Jump to content

Conversion of units: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AmarDhure (talk | contribs)
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
 
(157 intermediate revisions by 68 users not shown)
Line 1: Line 1:
{{short description|Comparison of various scales}}
{{short description|Comparison of various scales}}
{{selfref|For the conversion of [[MOS:CONVERSIONS|units on Wikipedia]], see [[Template:Convert]]}}
'''Conversion of units''' is the conversion of the [[unit of measurement]] in which a [[quantity]] is expressed, typically through a multiplicative '''conversion factor''' that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.


Unit conversion is often easier within a [[metric system]] such as the [[International System of Units|SI]] than in others, due to the system's [[Coherence (units of measurement)|coherence]] and its [[metric prefix]]es that act as power-of-10 multipliers.
'''Conversion of units''' is the conversion between different [[units of measurement]] for the same [[quantity]], typically through multiplicative '''conversion factors'''.


==Techniques==
== Overview ==
The definition and choice of units in which to express a quantity may depend on the specific situation and the intended purpose. This may be governed by regulation, [[contract]], [[technical specifications]] or other published [[technical standard|standard]]s. Engineering judgment may include such factors as:
* the [[precision and accuracy]] of measurement and the associated [[uncertainty of measurement]]
* the statistical [[confidence interval]] or [[tolerance interval]] of the initial measurement
* the number of [[significant figures]] of the measurement
* the intended use of the measurement, including the [[engineering tolerance]]s
* historical definitions of the units and their derivatives used in old measurements; e.g., [[international foot]] vs. US [[Foot (unit)#Survey foot|survey foot]].


For some purposes, conversions from one system of units to another are needed to be exact, without increasing or decreasing the precision of the expressed quantity. An ''adaptive conversion'' may not produce an exactly equivalent expression. [[Real versus nominal value|Nominal values]] are sometimes allowed and used.
{{see also|Dimensional analysis}}


=== Process overview ===
== Factor–label method ==
{{further|Dimensional analysis}}


The '''factor–label method''', also known as the '''unit–factor method''' or the '''unity bracket method''',<ref name="BodóJones2013">{{cite book |author1=Béla Bodó |url=https://books.google.com/books?id=P46291mjqAsC&q=conversi%C3%B3n+walshaw+methode&pg=SA9-PA129 |title=Introduction to Soil Mechanics |author2=Colin Jones |date=26 June 2013 |publisher=John Wiley & Sons |isbn=978-1-118-55388-6 |pages=9–}}</ref> is a widely used technique for unit conversions that uses the rules of [[algebra]].<ref>{{Cite book |last=Goldberg |first=David |title=Fundamentals of Chemistry |publisher=McGraw-Hill |year=2006 |isbn=978-0-07-322104-5 |edition=5th}}</ref><ref>{{Cite book |last=Ogden |first=James |title=The Handbook of Chemical Engineering |publisher=Research & Education Association |year=1999 |isbn=978-0-87891-982-6}}</ref><ref>{{Cite web |title=Dimensional Analysis or the Factor Label Method |url=http://www.kentchemistry.com/links/Measurements/dimensionalanalysis.htm |website=Mr Kent's Chemistry Page}}</ref>
The process of conversion depends on the specific situation and the intended purpose. This may be governed by regulation, [[contract]], [[technical specifications]] or other published [[technical standard|standard]]s. Engineering judgment may include such factors as:
* The [[precision and accuracy]] of measurement and the associated [[uncertainty of measurement]].
* The statistical [[confidence interval]] or [[tolerance interval]] of the initial measurement.
* The number of [[significant figures]] of the measurement.
* The intended use of the measurement including the [[engineering tolerance]]s.
* Historical definitions of the units and their derivatives used in old measurements; e.g., [[international foot]] vs. US [[Foot (unit)#Survey foot|survey foot]].


The factor–label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained. For example, 10 [[miles per hour]] can be converted to [[metres per second]] by using a sequence of conversion factors as shown below:
Some conversions from one system of units to another need to be exact, without increasing or decreasing the precision of the first measurement. This is sometimes called ''soft conversion''. It does not involve changing the physical configuration of the item being measured.
<math display="block"> \frac{\mathrm{10~\cancel{mi}}}{\mathrm{1~\cancel{h}}} \times \frac{\mathrm{1609.344~m}}{\mathrm{1~\cancel{mi}}} \times \frac{\mathrm{1~\cancel{h}}}{\mathrm{3600~s}} = \mathrm{4.4704~\frac{m}{s}}. </math>


Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the original unit. For example, as "mile" is the numerator in the original fraction and {{tmath|1= \mathrm{1~mi} = \mathrm{1609.344~m} }}, "mile" will need to be the denominator in the conversion factor. Dividing both sides of the equation by 1 mile yields {{tmath|1= \frac{\mathrm{1~mi} }{\mathrm{1~mi} } = \frac{\mathrm{1609.344~m} }{\mathrm{1~mi} } }}, which when simplified results in the dimensionless {{tmath|1= 1 = \frac{\mathrm{1609.344~m} }{\mathrm{1~mi} } }}. Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity.<ref>{{cite web| title = Identity property of multiplication |url = http://www.basic-mathematics.com/identity-property-of-multiplication.html |access-date = 2015-09-09 }}</ref> Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units ''mile'' and ''hour'', 10 miles per hour converts to 4.4704 metres per second.
By contrast, a ''hard conversion'' or an ''adaptive conversion'' may not be exactly equivalent. It changes the measurement to convenient and workable numbers and units in the new system. It sometimes involves a slightly different configuration, or size substitution, of the item.{{clarify|date=December 2017}} [[Real versus nominal value|Nominal values]] are sometimes allowed and used.


As a more complex example, the [[concentration]] of [[nitrogen oxides]] ([[NOx|NO<sub>''x''</sub>]]) in the [[flue gas]] from an industrial [[Industrial furnace|furnace]] can be converted to a [[mass flow rate]] expressed in grams per hour (g/h) of NO<sub>''x''</sub> by using the following information as shown below:
=== Conversion factors ===
; NO<sub>''x''</sub> concentration := 10 [[parts per notation|parts per million]] by volume = 10&nbsp;ppmv = 10 volumes/10<sup>6</sup> volumes
A conversion factor is used to change the units of a measured quantity without changing its value. The '''unity bracket method''' of unit conversion<ref name="BodóJones2013">{{cite book|author1=Béla Bodó|author2=Colin Jones|title=Introduction to Soil Mechanics|url=https://books.google.com/books?id=P46291mjqAsC&pg=SA9-PA129&dq=conversi%C3%B3n+walshaw+methode#v=onepage|date=26 June 2013|publisher=John Wiley & Sons|isbn=978-1-118-55388-6|pages=9–}}</ref> consists of a fraction in which the denominator is equal to the numerator, but they are in different units. Because of the identity property of multiplication, the value of a quantity will not change as long as it is multiplied by one.<ref>{{Cite web|title = Identity property of multiplication|url = http://www.basic-mathematics.com/identity-property-of-multiplication.html|accessdate = 2015-09-09}}</ref> Also, if the numerator and denominator of a fraction are equal to each other, then the fraction is equal to one. So as long as the numerator and denominator of the fraction are equivalent, they will not affect the value of the measured quantity.
; NO<sub>''x''</sub> molar mass := 46&nbsp;kg/kmol = 46&nbsp;g/mol
; Flow rate of flue gas := 20 cubic metres per minute = 20&nbsp;m<sup>3</sup>/min
: The flue gas exits the furnace at 0&nbsp;°C temperature and 101.325&nbsp;kPa absolute pressure.
: The [[standard conditions of temperature and pressure#Molar volume of a gas|molar volume]] of a gas at 0&nbsp;°C temperature and 101.325&nbsp;kPa is 22.414&nbsp;m<sup>3</sup>/[[kmol]].


: <math chem="">
The following example demonstrates how the unity bracket method<ref name="Chadderton2004">{{cite book|url=https://books.google.com/books?id=Aj0TXY4FC44C&pg=PA33&dq=unity+bracket+method#v=onepage|title=Building Services Engineering|author=David V. Chadderton|publisher=Taylor & Francis|year=2004|isbn=978-0-415-31535-7|pages=33–}}</ref> is used to convert the rate 5 kilometers per second to meters per second. The symbols km, m, and s represent kilometer, meter, and second, respectively.
\frac{1000\ \ce{g\ NO}_x}{1 \cancel{\ce{kg\ NO}_x}} \times
\frac{46\ \cancel{\ce{kg\ NO}_x}}{1\ \cancel{\ce{kmol\ NO}_x}} \times
\frac{1\ \cancel{\ce{kmol\ NO}_x}}{22.414\ \cancel{\ce{m}^3\ \ce{NO}_x}} \times
\frac{10\ \cancel{\ce{m}^3\ \ce{NO}_x}}{10^6\ \cancel{\ce{m}^3\ \ce{gas}}} \times
\frac{20\ \cancel{\ce{m}^3\ \ce{gas}}}{1\ \cancel{\ce{minute}}} \times
\frac{60\ \cancel{\ce{minute}}}{1\ \ce{hour}} =
24.63\ \frac{\ce{g\ NO}_x}{\ce{hour}}
</math>


After cancelling any dimensional units that appear both in the numerators and the denominators of the fractions in the above equation, the NO<sub>''x''</sub> concentration of 10&nbsp;ppm<sub>v</sub> converts to mass flow rate of 24.63&nbsp;grams per hour.
<math>\frac{5 \cancel {\text {km}}}{\text {s}}
\cdot</math><math>\frac{{1000 }\text { m}}{{1}{\cancel {\text { km}}}}</math><math>=</math><math>\frac{{5000 \cdot {\text {m}}}}{{\text {s}\cdot {1}}}
=</math><math>\frac {5000{\text { m}}}{\text {s}}</math>


=== Checking equations that involve dimensions ===
Thus, it is found that 5 kilometers per second is equal to 5000 meters per second.
The factor–label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation. Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong.


For example, check the [[Ideal gas law|universal gas law]] equation of {{nowrap|1=''PV'' = ''nRT''}}, when:
=== Software tools ===
* the pressure ''P'' is in pascals (Pa)
There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.
* the volume ''V'' is in cubic metres (m<sup>3</sup>)
* the amount of substance ''n'' is in moles (mol)
* the [[universal gas constant]] ''R'' is 8.3145&nbsp;Pa⋅m<sup>3</sup>/(mol⋅K)
* the temperature ''T'' is in kelvins (K)


<math display="block">\mathrm{Pa{\cdot}m^3} = \frac{\cancel{\mathrm{mol}}}{1} \times
There are many standalone applications that offer the thousands of the various units with conversions. For example, the [[free software movement]] offers a command line utility [https://www.gnu.org/software/units/ GNU units] for Linux and Windows.
\frac{\mathrm{Pa{\cdot}m^3}}{\cancel{\mathrm{mol}}\ \cancel{\mathrm{K}}} \times \frac{\cancel{\mathrm{K}}}{1}
</math>


As can be seen, when the dimensional units appearing in the numerator and denominator of the equation's right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties. The equations may reveal undiscovered or overlooked properties of matter, in the form of left-over dimensions – dimensional adjusters – that can then be assigned physical significance. It is important to point out that such 'mathematical manipulation' is neither without prior precedent, nor without considerable scientific significance. Indeed, the [[Planck constant]], a fundamental physical constant, was 'discovered' as a purely mathematical abstraction or representation that built on the [[Rayleigh–Jeans law]] for preventing the [[ultraviolet catastrophe]]. It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment – not earlier.
=== Calculation involving non-SI Units ===
In the cases where non-[[SI Units|SI units]] are used, the numerical calculation of a formula can be done by first working out the pre-factor, and then plug in the numerical values of the given/known quantities.


=== Limitations ===
For example, in the study of [[Bose–Einstein condensate]]<ref>{{Cite book|last=Foot|first=C. J.|url=https://books.google.com/books/about/Atomic_physics.html?id=kXYpAQAAMAAJ|title=Atomic physics|date=2005|publisher=Oxford University Press|year=|isbn=978-0-19-850695-9|location=|pages=|language=en}}</ref>, [[atomic mass]] {{Math|m}} is usually given in [[Dalton (unit)|daltons]], instead of [[Kilogram|kilograms]], and [[chemical potential]] {{Math|μ}} is often given in [[Boltzmann constant]] times [[nanokelvin]]. The condensate's [[Gross–Pitaevskii equation#Healing length|healing length]] is given by:
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 ([[Level of measurement#Ratio scale|ratio scale]] in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the [[Celsius scale]] and the [[Kelvin scale]] (or the [[Fahrenheit scale]]). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio. There is, however, an [[affine transform]] ({{tmath|1= x \mapsto ax+b }}, rather than a [[linear transform]] {{tmath|1= x \mapsto ax }}) between them.


For example, the freezing point of water is 0&nbsp;°C and 32&nbsp;°F, and a 5&nbsp;°C change is the same as a 9&nbsp;°F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32&nbsp;°F (the offset from the point of reference), divides by 9&nbsp;°F and multiplies by 5&nbsp;°C (scales by the ratio of units), and adds 0&nbsp;°C (the offset from the point of reference). Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100&nbsp;°C and 212&nbsp;°F, which yields the same formula.
: <math>\xi=\frac{\hbar}{\sqrt{2m\mu}}\,.</math>


Hence, to convert the numerical quantity value of a temperature ''T''[F] in degrees Fahrenheit to a numerical quantity value ''T''[C] in degrees Celsius, this formula may be used:
For a <sup>23</sup>Na condensate with chemical potential of (Boltzmann constant times) 128 nK, the calculation of healing length (in [[microns]]) can be done in two steps:
: ''T''[C] = (''T''[F] − 32) × 5/9.


To convert ''T''[C] in degrees Celsius to ''T''[F] in degrees Fahrenheit, this formula may be used:
==== Calculate the pre-factor ====
: ''T''[F] = (''T''[C] × 9/5) + 32.
Assume that <math>m=1 \,\text{dalton},\mu=1\,k_B\cdot\text{nK}\,,</math> this gives


=== Example ===
: <math>\xi=\frac{\hbar}{\sqrt{2m\mu}}=15.574 \,\mu m\,,</math>
Starting with:
: <math>Z = n_i \times [Z]_i</math>
replace the original unit {{tmath|1= [Z]_i }} with its meaning in terms of the desired unit {{tmath|1= [Z]_j }}, e.g. if {{tmath|1= [Z]_i = c_{ij} \times [Z]_j }}, then:
: <math>Z = n_i \times (c_{ij} \times [Z]_j) = (n_i \times c_{ij}) \times [Z]_j</math>


Now {{tmath|1= n_i }} and {{tmath|1= c_{ij} }} are both numerical values, so just calculate their product.
which is our pre-factor.


Or, which is just mathematically the same thing, multiply ''Z'' by unity, the product is still ''Z'':
==== Calculate the numbers ====
: <math>Z = n_i \times [Z]_i \times ( c_{ij} \times [Z]_j/[Z]_i )</math>
Now, make use of the fact that <math>\xi\propto\frac{1}{\sqrt{m\mu}}</math>. With <math>m=23 \,\text{dalton},\mu=128\,k_B\cdot\text{nK}</math>, <math>\xi=\frac{15.574}{\sqrt{23*128}} \,\mu m=0.287\,\mu m</math>.


For example, you have an expression for a physical value ''Z'' involving the unit ''feet per second'' ({{tmath|1= [Z]_i }}) and you want it in terms of the unit ''miles per hour'' ({{tmath|1= [Z]_j }}):
This method is especially useful for programming and/or making a [[worksheet]], where input quantities are taking multiple different values; For example, with the pre-factor calculated above, it's very easy to see that the healing length of <sup>174</sup>Yb with chemical potential 20.3 nK is <math>\xi=\frac{15.574}{\sqrt{174*20.3}} \,\mu m=0.262\,\mu m</math>.


{{ordered list
== Tables of conversion factors ==
|1= Find facts relating the original unit to the desired unit:
{{More citations needed|section|date=January 2011}}
: 1 mile = 5280 feet and 1 hour = 3600 seconds
This article gives lists of conversion factors for each of a number of physical quantities, which are listed in the index. For each physical quantity, a number of different units (some only of historical interest) are shown and expressed in terms of the corresponding SI unit. Conversions between units in the [[metric system]] are defined by their [[SI prefix|prefixes]] (for example, 1 kilogram = 1000&nbsp;grams, 1 milligram = 0.001&nbsp;grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10<sup>−6</sup> metre). Within each table, the units are listed alphabetically, and the [[SI]] units (base or derived) are highlighted.


