Jump to content

Median lethal dose: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Poison scale: Maybe it isn't catchy, but it is neatly 1. Also specified negative log; "Obtained in this Way" is a silly way to refer to the last paragraph.
m Examples: decap "syrup"
 
(167 intermediate revisions by 89 users not shown)
Line 1: Line 1:
{{short description|A measure of the lethal dose of a toxin, radiation, or pathogen required to kill half of a tested population}}
{{Short description|Measurement of lethal dose of substance}}
{{redirect|LD50}}
{{redirect|LD50}}
{{cs1 config|name-list-style=vanc|display-authors=6}}
In [[toxicology]], the '''median lethal dose''', '''LD<sub>50</sub>''' (abbreviation for "[[lethal dose]], 50%"), '''LC<sub>50</sub>''' (lethal concentration, 50%) or '''LCt<sub>50</sub>''' is a measure of the [[lethal dose]] of a [[toxin]], [[radiation]], or [[pathogen]].<ref>{{Cite web|url=https://goldbook.iupac.org/html/A/A00025.html|work=IUPAC Gold Book|title=absolute lethal dose (LD100)|publisher=International Union of Pure and Applied Chemistry|language=en|access-date=2019-07-01|archive-url=https://web.archive.org/web/20190701134347/https://goldbook.iupac.org/html/A/A00025.html|archive-date=2019-07-01|url-status=dead}}</ref> The value of LD<sub>50</sub> for a substance is the [[Dose (pharmacology)|dose]] required to kill half the members of a tested population after a specified test duration. LD<sub>50</sub> figures are frequently used as a general indicator of a substance's [[acute toxicity]]. A lower LD<sub>50</sub> is indicative of increased toxicity.
In [[toxicology]], the '''median lethal dose''', '''LD<sub>50</sub>''' (abbreviation for "[[lethal dose]], 50%"), '''LC<sub>50</sub>''' (lethal concentration, 50%) or '''LCt<sub>50</sub>''' is a [[toxic unit]] that measures the [[lethal dose]] of a given [[Chemical substance|substance]].<ref>{{Cite web|url=https://goldbook.iupac.org/html/A/A00025.html|work=IUPAC Gold Book|title=Absolute lethal dose (LD100)|publisher=International Union of Pure and Applied Chemistry|language=en|access-date=2019-07-01|archive-url=https://web.archive.org/web/20190701134347/https://goldbook.iupac.org/html/A/A00025.html|archive-date=2019-07-01|url-status=dead}}</ref> The value of LD<sub>50</sub> for a substance is the [[Dose (pharmacology)|dose]] required to kill half the members of a tested population after a specified test duration. LD<sub>50</sub> figures are frequently used as a general indicator of a substance's [[acute toxicity]]. A lower LD<sub>50</sub> is indicative of higher toxicity.


