r}^2}{\mathrm{NA}_\mathrm{i}^2}.</math>


<math display="block">C = \left(\frac{\mathrm{NA}_\mathrm{r}}{\mathrm{NA}_\mathrm{i}}\right)^2\,,</math>
If the optic were a [[collimator]] instead of a concentrator, the light direction is reversed and conservation of etendue gives us the minimum aperture, ''S'', for a given output full angle 2''α''.

and in the best-case limit of {{math|1=''β'' = ''π''/2}}, this becomes

<math display="block">C_\mathrm{max} = \frac{n_\mathrm{r}^2}{\mathrm{NA}_\mathrm{i}^2}\,.</math>

If the optic were a [[collimator]] instead of a concentrator, the light direction is reversed and conservation of etendue gives us the minimum aperture, {{mvar|S}}, for a given output full angle {{math|2''α''}}.


==See also==
==See also==
*[[Light field]]
*[[Beam emittance]]
*[[Beam parameter product]]
*[[Beam parameter product]]
*[[Symplectic geometry]]
*[[Light field]]
*[[Noether's theorem]]
*[[Noether's theorem]]
*[[Beam emittance]]
*[[Symplectic geometry]]


==References==
==References==
Line 130: Line 188:
==Further reading==
==Further reading==
{{Commons category|Etendue}}
{{Commons category|Etendue}}
{{Wikibooks
|fr:Photographie
|Photométrie/Notion d'étendue géométrique
|Notion of geometrical extent}}
{{Wiktionary}}
{{Wiktionary}}


*{{cite book|first=John E.|last=Greivenkamp|year=2004|title=Field Guide to Geometrical Optics|publisher=SPIE|others=SPIE Field Guides vol. '''FG01'''|isbn=0-8194-5294-7}}
* {{cite book |last= Greivenkamp |first= John E. |date= 2004 |title= Field Guide to Geometrical Optics |publisher= SPIE |series= SPIE Field Guides |volume= FG01 |isbn= 0-8194-5294-7}}
* {{cite web |last1= Munroe |first1= Randall |date= n.d. |title= Fire from Moonlight |url= https://what-if.xkcd.com/145/ |website= [[What If? (book)|What If?]] |access-date= 28 July 2020 |archive-url= https://web.archive.org/web/20230806201142/https://what-if.xkcd.com/145/ |archive-date= 2023-08-06 |url-status= live}} [[xkcd]]–author Randall Munroe explains why it's impossible to light a fire with concentrated moonlight using an etendue-conservation argument.
*Xutao Sun ''et al.'', 2006, "Etendue analysis and measurement of light source with elliptical reflector", ''Displays'' (27), 56–61.
* {{cite journal |last1= Sun |first1= Xutao |last2= Zheng |first2= Zhenrong |last3= Liu |first3= Xu |last4= Gu |first4= Peifu |date= March 2006 |title= Etendue Analysis and Measurement of Light Source with Elliptical Reflector |journal= Displays |volume= 27 |issue= 2 |pages= 56–61}}


[[Category:Optics]]
[[Category:Optical quantities]]

Latest revision as of 14:03, 3 December 2024

Conservation of etendue

Etendue or étendue (/ˌtɒnˈd/; French pronunciation: [etɑ̃dy]) is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent,[1] and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor (or shape factor). It is a central concept in nonimaging optics.[2][page needed][3][page needed][4][page needed]

From the source point of view, etendue is the product of the area of the source and the solid angle that the system's entrance pupil subtends as seen from the source. Equivalently, from the system point of view, the etendue equals the area of the entrance pupil times the solid angle the source subtends as seen from the pupil. These definitions must be applied for infinitesimally small "elements" of area and solid angle, which must then be summed over both the source and the diaphragm as shown below. Etendue may be considered to be a volume in phase space.

Etendue never decreases in any optical system where optical power is conserved.[5] A perfect optical system produces an image with the same etendue as the source. The etendue is related to the Lagrange invariant and the optical invariant, which also share the property of being constant in an ideal optical system. The radiance of an optical system is equal to the derivative of the radiant flux with respect to the etendue.

Definition

[edit]
Etendue for a differential surface element in 2D (left) and 3D (right).

An infinitesimal surface element, dS, with normal nS is immersed in a medium of refractive index n. The surface is crossed by (or emits) light confined to a solid angle, dΩ, at an angle θ with the normal nS. The area of dS projected in the direction of the light propagation is dS cos θ. The etendue of an infinitesimal bundle of light crossing dS is defined as

Etendue is the product of geometric extent and the squared refractive index of a medium through which the beam propagates.[1] Because angles, solid angles, and refractive indices are dimensionless quantities, etendue is often expressed in units of area (given by dS). However, it can alternatively be expressed in units of area (square meters) multiplied by solid angle (steradians).[1][6]

In free space

[edit]
Etendue in free space.