|2= Next use the above equations to construct a fraction that has a value of unity and that contains units such that, when it is multiplied with the original physical value, will cancel the original units:
{| class="wikitable"
: <math>1 = \frac{1\,\mathrm{mi}}{5280\,\mathrm{ft}}\quad \mathrm{and}\quad 1 = \frac{3600\,\mathrm{s}}{1\,\mathrm{h}}</math>
|+ Legend
! Symbol
! Definition
|-
! ≡
| exactly equal
|-
! ≈
| approximately equal to
|-
! <var>{{overline|digits}}</var>
| indicates that <var>digits</var> repeat infinitely (e.g. {{gaps|8.294|{{overline|369}}}} corresponds to {{gaps|8.294|369|369|369|369|...}})
|-
! (H)
| of chiefly historical interest
|}


|3= Last, multiply the original expression of the physical value by the fraction, called a ''conversion factor'', to obtain the same physical value expressed in terms of a different unit. Note: since valid conversion factors are [[dimensionless]] and have a numerical value of [[one]], multiplying any physical quantity by such a conversion factor (which is 1) does not change that physical quantity.
===Length===
: <math> 52.8\,\frac{\mathrm{ft}}{\mathrm{s}} =
{| class="wikitable"
52.8\,\frac{\mathrm{ft}}{\mathrm{s}}
|+ [[Length]]
\frac{1\,\mathrm{mi}}{5280\,\mathrm{ft}}
!Name of unit
\frac{3600\,\mathrm{s}}{1\,\mathrm{h}} =
!Symbol
\frac {52.8 \times 3600}{5280}\,\mathrm{mi/h}
!width="200pt"|Definition
= 36\,\mathrm{mi/h}</math>
!Relation to SI units
}}
|-
| [[ångström]] || Å
| ≡ {{val|1|e=-10|u=m}}
| ≡ 0.1&nbsp;nm
|-
| [[astronomical unit]] || AU
| ≡ {{val|149597870700|u=m}}<br>≈ Distance from Earth to Sun
| ≡ {{val|149597870700|u=m}} <ref>{{cite document|author=jobs |url=http://www.nature.com/news/the-astronomical-unit-gets-fixed-1.11416 |title=The astronomical unit gets fixed : Nature News & Comment |doi=10.1038/nature.2012.11416 |publisher=Nature.com |date=September 14, 2012|accessdate=August 31, 2013}}</ref>
|-
| [[attometre]] || am
| ≡ {{val|1|e=-18|u=m}}
| ≡ {{val|1|e=-18|u=m}}
|-
| [[Barleycorn (unit)|barleycorn]] (H) || &nbsp;
| = {{frac|3}} [[inch|in]] (see note above about rounding)
| ≈ 8.4{{overline|6}}{{e|-3}} m
|-
| bohr, [[atomic units|atomic unit of length]] || ''a''<sub>0</sub>
| = [[Bohr radius]] of hydrogen
| ≈ {{val|5.2917721092|(17)|e=-11|u=m}}<ref>"[http://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0 NIST Reference on Constants, Units, and Uncertainty."](2010). [[National Institute of Standards and Technology]]. Retrieved October 17, 2014.</ref>
|-
| cable length (imperial) || &nbsp;
| ≡ 608 [[foot (unit)|ft]]
| ≈ 185.3184 m
|-
| [[cable length]] (International) || &nbsp;
| ≡ {{frac|10}} [[nautical mile|nmi]]
| ≡ 185.2 m
|-
| cable length (US) || &nbsp;
| ≡ 720 [[foot (unit)|ft]]
| = 219.456 m
|-
| [[chain (unit)|chain]] ([[Edmund Gunter|Gunter's]]; Surveyor's) || ch
| ≡ 66 [[foot (unit)|ft]] (US) ≡ 4 [[rod (length)|rods]] <ref name="physics.nist.gov">{{cite web|url=https://www.nist.gov/national-institute-standards-and-technology|title=NIST - National Institute of Standards and Technology|website=NIST}}</ref>
| ≈ {{val|20.11684|u=m}}
|-
| [[cubit]] (H) || &nbsp;
| ≡ Distance from fingers to elbow ≈ 18 in
| ≈ 0.5 m
|-
| [[ell]] (H) || ell
| ≡ 45 in <ref name=CRC71>Lide, D. (Ed.). (1990). ''Handbook of Chemistry and Physics'' (71st ed). Boca Raton, FL: CRC Press. Section 1.</ref> (In England usually)
| = 1.143 m
|-
| [[fathom]] || ftm
| ≡ 6&nbsp;ft <ref name=CRC71/>
| = 1.8288 m
|-
| [[femtometre]] || fm
| ≡ {{val|1|e=-15|u=m}}
| ≡ {{val|1|e=-15|u=m}}
|-
| [[Fermi (unit)|fermi]] || fm
| ≡ {{val|1|e=-15|u=m}}<ref name=CRC71/>
| ≡ {{val|1|e=-15|u=m}}
|-
| finger || &nbsp;
| ≡ {{frac|7|8}} in
| = {{val|0.022225|u=m}}
|-
| finger (cloth) || &nbsp;
| ≡ {{frac|4|1|2}} in
| = 0.1143 m
|-
| [[foot (unit)|foot]] (Benoît) (H) || ft (Ben)
|
| ≈ {{val|0.304799735|u=m}}
|-
| foot (Cape) (H) || &nbsp;
|Legally defined as 1.033 English feet in 1859
| ≈ {{val|0.314858|u=m}}
|-
| foot (Clarke's) (H) || ft (Cla)
|
| ≈ {{val|0.3047972654|u=m}}
|-
| foot (Indian) (H) || ft Ind
|
| ≈ {{val|0.304799514|u=m}}
|-
| [[Metric foot|foot, metric]] || mf
| ≡ 300 mm
| ≡ 0.3 m
|-
| foot, metric ([[Mesures usuelles]]) (H)
|
| ≡ {{frac|3}} m
| ≡ 0.{{overline|3}} m
|-
| foot (International) || ft
| ≡ 0.3048 m ≡ {{frac|3}} yd ≡ 12&nbsp;inches
| ≡ 0.3048 m
|-
| foot (Sear's) (H) || ft (Sear)
|
| ≈ {{val|0.30479947|u=m}}
|-
| foot (US Survey) || ft (US)
| ≡ {{frac|{{val|1200}}|{{val|3937}}}} m <ref name="nbs">National Bureau of Standards. (June 30, 1959). ''Refinement of values for the yard and the pound''. Federal Register, viewed September 20, 2006 at [http://www.ngs.noaa.gov/PUBS_LIB/FedRegister/FRdoc59-5442.pdf National Geodetic Survey web site].</ref>
| ≈ {{val|0.304800610|u=m}}
|-
| [[french catheter scale|french]]; charriere || F
| ≡ {{frac|3}} mm
| = 0.{{overline|3}} {{e|-3}} m
|-
| [[furlong]] || fur
| ≡ 10 chains = 660&nbsp;ft = 220 yd <ref name=CRC71/>
| = 201.168 m
|-
| [[hand (unit)|hand]] || &nbsp;
| ≡ 4 in <ref name=CRC71/>
| ≡ 0.1016 m
|-
| [[inch]] (International) || in
| ≡ 2.54&nbsp;cm ≡ {{frac|36}} yd ≡ {{frac|12}}&nbsp;ft
| ≡ 0.0254 m
|-
| [[league (unit)|league]] (land) || lea
| ≈ 1 hour walk, Currently defined in US as 3 Statute miles,<ref name="physics.nist.gov"/> but historically varied from 2 to 9&nbsp;km
| ≈ {{val|4828|u=m}}
|-
| [[light-day]] || &nbsp;
| ≡ 24 light-hours
| ≡ {{val|2.59020683712|e=13|u=m}}
|-
| [[light-hour]] || &nbsp;
| ≡ 60 light-minutes
| ≡ {{val|1.0792528488|e=12|u=m}}
|-
| [[light-minute]] || &nbsp;
| ≡ 60 light-seconds
| ≡ {{val|1.798754748|e=10|u=m}}
|-
| [[light second|light-second]] || &nbsp;
| ≡ Distance light travels in one second in vacuum
| ≡ {{val|299792458|u=m}}
|-
| [[light year|light-year]] || ly
| ≡ Distance light travels in vacuum in 365.25 days <ref>{{cite web|url=https://www.iau.org/public/themes/measuring/|title=International Astronomical Union - IAU|website=www.iau.org}}</ref>
| ≡ {{val|9.4607304725808|e=15|u=m}}
|-
| [[line (unit)|line]] || ln
| ≡ {{frac|12}} in <ref>
Klein, Herbert Arthur.
(1988). ''The Science of Measurement: a Historical Survey''. Mineola, NY: Dover Publications 0-4862-5839-4.</ref>
| = {{gaps|0.002|11{{overline|6}}}} m
|-
| [[link (unit)|link]] (Gunter's; Surveyor's) || lnk
| ≡ {{frac|100}} ch <ref name=CRC71/> ≡ 0.66 [[foot (unit)|ft]] (US) ≡ 7.92&nbsp;in
| ≈ {{val|0.2011684|u=m}}
|-
| link (Ramsden's; Engineer's) || lnk
| ≡ 1&nbsp;ft <ref name=CRC71/>
| = 0.3048 m
|- style="background:#dfd;"
| [[metre]] ([[SI base unit]])<br /><small>(meter)</small> || m
| ≡ Distance light travels in {{frac|{{val|299792458}}}} of a second in vacuum.<ref name=sibaseunits>{{citation|title=The International System of Units, Section 2.1 |publisher=[[Bureau International des Poids et Mesures]] |url=http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ |edition=8 |year=2006 |accessdate=August 26, 2009 |url-status=dead |archiveurl=https://web.archive.org/web/20091001062018/http://www.bipm.org/en/si/si_brochure/chapter2/2-1/ |archivedate=October 1, 2009 }}</ref><br/> ≈ {{frac|{{val|10000000}}}} of the distance from equator to pole.
| ≡ 1 m
|-
| mickey || &nbsp;
| ≡ {{frac|200}} in
| = {{val|1.27|e=-4|u=m}}
|-
| [[micrometre]] (old: micron)|| &mu;; &mu;m
| ≡ {{val|1|e=-6|u=m}}
| ≡ {{val|1|e=-6|u=m}}
|-
| mil; [[thou (unit of length)|thou]] || mil
| ≡ {{val|1|e=-3|u=in}}
| ≡ {{val|2.54|e=-5|u=m}}
|-
| [[Norwegian/Swedish mil|mil]] (Sweden and Norway) || mil
| ≡ 10&nbsp;km
| = {{val|10000|u=m}}
|-
| [[geographical mile|mile (geographical)]] (H) || <!--Please provide a reference for any symbols-->
| ≡ {{val|6082|u=ft}}
| = {{val|1853.7936|u=m}}
|-
| [[mile]] (international) || mi
| ≡ 80 chains ≡ {{val|5280|u=ft}} ≡ {{val|1760|u=yd}}
| ≡ {{val|1609.344|u=m}}
|-
| [[mile]] (tactical or data) ||
| ≡ {{val|6000|u=ft}}
| ≡ {{val|1828.8|u=m}}
|-
| mile (telegraph) (H) || mi
| ≡ {{val|6087|u=ft}}
| = {{val|1855.3176|u=m}}
|-
| mile (US Survey) || mi
| ≡ {{val|5280}} US Survey feet ≡ ({{val|5280}} × {{frac|{{val|1200}}|{{val|3937}}}}) m
| ≈ {{val|1609.347219|u=m}}
|-
| nail (cloth) || &nbsp;
| ≡ {{frac|2|1|4}} in <ref name=CRC71/>
| = {{val|0.05715|u=m}}
|-
| [[nanometre]] || nm
| ≡ {{val|1|e=-9|u=m}}
| ≡ {{val|1|e=-9|u=m}}
|-
| nautical league || NL; nl
| ≡ 3 nmi <ref name=CRC71/>
| = {{val|5556|u=m}}
|-
| nautical mile (Admiralty) || NM (Adm); nmi (Adm)
| = {{val|6080|u=ft}}
| = {{val|1853.184|u=m}}
|-
| [[nautical mile]] (international) || NM; nmi
| ≡ {{val|1852|u=m}}<ref name=Table8>[https://www.bipm.org/en/publications/si-brochure/table8 ''International System of Units,''] {{webarchive |url=https://web.archive.org/web/20080821211324/http://www.bipm.org/en/si/si_brochure/chapter4/table8.html |date=August 21, 2008 }} 8th ed. (2006), [[Bureau International des Poids et Mesures]], Section 4.1 Table 8.</ref>
| ≡ {{val|1852|u=m}}
|-
| nautical mile (US pre 1954) ||
| ≡ 1853.248 m
| ≡ 1853.248 m
|-
| pace || &nbsp;
| ≡ 2.5&nbsp;ft <ref name=CRC71/>
| = 0.762 m
|-
| [[Palm (length)|palm]] || &nbsp;
| ≡ 3 in <ref name=CRC71/>
| = 0.0762 m
|-
| [[parsec]] || pc
| Distant point with a '''''par'''''allax shift of one arc '''''sec'''''ond from a base of one astronomical unit. <br />≡ {{sfrac|{{val|648000}}|{{pi}}}} [[astronomical units|AU]]<ref>{{cite book|bibcode=2000asqu.book.....C|editor-last=Cox|editor-first=Arthur N.|date=2000|title=Allen's Astrophysical Quantities|edition=4th|publisher=AIP Press / Springer|location=New York|isbn=0387987460}}</ref><ref>{{cite book|bibcode=2008gady.book.....B|last1=Binney|first1=James|last2=Tremaine|first2=Scott|date=2008|title=Galactic Dynamics|edition=2nd|isbn=978-0-691-13026-2|publisher=Princeton University Press|location=Princeton, NJ}}</ref>
| ≈ {{val|30856775814913700|u=m}}<ref name=Seidelmann>P. Kenneth Seidelmann, Ed. (1992). ''Explanatory Supplement to the Astronomical Almanac.'' Sausalito, CA: University Science Books. p. 716 and s.v. parsec in Glossary.</ref>
|-
| [[Pica (typography)|pica]] || &nbsp;
| ≡ 12 points
| Dependent on point measures.
|-
| [[picometre]] || pm
| ≡ {{val|1|e=-12|u=m}}
| ≡ {{val|1|e=-12|u=m}}
|-
| [[point (typography)|point]] (American, English)<ref name=whitelaw>Whitelaw, Ian. (2007). [https://books.google.com/books?id=3zgGEWM5-iAC ''A Measure of All Things: The Story of Man and Measurement'']. New York: Macmillan 0-312-37026-1. p. 152.
</ref><ref name=DeVinne>De Vinne, Theodore Low (1900). [https://archive.org/details/practicetypogra03vinngoog ''The practice of typography: a treatise on the processes of type-making, the point system, the names, sizes, styles and prices of plain printing types''] 2nd ed. New York: The Century Co. p. 142&ndash;150.</ref> || pt
| ≡ {{frac|72.272}} [[inch|in]]
| ≈ {{val|0.000351450|u=m}}
|-
| point (Didot; European) <ref name=DeVinne/><ref>Pasko, Wesley Washington (1894). [https://books.google.com/books?id=Z_QUAAAAIAAJ ''American dictionary of printing and bookmaking'']. (1894). New York: Howard Lockwood. p. 521.</ref> || pt
| ≡ {{frac|12}} × {{frac|72}} of [[Foot (unit)#Obsolete use in different countries|pied du roi]];<br /><br />After 1878:<br />≡ {{frac|5|133}}&nbsp;cm
| ≈ {{val|0.00037597|u=m}};<br /><br />After 1878:<br />≈ {{val|0.00037593985|u=m}}
|-
| point ([[PostScript]]) <ref name=whitelaw/>|| pt
| ≡ {{frac|72}} [[inch|in]]
| = {{gaps|0.000|352{{overline|7}}}} m
|-
| point ([[TeX]]) <ref name=whitelaw/>|| pt
| ≡ {{frac|72.27}} [[inch|in]]
| = 0.00{{overline|{{gaps|0|351|4598}}}} m
|-
| quarter || &nbsp;
| ≡ {{frac|4}} yd
| = 0.2286 m
|-
| [[rod (unit)|rod]]; pole; perch (H) || rd
| ≡ {{frac|16|1|2}} ft
| = 5.0292 m
|-
| [[Rope (unit)|rope]] (H) || rope
| ≡ 20&nbsp;ft <ref name=CRC71/>
| = 6.096 m
|-
| [[Shaku (unit)|shaku]] (Japan) ||
| ≡ 10/33 m
| ≈ 0.303 0303 m
|-
| span (H) || &nbsp; 
| ≡ 9 in <ref name=CRC71/>
| = 0.2286 m
|-
| [[spat (unit)|spat]] <ref name=howmany>{{citation | last=Rowlett | first=Russ | url=http://www.ibiblio.org/units/ | title=How Many? A Dictionary of Units of Measurement | year=2005}}</ref> ||
|
| ≡ {{val|1|e=12|u=m}}
|-
| stick (H) || &nbsp;
| ≡ 2 in
| = 0.0508 m
|-
| [[toise]] (French, post 1667) (H) || T
| ≡ 27000/13853 m
| ≈ 1.949 0363 m
|-
| [[twip]] || twp
| ≡ {{frac|1440}} in
| = 1.763{{overline|8}}{{e|−5}} m
|-
| [[x unit]]; siegbahn || xu
|
| ≈ {{val|1.0021|e=-13}} m <ref name=CRC71/>
|-
| [[yard]] (International) || yd
| ≡ 0.9144 m <ref name="nbs"/> ≡ 3&nbsp;ft ≡ 36 in
| ≡ 0.9144 m
|-
| [[yoctometre]] || ym
| ≡ {{val|1|e=-24|u=m}}
| ≡ {{val|1|e=-24|u=m}}
|-
| [[zeptometre]] || zm
| ≡ {{val|1|e=-21|u=m}}
| ≡ {{val|1|e=-21|u=m}}
|}