The test was created by J.W. Trevan in 1927.<ref>{{cite web|url=http://www.ccohs.ca/oshanswers/chemicals/ld50.html|title=What is a LD50 and LC50?|work=OSH Answers Fact Sheets|publisher=Canadian Centre for Occupational Health and Safety}}</ref> The term '''semilethal dose''' is occasionally used in the same sense, in particular with translations of foreign language text, but can also refer to a sublethal dose. LD<sub>50</sub> is usually determined by tests on animals such as [[Laboratory mouse|laboratory mice]]. In 2011, the U.S. [[Food and Drug Administration]] approved alternative methods to LD<sub>50</sub> for testing the cosmetic drug [[Botox]] without animal tests.<ref>
The term LD<sub>50</sub> is generally attributed to John William Trevan.<ref name="Biographical Memoirs of Fellows of the Royal Society 1957 pp. 273–288">{{cite journal | title=John William Trevan, 1887-1956 | journal=Biographical Memoirs of Fellows of the Royal Society | volume=3 | date=1957 | issn=0080-4606 | doi=10.1098/rsbm.1957.0019 | pages=273–288 | url=https://royalsocietypublishing.org/doi/pdf/10.1098/rsbm.1957.0019 | access-date=2024-03-31 | archive-date=2020-03-28 | archive-url=https://web.archive.org/web/20200328170611/https://royalsocietypublishing.org/doi/pdf/10.1098/rsbm.1957.0019 | url-status=live }}</ref> The test was created by J. W. Trevan in 1927.<ref>{{cite web|url=http://www.ccohs.ca/oshanswers/chemicals/ld50.html|title=What is a LD50 and LC50?|work=OSH Answers Fact Sheets|date=5 October 2021|publisher=Canadian Centre for Occupational Health and Safety|access-date=15 July 2006|archive-date=26 June 2015|archive-url=https://web.archive.org/web/20150626013647/http://www.ccohs.ca/oshanswers/chemicals/ld50.html|url-status=live}}</ref> The term '''semilethal dose''' is occasionally used in the same sense, in particular with translations of foreign language text, but can also refer to a sublethal dose. LD<sub>50</sub> is usually determined by tests on animals such as [[Laboratory mouse|laboratory mice]]. In 2011, the U.S. [[Food and Drug Administration]] approved alternative methods to LD<sub>50</sub> for testing the cosmetic drug [[Botox]] without animal tests.<ref>{{cite web
{{cite web
|date=24 June 2011
|date=24 June 2011
|title=Allergan Receives FDA Approval for First-of-Its-Kind, Fully in vitro, Cell-Based Assay for BOTOX® and BOTOX® Cosmetic (onabotulinumtoxinA)
|title=Allergan Receives FDA Approval for First-of-Its-Kind, Fully in vitro, Cell-Based Assay for BOTOX and BOTOX Cosmetic (onabotulinumtoxinA)
|publisher=Allergan Web site
|publisher=Allergan Web site
|url=http://agn.client.shareholder.com/releasedetail.cfm?ReleaseID=587234
|url=http://agn.client.shareholder.com/releasedetail.cfm?ReleaseID=587234
|accessdate=2012-08-15
|access-date=2012-08-15
|url-status=dead
|url-status=dead
|archiveurl=https://web.archive.org/web/20110626185759/http://agn.client.shareholder.com/releasedetail.cfm?ReleaseID=587234
|archive-url=https://web.archive.org/web/20110626185759/http://agn.client.shareholder.com/releasedetail.cfm?ReleaseID=587234
|archivedate=26 June 2011
|archive-date=26 June 2011
}}</ref><ref>{{cite news | vauthors = Gaul GM | date = 12 April 2008 | title = In U.S., Few Alternatives To Testing On Animals | newspaper = [[Washington Post]] | url = https://www.washingtonpost.com/wp-dyn/content/article/2008/04/11/AR2008041103733.html | access-date = 2011-06-26 | archive-date = 2012-11-12 | archive-url = https://web.archive.org/web/20121112163835/http://www.washingtonpost.com/wp-dyn/content/article/2008/04/11/AR2008041103733.html | url-status = live }}</ref>
}}</ref><ref>
{{cite web
| first = Gilbert M. |last = Gaul
| date = 12 April 2008
| title = In U.S., Few Alternatives To Testing On Animals
| work = [[Washington Post]]
| url = https://www.washingtonpost.com/wp-dyn/content/article/2008/04/11/AR2008041103733.html
| accessdate = 2011-06-26
}}</ref>


== Conventions ==
== Conventions ==
The LD<sub>50</sub> is usually expressed as the mass of substance administered per unit mass of test subject, typically as [[milligram]]s of substance per [[kilogram]] of body mass, sometimes also stated as [[nanogram]]s (suitable for [[botulinum]]), [[microgram]]s, or [[gram]]s (suitable for [[paracetamol]]) per kilogram. Stating it this way allows the relative toxicity of different substances to be compared, and normalizes for the variation in the size of the animals exposed (although toxicity does not always scale simply with body mass). For substances in the environment, such as poisonous vapors or substances in water that are toxic to fish, the concentration in the environment (per cubic metre or per litre) is used, giving a value of LC<sub>50</sub>. But in this case, the exposure time is important (see below).
The LD<sub>50</sub> is usually expressed as the mass of substance administered per unit mass of test subject, typically as [[milligram]]s of substance per [[kilogram]] of body mass, sometimes also stated as [[nanogram]]s (suitable for [[botulinum]]), [[microgram]]s, or [[gram]]s (suitable for [[paracetamol]]) per kilogram. Stating it this way allows the relative toxicity of different substances to be compared and normalizes for the variation in the size of the animals exposed (although toxicity does not always scale simply with body mass). For substances in the environment, such as poisonous vapors or substances in water that are toxic to fish, the concentration in the environment (per cubic metre or per litre) is used, giving a value of LC<sub>50</sub>. But in this case, the exposure time is important (see below).