Consider a light source Σ, and a light detector S, both of which are extended surfaces (rather than differential elements), and which are separated by a medium of refractive index n that is perfectly transparent (shown). To compute the etendue of the system, one must consider the contribution of each point on the surface of the light source as they cast rays to each point on the receiver.[7][better source needed]

According to the definition above, the etendue of the light crossing towards dS is given by:

where dΩΣ is the solid angle defined by area dS at area , and d is the distance between the two areas. Similarly, the etendue of the light crossing dS coming from is given by:

where dΩS is the solid angle defined by area . These expressions result in

showing that etendue is conserved as light propagates in free space.

The etendue of the whole system is then:

If both surfaces and dS are immersed in air (or in vacuum), n = 1 and the expression above for the etendue may be written as

where FdΣ→dS is the view factor between differential surfaces and dS. Integration on and dS results in G = πΣ FΣ→S which allows the etendue between two surfaces to be obtained from the view factors between those surfaces, as provided in a list of view factors for specific geometry cases or in several heat transfer textbooks.

Conservation

[edit]

The etendue of a given bundle of light is conserved: etendue can be increased, but not decreased in any optical system. This means that any system that concentrates light from some source onto a smaller area must always increase the solid angle of incidence (that is, the area of the sky that the source subtends). For example, a magnifying glass can increase the intensity of sunlight onto a small spot, but does so because, viewed from the spot that the light is concentrated onto, the apparent size of the sun is increased proportional to the concentration.

As shown below, etendue is conserved as light travels through free space and at refractions or reflections. It is then also conserved as light travels through optical systems where it undergoes perfect reflections or refractions. However, if light was to hit, say, a diffuser, its solid angle would increase, increasing the etendue. Etendue can then remain constant or it can increase as light propagates through an optic, but it cannot decrease. This is a direct result of the fact that entropy must be constant or increasing.

Conservation of etendue can be derived in different contexts, such as from optical first principles, from Hamiltonian optics or from the second law of thermodynamics.[2][page needed]

From the perspective of thermodynamics, etendue is a form of entropy. Specifically, the etendue of a bundle of light contributes to the entropy of it by . Etendue may be exponentially decreased by an increase in entropy elsewhere. For example, a material might absorb photons and emit lower-frequency photons, and emit the difference in energy as heat. This increases entropy due to heat, allowing a corresponding decrease in etendue.[8][9]

The conservation of etendue in free space is related to the reciprocity theorem for view factors.

In refractions and reflections

[edit]
Etendue in refraction.

The conservation of etendue discussed above applies to the case of light propagation in free space, or more generally, in a medium of any refractive index. In particular, etendue is conserved in refractions and reflections.[2][page needed] Figure "etendue in refraction" shows an infinitesimal surface dS on the x-y plane separating two media of refractive indices nΣ and nS.

The normal to dS points in the direction of the z-axis. Incoming light is confined to a solid angle dΩΣ and reaches dS at an angle θΣ to its normal. Refracted light is confined to a solid angle dΩS and leaves dS at an angle θS to its normal. The directions of the incoming and refracted light are contained in a plane making an angle φ to the x-axis, defining these directions in a spherical coordinate system. With these definitions, Snell's law of refraction can be written as

and its derivative relative to θ

multiplied by each other result in

where both sides of the equation were also multiplied by dφ which does not change on refraction. This expression can now be written as

Multiplying both sides by dS we get

that is

showing that the etendue of the light refracted at dS is conserved. The same result is also valid for the case of a reflection at a surface dS, in which case nΣ = nS and θΣ = θS.

Brightness theorem

[edit]

A consequence of the conservation of etendue is the brightness theorem, which states that no linear optical system can increase the brightness of the light emitted from a source to a higher value than the brightness of the surface of that source (where "brightness" is defined as the optical power emitted per unit solid angle per unit emitting or receiving area).[10]

Conservation of basic radiance

[edit]

Radiance of a surface is related to etendue by:

where

  • Φe is the radiant flux emitted, reflected, transmitted or received;
  • n is the refractive index in which that surface is immersed;
  • G is the étendue of the light beam.

As the light travels through an ideal optical system, both the etendue and the radiant flux are conserved. Therefore, basic radiance defined as:[11][page needed]

is also conserved. In real systems, the etendue may increase (for example due to scattering) or the radiant flux may decrease (for example due to absorption) and, therefore, basic radiance may decrease. However, etendue may not decrease and radiant flux may not increase and, therefore, basic radiance may not increase.

As a volume in phase space

[edit]
Optical momentum.

In the context of Hamiltonian optics, at a point in space, a light ray may be completely defined by a point r = (x, y, z), a unit Euclidean vector v = (cos αX, cos αY, cos αZ) indicating its direction and the refractive index n at point r. The optical momentum of the ray at that point is defined by

where p‖ = n. The geometry of the optical momentum vector is illustrated in figure "optical momentum".