Or as an example using the metric system, you have a value of fuel economy in the unit ''litres per 100 kilometres'' and you want it in terms of the unit ''microlitres per metre'':
===Area===
: <math> \mathrm{\frac{9\,\rm{L}}{100\,\rm{km}}} =
{| class="wikitable"
\mathrm{\frac{9\,\rm{L}}{100\,\rm{km}}}
|+ [[Surface area|Area]]
\mathrm{\frac{1000000\,\rm{\mu L}}{1\,\rm{L}}}
!Name of unit
\mathrm{\frac{1\,\rm{km}}{1000\,\rm{m}}} =
!Symbol
\frac {9 \times 1000000}{100 \times 1000}\,\mathrm{\mu L/m} =
!Definition
90\,\mathrm{\mu L/m}</math>
!Relation to SI units
|-
| [[acre]] (international) || ac
| ≡ {{nowrap|1 ch × 10 ch}} = {{val|4840|u=sqyd}}
| ≡ {{val|4046.8564224|u=m2}}
|-
| [[acre]] (US survey) || ac
| ≡ 10 sq ch = {{val|4840|u=sqyd}}, also {{val|43560|u=sqft}}
| ≈ {{val|4046.873|u=m2}}<ref>Thompson, A. and Taylor, B.N. (2008). ''Guide for the Use of the International System of Units (SI)''. [[National Institute of Standards and Technology]] Special Publication 811. p. 57.</ref>
|-
| [[Hectare#Are|are]] || a
| ≡ 100&nbsp;m<sup>2</sup>
| ≡ 100&nbsp;m<sup>2</sup>
|-
| [[barn (unit)|barn]] || b
| ≡ 10<sup>−28</sup>&nbsp;m<sup>2</sup>
| ≡ 10<sup>−28</sup>&nbsp;m<sup>2</sup>
|-
| barony || &nbsp;
| ≡ {{val|4000}}&nbsp;ac
| ≡ {{val|1.61874256896|e=7|u=m2}}
|-
| board || bd
| ≡ {{nowrap|1 in × 1 ft}}
| ≡ {{val|7.74192|e=-3|u=m2}}
|-
| boiler horsepower equivalent direct radiation || bhp EDR
| ≡ 1&nbsp;ft<sup>2</sup> × 1&nbsp;bhp / (240&nbsp;BTU<sub>IT</sub>/h)
| ≈ {{val|12.958174|u=m2}}
|-
| circular [[inch]] || circ in
| ≡ {{frac|π|4}}&nbsp;sq&nbsp;in
| ≈ {{val|5.067075|e=-4|u=m2}}
|-
| circular mil; circular thou || circ mil
| ≡ {{frac|π|4}}&nbsp;mil<sup>2</sup>
| ≈ {{val|5.067075|e=-10|u=m2}}
|-
| cord || &nbsp;
| ≡ 192&nbsp;bd
| ≡ {{val|1.48644864|u=m2}}
|-
| [[cuerda]] (PR Survey) || cda
| ≡ 1 cda x 1 cda = {{val|0.971222}} acre
| ≡ {{val|3930.395625|u=m2}}
|-
| [[dunam]] || &nbsp;
| ≡ {{val|1000|u=m2}}
| = {{val|1000|u=m2}}
|-
| [[guntha]] (India) || &nbsp;
| ≡ 121&nbsp;sq&nbsp;yd
| ≈ 101.17&nbsp;m<sup>2</sup>
|-
| [[hectare]] || ha
| ≡ {{val|10000|u=m2}}
| ≡ {{val|10000|u=m2}}
|-
| [[hide (unit)|hide]] || &nbsp;
| ≈ 120 ac (variable)<!-- Definition is "amount of land required to support one peasant family" -->
| ≈ {{val|5|e=5|u=m2}}
|-
| rood || ro
| ≡ {{frac|4}}&nbsp;ac
| = {{val|1011.7141056|u=m2}}
|-
| [[Taiwanese units of measurement#Area|ping]] ||
| ≡ {{frac|20|11}}&nbsp;m × {{frac|20|11}}&nbsp;m
| ≈ {{val|3.306|u=m2}}
|-
| section ||
| ≡ {{nowrap|1 mi × 1 mi}}
| = {{val|2.589988110336|e=6|u=m2}}
|-
| [[shed (physics)|shed]] || &nbsp;
| ≡ 10<sup>−52</sup>&nbsp;m<sup>2</sup>
| = 10<sup>−52</sup>&nbsp;m<sup>2</sup>
|-
| square (roofing) ||
| ≡ {{nowrap|10 ft × 10 ft}}
| = {{val|9.290304|u=m2}}
|-
| square chain (international) || sq ch
| ≡ {{nowrap|66 ft × 66 ft}} = {{frac|10}} ac
| ≡ {{val|404.68564224|u=m2}}
|-
| square chain (US Survey) || sq ch
| ≡ {{nowrap|66 ft (US) × 66 ft (US)}} = {{frac|10}} US survey acre
| ≈ {{val|404.6873|u=m2}}
|-
| [[square foot]] || sq ft
| ≡ {{nowrap|1 ft × 1 ft}}
| ≡ {{val|9.290304|e=-2|u=m2}}
|-
| square [[foot (unit)|foot]] (US Survey) || sq ft
| ≡ {{nowrap|1 ft (US) × 1 ft (US)}}
| ≈ {{val|9.2903411613275|e=-2|u=m2}}
|-
| [[square inch]] || sq in
| ≡ {{nowrap|1 in × 1 in}}
| ≡ {{val|6.4516|e=-4|u=m2}}
|-
| [[square kilometre]] || km<sup>2</sup>
| ≡ 1&nbsp;km × 1&nbsp;km
| = 10<sup>6</sup> m<sup>2</sup>
|-
| square link (Gunter's)(International) || sq lnk
| ≡ 1 lnk × 1 lnk ≡ 0.66&nbsp;ft × 0.66&nbsp;ft
| = {{val|4.0468564224|e=-2|u=m2}}
|-
| square link (Gunter's)(US Survey) || sq lnk
| ≡ {{nowrap|1 lnk × 1 lnk}} ≡ {{nowrap|0.66 ft (US) × 0.66 ft (US)}}
| ≈ {{val|4.046872|e=-2|u=m2}}
|-
| square link (Ramsden's) || sq lnk
| ≡ 1 lnk × 1 lnk ≡ 1&nbsp;ft × 1&nbsp;ft
| = {{val|0.09290304|u=m2}}
|- style="background:#dfd;"
| [[square metre]] (SI unit) || m<sup>2</sup>
| ≡ 1 [[Metre|m]] × 1 m
| = 1 m<sup>2</sup>
|-
| square mil; square thou || sq mil
| ≡ 1 mil × 1 mil
| = {{val|6.4516|e=-10|u=m2}}
|-
| square [[mile]] || sq mi
| ≡ 1&nbsp;mi × 1&nbsp;mi
| ≡ {{val|2.589988110336|e=6|u=m2}}
|-
| square [[mile]] (US Survey) || sq mi
| ≡ 1&nbsp;mi (US) × 1&nbsp;mi (US)
| ≈ {{val|2.58999847|e=6|u=m2}}
|-
| square rod/pole/perch || sq rd
| ≡ 1 rd × 1 rd
| = {{val|25.29285264|u=m2}}
|-
| [[square yard]] (International) || sq yd
| ≡ 1 yd × 1 yd
| ≡ {{val|0.83612736|u=m2}}
|-
| [[stremma]] || &nbsp;
| ≡ {{val|1000|u=m2}}
| = {{val|1000|u=m2}}
|-
| [[survey township|township]] || &nbsp;
| ≡ 36 sq mi (US)
| ≈ {{val|9.323994|e=7|u=m2}}
|-
| [[virgate|yardland]] || &nbsp;
| ≈ 30 ac
| ≈ {{val|1.2|e=5|u=m2}}
|}


== Calculation involving non-SI Units ==
===Volume===
In the cases where non-[[SI Units|SI units]] are used, the numerical calculation of a formula can be done by first working out the factor, and then plug in the numerical values of the given/known quantities.
{| class="wikitable"
|+ [[Volume]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[acre-foot]] || ac ft
| ≡ 1 ac x 1&nbsp;ft = {{val|43560|u=cuft}}
| = {{val|1233.48183754752|u=m3}}
|-
| acre-inch || &nbsp;
| ≡ 1 ac × 1 in
| = {{val|102.79015312896|u=m3}}
|-
| [[barrel (unit)|barrel]] (imperial) || bl (imp)
| ≡ 36 gal (imp)
| = {{val|0.16365924|u=m3}}
|-
| barrel (petroleum); archaic blue-barrel || bl; bbl
| ≡ 42 gal (US)
| = {{val|0.158987294928|u=m3}}
|-
| barrel (US dry) || bl (US)
| ≡ 105 qt (US) = 105/32 bu (US lvl)
| = {{val|0.115628198985075|u=m3}}
|-
| barrel (US fluid) || fl bl (US)
| ≡ {{frac|31|1|2}} gal (US)
| = {{val|0.119240471196|u=m3}}
|-
| [[board-foot]] || fbm
| ≡ 144 cu in
| ≡ {{val|2.359737216|e=-3|u=m3}}
|-
| bucket (imperial) || bkt
| ≡ 4 gal (imp)
| = {{val|0.01818436|u=m3}}
|-
| [[bushel]] (imperial) || bu (imp)
| ≡ 8 gal (imp)
| = {{val|0.03636872|u=m3}}
|-
| bushel (US dry heaped) || bu (US)
| ≡ {{frac|1|1|4}} bu (US lvl)
| = {{val|0.0440488377086|u=m3}}
|-
| bushel (US dry level) || bu (US lvl)
| ≡ {{val|2150.42|u=cuin}}
| = {{val|0.03523907016688|u=m3}}
|-
| [[butt (unit)|butt]], pipe || &nbsp;
| ≡ 126 gal (US) (wine)
| = {{val|0.476961884784|u=m3}}
|-
| [[coomb (unit)|coomb]] || &nbsp;
| ≡ 4 bu (imp)
| = {{val|0.14547488|u=m3}}
|-
| cord ([[Cord Measure|firewood]]) || &nbsp;
| ≡ {{nowrap|8 ft × 4 ft × 4 ft}}
| = {{val|3.624556363776|u=m3}}
|-
| cord-foot || &nbsp;
| ≡ 16 cu ft
| = {{val|0.453069545472|u=m3}}
|-
| cubic [[fathom]] || cu fm
| ≡ 1 fm × 1 fm × 1 fm
| = {{val|6.116438863872|u=m3}}
|-
| [[cubic foot]] || ft<sup>3</sup>
| ≡ 1&nbsp;ft × 1&nbsp;ft × 1&nbsp;ft
| ≡ {{val|0.028316846592|u=m3}}
|-
| cubic [[inch]] || in<sup>3</sup>
| ≡ 1 in × 1 in × 1 in
| ≡ {{val|16.387064|e=-6|u=m3}}
|- style="background:#dfd;"
| [[cubic metre]] (SI unit) || m<sup>3</sup>
| ≡ 1 m × 1 m × 1 m
| ≡ 1 m<sup>3</sup>
|-
| cubic [[mile]] || cu mi
| ≡ 1&nbsp;mi × 1&nbsp;mi × 1&nbsp;mi
| ≡ {{val|4168181825.440579584|u=m3}}
|-
| cubic [[yard]] || yd<sup>3</sup>
| ≡ 27 cu ft
| ≡ {{val|0.764554857984|u=m3}}
|-
| [[cup (unit)|cup]] (breakfast) || &nbsp;
| ≡ 10 fl oz (imp)
| = {{val|284.130625|e=-6|u=m3}}
|-
| cup (Canadian) || c (CA)
| ≡ 8 fl oz (imp)
| = {{val|227.3045|e=-6|u=m3}}
|-
| cup (metric) || c
| ≡ {{val|250.0|e=-6|u=m3}}
| = {{val|250.0|e=-6|u=m3}}
|-
| cup (US customary) || c (US)
| ≡ 8 US fl oz ≡ {{frac|16}} gal (US)
| = {{val|236.5882365|e=-6|u=m3}}
|-
| cup (US food nutrition labeling) || c (US)
| ≡ 240&nbsp;mL<ref name=cfr21>{{citation | url=http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div8&view=text&node=21:2.0.1.1.2.1.1.6&idno=21 | title=US Code of Federal Regulations, Title 21, Section 101.9, Paragraph (b)(5)(viii) | accessdate=August 29, 2009 | url-status=dead | archiveurl=https://web.archive.org/web/20090813113845/http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=77734a162c4f7ddd997233b4d623c029&rgn=div8&view=text&node=21%3A2.0.1.1.2.1.1.6&idno=21 | archivedate=August 13, 2009 }}</ref>
| = {{val|2.4|e=-4|u=m3}}
|-
| dash (imperial) || &nbsp;
| ≡ {{frac|384}} gi (imp) = {{frac|2}} pinch (imp)
| = {{gaps|369.961|751|302|08{{overline|3}}}}{{e|−9}} m<sup>3</sup>
|-
| dash (US) || &nbsp;
| ≡ {{frac|96}} US fl oz = {{frac|2}} US pinch
| = {{val|308.057599609375|e=-9|u=m3}}
|-
| [[dessertspoon]] (imperial) || &nbsp;
| ≡ {{frac|12}} gi (imp)
| = {{gaps|11.838|776|041{{overline|6}}}}{{e|−6}} m<sup>3</sup>
|-
| [[drop (unit)|drop]] (imperial) || gtt
| ≡ {{frac|288}} fl oz (imp)
| = {{gaps|98.656|467|013{{overline|8}}}}{{e|−9}} m<sup>3</sup>
|-
| drop (imperial) (alt) || gtt
| ≡ {{frac|{{val|1824}}}} gi (imp)
| ≈ {{val|77.886684|e=-9|u=m3}}
|-
| drop (medical) || &nbsp;
| ≡ {{frac|0.9964|12}} ml
| = 83.0{{overline|3}}{{e|−9}} m<sup>3</sup>
|-
| drop (medical) || &nbsp;
| ≡ {{frac|12}} ml
| = 83.{{overline|3}}{{e|−9}} m<sup>3</sup>
|-
| drop (metric) || &nbsp;
| ≡ {{frac|20}} mL
| = {{val|50.0|e=-9|u=m3}}
|-
| drop (US) || gtt
| ≡ {{frac|360}} US fl oz
| = {{gaps|82.148|693|229|1{{overline|6}}}}{{e|−9}} m<sup>3</sup>
|-
| drop (US) (alt) || gtt
| ≡ {{frac|456}} US fl oz
| ≈ {{val|64.85423149671|e=-9|u=m3}}
|-
| drop (US) (alt) || gtt
| ≡ {{frac|576}} US fl oz
| ≈ {{val|51.34293326823|e=-9|u=m3}}
|-
| fifth || &nbsp;
| ≡ {{frac|5}} US gal
| = {{val|757.0823568|e=-6|u=m3}}
|-
| [[English brewery cask units#Firkin|firkin]] || &nbsp;
| ≡ 9 gal (imp)
| = {{val|0.04091481|u=m3}}
|-
| [[dram (unit)|fluid drachm]] (imperial) || fl dr
| ≡ {{frac|8}} fl oz (imp)
| = {{val|3.5516328125|e=-6|u=m3}}
|-
| [[dram (unit)|fluid dram]] (US); US fluidram || fl dr
| ≡ {{frac|8}} US fl oz
| = {{val|3.6966911953125|e=-6|u=m3}}
|-
| [[fluid scruple]] (imperial) || fl s
| ≡ {{frac|24}} fl oz (imp)
| = {{gaps|1.183|877|604|1{{overline|6}}}}{{e|−6}} m<sup>3</sup>
|-
| [[gallon]] (beer) || beer gal
| ≡ 282 cu in
| = {{val|4.621152048|e=-3|u=m3}}
|-
| gallon (imperial) || gal (imp)
| ≡ {{val|4.54609|u=L}}
| ≡ {{val|4.54609|e=-3|u=m3}}
|-
| gallon (US dry) || gal (US)
| ≡ {{frac|8}} bu (US lvl)
| = {{val|4.40488377086|e=-3|u=m3}}
|-
| gallon (US fluid; Wine) || gal (US)
| ≡ 231 cu in
| ≡ {{val|3.785411784|e=-3|u=m3}}
|-
|[[Gill (unit)|gill]] (imperial); Noggin || gi (imp); nog
| ≡ 5 fl oz (imp)
| = {{val|142.0653125|e=-6|u=m3}}
|-
| gill (US) || gi (US)
| ≡ 4 US fl oz
| = {{val|118.29411825|e=-6|u=m3}}
|-
| [[hogshead]] (imperial) || hhd (imp)
| ≡ 2 bl (imp)
| = {{val|0.32731848|u=m3}}
|-
| hogshead (US) || hhd (US)
| ≡ 2 fl bl (US)
| = {{val|0.238480942392|u=m3}}
|-
| [[jigger (bartending)]] || &nbsp;
| ≡ {{frac|1|1|2}} US fl oz
| ≈ {{val|44.36|e=-6|u=m3}}
|-
| [[kilderkin]] || &nbsp;
| ≡ 18 gal (imp)
| = {{val|0.08182962|u=m3}}
|-
| [[lambda (unit)|lambda]] || λ
| ≡ 1&nbsp;mm<sup>3</sup>
| = {{val|1|e=-9|u=m3}}
|-
| [[last (unit)|last]] || &nbsp;
| ≡ 80 bu (imp)
| = {{val|2.9094976|u=m3}}
|-
| [[litre]]<br /><small>(liter)</small> || L ''or'' l
| ≡ 1 dm<sup>3</sup> <ref name=specpub330>Barry N. Taylor, Ed.,[http://physics.nist.gov/Pubs/SP330/sp330.pdf ''NIST Special Publication 330: The International System of Units (SI)''] (2001 Edition), Washington: US Government Printing Office, 43,"The 12th Conference Generale des Poids et Mesures (CGPM)...declares that the word "litre" may be employed as a special name for the cubic decimetre".</ref>
| ≡ 0.001 m<sup>3</sup>
|-
| load || &nbsp;
| ≡ 50 cu ft
| = {{val|1.4158423296|u=m3}}
|-
| [[minim (unit)|minim]] (imperial) || min
| ≡ {{frac|480}} fl oz (imp) = 1/60 fl dr (imp)
| = {{gaps|59.193|880|208{{overline|3}}}}{{e|−9}} m<sup>3</sup>
|-
| minim (US) || min
| ≡ {{frac|480}} US fl oz = {{frac|60}} US fl dr
| = {{val|61.611519921875|e=-9|u=m3}}
|-
| [[fluid ounce|ounce]] (fluid imperial) || fl oz (imp)
| ≡ {{frac|160}} gal (imp)
| ≡ {{val|28.4130625|e=-6|u=m3}}
|-
| [[fluid ounce|ounce]] (fluid US customary) || US fl oz
| ≡ {{frac|128}} gal (US)
| ≡ {{val|29.5735295625|e=-6|u=m3}}
|-
| ounce (fluid US food nutrition labeling) || US fl oz
| ≡ 30&nbsp;mL<ref name="cfr21"/>
| ≡ {{val|3|e=-5|u=m3}}
|-
| [[peck]] (imperial) || pk
| ≡ 2 gal (imp)
| = {{val|9.09218|e=-3|u=m3}}
|-
| peck (US dry) || pk
| ≡ {{frac|4}} US lvl bu
| = {{val|8.80976754172|e=-3|u=m3}}
|-
| [[perch (length)|perch]] || per
| ≡ {{nowrap|{{frac|16|1|2}} ft × {{frac|1|1|2}} ft × 1 ft}}
| = {{val|0.700841953152|u=m3}}
|-
| pinch (imperial) || &nbsp;
| ≡ {{frac|192}} gi (imp) = 1/16 tsp (imp)
| = {{gaps|739.923|502|604|1{{overline|6}}}}{{e|−9}} m<sup>3</sup>
|-
| pinch (US) || &nbsp;
| ≡ {{frac|48}} US fl oz = 1/16 US tsp
| = {{val|616.11519921875|e=-9|u=m3}}
|-
| [[pint]] (imperial) || pt (imp)
| ≡ {{frac|8}} gal (imp)
| = {{val|568.26125|e=-6|u=m3}}
|-
| pint (US dry) || pt (US dry)
| ≡ {{frac|64}} bu (US lvl) ≡ {{frac|8}} gal (US dry)
| = {{val|550.6104713575|e=-6|u=m3}}
|-
| pint (US fluid) || pt (US fl)
| ≡ {{frac|8}} gal (US)
| = {{val|473.176473|e=-6|u=m3}}
|-
| pony || &nbsp;
| ≡ {{frac|3|4}} US fl oz
| = {{val|22.180147171875|e=-6|u=m3}}
|-
| pottle; quartern || &nbsp;
| ≡ {{frac|2}} gal (imp) = 80 fl oz (imp)
| = {{val|2.273045|e=-3|u=m3}}
|-
| [[quart]] (imperial) || qt (imp)
| ≡ {{frac|4}} gal (imp)
| = {{val|1.1365225|e=-3|u=m3}}
|-
| quart (US dry) || qt (US)
| ≡ {{frac|32}} bu (US lvl) = {{frac|4}} gal (US dry)
| = {{val|1.101220942715|e=-3|u=m3}}
|-
| quart (US fluid) || qt (US)
| ≡ {{frac|4}} gal (US fl)
| = {{val|946.352946|e=-6|u=m3}}
|-
| quarter; pail || &nbsp;
| ≡ 8 bu (imp)
| = {{val|0.29094976|u=m3}}
|-
| register ton || &nbsp;
| ≡ 100 cu ft
| = {{val|2.8316846592|u=m3}}
|-
| sack (US) || &nbsp;
| ≡ 3 bu (US lvl)
| = {{val|0.10571721050064|u=m3}}
|-
| seam || &nbsp;
| ≡ 8 bu <ref name=howmany/>
| = {{val|0.29095|u=m3}}
|-
| shot (US) || &nbsp;
| usually 1.5 US fl oz<ref name=howmany/>
| ≈ {{val|44.4|e=-6|u=m3}}
|-
| strike (imperial) || &nbsp;
| ≡ 2 bu (imp)
| = {{val|0.07273744|u=m3}}
|-
| strike (US) || &nbsp;
| ≡ 2 bu (US lvl)
| = {{val|0.07047814033376|u=m3}}
|-
| [[tablespoon]] (Australian metric) || &nbsp;
|
| ≡ {{val|20.0|e=-6|u=m3}}
|-
| tablespoon (Canadian) || tbsp
| ≡ {{frac|2}} fl oz (imp)
| = {{val|14.20653125|e=-6|u=m3}}
|-
| tablespoon (imperial) || tbsp
| ≡ {{frac|5|8}} fl oz (imp)
| = {{val|17.7581640625|e=-6|u=m3}}
|-
| tablespoon (metric) || &nbsp;
|
| ≡ {{val|15.0|e=-6|u=m3}}
|-
| tablespoon (US customary) || tbsp
| ≡ {{frac|2}} US fl oz
| = {{val|14.78676478125|e=-6|u=m3}}
|-
| tablespoon (US food nutrition labeling) || tbsp
| ≡ 15&nbsp;mL<ref name="cfr21"/>
| = {{val|1.5|e=-5|u=m3}}
|-
| [[teaspoon]] (Canadian) || tsp
| ≡ {{frac|6}} fl oz (imp)
| = {{gaps|4.735|510|41{{overline|6}}}}{{e|−6}} m<sup>3</sup>
|-
| teaspoon (imperial) || tsp
| ≡ {{frac|24}} gi (imp)
| = {{gaps|5.919|388|020|8{{overline|3}}}}{{e|−6}} m<sup>3</sup>
|-
| teaspoon (metric) || &nbsp;
| ≡ {{val|5.0|e=-6|u=m3}}
| = {{val|5.0|e=-6|u=m3}}
|-
| teaspoon (US customary) || tsp
| ≡ {{frac|6}} US fl oz
| = {{val|4.92892159375|e=-6|u=m3}}
|-
| teaspoon (US food nutrition labeling) || tsp
| ≡ 5&nbsp;mL<ref name="cfr21"/>
| = {{val|5|e=-6|u=m3}}
|-
| [[timber foot]] || &nbsp;
| ≡ 1 cu ft
| = {{val|0.028316846592|u=m3}}
|-
| [[ton]] (displacement) || &nbsp;
| ≡ 35 cu ft
| = {{val|0.99108963072|u=m3}}
|-
| ton (freight) || &nbsp;
| ≡ 40 cu ft
| = {{val|1.13267386368|u=m3}}
|-
| ton (water) || &nbsp;
| ≡ 28 bu (imp)
| = {{val|1.01832416|u=m3}}
|-
| [[ton|tun]] || &nbsp;
| ≡ 252 gal (wine)
| = {{val|0.953923769568|u=m3}}
|-
| [[wey (unit)|wey]] (US) || &nbsp;
| ≡ 40 bu (US lvl)
| = {{val|1.4095628066752|u=m3}}
|}