The choice of 50% lethality as a benchmark avoids the potential for ambiguity of making measurements in the extremes and reduces the amount of testing required. However, this also means that LD<sub>50</sub> is not the lethal dose for all subjects; some may be killed by much less, while others survive doses far higher than the LD<sub>50</sub>. Measures such as "LD<sub>1</sub>" and "LD<sub>99</sub>" (dosage required to kill 1% or 99%, respectively, of the test population) are occasionally used for specific purposes.<ref>{{cite web|editor=Doris V. Sweet|date=July 1997|url=https://www.cdc.gov/niosh/pdfs/97-119-a.pdf|title=Registry of Toxic Effects of Chemical Substances (RTECS®) / Comprehensive Guide to the RTECS®|publisher=U.S. Department of Health and Human Services|url-status=dead|archive-url=https://web.archive.org/web/20130516165953/http://www.cdc.gov/niosh/pdfs/97-119-a.pdf|archive-date=2013-05-16 |id=DHHS (NIOSH) Publication No. 97-119}}</ref>
The choice of 50% lethality as a benchmark avoids the potential for ambiguity of making measurements in the extremes and reduces the amount of testing required. However, this also means that LD<sub>50</sub> is not the lethal dose for all subjects; some may be killed by much less, while others survive doses far higher than the LD<sub>50</sub>. Measures such as "LD<sub>1</sub>" and "LD<sub>99</sub>" (dosage required to kill 1% or 99%, respectively, of the test population) are occasionally used for specific purposes.<ref>{{cite web|editor=Doris V. Sweet|date=July 1997|url=https://www.cdc.gov/niosh/pdfs/97-119-a.pdf|title=Registry of Toxic Effects of Chemical Substances (RTECS) / Comprehensive Guide to the RTECS|publisher=U.S. Department of Health and Human Services|url-status=dead|archive-url=https://web.archive.org/web/20130516165953/http://www.cdc.gov/niosh/pdfs/97-119-a.pdf|archive-date=2013-05-16 |id=DHHS (NIOSH) Publication No. 97-119}}</ref>


Lethal dosage often varies depending on the method of [[Drug administration|administration]]; for instance, many substances are less toxic when administered orally than when [[Intravenous therapy|intravenously]] administered. For this reason, LD<sub>50</sub> figures are often qualified with the mode of administration, e.g., "LD<sub>50</sub> i.v."
Lethal dosage often varies depending on the method of [[Drug administration|administration]]; for instance, many substances are less toxic when administered orally than when [[Intravenous therapy|intravenously]] administered. For this reason, LD<sub>50</sub> figures are often qualified with the mode of administration, e.g., "LD<sub>50</sub> i.v."


The related quantities LD<sub>50</sub>/30 or LD<sub>50</sub>/60 are used to refer to a dose that without treatment will be lethal to 50% of the population within (respectively) 30 or 60 days. These measures are used more commonly within [[Radiation Health Physics]], as survival beyond 60 days usually results in recovery.
The related quantities LD<sub>50</sub>/30 or LD<sub>50</sub>/60 are used to refer to a dose that without treatment will be lethal to 50% of the population within (respectively) 30 or 60 days. These measures are used more commonly within radiation [[health physics]], for [[ionizing radiation]], as survival beyond 60 days usually results in recovery.


A comparable measurement is LCt<sub>50</sub>, which relates to lethal dosage from exposure, where C is concentration and t is time. It is often expressed in terms of mg-min/m<sup>3</sup>. ICt<span style="font-size:100%;"><sub>50</sub></span> is the dose that will cause incapacitation rather than death. These measures are commonly used to indicate the comparative efficacy of [[chemical warfare]] agents, and dosages are typically qualified by rates of breathing (e.g., resting = 10&nbsp;l/min) for inhalation, or degree of clothing for skin penetration. The concept of Ct was first proposed by [[Fritz Haber]] and is sometimes referred to as [[Haber's law]], which assumes that exposure to 1 minute of 100&nbsp;mg/m<sup>3</sup> is equivalent to 10 minutes of 10&nbsp;mg/m<sup>3</sup> (1 × 100 = 100, as does 10 × 10 = 100).
A comparable measurement is LCt<sub>50</sub>, which relates to lethal dosage from exposure, where C is concentration and t is time. It is often expressed in terms of mg-min/m<sup>3</sup>. ICt<span style="font-size:100%;"><sub>50</sub></span> is the dose that will cause incapacitation rather than death. These measures are commonly used to indicate the comparative efficacy of [[chemical warfare]] agents, and dosages are typically qualified by rates of breathing (e.g., resting = 10&nbsp;L/min) for inhalation, or degree of clothing for skin penetration. The concept of Ct was first proposed by [[Fritz Haber]] and is sometimes referred to as [[Haber's law]], which assumes that exposure to 1 minute of 100&nbsp;mg/m<sup>3</sup> is equivalent to 10 minutes of 10&nbsp;mg/m<sup>3</sup> (1 × 100 = 100, as does 10 × 10 = 100).


Some chemicals, such as [[hydrogen cyanide]], are rapidly detoxified by the human body, and do not follow Haber's law. So, in these cases, the lethal concentration may be given simply as LC<sub>50</sub> and qualified by a duration of exposure (e.g., 10 minutes). The [[Material Safety Data Sheet]]s for toxic substances frequently use this form of the term even if the substance does follow Haber's law.
Some chemicals, such as [[hydrogen cyanide]], are rapidly detoxified by the human body, and do not follow Haber's law. In these cases, the lethal concentration may be given simply as LC<sub>50</sub> and qualified by a duration of exposure (e.g., 10 minutes). The [[Material safety data sheet|material safety data sheets]] for toxic substances frequently use this form of the term even if the substance does follow Haber's law.