In a spherical coordinate system p may be written as

from which

and therefore, for an infinitesimal area dS = dx dy on the xy-plane immersed in a medium of refractive index n, the etendue is given by

which is an infinitesimal volume in phase space x, y, p, q. Conservation of etendue in phase space is the equivalent in optics to Liouville's theorem in classical mechanics.[2][page needed] Etendue as volume in phase space is commonly used in nonimaging optics.

Maximum concentration

[edit]
Etendue for a large solid angle.

Consider an infinitesimal surface dS, immersed in a medium of refractive index n crossed by (or emitting) light inside a cone of angle α. The etendue of this light is given by

Noting that n sin α is the numerical aperture NA, of the beam of light, this can also be expressed as

Note that is expressed in a spherical coordinate system. Now, if a large surface S is crossed by (or emits) light also confined to a cone of angle α, the etendue of the light crossing S is

Etendue and ideal concentration.

The limit on maximum concentration (shown) is an optic with an entrance aperture S, in air (ni = 1) collecting light within a solid angle of angle 2α (its acceptance angle) and sending it to a smaller area receiver Σ immersed in a medium of refractive index n, whose points are illuminated within a solid angle of angle 2β. From the above expression, the etendue of the incoming light is

and the etendue of the light reaching the receiver is

Conservation of etendue Gi = Gr then gives

where C is the concentration of the optic. For a given angular aperture α, of the incoming light, this concentration will be maximum for the maximum value of sin β, that is β = π/2. The maximum possible concentration is then[2][page needed][3]

In the case that the incident index is not unity, we have

and so

and in the best-case limit of β = π/2, this becomes

If the optic were a collimator instead of a concentrator, the light direction is reversed and conservation of etendue gives us the minimum aperture, S, for a given output full angle 2α.

See also

[edit]

References

[edit]
  1. ^ a b c "Optical extent / Etendue". CIE e-ILV: International Lighting Vocabulary (2nd ed.). International Commission on Illumination. 17-21-048. Retrieved 19 February 2022.
  2. ^ a b c d e Chaves, Julio (2015). Introduction to Nonimaging Optics (2nd ed.). CRC Press. ISBN 978-1482206739.
  3. ^ a b Winston, Roland; Minano, Juan C.; Benitez, Pablo G. (2004). Nonimaging Optics. Academic Press. ISBN 978-0127597515.
  4. ^ Brennesholtz, Matthew S.; Stupp, Edward H. (2008). Projection Displays. John Wiley & Sons. ISBN 978-0470518038.
  5. ^ "Basic Optics: Radiance" (PDF) (Lecture notes). Astronomy 525. College of Saint Benedict and Saint John's University.
  6. ^ Bureau International des Poids et Mesures (2019). The International System of Units (SI) Brochure (9th ed.). International Bureau of Weights and Measures. ISBN 978-92-822-2272-0.
  7. ^ "Photométrie / Notion d'étendue géométrique" [Photometry / Notion of geometric extent]. Photographie [Photography] (in French). Wikibooks. Retrieved 27 January 2009.
  8. ^ Winston, Roland; Wang, Chunhua; Zhang, Weiya (20 August 2009). Winston, Roland; Gordon, Jeffrey M. (eds.). "Beating the optical Liouville theorem: How does geometrical optics know the second law of thermodynamics?": 742309. doi:10.1117/12.836029. {{cite journal}}: Cite journal requires |journal= (help)
  9. ^ Markvart, T (1 January 2008). "The thermodynamics of optical étendue". Journal of Optics A: Pure and Applied Optics. 10 (1): 015008. doi:10.1088/1464-4258/10/01/015008. ISSN 1464-4258.
  10. ^ Quimby, R. S. (17 March 2006). "Appendix A: Solid Angle and the Brightness Theorem". Photonics and Lasers: An Introduction. Wiley Science Library. pp. 495–498. doi:10.1002/0471791598.app1. ISBN 9780471719748. Retrieved 13 September 2022.
  11. ^ McCluney, William Ross (1994). Introduction to Radiometry and Photometry. Boston: Artech House. ISBN 978-0890066782.

Further reading

[edit]
  • Greivenkamp, John E. (2004). Field Guide to Geometrical Optics. SPIE Field Guides. Vol. FG01. SPIE. ISBN 0-8194-5294-7.
  • Munroe, Randall (n.d.). "Fire from Moonlight". What If?. Archived from the original on 6 August 2023. Retrieved 28 July 2020. xkcd–author Randall Munroe explains why it's impossible to light a fire with concentrated moonlight using an etendue-conservation argument.
  • Sun, Xutao; Zheng, Zhenrong; Liu, Xu; Gu, Peifu (March 2006). "Etendue Analysis and Measurement of Light Source with Elliptical Reflector". Displays. 27 (2): 56–61.