For example, in the study of [[Bose–Einstein condensate]],<ref>{{Cite book |last=Foot |first=C. J. |url=https://books.google.com/books?id=kXYpAQAAMAAJ|title=Atomic physics |date=2005|publisher=Oxford University Press |isbn=978-0-19-850695-9|language=en}}</ref> [[atomic mass]] {{math|''m''}} is usually given in [[Dalton (unit)|daltons]], instead of [[kilogram]]s, and [[chemical potential]] {{math|''μ''}} is often given in the [[Boltzmann constant]] times [[nanokelvin]]. The condensate's [[Gross–Pitaevskii equation#Healing length|healing length]] is given by:
===Plane angle===
<math display="block">\xi=\frac{\hbar}{\sqrt{2m\mu}}\,.</math>
{| class="wikitable"
|+ [[Angle|Plane angle]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[Milliradian|NATO mil]] || ([[Milliradian#Definitions for maps and artillery|various]])
| ≡ {{frac|2π|{{val|6400}}}} rad
| ≈ {{val|0.981748|e=-3|u=rad}}
|-
| [[Milliradian|Swedish streck]] ||
| ≡ {{frac|2π|{{val|6300}}}} rad
| ≈ {{val|0.997302|e=-3|u=rad}}
|-
| [[milliradian]] || mrad
| ≡ {{frac|1|1000}}&nbsp;rad
| ≈ {{val|1|e=-3|u=rad}}
|-
| [[Milliradian|Warsaw Pact mil]] ||
| ≡ {{frac|2π|{{val|6000}}}} rad
| ≈ {{val|1.047167|e=-3|u=rad}}
|-
| [[minute of arc|arcminute]]; MOA|| '
| ≡ {{frac|1°|60}}
| ≈ {{val|0.290888|e=-3|u=rad}}
|-
| [[arcsecond]] || "
| ≡ {{frac|1°|{{val|3600}}}}
| ≈ {{val|4.848137|e=-6|u=rad}}
|-
| centesimal [[minute of arc]] || '
| ≡ {{frac|100}} grad
| ≈ {{val|0.157080|e=-3|u=rad}}
|-
| centesimal [[second of arc]] || "
| ≡ {{frac|{{val|10000}}}} grad
| ≈ {{val|1.570796|e=-6|u=rad}}
|-
| [[degree (angle)|degree (of arc)]] || °
| ≡ {{frac|360}} of a revolution ≡ {{frac|π|180}} rad
| ≈ {{val|17.453293|e=-3|u=rad}}
|-
| [[grad (angle)|grad]]; gradian; gon || grad
| ≡ {{frac|400}} of a revolution ≡ {{frac|π|200}} rad ≡ 0.9°
| {{nowrap|≈ {{val|15.707963|e=-3|u=rad}}}} <!-- used nowrap here to prevent wrapping of units for entire column -->
|-
| [[octant (plane geometry)|octant]] || &nbsp;
| ≡ 45°
| ≈ {{val|0.785398|u=rad}}
|-
| [[Circular sector|quadrant]] || &nbsp;
| ≡ 90°
| ≈ {{val|1.570796|u=rad}}
|- style="background:#dfd;"
| [[radian]] (SI unit) || rad
| The angle subtended at the center of a circle by<br>
an arc whose length is equal to the circle's radius.<br>One full revolution encompasses 2π radians.
| = 1 rad
|-
| sextant || &nbsp;
| ≡ 60°
| ≈ {{val|1.047198|u=rad}}
|-
| sign || &nbsp;
| ≡ 30°
| ≈ {{val|0.523599|u=rad}}
|}


For a <sup>23</sup>Na condensate with chemical potential of (the Boltzmann constant times) 128&nbsp;nK, the calculation of healing length (in micrometres) can be done in two steps:
===Solid angle===
{| class="wikitable"
|+ [[Solid angle]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[spat (unit)|spat]] ||
| {{nowrap|≡ 4π sr}}<ref name="howmany"/> – The solid angle subtended by a [[sphere]] at its centre.
| {{nowrap|≈ {{val|12.56637|u=sr}}}}
|-
| [[square degree]] || deg<sup>2</sup>; sq.deg.; (°)<sup>2</sup>
| {{nowrap|≡ ({{frac|π|180}})<sup>2</sup> sr}}
| {{nowrap|≈ {{val|0.30462|e=-3}} sr}}
|- style="background:#dfd;"
| [[steradian]] (SI unit) || sr
| The solid angle subtended at the center of a sphere of radius ''r''<br>
by a portion of the surface of the sphere having an area ''r''<sup>2</sup>.<br>A sphere subtends 4π&nbsp;sr.<ref name="howmany"/>
| = 1 sr
|}


===Mass===
=== Calculate the factor ===
Assume that {{tmath|1= m=1 \,\text{Da},\mu = k_\text{B}\cdot 1\,\text{nK} }}, this gives
Notes:
<math display="block">\xi=\frac{\hbar}{\sqrt{2m\mu}} = 15.574 \,\mathrm{\mu m}\,,</math>
* See [[Weight]] for detail of mass/weight distinction and conversion.
which is our factor.
* [[Avoirdupois]] is a system of mass based on a pound of 16 ounces, while [[Troy weight]] is the system of mass where 12 troy ounces equals one troy pound.
* In this table, the unit ''gee'' is used to denote [[standard gravity]] in order to avoid confusion with the "g" symbol for grams.


=== Calculate the numbers ===
{| class="wikitable"
Now, make use of the fact that {{tmath|1= \xi\propto\frac{1}{\sqrt{m\mu} } }}. With {{tmath|1= m=23 \,\text{Da},\mu=128\,k_\text{B}\cdot\text{nK} }}, {{tmath|1= \xi=\frac{15.574}{\sqrt{23 \cdot 128} } \,\text{μm}=0.287\,\text{μm} }}.
|+ [[Mass]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[unified atomic mass unit|atomic mass unit, unified]] || u; AMU
|Same as ''dalton'' (see below)
| ≈ {{val|1.660539040|(20)|e=-27|u=kg}}<ref name="physics.nist.gov"/>
|-
| [[atomic units|atomic unit of mass]], [[electron]] rest mass || ''m''<sub>e</sub>
|
| ≈ {{val|9.10938291|(40)|e=-31|u=kg}}<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?ttme|search_for=atomic+unit+of+mass ''CODATA Value: atomic unit of mass.''] (2010). [[National Institute of Standards and Technology]]. Retrieved 29 May 2015.</ref>
|-
| bag ([[coffee]]) || &nbsp;
| ≡ 60&nbsp;kg
| = 60&nbsp;kg
|-
| bag ([[Portland cement]])|| &nbsp;
| ≡ 94&nbsp;lb av
| = {{val|42.63768278|u=kg}}
|-
| barge || &nbsp;
| ≡ {{frac|22|1|2}} short ton
| = {{val|20411.65665|u=kg}}
|-
| [[Carat (unit)|carat]] || kt
| ≡ {{frac|3|1|6}} gr
| = {{val|205.196548}}{{overline|3}}&nbsp;mg
|-
| [[Carat (unit)|carat]] (metric) || ct
| ≡ 200&nbsp;mg
| = 200&nbsp;mg
|-
| [[clove (weight)|clove]] || &nbsp;
| ≡ 8&nbsp;lb av
| = {{val|3.62873896|u=kg}}
|-
| crith || &nbsp;
| ≡ mass of 1 L of hydrogen gas at [[Standard conditions for temperature and pressure|STP]]
| ≈ 89.9349&nbsp;mg
|-
| [[dalton (unit)|dalton]] || Da
| 1/12 the mass of an [[Chemical bond|unbound]] neutral atom of<br>[[carbon-12]] in its nuclear and electronic<br>[[ground state]] and [[invariant mass|at rest]]
| ≈ {{val|1.660538921|(73)|e=-27|u=kg}}<ref name="physics.nist.gov"/>
|-
| [[dram (unit)|dram]] (apothecary; [[troy weight|troy]]) || dr t
| ≡ 60 gr
| = {{val|3.8879346|u=g}}
|-
| [[Avoirdupois|dram]] (avoirdupois) || dr av
| ≡ {{frac|27|11|32}} gr
| = {{val|1.7718451953125|u=g}}
|-
| [[electronvolt]] || eV
| ≡ 1 eV (energy unit) / [[speed of light|''c'']]<sup>2</sup>
| = {{val|1.78266184|(45)|e=-36|u=kg}}<ref name="physics.nist.gov"/>
|-
| gamma || γ
| ≡ 1 μg
| = 1 μg
|-
| [[grain (measure)|grain]] || gr
| ≡ {{frac|{{val|7000}}}}&nbsp;lb av
| ≡ {{val|64.79891|u=mg}}
|-
| [[Grave (mass)|grave]] || gv.
| grave was the original name of the kilogram
| ≡ 1&nbsp;kg
|-
| [[hundredweight]] (long) || long cwt or cwt
| ≡ 112&nbsp;lb av
| = {{val|50.80234544|u=kg}}
|-
| [[hundredweight]] (short); cental || sh cwt
| ≡ 100&nbsp;lb av
| = {{val|45.359237|u=kg}}
|- style="background:#dfd;"
| [[kilogram]]<br /><small>(kilogramme)</small>|| kg
| ≡ mass of the prototype near Paris<br>≈ mass of 1&nbsp;litre of water
| ≡ 1&nbsp;kg ([[SI base unit]])<ref name="sibaseunits"/>
|-
| [[kip (unit)|kip]] || kip
| ≡ {{val|1000|u=lb}} av<!--KIloPound-->
| = {{val|453.59237|u=kg}}
|-
| [[mark (unit)|mark]] || &nbsp;
| ≡ 8 oz t
| = {{val|248.8278144|u=g}}
|-
| mite || &nbsp;
| ≡ {{frac|20}} gr
| = {{val|3.2399455|u=mg}}
|-
| mite (metric) || &nbsp;
| ≡ {{frac|20}} g
| = 50&nbsp;mg
|-
| [[troy ounce|ounce (apothecary; troy)]] || oz t
| ≡ {{frac|12}}&nbsp;lb t
| = {{val|31.1034768|u=g}}
|-
| [[ounce]] ([[avoirdupois]]) || oz av
| ≡ {{frac|16}}&nbsp;lb
| = {{val|28.349523125|u=g}}
|-
| ounce (US food nutrition labelling) || oz
| ≡ 28&nbsp;g<ref name="cfr21"/>
| = 28&nbsp;g
|-
| [[pennyweight]] || dwt; pwt
| ≡ {{frac|20}} oz t
| = {{val|1.55517384|u=g}}
|-
| [[point (gemstone)|point]] || &nbsp;
| ≡ {{frac|100}} ct
| = 2&nbsp;mg
|-
| [[pound (mass)|pound (avoirdupois)]] || lb av
| ≡ {{val|0.45359237|u=kg}} = {{val|7000}} grains
| ≡ {{val|0.45359237|u=kg}}
|-
| [[pound (mass)|pound (metric)]] || &nbsp;
| ≡ 500 g
| = 500 g
|-
| [[pound (mass)|pound (troy)]] || lb t
| ≡ {{val|5760}} grains
| = {{val|0.3732417216|u=kg}}
|-
| quarter (imperial) || &nbsp;
| ≡ {{frac|4}} long cwt = 2 st = 28&nbsp;lb av
| = {{val|12.70058636|u=kg}}
|-
| quarter (informal)|| &nbsp;
| ≡ {{frac|4}} short ton
| = {{val|226.796185|u=kg}}
|-
| quarter, long (informal)|| &nbsp;
| ≡ {{frac|4}} long ton
| = {{val|254.0117272|u=kg}}
|-
| [[quintal (unit of mass)|quintal]] (metric) || q
| ≡ 100&nbsp;kg
| = 100&nbsp;kg
|-
| [[apothecaries' system|scruple]] ([[apothecary]]) || s ap
| ≡ 20 gr
| = {{val|1.2959782|u=g}}
|-
| sheet || &nbsp;
| ≡ {{frac|700}}&nbsp;lb av
| = 647.9891&nbsp;mg
|-
| [[slug (unit)|slug]]; geepound; hyl || slug
| ≡ 1 [[standard gravity|{{math|''&#x0261;''<sub>0</sub>}}]] × 1&nbsp;lb av × 1 s<sup>2</sup>/ft
| ≈ {{val|14.593903|u=kg}}
|-
| [[stone (weight)|stone]] || st
| ≡ 14&nbsp;lb av
| = {{val|6.35029318|u=kg}}
|-
| [[assay ton|ton, assay]] (long) || AT
| ≡ 1&nbsp;mg × 1 long ton ÷ 1 oz t
| = 32.{{overline|6}}&nbsp;g
|-
| [[assay ton|ton, assay]] (short) || AT
| ≡ 1&nbsp;mg × 1 short ton ÷ 1 oz t
| = 29.1{{overline|6}}&nbsp;g
|-
| [[long ton|ton, long]]|| long tn or ton
| ≡ {{val|2240|u=lb}}
| = {{val|1016.0469088|u=kg}}
|-
| [[short ton|ton, short]] || sh tn
| ≡ {{val|2000|u=lb}}
| = {{val|907.18474|u=kg}}
|-
| [[tonne]] ([[Metre-tonne-second system of units|mts]] unit) || t
| ≡ {{val|1000|u=kg}}
| = {{val|1000|u=kg}}
|-
| [[wey (unit)|wey]] || &nbsp;
| ≡ 252&nbsp;lb = 18 st
| = {{val|114.30527724|u=kg}} (variants exist)
|-
| Zentner || Ztr.
| Definitions vary.<ref name="howmany"/><ref>The Swiss Federal Office for Metrology gives ''Zentner'' on a German language web page {{cite web |url=http://www.metas.ch/de/scales/systemch.html |title=Archived copy |accessdate=2006-10-09 |url-status=dead |archiveurl=https://web.archive.org/web/20060928011837/http://www.metas.ch/de/scales/systemch.html |archivedate=2006-09-28 }} and ''quintal'' on the English translation of that page {{cite web |url=http://www.metas.ch/en/scales/systemch.html |title=Archived copy |accessdate=2006-10-09 |url-status=dead |archiveurl=https://web.archive.org/web/20010309033010/http://www.metas.ch/en/scales/systemch.html |archivedate=2001-03-09 }}; the unit is marked "spécifiquement suisse !"</ref>
|
|}


This method is especially useful for programming and/or making a [[worksheet]], where input quantities are taking multiple different values; For example, with the factor calculated above, it is very easy to see that the healing length of <sup>174</sup>Yb with chemical potential 20.3&nbsp;nK is
=== Density ===
:{{tmath|1= \xi=\frac{15.574}{\sqrt{174\cdot20.3} } \,\text{μm}=0.262\,\text{μm} }}.
{| class="wikitable"
|+ [[Density]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| gram per millilitre
| g/mL
| ≡ g/mL
| = {{val|1000|u=kg/m3}}
|- style="background:#dfd;"
| kilogram per cubic metre (SI unit)
| kg/m<sup>3</sup>
| ≡ kg/m<sup>3</sup>
| = 1&nbsp;kg/m<sup>3</sup>
|-
| kilogram per litre
| kg/L
| ≡ kg/L
| = {{val|1000|u=kg/m3}}
|-
| ounce (avoirdupois) per cubic foot
| oz/ft<sup>3</sup>
| ≡ oz/ft<sup>3</sup>
| ≈ {{val|1.001153961|u=kg/m3}}
|-
| ounce (avoirdupois) per cubic inch
| oz/in<sup>3</sup>
| ≡ oz/in<sup>3</sup>
| ≈ {{val|1.729994044|e=3|u=kg/m3}}
|-
| ounce (avoirdupois) per gallon (imperial)
| oz/gal
| ≡ oz/gal
| ≈ {{val|6.236023291|u=kg/m3}}
|-
| ounce (avoirdupois) per gallon (US fluid)
| oz/gal
| ≡ oz/gal
| ≈ {{val|7.489151707|u=kg/m3}}
|-
| pound (avoirdupois) per cubic foot
| lb/ft<sup>3</sup>
| ≡ lb/ft<sup>3</sup>
| ≈ {{val|16.01846337|u=kg/m3}}
|-
| pound (avoirdupois) per cubic inch
| lb/in<sup>3</sup>
| ≡ lb/in<sup>3</sup>
| ≈ {{val|2.767990471|e=4|u=kg/m3}}
|-
| pound (avoirdupois) per gallon (imperial)
| lb/gal
| ≡ lb/gal
| ≈ {{val|99.77637266|u=kg/m3}}
|-
| pound (avoirdupois) per gallon (US fluid)
| lb/gal
| ≡ lb/gal
| ≈ {{val|119.8264273|u=kg/m3}}
|-
| [[slug (unit)|slug]] per cubic foot
| slug/ft<sup>3</sup>
| ≡ slug/ft<sup>3</sup>
| ≈ {{val|515.3788184|u=kg/m3}}
|}


== Software tools ==
===Time===
There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.
{| class="wikitable"
|+ [[Time]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[atomic units|Atomic unit of time]] || au
| ≡ [[Bohr radius|''a''<sub>0</sub>]]/([[fine structure constant|''α'']]⋅[[speed of light|''c'']])
| ≈ {{val|2.418884254|e=-17|u=s}}
|-
| [[Callippic cycle]] || &nbsp;
| ≡ 441 mo (hollow) + 499 mo (full) = 76 a of 365.25 d
| = {{val|2.396736|u=Gs}} or {{val|2.3983776|u=Gs}}<ref group=note>see [[Callippic cycle]] for explanation of the differences</ref>
|-
| [[Century]] || c
| ≡ 100 years (100 a)
| =&nbsp;{{val|3.1556952|u=Gs}}<ref group=note name=avegreg>This is based on the average Gregorian year. See above for definition of year lengths.</ref><ref group=note name=leapsec>Where [[UTC]] is observed, the length of this unit may increase or decrease<br>depending on the number of [[leap second]]s which occur during the time interval in question.</ref>
|-
| [[Day]] || d
| = 24 h = {{val|1440}} min
| = {{val|86.4|u=ks}}<ref group=note name=leapsec />
|-
| Day (sidereal) || d
| ≡ Time needed for the Earth to rotate once around its axis, determined from successive transits of a very distant astronomical object across an observer's meridian ([[International Celestial Reference Frame]])
| ≈ {{val|86.1641|u=ks}}
|-
| [[Decade]] || dec
| ≡ 10 years (10 a)
| = {{val|315.569520|u=Ms}}<ref group=note name=avegreg /><ref group=note name=leapsec />
|-
| [[Fortnight]] || fn
| ≡ 2 wk
| = {{val|1.2096|u=Ms}}<ref group=note name=leapsec />
|-
| [[Helek]] ||
| ≡ {{frac|{{val|1080}}}} h
| = 3.{{overline|3}} s
|-
| [[Hipparchic cycle]] || &nbsp;
| ≡ 4 Callippic cycles - 1 d
| = {{val|9.593424|u=Gs}}
|-
| [[Hour]] || h
| ≡ 60 min
| = {{val|3.6|u=ks}}<ref group=note name=leapsec />
|-
| [[jiffy (time)|Jiffy]] || j
| ≡ {{frac|60}} s
| = 16.{{overline|6}} ms
|-
| Jiffy (alternative) || ja
| ≡ {{frac|100}} s
| = 10 ms
|-
| [[Traditional Chinese timekeeping|Ke]] (quarter of an hour) || &nbsp;
| ≡ {{frac|4}} h = {{frac|96}} d = 15 min
| = 900 s
|-
| Ke (traditional) || &nbsp;
| ≡ {{frac|100}} d = 14.4 min
| = 864 s
|-
| Lustre; Lustrum || &nbsp;
| ≡ 5 a of 365 d<ref group=note>The length of ancient lustral cycles was not constant; see [[Lustrum]] for more details</ref>
| = {{val|157.68|u=Ms}}
|-
| [[Metonic cycle]]; enneadecaeteris || &nbsp;
| ≡ 110 mo (hollow) + 125 mo (full) = 6940 d ≈ 19 a
| = {{val|599.616|u=Ms}}
|-
| [[Millennium]] || &nbsp;
| ≡ {{val|1000}} years ({{val|1000|u=a}})
| =&nbsp;{{val|31.556952|u=Gs}}<ref group=note name=avegreg /><ref group=note name=leapsec />
|-
| [[Metric time#Alternative units|Milliday]] || md
| ≡ {{frac|{{val|1000}}}} d
| = 86.4 s
|-
| [[Minute]] || min
| ≡ 60 s, due to [[leap second]]s sometimes 59 s or 61 s,
| = 60 s<ref group=note name=leapsec />
|-
| [[moment (time)|Moment]] || &nbsp;
| ≡ 90 s
| = 90 s
|-
| [[Month]] (full) || mo
| ≡ 30 d<ref name="PedersenGloss">Pedersen O. (1983). "Glossary" in [[George Coyne|Coyne, G.]], Hoskin, M., and Pedersen, O. ''Gregorian Reform of the Calendar: Proceedings of the Vatican Conference to Commemorate its 400th Anniversary''. Vatican Observatory. Available from [[Astrophysics Data System]].</ref>
| = {{val|2.592|e=6|u=s}}<ref group=note name=leapsec />
|-
| Month (Greg. av.) || mo
| = {{val|30.436875|u=d}}
| ≈ {{val|2.6297|u=Ms}}<ref group=note name=leapsec />
|-
| Month (hollow) || mo
| ≡ 29 d<ref name="PedersenGloss"/>
| = {{val|2.5056|u=Ms}}<ref group=note name=leapsec />
|-
| Month ([[synodic]]) || mo
| Cycle time of moon phases ≈ {{val|29.530589|u=d}} (average)
| ≈ {{val|2.551|u=Ms}}
|-
| [[Octaeteris]] || &nbsp;
| = 48 mo (full) + 48 mo (hollow) + 3 mo (full)<ref>{{Citation | last=Richards | first=E.G. | title=Mapping Time | year=1998 | pages=[https://archive.org/details/mappingtimecalen00rich/page/94 94–95] | publisher=Oxford University Press | isbn=0-19-850413-6 | url=https://archive.org/details/mappingtimecalen00rich/page/94 }}</ref><ref>{{Citation | last=Steel | first=Duncan | title=Marking Time | year=2000 | page=[https://archive.org/details/markingtimeepicq00stee_0/page/46 46] | publisher=John Wiley & Sons | isbn=0-471-29827-1 | url=https://archive.org/details/markingtimeepicq00stee_0/page/46 }}</ref> = 8 a of 365.25 d = 2922 d
| = {{val|252.4608|u=Ms}}<ref group=note name=leapsec />
|-
| [[Planck time]] || &nbsp;
| ≡ ({{frac|[[gravitational constant|''G'']][[reduced Planck constant|''ℏ'']]|[[speed of light|''c'']]<sup>5</sup>}})<sup>{{frac|2}}</sup>
| ≈ {{val|5.39116|e=-44|u=s}}<ref>{{Cite web|url=https://physics.nist.gov/cgi-bin/cuu/Value?plkt|title=CODATA Value: Planck time|website=physics.nist.gov|access-date=2018-06-20}}</ref>
|- style="background:#dfd;"
| [[Second]] || s
| Time of {{val|9192631770}} periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom at 0&nbsp;K<ref name="sibaseunits"/> (but other seconds are sometimes used in astronomy). Also that time it takes for light to travel a distance of {{val|299792458}} metres.
| ([[SI base unit]])
|-
| [[shake (time)|Shake]] || &nbsp;
| ≡ 10<sup>−8</sup> s
| = 10 ns
|-
| Sigma || &nbsp;
| ≡ 10<sup>−6</sup> s
| = 1 μs
|-
| [[Sothic cycle]] || &nbsp;
| ≡ {{val|1461}} a of 365 d
| = {{val|46.074096|u=Gs}}
|-
| [[Svedberg]] || S
| ≡ 10<sup>−13</sup> s
| = 100 fs
|-
| [[Week]] || wk
| ≡ 7 d = 168 h = {{val|10080|u=min}}
| = {{val|604.8|u=ks}}<ref group=note name=leapsec />
|-
| [[Year]] (common) || {{nowrap|a, y, ''or'' yr}} || 365 d || = {{val|31.536|u=Ms}}<ref group=note name=leapsec /><ref group=note name=leapsec /><ref name=Richards>Richards, E. G. (2013). "Calendars" in S. E. Urban & P. K. Seidelmann, eds. ''Explanatory Supplement to the Astronomical Almanac''. Mill Valley, CA: University Science Books.</ref>
|-
| Year (Gregorian) || a, y, ''or'' yr
| = 365.2425 d average, calculated from common years (365 d) plus leap years (366 d) on most years divisible by 4. See [[leap year]] for details.
| = {{val|31.556952|u=Ms}}<ref group=note name=leapsec />
|-
| Year (Julian) || a, y, ''or'' yr
| = 365.25 d average, calculated from common years (365 d) plus one leap year (366 d) every four years
| = {{val|31.5576|u=Ms}}
|-
| [[Leap year|Year (leap)]]|| a, y, ''or'' yr || 366 d || = {{val|31.6224|u=Ms}}<ref group=note name=leapsec /><ref name = Richards/>
|-
| [[tropical year|Year (mean tropical)]] || a, y, ''or'' yr
| Conceptually, the length of time it takes for the Sun to return to the same position in the cycle of seasons, <ref group=Converter>The technical definition of tropical year is the period of time for the ecliptic longitude of the Sun to increase 360 degrees. (Urban & Seidelmann 2013, Glossary, s.v. year, tropical)</ref> approximately {{val|365.24219}} d, each day being {{val|86400}} SI seconds<ref>Richards, E. G. (2013). "Calendars" in S. E. Urban & P. K. Seidelmann, eds. ''Explanatory Supplement to the Astronomical Almanac''. Mill Valley, CA: University Science Books. p. 587.</ref>
| ≈ {{val|31.556925|u=Ms}}
|-
| [[sidereal year|Year (sidereal)]] || a, y, ''or'' yr
| ≡ Time taken for Sun to return to the same position with respect to the stars of the celestial sphere, approximately {{val|365.256363|u=d}}
| ≈ {{val|31.5581497632|u=Ms}}
|-
|COLSPAN="4"|Notes: {{Reflist|group=note}}
|}


There are many standalone applications that offer the thousands of the various units with conversions. For example, the [[free software movement]] offers a command line utility [[GNU units]] for GNU and Windows.<ref>{{cite web| title = GNU Units |url = https://www.gnu.org/software/units/ |access-date = 2024-09-24}}</ref> The [[Unified Code for Units of Measure]] is also a popular option.
===Frequency===
{| class="wikitable"
|+ Frequency
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| Actions per minute || APM
| ≡ 1/60 Hz
|≈ {{Val|0.0167 |u=Hz}}
|-
| [[Cycle per second]] || cps
| ≡ 1 Hz
| = 1&nbsp;cps = 1 Hz
|-
| degree per second || deg/s
| ≡ 1&nbsp;°/s ≡ 1/360 Hz
| = {{val|0.002}}{{overline|7}} Hz
|- style="background:#dfd;"
| [[hertz]] (SI unit) || Hz
| ≡ One cycle per second
| = 1&nbsp;Hz = 1/s
|-
| [[Radian per second]] || rad/s
| ≡ 1/(2π) Hz
| ≈ {{val|0.159155|u=Hz}}
|-
| [[revolutions per minute]] || rpm
| ≡ One unit rpm equals one rotation completed around a fixed axis in one minute of time.
| ≈ {{val|0.104719755|u=rad/s}}
|}

===Speed or velocity===
{| class="wikitable"
|+ [[Speed]]
!Name of unit
!Symbol
!width="150pt"|Definition
!Relation to SI units
|-
| [[foot (unit)|foot]] per [[hour]] || fph
| ≡ 1&nbsp;ft/h
| = 8.4{{overline|6}}{{e|−5}}&nbsp;m/s
|-
| [[foot (unit)|foot]] per [[minute]] || fpm
| ≡ 1&nbsp;ft/min
| = {{val|5.08|e=-3|u=m/s}}
|-
| [[foot (unit)|foot]] per [[second]] || fps
| ≡ 1&nbsp;ft/s
| = {{val|3.048|e=-1|u=m/s}}
|-
| [[furlong]] per [[fortnight]] || &nbsp;
| ≡ furlong/fortnight
| ≈ {{val|1.663095|e=-4|u=m/s}}
|-
| [[inch]] per [[hour]] || iph
| ≡ 1 in/h
| = 7.0{{overline|5}}{{e|−6}} m/s
|-
| inch per [[minute]] || ipm
| ≡ 1 in/min
| = 4.2{{overline|3}}{{e|−4}} m/s
|-
| inch per [[second]] || ips
| ≡ 1 in/s
| = {{val|2.54|e=-2|u=m/s}}
|-
| [[kilometre per hour]] || km/h
| ≡ 1&nbsp;km/h
| = 2.{{overline|7}}{{e|−1}}&nbsp;m/s
|-
| [[knot (unit)|knot]] || kn
| ≡ 1 [[nautical mile|nmi]]/h = 1.852&nbsp;km/h
| = 0.51{{overline|4}}&nbsp;m/s
|-
| [[knot (unit)|knot]] (Admiralty) || kn
| ≡ 1 NM (Adm)/h = {{val|1.853184|u=km/h}}{{Citation needed|date=September 2008}}
| = {{val|0.51477}}{{overline|3}}&nbsp;m/s
|-
| [[mach number]] || ''M''
| Ratio of the speed to the speed of sound{{#tag:ref|The speed of sound varies especially with temperature and pressure from about {{val|340|u=m/s}} ({{convert|1225|km/h|mph kn |disp=or|abbr=on}})<br>in air at sea level to about {{val|300|u=m/s}} ({{convert|1062|km/h|mph kn|disp=or|abbr=on}}) at jet altitudes ({{convert|12200|m|ft|comma=gaps|disp=or|abbr=on}}).<ref>Tom Benson. (2010.) [http://www.grc.nasa.gov/WWW/K-12/airplane/mach.html "Mach Number"] {{Webarchive|url=https://web.archive.org/web/20060410140252/http://www.grc.nasa.gov/WWW/K-12/airplane/mach.html |date=2006-04-10 }} in ''Beginner's Guide to Aeronautics''. [[NASA]].</ref>|name=sound|group=note}} in the medium (unitless).
| ≈ 340&nbsp;m/s in air at sea level<br/> ≈ 295&nbsp;m/s in air at jet altitudes
|- style="background:#dfd;"
| [[metre per second]] (SI&nbsp;unit)|| m/s
| ≡ 1&nbsp;m/s
| = 1&nbsp;m/s
|-
| [[mile per hour]] || mph
| ≡ 1&nbsp;mi/h
| = {{val|0.44704|u=m/s}}
|-
| [[mile]] per [[minute]] || mpm
| ≡ 1&nbsp;mi/min
| = {{val|26.8224|u=m/s}}
|-
| mile per [[second]] || mps
| ≡ 1&nbsp;mi/s
| = {{val|1609.344|u=m/s}}
|-
| [[speed of light]] in vacuum || ''c''
| ≡ {{val|299792458|u=m/s}}
| = {{val|299792458|u=m/s}}
|-
| [[speed of sound]] in air || ''s''
| {{val|1225}} to {{val|1062|u=km/h}} ({{convert|761|-|660|mph|kn|disp=or|abbr=on}})<ref name=sound group=note />
| ≈ {{val|340|to|295|u=m/s}}
|-
|colspan=4|
;Note
{{Reflist|group=note}}
|}
A [[velocity]] consists of a speed combined with a direction; the speed part of the velocity takes units of speed.

===Flow (volume)===
{| class="wikitable"
|+ Flow
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| cubic foot per minute
| CFM{{Citation needed|date=August 2011}}
| ≡ 1&nbsp;ft<sup>3</sup>/min
| = {{val|4.719474432|e=-4|u=m3/s}}
|-
| cubic foot per second
| ft<sup>3</sup>/s
| ≡ 1&nbsp;ft<sup>3</sup>/s
| = {{val|0.028316846592|u=m3/s}}
|-
| cubic inch per minute
| in<sup>3</sup>/min
| ≡ 1 in<sup>3</sup>/min
| = {{val|2.731177}}{{overline|3}}{{e|-7}}&nbsp;m<sup>3</sup>/s
|-
| cubic inch per second
| in<sup>3</sup>/s
| ≡ 1 in<sup>3</sup>/s
| = {{val|1.6387064|e=-5|u=m3/s}}
|- style="background:#dfd;"
| cubic metre per second (SI unit)
| m<sup>3</sup>/s
| ≡ 1 m<sup>3</sup>/s
| = 1 m<sup>3</sup>/s
|-
| gallon (US fluid) per day
| GPD{{Citation needed|date=August 2011}}
| ≡ 1 gal/d
| = {{val|4.38126363}}{{overline|8}}{{e|-8}}&nbsp;m<sup>3</sup>/s
|-
| gallon (US fluid) per hour
| GPH{{Citation needed|date=August 2011}}
| ≡ 1 gal/h
| = {{val|1.05150327}}{{overline|3}}{{e|-6}}&nbsp;m<sup>3</sup>/s
|-
| gallon (US fluid) per minute
| GPM{{Citation needed|date=August 2011}}
| ≡ 1 gal/min
| = {{val|6.30901964|e=-5|u=m3/s}}
|-
| litre per minute
| l/min or L/min
| ≡ 1 L/min
| = 1.{{overline|6}}{{e|-5}} m<sup>3</sup>/s
|}

===Acceleration===
{| class="wikitable"
|+ [[Acceleration]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[foot (unit)|foot]] per [[hour]] per [[second]] || fph/s
| ≡ 1&nbsp;ft/(h⋅s)
| = 8.4{{overline|6}}{{e|−5}}&nbsp;m/s<sup>2</sup>
|-
| [[foot (unit)|foot]] per [[minute]] per [[second]] || fpm/s
| ≡ 1&nbsp;ft/(min⋅s)
| = {{val|5.08|e=-3|u=m/s2}}
|-
| [[foot (unit)|foot]] per [[second]] squared || fps<sup>2</sup>
| ≡ 1&nbsp;ft/s<sup>2</sup>
| = {{val|3.048|e=-1|u=m/s2}}
|-
| [[gal (acceleration)|gal]]; galileo || Gal
| ≡ 1&nbsp;cm/s<sup>2</sup>
| = 10<sup>−2</sup> m/s<sup>2</sup>
|-
| [[inch]] per [[minute]] per [[second]] || ipm/s
| ≡ 1 in/(min⋅s)
| = 4.2{{overline|3}}{{e|−4}} m/s<sup>2</sup>
|-
| [[inch]] per [[second]] squared || ips<sup>2</sup>
| ≡ 1 in/s<sup>2</sup>
| = {{val|2.54|e=-2|u=m/s2}}
|-
| [[knot (unit)|knot]] per [[second]] || kn/s
| ≡ 1 kn/s
| ≈ 5.1{{overline|4}}{{e|−1}}&nbsp;m/s<sup>2</sup>
|- style="background:#dfd;"
| [[metre per second squared]] (SI unit)|| m/s<sup>2</sup>
| ≡ 1&nbsp;m/s<sup>2</sup>
| = 1&nbsp;m/s<sup>2</sup>
|-
| [[mile]] per [[hour]] per [[second]] || mph/s
| ≡ 1&nbsp;mi/(h⋅s)
| = {{val|4.4704|e=-1|u=m/s2}}
|-
| [[mile]] per [[minute]] per [[second]] || mpm/s
| ≡ 1&nbsp;mi/(min⋅s)
| = 26.8224&nbsp;m/s<sup>2</sup>
|-
| [[mile]] per [[second]] squared || mps<sup>2</sup>
| ≡ 1&nbsp;mi/s<sup>2</sup>
| = {{val|1.609344|e=3|u=m/s2}}
|-
| [[standard gravity]] || {{math|''&#x0261;''<sub>0</sub>}}
| ≡ {{val|9.80665|u=m/s2}}
| = {{val|9.80665|u=m/s2}}
|}

===Force===
{| class="wikitable"
|+ [[Force (physics)|Force]]
!Name of unit
!Symbol
!width="150pt"|Definition
!Relation to SI units
|-
| [[atomic units|atomic unit of force]] ||
| ≡ {{frac|m<sub>e</sub>⋅[[fine structure constant|α]]<sup>2</sup>⋅[[speed of light|''c'']]<sup>2</sup>|[[Bohr radius|a<sub>0</sub>]]}}
| ≈ {{val|8.23872206|e=-8|u=N}}<ref>[http://physics.nist.gov/cuu/Constants/ ''CODATA Value: atomic unit of force'']. (2006). [[National Institute of Standards and Technology]]. Retrieved September 14, 2008.</ref>
|-
| [[dyne]] ([[cgs unit]]) || dyn
| ≡ g⋅cm/s<sup>2</sup>
| = 10<sup>−5</sup> N
|-
| [[kilogram-force]]; kilopond; [[grave (mass)|grave]]-force || kgf; kp; Gf
| ≡ [[standard gravity|{{math|''&#x0261;''<sub>0</sub>}}]] × 1&nbsp;kg
| = {{val|9.80665|u=N}}
|-
| [[kip (unit)|kip]]; kip-force || kip; kipf; klbf
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × {{val|1000|u=lb}}
| = {{val|4.4482216152605|e=3|u=N}}
|-
| [[grave (mass)|milligrave]]-force, gravet-force || mGf; gf
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1 g
| = {{val|9.80665|u=mN}}
|-
| long [[ton]]-force || tnf{{citation needed|date=May 2015}}
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1 long ton
| = {{val|9.96401641818352|e=3|u=N}}
|- style="background:#dfd;"
| [[newton (unit)|newton]] (SI unit) || N
| A force capable of giving a mass of one kilogram an acceleration of one metre per second per second.<ref name=cipm1946>{{citation | title=Comité International des Poids et Mesures, Resolution 2 | url=http://www.bipm.org/en/CIPM/db/1946/2/ | year=1946 | accessdate=August 26, 2009}}</ref>
| = 1&nbsp;N = 1&nbsp;kg⋅m/s<sup>2</sup>
|-
| [[ounce-force]] || ozf
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1 oz
| = {{val|0.27801385095378125|u=N}}
|-
| [[pound-force]] || [[lbf]]
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1&nbsp;lb
| = {{val|4.4482216152605|u=N}}
|-
| [[poundal]] || pdl
| ≡ 1&nbsp;lb⋅ft/s<sup>2</sup>
| = {{val|0.138254954376|u=N}}
|-
| short ton-force || tnf{{citation needed|date=May 2015}}
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1 short ton
| = {{val|8.896443230521|e=3|u=N}}
|-
| sthene ([[Metre-tonne-second system of units|mts]] unit) || sn
| ≡ 1 t⋅m/s<sup>2</sup>
| = 10<sup>3</sup> N
|}
''See also:'' [[Weight#Conversion between weight (force) and mass|Conversion between weight (force) and mass]]

===Pressure or mechanical stress===
{| class="wikitable"
|+ [[Pressure]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[atmosphere (unit)|atmosphere]] (standard) || atm
|
| ≡ {{val|101325|u=Pa}}<ref name=press811>Barry N. Taylor, (April 1995), [http://physics.nist.gov/cuu/pdf/sp811.pdf ''Guide for the Use of the International System of Units (SI)''] (NIST Special Publication 811), Washington, DC: US Government Printing Office, pp. 57&ndash;68.</ref>
|-
| [[atmosphere (unit)|atmosphere]] (technical) || at
| ≡ 1 kgf/cm<sup>2</sup>
| = {{val|9.80665|e=4|u=Pa}}<ref name=press811/>
|-
| [[bar (unit)|bar]] || bar
| ≡ {{val|100000}}&nbsp;Pa
| ≡ 10<sup>5</sup> Pa
|-
| barye ([[cgs unit]]) || &nbsp;
| ≡ 1 dyn/cm<sup>2</sup>
| = 0.1 Pa
|-
| centimetre of mercury || cmHg
| ≡ {{val|13595.1|u=kg/m3}} × 1&nbsp;cm × [[standard gravity|{{math|''&#x0261;''<sub>0</sub>}}]]
| ≈ {{val|1.33322|e=3|u=Pa}}<ref name=press811/>
|-
| centimetre of [[water]] (4&nbsp;°C) || cmH<sub>2</sub>O
| ≈ 999.972&nbsp;kg/m<sup>3</sup> × 1&nbsp;cm × {{math|''&#x0261;''<sub>0</sub>}}
| ≈ {{val|98.0638|u=Pa}}<ref name=press811/>
|-
| [[foot (unit)|foot]] of mercury (conventional)|| ftHg
| ≡ {{val|13595.1|u=kg/m3}} × 1&nbsp;ft × {{math|''&#x0261;''<sub>0</sub>}}
| ≈ {{val|4.063666|e=4|u=Pa}}<ref name=press811/>
|-
| [[foot (unit)|foot]] of [[water]] (39.2&nbsp;°F) || ftH<sub>2</sub>O
| ≈ 999.972&nbsp;kg/m<sup>3</sup> × 1&nbsp;ft × {{math|''&#x0261;''<sub>0</sub>}}
| ≈ {{val|2.98898|e=3|u=Pa}}<ref name=press811/>
|-
| [[inch of mercury]] (conventional) || inHg
| ≡ {{val|13595.1|u=kg/m3}} × 1 in × {{math|''&#x0261;''<sub>0</sub>}}
| ≈ {{val|3.386389|e=3|u=Pa}}<ref name=press811/>
|-
| [[inch]] of [[water]] (39.2&nbsp;°F) || inH<sub>2</sub>O
| ≈ 999.972&nbsp;kg/m<sup>3</sup> × 1 in × {{math|''&#x0261;''<sub>0</sub>}}
| ≈ {{val|249.082|u=Pa}}<ref name=press811/>
|-
| kilogram-force per square millimetre || kgf/mm<sup>2</sup>
| ≡ 1 kgf/mm<sup>2</sup>
| = {{val|9.80665|e=6|u=Pa}}<ref name=press811/>
|-
| [[kip (unit)|kip]] per square [[inch]] || ksi
| ≡ 1 kipf/sq in
| ≈ {{val|6.894757|e=6|u=Pa}}<ref name=press811/>
|-
| long [[ton]] per square [[foot (unit)|foot]] || &nbsp;
| ≡ 1 long ton × {{math|''&#x0261;''<sub>0</sub>}} / 1 sq ft
| ≈ {{val|1.0725178011595|e=5|u=Pa}}
|-
| micrometre of mercury || &mu;mHg
| ≡ {{val|13595.1|u=kg/m3}} × 1 &mu;m × {{math|''&#x0261;''<sub>0</sub>}} ≈ 0.001 torr
| ≈ {{val|0.1333224|u=Pa}}<ref name=press811/>
|-
| [[torr|millimetre of mercury]] || [[mmHg]]
| ≡ {{val|13595.1|u=kg/m3}} × 1&nbsp;mm × {{math|''&#x0261;''<sub>0</sub>}} ≈ 1 torr
| ≈ {{val|133.3224|u=Pa}}<ref name=press811/>
|-
| millimetre of [[water]] (3.98&nbsp;°C) || mmH<sub>2</sub>O
| ≈ 999.972&nbsp;kg/m<sup>3</sup> × 1&nbsp;mm × {{math|''&#x0261;''<sub>0</sub>}} = {{val|0.999972|u=kgf/m<sup>2</sup>}}
| = {{val|9.80638|u=Pa}}
|- style="background:#dfd;"
| [[pascal (unit)|pascal]] (SI unit) || Pa
| ≡ N/m<sup>2</sup> = kg/(m⋅s<sup>2</sup>)
| = 1 Pa<ref>Barry N. Taylor, (April 1995), ''Guide for the Use of the International System of Units (SI)'' (NIST Special Publication 811), Washington, DC: US Government Printing Office, p. 5.</ref>
|-
| pièze ([[Metre-tonne-second system of units|mts]] unit) || pz
| ≡ {{val|1000|u=kg/m⋅s<sup>2</sup>}}
| = {{val|e=3|u=Pa}} = 1 kPa
|-
| [[pound force|pound]] per square [[foot (unit)|foot]] || psf
| ≡ 1&nbsp;lbf/ft<sup>2</sup>
| ≈ {{val|47.88026|u=Pa}}<ref name=press811/>
|-
| [[Pound-force per square inch|pound per square inch]] || psi
| ≡ 1&nbsp;lbf/in<sup>2</sup>
| ≈ {{val|6.894757|e=3|u=Pa}}<ref name=press811/>
|-
| [[poundal]] per square [[foot (unit)|foot]] || pdl/sq ft
| ≡ 1 pdl/sq ft
| ≈ {{val|1.488164|u=Pa}}<ref name=press811/>
|-
| short [[ton]] per square [[foot (unit)|foot]] || &nbsp;
| ≡ 1 short ton × {{math|''&#x0261;''<sub>0</sub>}} / 1 sq ft
| ≈ {{val|9.5760518|e=4|u=Pa}}
|-
| [[torr]] || torr
| ≡ {{frac|{{val|101325}}|760}} Pa
| ≈ {{val|133.3224|u=Pa}}<ref name=press811/>
|}

===Torque or moment of force===<!-- not equivalent to energy -->
{| class="wikitable"
|+ [[Torque]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| pound-force-foot || lbf•ft
| ≡ [[standard gravity|{{math|''&#x0261;''<sub>0</sub>}}]] × 1&nbsp;lb × 1&nbsp;ft
| = {{val|1.3558179483314004|u=N⋅m}}
|-
| poundal-ft || pdl•ft
| ≡ 1&nbsp;lb⋅ft<sup>2</sup>/s<sup>2</sup>
| = {{val|4.21401100938048|e=-2|u=N⋅m}}
|-
| [[inch-pound force|pound force-inch]] || lbf•in
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1&nbsp;lb × 1 in
| = {{val|0.1129848290276167|u=N⋅m}}
|-
| [[kilogram-force|kilogram force-meter]] || kgf•m
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × N × m
| = {{val|9.80665|u=N⋅m}}
|- style="background:#dfd;"
| [[Newton metre]] (SI unit) || N⋅m
| ≡ N × m<!-- ≠ J --> = kg⋅m<sup>2</sup>/s<sup>2</sup>
| = {{val|1|u=N⋅m}}
|}

===Energy===<!--work, heat, etc. not torque -->
{| class="wikitable"
|+ [[Energy]]
!Name of unit
!Symbol
!width="150pt"|Definition
!Relation to SI units
|-
| [[barrel of oil equivalent]] || boe
| ≈ {{val|5.8|e=6|u=BTU<sub>59&nbsp;°F</sub>}}
| ≈ {{val|6.12|e=9|u=J}}
|-
| [[British thermal unit]] (ISO) || BTU<sub>ISO</sub>
| ≡ {{val|1.0545|e=3|u=J}}
| = {{val|1.0545|e=3|u=J}}
|-
| British thermal unit (International Table) || BTU<sub>IT</sub>
|
| = {{val|1.05505585262|e=3|u=J}}
|-
| British thermal unit (mean) || BTU<sub>mean</sub>
|
| ≈ {{val|1.05587|e=3|u=J}}
|-
| British thermal unit (thermochemical) || BTU<sub>th</sub>
|
| ≈ {{val|1.054350|e=3|u=J}}
|-
| British thermal unit (39&nbsp;°F) || BTU<sub>39&nbsp;°F</sub>
|
| ≈ {{val|1.05967|e=3|u=J}}
|-
| British thermal unit (59&nbsp;°F) || BTU<sub>59&nbsp;°F</sub>
| ≡ {{val|1.054804|e=3|u=J}}
| = {{val|1.054804|e=3|u=J}}
|-
| British thermal unit (60&nbsp;°F) || BTU<sub>60&nbsp;°F</sub>
|
| ≈ {{val|1.05468|e=3|u=J}}
|-
| British thermal unit (63&nbsp;°F) || BTU<sub>63&nbsp;°F</sub>
|
| ≈ {{val|1.0546|e=3|u=J}}
|-
| [[calorie]] (International Table) || cal<sub>IT</sub>
| ≡ {{val|4.1868|u=J}}
| = {{val|4.1868|u=J}}
|-
| calorie (mean) || cal<sub>mean</sub>
| {{frac|100}} of the energy required to warm one gram of air-free water from 0&nbsp;°C to 100&nbsp;°C at a pressure of 1&nbsp;atm
| ≈ {{val|4.19002|u=J}}
|-
| calorie (thermochemical) || cal<sub>th</sub>
| ≡ 4.184 J
| = {{val|4.184|u=J}}
|-
| Calorie (US; [[FDA]])
| Cal
| ≡ 1 kcal = {{val|1000|u=cal}}
| = {{val|4184|u=J}}
|-
| calorie (3.98&nbsp;°C) || cal<sub>3.98&nbsp;°C</sub>
|
| ≈ {{val|4.2045|u=J}}
|-
| calorie (15&nbsp;°C) || cal<sub>15&nbsp;°C</sub>
| ≡ 4.1855 J
| = {{val|4.1855|u=J}}
|-
| calorie (20&nbsp;°C) || cal<sub>20&nbsp;°C</sub>
|
| ≈ {{val|4.1819|u=J}}
|-
| [[Celsius]] heat unit (International Table) || CHU<sub>IT</sub>
| ≡ 1 BTU<sub>IT</sub> × 1 K/°R
| = {{val|1.899100534716|e=3|u=J}}
|-
| cubic centimetre of [[atmosphere (unit)|atmosphere]]; standard cubic centimetre || cc atm; scc
| ≡ 1 atm × 1&nbsp;cm<sup>3</sup>
| = {{val|0.101325|u=J}}
|-
| cubic [[foot (unit)|foot]] of atmosphere; standard cubic foot || cu ft atm; scf
| ≡ 1 atm × 1&nbsp;ft<sup>3</sup>
| = {{val|2.8692044809344|e=3|u=J}}
|-
| cubic foot of natural gas || &nbsp;
| ≡ {{val|1000|u=BTU<sub>IT</sub>}}
| = {{val|1.05505585262|e=6|u=J}}
|-
| cubic [[yard]] of atmosphere; standard cubic yard || cu yd atm; scy
| ≡ 1 atm × 1 yd<sup>3</sup>
| = {{val|77.4685209852288|e=3|u=J}}
|-
| [[electron volt|electronvolt]] || eV
| ≡ [[elementary charge|''e'']] × 1 V
| ≈ {{val|1.602176565|(35)|e=-19|u=J}}
|-
| [[erg]] ([[cgs unit]]) || erg
| ≡ 1 g⋅cm<sup>2</sup>/s<sup>2</sup>
| = 10<sup>−7</sup> J
|-
| [[foot-pound force]] || ft lbf
| ≡ [[standard gravity|{{math|''&#x0261;''<sub>0</sub>}}]] × 1&nbsp;lb × 1&nbsp;ft
| = {{val|1.3558179483314004|u=J}}
|-
| foot-poundal || ft pdl
| ≡ 1&nbsp;lb⋅ft<sup>2</sup>/s<sup>2</sup>
| = {{val|4.21401100938048|e=-2|u=J}}
|-
| [[gallon]]-atmosphere (imperial) || imp gal atm
| ≡ 1 atm × 1 gal (imp)
| = {{val|460.63256925|u=J}}
|-
| gallon-atmosphere (US) || US gal atm
| ≡ 1 atm × 1 gal (US)
| = {{val|383.5568490138|u=J}}
|-
| [[hartree]], [[atomic units|atomic unit of energy]] || E<sub>h</sub>
| ≡ m<sub>e</sub>⋅[[fine structure constant|''α'']]<sup>2</sup>⋅[[speed of light|''c'']]<sup>2</sup> (= 2 Ry)
| ≈ {{val|4.359744|e=-18|u=J}}
|-
| [[horsepower-hour]] || hp⋅h
| ≡ 1&nbsp;hp × 1 h
| = {{val|2.684519537696172792|e=6|u=J}}
|-
| [[inch-pound force]] || in lbf
| ≡ {{math|''&#x0261;''<sub>0</sub>}} × 1&nbsp;lb × 1 in
| = {{val|0.1129848290276167|u=J}}
|- style="background:#dfd;"
| [[joule]] (SI unit) || J
| The work done when a force of one newton moves the point of its application a distance of one metre in the direction of the force.<ref name="cipm1946"/>
| = 1&nbsp;J = 1&nbsp;m⋅N = 1&nbsp;kg⋅m<sup>2</sup>/s<sup>2</sup> = 1&nbsp;C⋅V = 1&nbsp;W⋅s
|-
| kilocalorie; large [[calorie]] || kcal; Cal
| ≡ {{val|1000|u=cal<sub>IT</sub>}}
| = {{val|4.1868|e=3|u=J}}
|-
| [[kilowatt-hour]]; Board of Trade Unit || kW⋅h; B.O.T.U.
| ≡ 1&nbsp;kW × 1&nbsp;h
| = {{val|3.6|e=6|u=J}}
|-
| [[litre]]-[[atmosphere (unit)|atmosphere]] || l atm; sl
| ≡ 1 atm × 1 L
| = {{val|101.325|u=J}}
|-
| [[quad (energy)|quad]] || &nbsp;
| ≡ 10<sup>15</sup> BTU<sub>IT</sub>
| = {{val|1.05505585262|e=18|u=J}}
|-
| [[Rydberg constant|rydberg]] || Ry
| ≡ ''[[Rydberg constant|R]]''[[Rydberg constant|<sub>∞</sub>]]⋅[[Planck constant|ℎ]]⋅[[speed of light|''c'']]
| ≈ {{val|2.179872|e=-18|u=J}}
|-
| [[therm]] (E.C.) || &nbsp;
| ≡ {{val|100000|u=BTU<sub>IT</sub>}}
| = {{val|105.505585262|e=6|u=J}}
|-
| [[therm]] (US) || &nbsp;
| ≡ {{val|100000|u=BTU<sub>59&nbsp;°F</sub>}}
| = {{val|105.4804|e=6|u=J}}
|-
| thermie || th
| ≡ 1 Mcal<sub>IT</sub>
| = {{val|4.1868|e=6|u=J}}
|-
| [[tonne of coal equivalent]] || TCE
| ≡ 7 Gcal<sub>th</sub>
| = {{val|29.288|e=9|u=J}}
|-
| [[tonne of oil equivalent]] || toe
| ≡ 10 Gcal<sub>IT</sub>
| = {{val|41.868|e=9|u=J}}
|-
| [[ton]] of [[trinitrotoluene|TNT]] || tTNT
| ≡ 1 Gcal<sub>th</sub>
| = {{val|4.184|e=9|u=J}}
|-
| [[watt hour]] || W⋅h
| ≡ 1&nbsp;W × 1&nbsp;h
| = {{val|3.6|e=3|u=J}}
|-
| [[watt second]] || W⋅s
| ≡ 1 J
| = {{val|1|e=0|u=J}}
|}

===Power or heat flow rate===
{| class="wikitable"
|+ [[Power (physics)|Power]]
!Name of unit
!Symbol
!width="150pt"|Definition
!Relation to SI units
|-
| [[atmosphere (unit)|atmosphere]]-cubic centimetre per [[minute]] || atm ccm{{citation needed|date=May 2015}}
| ≡ 1 atm × 1&nbsp;cm<sup>3</sup>/min
| = {{val|1.68875|e=-3|u=W}}
|-
| atmosphere-cubic centimetre per [[second]] || atm ccs{{citation needed|date=May 2015}}
| ≡ 1 atm × 1&nbsp;cm<sup>3</sup>/s
| = {{val|0.101325|u=W}}
|-
| atmosphere-cubic [[foot (unit)|foot]] per [[hour]] || atm cfh{{citation needed|date=May 2015}}
| ≡ 1 atm × 1 cu ft/h
| = {{val|0.79700124704|u=W}}
|-
| atmosphere-cubic foot per minute || atm cfm{{citation needed|date=May 2015}}
| ≡ 1 atm × 1 cu ft/min
| = {{val|47.82007468224|u=W}}
|-
| atmosphere-cubic foot per second || atm cfs{{citation needed|date=May 2015}}
| ≡ 1 atm × 1 cu ft/s
| = {{val|2.8692044809344|e=3|u=W}}
|-
| [[BTU]] (International Table) per hour || BTU<sub>IT</sub>/h
| ≡ 1 BTU<sub>IT</sub>/h
| ≈ {{val|0.293071|u=W}}
|-
| BTU (International Table) per minute || BTU<sub>IT</sub>/min
| ≡ 1 BTU<sub>IT</sub>/min
| ≈ {{val|17.584264|u=W}}
|-
| BTU (International Table) per second || BTU<sub>IT</sub>/s
| ≡ 1 BTU<sub>IT</sub>/s
| = {{val|1.05505585262|e=3|u=W}}
|-
| [[calorie]] (International Table) per second || cal<sub>IT</sub>/s
| ≡ 1 cal<sub>IT</sub>/s
| = {{val|4.1868|u=W}}
|-
| erg per second || erg/s
| ≡ 1 erg/s
| = {{val|e=-7|u=W}}
|-
| foot-[[pound-force]] per hour || ft⋅lbf/h
| ≡ 1&nbsp;ft lbf/h
| ≈ {{val|3.766161|e=-4|u=W}}
|-
| foot-pound-force per minute || ft⋅lbf/min
| ≡ 1&nbsp;ft lbf/min
| = {{val|2.259696580552334|e=-2|u=W}}
|-
| foot-pound-force per second || ft⋅lbf/s
| ≡ 1&nbsp;ft lbf/s
| = {{val|1.3558179483314004|u=W}}
|-
| [[horsepower]] (boiler) || hp<!-- bhp is brake horsepower! -->
| ≈ 34.5&nbsp;lb/h × 970.3 BTU<sub>IT</sub>/lb
| ≈ {{val|9809.5|u=W}}<ref name="nistguide"/>
|-
| horsepower (European electrical) || hp
| ≡ 75 kp⋅m/s
| = {{val|736|u=W}}{{citation needed|date=November 2015}}
|-
| horsepower (electrical) || hp
| ≡ 746 W
| = {{val|746|u=W}}<ref name="nistguide"/>
|-
| horsepower (mechanical) || hp
| ≡ 550&nbsp;ft⋅lbf/s<ref name="nistguide"/>
| = {{val|745.69987158227022|u=W}}
|-
| horsepower (metric) || hp or PS
| ≡ 75 m⋅kgf/s
| = {{val|735.49875|u=W}}<ref name="nistguide"/>
|-
| [[litre]]-atmosphere per minute || L·atm/min
| ≡ 1 atm × 1 L/min
| = {{val|1.68875|u=W}}
|-
| litre-atmosphere per second || L·atm/s
| ≡ 1 atm × 1 L/s
| = {{val|101.325|u=W}}
|-
| lusec || lusec
| ≡ 1 L·µmHg/s <ref name="howmany"/>
| ≈ {{val|1.333|e=-4|u=W}}
|-
| [[poncelet]] || p
| ≡ 100 m⋅kgf/s
| = {{val|980.665|u=W}}
|-
| square foot equivalent direct radiation || sq ft EDR
| ≡ 240 BTU<sub>IT</sub>/h
| ≈ {{val|70.337057|u=W}}
|-
| [[ton]] of air conditioning || &nbsp;
| ≡ {{val|2000|u=lb}} of ice melted / 24 h
| ≈ {{val|3504|u=W}}
|-
| ton of refrigeration (imperial) || &nbsp;
| ≡ {{val|2240|u=lb}} × ice<sub>IT</sub> / 24 h: ice<sub>IT</sub> = 144&nbsp;°F × 2326 J/kg⋅°F
| ≈ {{val|3.938875|e=3|u=W}}
|-
| [[ton of refrigeration]] (IT) || &nbsp;
| ≡ {{val|2000|u=lb}} × ice<sub>IT</sub> / 24 h: ice<sub>IT</sub> = 144&nbsp;°F × 2326 J/kg⋅°F
| ≈ {{val|3.516853|e=3|u=W}}
|- style="background:#dfd;"
| [[watt]] (SI unit) || W
| The power which in one second of time gives rise to one joule of energy.<ref name="cipm1946"/>
| = {{val|1|u=W}} = 1&nbsp;J/s = 1&nbsp;N⋅m/s = 1&nbsp;kg⋅m<sup>2</sup>/s<sup>3</sup>
|}

===Action===
{| class="wikitable"
|+ Action
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[Action (physics)|atomic unit of action]] || au
| ≡ [[Reduced Planck constant|ℏ]] ≡ {{frac|[[Planck constant|ℎ]]|2[[Pi|π]]}}
| ≈ {{val|1.05457168|e=-34|u=J⋅s}}<ref>[http://www.bipm.org/en/si/si_brochure/chapter4/table7.html ''International System of Units,''] {{webarchive |url=https://web.archive.org/web/20120716204133/http://www.bipm.org/en/si/si_brochure/chapter4/table7.html |date=July 16, 2012 }} 8th ed. (2006), [[Bureau International des Poids et Mesures]], Section 4.1 Table 7.</ref>
|}

===Dynamic viscosity===
{| class="wikitable"
|+ Dynamic [[viscosity]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[pascal second]] (SI unit) || Pa⋅s
| ≡ N⋅s/m<sup>2</sup>, kg/(m⋅s)
| = 1 Pa⋅s
|-
| [[Poise (unit)|poise]] ([[cgs unit]]) || P
| ≡ 1 barye⋅s
| = 0.1 Pa⋅s
|-
| pound per foot hour || lb/(ft⋅h)
| ≡ 1&nbsp;lb/(ft⋅h)
| ≈ {{val|4.133789|e=-4|u=Pa⋅s}}
|-
| pound per foot second || lb/(ft⋅s)
| ≡ 1&nbsp;lb/(ft⋅s)
| ≈ {{val|1.488164|u=Pa⋅s}}
|-
| pound-force second per square foot || lbf⋅s/ft<sup>2</sup>
| ≡ 1&nbsp;lbf⋅s/ft<sup>2</sup>
| ≈ {{val|47.88026|u=Pa⋅s}}
|-
| pound-force second per square inch || lbf⋅s/in<sup>2</sup>
| ≡ 1&nbsp;lbf⋅s/in<sup>2</sup>
| ≈ {{val|6894.757|u=Pa⋅s}}
|}

===Kinematic viscosity===
{| class="wikitable"
|+ Kinematic [[viscosity]]
!Name of unit
!Symbol
!Definition
!Relation to [[SI|SI units]]
|-
| square foot per second || ft<sup>2</sup>/s
| ≡ 1&nbsp;ft<sup>2</sup>/s
| = {{val|0.09290304|u=m<sup>2</sup>/s}}
|- style="background:#dfd;"
| square metre per second (SI unit) || m<sup>2</sup>/s
| ≡ 1&nbsp;m<sup>2</sup>/s
| = 1&nbsp;m<sup>2</sup>/s
|-
| [[stokes (unit)|stokes]] ([[cgs unit]]) || St
| ≡ 1&nbsp;cm<sup>2</sup>/s
| = 10<sup>−4</sup>&nbsp;m<sup>2</sup>/s
|}

===Electric current===
{| class="wikitable"
|+ [[Electric current]]
!Name of unit
!Symbol
!width="200pt"|Definition
!Relation to SI units
|- style="background:#dfd;"
| [[ampere]] ([[SI base unit]]) || A
| ≡ The constant current needed to produce a force of 2 {{e|-7}} newton per metre between two straight parallel conductors of infinite length and negligible circular cross-section placed one metre apart in a vacuum.<ref name="sibaseunits"/>
| = 1 A = 1 C/s
|-
| [[electromagnetic unit]]; abampere ([[cgs unit]]) || abamp
| ≡ 10 A
| = 10 A
|-
| [[esu per second]]; statampere ([[cgs unit]]) || esu/s
| ≡ {{frac|0.1 A⋅m/s|[[speed of light|''c'']]}}
| ≈ {{val|3.335641|e=-10|u=A}}
|}

===Electric charge===
{| class="wikitable"
|+ [[Electric charge]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[abcoulomb]]; electromagnetic unit ([[cgs unit]]) || abC; emu
| ≡ 10 C
| = 10 C
|-
| [[atomic units|atomic unit of charge]] || au
| ≡ ''[[elementary charge|e]]''
| ≈ {{val|1.602176462|e=-19|u=C}}
|- style="background:#dfd;"
| [[coulomb]] || C
| ≡ The amount of electricity carried in one second of time by one ampere of current.<ref name="cipm1946"/>
| = 1 C = 1 A⋅s
|-
| [[faraday constant|faraday]] || F
| ≡ 1&nbsp;mol × [[Avogadro's number|''N''<sub>A</sub>]]⋅[[elementary charge|''e'']]
| ≈ {{val|96485.3383|u=C}}
|-
| [[ampere-hour|milliampere hour]] || mA⋅h
| ≡ 0.001 A × 1 h
| = 3.6 C
|-
| [[statcoulomb]]; [[franklin (unit)|franklin]]; electrostatic unit ([[cgs unit]]) || statC; Fr; esu
| ≡ {{frac|0.1 A⋅m|[[speed of light|''c'']]}}
| ≈ {{val|3.335641|e=-10|u=C}}
|}

===Electric dipole===
{| class="wikitable"
|+ [[Electric dipole]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| atomic unit of electric dipole moment || ''[[elementary charge|e]]''[[Bohr radius|''a''<sub>0</sub>]]
| &nbsp;
| ≈ {{val|8.47835281|e=-30|u=C⋅m}}<ref>{{citation | url=http://physics.nist.gov/cgi-bin/cuu/Value?auedm | year=2006 | title=The NIST Reference on Constants, Units, and Uncertainty | accessdate=August 26, 2009}}</ref>
|- style="background:#dfd;"
| coulomb meter || C⋅m
| &nbsp;
| = 1 C × 1 m
|-
| [[debye]] || D
| = 10<sup>−10</sup> esu⋅Å
| = {{val|3.33564095|e=-30|u=C⋅m}}<ref>Robert G. Mortimer ''Physical chemistry'',Academic Press, 2000 {{ISBN|0-12-508345-9}}, page 677</ref>
|}

===Electromotive force, electric potential difference===
{| class="wikitable"
|+ [[Voltage]], electromotive force
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[abvolt]] ([[cgs unit]]) || abV
| ≡ 10<sup>−8</sup> V
| = 10<sup>−8</sup> V
|-
| [[statvolt]] ([[cgs unit]]) || statV
| ≡ [[speed of light|''c'']]⋅(1 μJ/A⋅m)
| = {{val|299.792458|u=V}}
|- style="background:#dfd;"
| [[volt]] (SI unit) || V
| The difference in electric potential across two points along a conducting wire carrying one ampere of constant current when the power dissipated between the points equals one watt.<ref name="cipm1946"/>
| = 1 V = 1 W/A {{nowrap|{{=}} 1 kg⋅m<sup>2</sup>/(A⋅s<sup>3</sup>)}} = 1 J/C
|}

===Electrical resistance===
{| class="wikitable"
|+ [[Electrical resistance]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[ohm (unit)|ohm]] (SI unit) || Ω
| The resistance between two points in a conductor when one volt of electric potential difference, applied to these points, produces one ampere of current in the conductor.<ref name="cipm1946"/>
| = 1 Ω = 1 V/A {{nowrap|{{=}} 1 kg⋅m<sup>2</sup>/(A<sup>2</sup>⋅s<sup>3</sup>)}}
|}

===Capacitance===
{| class="wikitable"
|+ [[Capacitor]]'s ability to store [[electric charge|charge]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
|[[farad]] (SI unit)
|F
|The capacitance between two parallel plates that results in one volt of potential difference when charged by one coulomb of electricity.<ref name="cipm1946"/>
| = 1 F = 1 C/V {{nowrap|{{=}} 1 A<sup>2</sup>⋅s<sup>4</sup>/(kg⋅m<sup>2</sup>)}}
|}

===Magnetic flux===
{| class="wikitable"
|+ [[magnetic flux]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[maxwell (unit)|maxwell]] (CGS unit)
| Mx
| ≡ 10<sup>−8</sup> Wb<ref name=nistguide>{{citation | title=NIST Guide to SI Units, Appendix B.9 | url=http://physics.nist.gov/Pubs/SP811/appenB9.html | accessdate=August 27, 2009}}</ref>
| = 10<sup>−8</sup> Wb
|- style="background:#dfd;"
| [[weber (unit)|weber]] (SI unit)
| Wb
| Magnetic flux which, linking a circuit of one turn, would produce in it an electromotive force of 1 volt if it were reduced to zero at a uniform rate in 1 second.<ref name="cipm1946"/>
| = 1 Wb = 1 V⋅s {{nowrap|{{=}} 1 kg⋅m<sup>2</sup>/(A⋅s<sup>2</sup>)}}
|}

===Magnetic flux density===
{| class="wikitable"
|+ What physicists call [[Magnetic field]] is called [[Magnetic flux]] density by electrical engineers and magnetic induction by applied mathematicians and electrical engineers.
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[gauss (unit)|gauss]] (CGS unit) || G
| ≡ [[maxwell (unit)|Mx]]/cm<sup>2</sup> = 10<sup>−4</sup> T
| = 10<sup>−4</sup> T <ref name="SI-10">''Standard for the Use of the International System of Units (SI): The Modern Metric System'' IEEE/ASTM SI 10-1997. (1997). New York and West Conshohocken, PA: [[Institute of Electrical and Electronics Engineers]] and [[American Society for Testing and Materials]]. Tables A.1 through A.5.</ref>
|- style="background:#dfd;"
| [[tesla (unit)|tesla]] (SI unit) || T
| ≡ [[weber (unit)|Wb]]/[[square metre|m<sup>2</sup>]]
| = 1 T = 1 Wb/m<sup>2</sup> {{nowrap|{{=}} 1 kg/(A⋅s<sup>2</sup>)}}
|}

===Inductance===
{| class="wikitable"
|+ [[Inductance]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[henry (unit)|henry]] (SI unit) || H
| The inductance of a closed circuit that produces one volt of electromotive force when the current in the circuit varies at a uniform rate of one ampere per second.<ref name="cipm1946"/>
| = 1 H = 1 Wb/A {{nowrap|{{=}} 1 kg⋅m<sup>2</sup>/(A⋅s)<sup>2</sup>}}
|}

===Temperature===
{{details|Conversion of units of temperature}}
{| class="wikitable"
|+ [[Temperature]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| degree [[Celsius]] || °C
| [°C] ≡ [K] − 273.15
| [K] ≡ [°C] + 273.15
|-
| degree [[Delisle scale|Delisle]] || °De
|
| [K] = 373.15 − [°De] × {{frac|2|3}}
|-
| degree [[Fahrenheit]] || °F
| [°F] ≡ [°C] × {{frac|9|5}} + 32
| [K] ≡ ([°F] + 459.67) × {{frac|5|9}}
|-
| degree [[Newton scale|Newton]] || °N
|
| [K] = [°N] × {{frac|100|33}} + 273.15
|-
| degree [[Rankine scale|Rankine]] || °R;
| [°R] ≡ [K] × {{frac|9|5}}
| [K] ≡ [°R] × 5/9
|-
| degree [[Réaumur scale|Réaumur]] || °Ré
|
| [K] = [°Ré] × {{frac|5|4}} + 273.15
|-
| degree [[Rømer scale|Rømer]] || °Rø
|
| [K] = ([°Rø] − 7.5) × {{frac|40|21}} + 273.15
|-
| Regulo [[Gas Mark]] || GM
| [°F] ≡ [GM] × 25 + 300
| [K] ≡ [GM] × {{frac|125|9}} + 422.038
|- style="background:#dfd;"
| [[kelvin]] (SI base unit) || K
| ≡ {{frac|273.16}} of the [[thermodynamic temperature]] of the [[triple point of water]].<ref name="sibaseunits"/>
| ≡ 1 K
|}

===Information entropy===

{| class="wikitable"
|+ [[Information entropy]]
!Name of unit
!Symbol
!Definition
!Relation to SI units
!Relation to bits
|-
| [[nat (unit)|natural unit of information]]; nip; nepit || nat
|
|
|
|-
| [[shannon (unit)|shannon]]; [[bit]] || Sh; bit; b
| ≡ ln(2) × [[nat (unit)|nat]]
| ≈ {{val|0.693147|u=[[nat (unit)|nat]]}}
| = 1 bit
|-
| [[hartley (unit)|hartley]]; ban || Hart; ban
| ≡ ln(10) × nat
| ≈ {{val|2.302585|u=[[nat (unit)|nat]]}}
|
|-
| [[nibble]] ||
| ≡ 4 bits
|
| = 2<sup>2</sup> bit
|-
| [[byte]] || B
| ≡ 8 bits
|
| = 2<sup>3</sup> bit
|-
| [[kilobyte]] (decimal) || kB
| ≡ {{val|1000|u=B}}
|
| = {{val|8000}} bit
|-
| [[kilobyte]] ([[kibibyte]]) || KB; KiB
| ≡ {{val|1024|u=B}}
|
| = 2<sup>13</sup> bit = {{val|8192}} bit
|}

Modern standards (such as [[ISO 80000]]) prefer the [[shannon (unit)|shannon]] to the bit as a unit for a quantity of information entropy, whereas the (discrete) storage space of digital devices is measured in bits. Thus, uncompressed redundant data occupy more than one bit of storage per shannon of information entropy. The multiples of a bit listed above are usually used with this meaning.

===Luminous intensity===
The candela is the preferred nomenclature for the SI unit.
{| class="wikitable"
|+ [[Luminous intensity]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[candela]] (SI base unit); candle
| cd
| The luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540{{e|12}} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.<ref name="sibaseunits"/>
| = 1&nbsp;cd
|-
| [[candlepower]] (new)
| cp
| ≡ cd The use of ''candlepower'' as a unit is discouraged due to its ambiguity.
| = 1&nbsp;cd
|-
| [[candlepower]] (old, pre-1948)
| cp
| Varies and is poorly reproducible.<ref>{{citation | title=The NIST Reference on Constants, Units, and Uncertainty | url=http://physics.nist.gov/cuu/Units/candela.html | accessdate=August 28, 2009}}</ref> Approximately 0.981&nbsp;cd.<ref name="howmany"/>
| ≈ 0.981&nbsp;cd
|}

===Luminance===
{| class="wikitable"
|+ [[Luminance]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| candela per square foot
| cd/ft<sup>2</sup>
| ≡ cd/ft<sup>2</sup>
| ≈ {{val|10.763910417|u=cd/m<sup>2</sup>}}
|-
| candela per square inch
| cd/in<sup>2</sup>
| ≡ cd/in<sup>2</sup>
| ≈ {{val|1550.0031|u=cd/m<sup>2</sup>}}
|- style="background:#dfd;"
| [[candela per square metre]] (SI unit); nit (deprecated<ref name="howmany"/>)
| cd/m<sup>2</sup>
| ≡ cd/m<sup>2</sup>
| = 1&nbsp;cd/m<sup>2</sup>
|-
| [[foot-lambert|footlambert]]
| fL
| ≡ (1/π) cd/ft<sup>2</sup>
| ≈ {{val|3.4262590996|u=cd/m<sup>2</sup>}}
|-
| [[lambert (unit)|lambert]]
| L
| ≡ (10<sup>4</sup>/π) cd/m<sup>2</sup>
| ≈ {{val|3183.0988618|u=cd/m<sup>2</sup>}}
|-
| [[stilb (luminance)|stilb]] (CGS unit)
| sb
| ≡ 10<sup>4</sup>&nbsp;cd/m<sup>2</sup>
| = 10<sup>4</sup>&nbsp;cd/m<sup>2</sup>
|}

===Luminous flux===
{| class="wikitable"
|+ [[Luminous flux]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[lumen (unit)|lumen]] (SI unit)
| lm
| ≡ cd⋅sr
| = 1&nbsp;lm = 1&nbsp;cd⋅sr
|}

===Illuminance===
{| class="wikitable"
|+ [[Illuminance]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[Foot-candle|footcandle]]; lumen per square foot
| fc
| ≡ lm/ft<sup>2</sup>
| = {{val|10.763910417|u=lx}}
|-
| lumen per square inch
| lm/in<sup>2</sup>
| ≡ lm/in<sup>2</sup>
| ≈ {{val|1550.0031|u=lx}}
|- style="background:#dfd;"
| [[lux]] (SI unit)
| lx
| ≡ lm/m<sup>2</sup>
| = 1&nbsp;lx = 1&nbsp;lm/m<sup>2</sup>
|-
| [[phot]] (CGS unit)
| ph
| ≡ lm/cm<sup>2</sup>
| = 10<sup>4</sup> lx
|}

===Radiation – source activity===
{| class="wikitable"
|+ [[Radioactivity]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[becquerel]] (SI unit) || Bq
| ≡ Number of disintegrations per second
| = 1 Bq = 1/s
|-
| [[Curie (unit)|curie]] || Ci
| ≡ {{val|3.7|e=10|u=Bq}}<ref name="SP811-2008">Ambler Thompson & Barry N. Taylor. (2008). [http://physics.nist.gov/cuu/pdf/sp811.pdf ''Guide for the Use of the International System of Units (SI)''.] Special Publication 811. Gaithersburg, MD: [[National Institute of Standards and Technology]]. p. 10.</ref>
| = {{val|3.7|e=10|u=Bq}}
|-
| [[rutherford (unit)|rutherford]] (H) || Rd
| ≡ 1 MBq
| = 10<sup>6</sup> Bq
|}
Although becquerel (Bq) and hertz (Hz) both ultimately refer to the same SI base unit (s<sup>−1</sup>), Hz is used only for periodic phenomena (i.e. repetitions at regular intervals), and Bq is only used for stochastic processes (i.e. at random intervals) associated with radioactivity.<ref name=sibrochure222>{{citation|url=http://www.bipm.org/en/si/si_brochure/chapter2/2-2/table3.html |title=The International System of Units, Section 2.2.2., Table 3 |edition=8 |publisher=[[Bureau International des Poids et Mesures]] |year=2006 |accessdate=August 27, 2009 |url-status=dead |archiveurl=https://web.archive.org/web/20070618123613/http://www.bipm.org/en/si/si_brochure/chapter2/2-2/table3.html |archivedate=June 18, 2007 }}</ref>

===Radiation – exposure===
{| class="wikitable"
|+ Radiation - exposure
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[Roentgen (unit)|roentgen]] || R
| 1 R ≡ {{val|2.58|e=-4|u=C/kg}}<ref name="nistguide"/>
| = {{val|2.58|e=-4|u=C/kg}}
|}
The roentgen is not an SI unit and the [[National Institute of Standards and Technology|NIST]] strongly discourages its continued use.<ref>{{citation | url=http://physics.nist.gov/Pubs/SP811/sec05.html#5.2 | title=The NIST Guide to the SI (Special Publication 811), section 5.2 | year=2008 | accessdate=August 27, 2009}}</ref>

===Radiation – absorbed dose===
{| class="wikitable"
|+ Radiation - [[absorbed dose]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|- style="background:#dfd;"
| [[gray (unit)|gray]] (SI unit) || Gy
| ≡ 1 J/kg = 1 m<sup>2</sup>/s<sup>2</sup> <ref>Ambler Thompson & Barry N. Taylor. (2008). [http://physics.nist.gov/cuu/pdf/sp811.pdf ''Guide for the Use of the International System of Units (SI)''.] Special Publication 811. Gaithersburg, MD: [[National Institute of Standards and Technology]]. p. 5.</ref>
| = 1 Gy
|-
| [[rad (unit)|rad]] || rad
| ≡ 0.01 Gy<ref name="nistguide"/>
| = 0.01 Gy
|}

===Radiation – equivalent dose===
{| class="wikitable"
|+ Radiation - [[equivalent dose]]
|-
!Name of unit
!Symbol
!Definition
!Relation to SI units
|-
| [[Röntgen equivalent man]] || rem
| ≡ 0.01 Sv
| = 0.01 Sv
|- style="background:#dfd;"
| [[sievert]] (SI unit) || Sv
| ≡ 1 J/kg<ref name="sibrochure222"/>
| = 1 Sv
|}
Although the definitions for sievert (Sv) and gray (Gy) would seem to indicate that they measure the same quantities, this is not the case. The effect of receiving a certain dose of radiation (given as Gy) is variable and depends on many factors, thus a new unit was needed to denote the biological effectiveness of that dose on the body; this is known as the equivalent dose and is shown in Sv. The general relationship between absorbed dose and equivalent dose can be represented as
:''H'' = ''Q'' ⋅ ''D''
where ''H'' is the equivalent dose, ''D'' is the absorbed dose, and ''Q'' is a dimensionless quality factor. Thus, for any quantity of ''D'' measured in Gy, the numerical value for ''H'' measured in Sv may be different.<ref>{{citation | url=http://www.bipm.org/en/CIPM/db/2002/2/ | title=Comité international des poids et mesures, 2002, Recommendation 2 | accessdate=August 27, 2009}}</ref>


== See also ==
== See also ==
{{colbegin}}
{{div col}}
* [[Conversion of units of temperature]]
*[[Accuracy and precision]]
* [[Dimensional analysis]]
*[[Conversion of units of temperature]]
*[[English units]]
* [[English units]]
*[[False precision]]
* [[Imperial units]]
* [[International System of Units]]
*[[Imperial units]]
* [[List of conversion factors]]
*[[International System of Units]]
*[[Mesures usuelles]]
* [[List of metric units]]
* [[Mesures usuelles]]
*[[Metric prefix]] (e.g. "kilo-" prefix)
*[[Metric system]]
* [[Metric prefix]]
*[[Natural units]]
* [[Metric system]]
* [[Metrication]]
*[[Orders of Magnitude]]
*[[Rounding]]
* [[Natural units]]
* [[United States customary units]]
*[[Significant figures]]
*[[Unified Code for Units of Measure]]
* [[Unit of length]]
* [[Units of measurement]]
*[[United States customary units]]
{{div col end}}
*[[Unit of length]]
*[[Units (software)]]
*[[Units conversion by factor-label]]
*[[Units of measurement]]
{{colend}}


== Notes and references ==
== Notes and references ==
{{Reflist|30em}}
{{reflist|30em}}
;Notes
; Notes
{{Reflist|group=Converter}}
{{reflist|group=Converter}}


== External links ==
== External links ==
{{extlinks|date=July 2023}}
{{Wikibooks|FHSST Physics Units:How to Change Units}}
{{Wikibooks|FHSST Physics Units:How to Change Units}}
{{Wikivoyage|Metric and Imperial equivalents}}
{{Wikivoyage|Metric and Imperial equivalents}}
<!-- ATTENTION! Please do not add links without discussion and consensus on the talk page. Undiscussed links will be removed. -->
<!-- ATTENTION! Please do not add links without discussion and consensus on the talk page. Undiscussed links will be removed. -->
* {{UK SI|title=Units of measurement regulations 1995|year=1995|number=1804|showsldlink=yes}}

* {{cite web |url= http://physics.nist.gov/cuu/Document/nonsi_in_1998.pdf |title= NIST: Fundamental physical constants – Non-SI units |access-date= 2004-03-15 |archive-url= https://web.archive.org/web/20161227154531/http://www.physics.nist.gov/cuu/Document/nonsi_in_1998.pdf |archive-date= 2016-12-27 |url-status= dead }}
*{{UK SI|title=Units of measurement regulations 1995|year=1995|number=1804|showsldlink=yes}}
* [http://physics.nist.gov/Pubs/SP811/appenB9.html NIST Guide to SI Units] Many conversion factors listed.
*{{cite web |url= http://physics.nist.gov/cuu/Document/nonsi_in_1998.pdf |title= NIST: Fundamental physical constants — Non-SI units |access-date= 2004-03-15 |archive-url= https://web.archive.org/web/20161227154531/http://www.physics.nist.gov/cuu/Document/nonsi_in_1998.pdf |archive-date= 2016-12-27 |url-status= dead }}&nbsp;{{small|(35.7&nbsp;KB)}}
* [https://web.archive.org/web/20080517033615/http://aurora.rg.iupui.edu/~schadow/units/UCUM/ucum.html The Unified Code for Units of Measure]
*[http://physics.nist.gov/Pubs/SP811/appenB9.html NIST Guide to SI Units] Many conversion factors listed.
* [http://w3.energistics.org/uom/poscUnits22.xml Units, Symbols, and Conversions XML Dictionary] {{Webarchive|url=https://web.archive.org/web/20230502150911/http://w3.energistics.org/uom/poscUnits22.xml |date=2023-05-02 }}
*[https://web.archive.org/web/20080517033615/http://aurora.rg.iupui.edu/~schadow/units/UCUM/ucum.html The Unified Code for Units of Measure]
* [https://archive.org/details/instructionsurle00fran/mode/1up "Instruction sur les poids et mesures républicaines – déduites de la grandeur de la terre, uniformes pour toute la République, et sur les calculs relatifs à leur division décimale" {{in lang|fr}}]
*[http://w3.energistics.org/uom/poscUnits22.xml Units, Symbols, and Conversions XML Dictionary]
* [http://www.chem.tamu.edu/class/fyp/mathrev/mr-da.html Math Skills Review]
*{{dmoz|Science/Reference/Units_of_Measurement/Software/|Units of Measurement Software}}
* [http://www.felderbooks.com/papers A Discussion of Units]
*{{dmoz|Science/Reference/Units_of_Measurement/Online_Conversion/|Units of Measurement Online Conversion}}
* [http://www.astro.yale.edu/astro120/unitconv.pdf Short Guide to Unit Conversions]
* [http://www.purplemath.com/modules/units.htm Canceling Units Lesson]
* [https://web.archive.org/web/20120206025533/http://www.dentonisd.org/512125919103412/lib/512125919103412/_files/chemChap11.pdf Chapter 11: Behavior of Gases] ''Chemistry: Concepts and Applications'', Denton independent school District


{{Systems of measurement}}
{{Systems of measurement}}
{{SI units}}
{{SI units}}


{{DEFAULTSORT:Conversion Of Units}}
[[Category:Units of measurement| ]]
[[Category:Units of measurement| ]]
[[Category:Metrication]]
[[Category:Metrication]]
[[Category:Conversion of units of measurement]]
[[Category:Conversion of units of measurement]]
[[Category:[https://www.allinoneunitconverter.com/ All In One Unit Converter]]]

Latest revision as of 08:05, 9 October 2024

Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.

Unit conversion is often easier within a metric system such as the SI than in others, due to the system's coherence and its metric prefixes that act as power-of-10 multipliers.

Overview

[edit]

The definition and choice of units in which to express a quantity may depend on the specific situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards. Engineering judgment may include such factors as:

For some purposes, conversions from one system of units to another are needed to be exact, without increasing or decreasing the precision of the expressed quantity. An adaptive conversion may not produce an exactly equivalent expression. Nominal values are sometimes allowed and used.

Factor–label method

[edit]

The factor–label method, also known as the unit–factor method or the unity bracket method,[1] is a widely used technique for unit conversions that uses the rules of algebra.[2][3][4]

The factor–label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained. For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below:

Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the original unit. For example, as "mile" is the numerator in the original fraction and , "mile" will need to be the denominator in the conversion factor. Dividing both sides of the equation by 1 mile yields , which when simplified results in the dimensionless . Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity.[5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.

As a more complex example, the concentration of nitrogen oxides (NOx) in the flue gas from an industrial furnace can be converted to a mass flow rate expressed in grams per hour (g/h) of NOx by using the following information as shown below:

NOx concentration
= 10 parts per million by volume = 10 ppmv = 10 volumes/106 volumes
NOx molar mass
= 46 kg/kmol = 46 g/mol
Flow rate of flue gas
= 20 cubic metres per minute = 20 m3/min
The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure.
The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m3/kmol.

After cancelling any dimensional units that appear both in the numerators and the denominators of the fractions in the above equation, the NOx concentration of 10 ppmv converts to mass flow rate of 24.63 grams per hour.

Checking equations that involve dimensions

[edit]

The factor–label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation. Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong.

For example, check the universal gas law equation of PV = nRT, when:

  • the pressure P is in pascals (Pa)
  • the volume V is in cubic metres (m3)
  • the amount of substance n is in moles (mol)
  • the universal gas constant R is 8.3145 Pa⋅m3/(mol⋅K)
  • the temperature T is in kelvins (K)

As can be seen, when the dimensional units appearing in the numerator and denominator of the equation's right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties. The equations may reveal undiscovered or overlooked properties of matter, in the form of left-over dimensions – dimensional adjusters – that can then be assigned physical significance. It is important to point out that such 'mathematical manipulation' is neither without prior precedent, nor without considerable scientific significance. Indeed, the Planck constant, a fundamental physical constant, was 'discovered' as a purely mathematical abstraction or representation that built on the Rayleigh–Jeans law for preventing the ultraviolet catastrophe. It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment – not earlier.

Limitations

[edit]

The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio. There is, however, an affine transform (, rather than a linear transform ) between them.

For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the point of reference). Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula.

Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees Celsius, this formula may be used:

T[C] = (T[F] − 32) × 5/9.

To convert T[C] in degrees Celsius to T[F] in degrees Fahrenheit, this formula may be used:

T[F] = (T[C] × 9/5) + 32.

Example

[edit]

Starting with:

replace the original unit with its meaning in terms of the desired unit , e.g. if , then:

Now and are both numerical values, so just calculate their product.

Or, which is just mathematically the same thing, multiply Z by unity, the product is still Z:

For example, you have an expression for a physical value Z involving the unit feet per second () and you want it in terms of the unit miles per hour ():

  1. Find facts relating the original unit to the desired unit:
    1 mile = 5280 feet and 1 hour = 3600 seconds
  2. Next use the above equations to construct a fraction that has a value of unity and that contains units such that, when it is multiplied with the original physical value, will cancel the original units:
  3. Last, multiply the original expression of the physical value by the fraction, called a conversion factor, to obtain the same physical value expressed in terms of a different unit. Note: since valid conversion factors are dimensionless and have a numerical value of one, multiplying any physical quantity by such a conversion factor (which is 1) does not change that physical quantity.

Or as an example using the metric system, you have a value of fuel economy in the unit litres per 100 kilometres and you want it in terms of the unit microlitres per metre:

Calculation involving non-SI Units

[edit]

In the cases where non-SI units are used, the numerical calculation of a formula can be done by first working out the factor, and then plug in the numerical values of the given/known quantities.

For example, in the study of Bose–Einstein condensate,[6] atomic mass m is usually given in daltons, instead of kilograms, and chemical potential μ is often given in the Boltzmann constant times nanokelvin. The condensate's healing length is given by:

For a 23Na condensate with chemical potential of (the Boltzmann constant times) 128 nK, the calculation of healing length (in micrometres) can be done in two steps:

Calculate the factor

[edit]

Assume that , this gives which is our factor.

Calculate the numbers

[edit]

Now, make use of the fact that . With , .

This method is especially useful for programming and/or making a worksheet, where input quantities are taking multiple different values; For example, with the factor calculated above, it is very easy to see that the healing length of 174Yb with chemical potential 20.3 nK is

.

Software tools

[edit]

There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.

There are many standalone applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for GNU and Windows.[7] The Unified Code for Units of Measure is also a popular option.

See also

[edit]

Notes and references

[edit]
  1. ^ Béla Bodó; Colin Jones (26 June 2013). Introduction to Soil Mechanics. John Wiley & Sons. pp. 9–. ISBN 978-1-118-55388-6.
  2. ^ Goldberg, David (2006). Fundamentals of Chemistry (5th ed.). McGraw-Hill. ISBN 978-0-07-322104-5.
  3. ^ Ogden, James (1999). The Handbook of Chemical Engineering. Research & Education Association. ISBN 978-0-87891-982-6.
  4. ^ "Dimensional Analysis or the Factor Label Method". Mr Kent's Chemistry Page.
  5. ^ "Identity property of multiplication". Retrieved 2015-09-09.
  6. ^ Foot, C. J. (2005). Atomic physics. Oxford University Press. ISBN 978-0-19-850695-9.
  7. ^ "GNU Units". Retrieved 2024-09-24.
Notes
[edit]