For disease-causing organisms, there is also a measure known as the median infective dose and dosage. The median infective dose (ID<sub>50</sub>) is the number of organisms received by a person or test animal qualified by the route of administration (e.g., 1,200 org/man per oral). Because of the difficulties in counting actual organisms in a dose, infective doses may be expressed in terms of biological assay, such as the number of LD<sub>50</sub>'s to some test animal. In [[biological warfare]] infective dosage is the number of infective doses per cubic metre of air times the number of minutes of exposure (e.g., ICt<sub>50</sub> is 100 medium doses - min/m<sup>3</sup>).
For disease-causing organisms, there is also a measure known as the median infective dose and dosage. The median infective dose (ID<sub>50</sub>) is the number of organisms received by a person or test animal qualified by the route of administration (e.g., 1,200 org/man per oral). Because of the difficulties in counting actual organisms in a dose, infective doses may be expressed in terms of biological assay, such as the number of LD<sub>50</sub>s to some test animal. In [[biological warfare]] infective dosage is the number of infective doses per cubic metre of air times the number of minutes of exposure (e.g., ICt<sub>50</sub> is 100 medium doses - min/m<sup>3</sup>).


== Limitation ==
== Limitation ==
As a measure of toxicity, LD<sub>50</sub> is somewhat unreliable and results may vary greatly between testing facilities due to factors such as the genetic characteristics of the sample population, animal species tested, environmental factors and mode of administration.<ref name="ReferenceA">Ernest Hodgson (2004). ''A Textbook of Modern Toxicology''. Wiley-Interscience (3rd ed.).{{page needed|date=January 2014}}</ref>
As a measure of toxicity, LD<sub>50</sub> is somewhat unreliable and results may vary greatly between testing facilities due to factors such as the genetic characteristics of the sample population, animal species tested, environmental factors and mode of administration.<ref name="ReferenceA">Ernest Hodgson (2004). ''A Textbook of Modern Toxicology''. Wiley-Interscience (3rd ed.).{{page needed|date=January 2014}}</ref>


There can be wide variability between species as well; what is relatively safe for rats may very well be extremely toxic for humans (''[[cf.]]'' [[paracetamol toxicity]]), and vice versa. For example, chocolate, comparatively harmless to humans, is known to be [[Health effects of chocolate#Other animals|toxic to many animals]]. When used to test [[venom]] from venomous creatures, such as [[snake]]s, LD<sub>50</sub> results may be misleading due to the physiological differences between mice, rats, and humans. Many [[venomous snake]]s are specialized predators on mice, and their venom may be adapted specifically to incapacitate mice; and [[mongoose]]s may be exceptionally resistant. While most [[mammal]]s have a very similar physiology, LD<sub>50</sub> results may or may not have equal bearing upon every mammal species, such as humans, etc.
There can be wide variability between species as well; what is relatively safe for rats may very well be extremely toxic for humans (''[[cf.]]'' [[paracetamol toxicity]]), and vice versa. For example, chocolate, comparatively harmless to humans, is known to be [[Health effects of chocolate#Non-human animals|toxic to many animals]]. When used to test [[venom]] from venomous creatures, such as [[snake]]s, LD<sub>50</sub> results may be misleading due to the physiological differences between mice, rats, and humans. Many [[venomous snake]]s are specialized predators on mice, and their venom may be adapted specifically to incapacitate mice; and [[mongoose]]s may be exceptionally resistant. While most [[mammal]]s have a very similar physiology, LD<sub>50</sub> results may or may not have equal bearing upon every mammal species, such as humans, etc.


== Examples ==
== Examples ==
Note: Comparing substances (especially drugs) to each other by LD<sub>50</sub> can be misleading in many cases due (in part) to differences in [[Effective dose (pharmacology)|effective dose]] (ED<sub>50</sub>). Therefore, it is more useful to compare such substances by [[therapeutic index]], which is simply the ratio of LD<sub>50</sub> to ED<sub>50</sub>.{{fact|date=May 2018}}
Note: Comparing substances (especially drugs) to each other by LD<sub>50</sub> can be misleading in many cases due (in part) to differences in [[Effective dose (pharmacology)|effective dose]] (ED<sub>50</sub>). Therefore, it is more useful to compare such substances by [[therapeutic index]], which is simply the ratio of LD<sub>50</sub> to ED<sub>50</sub>.<ref>{{Cite web |date=2011-01-26 |title=Therapeutic index {{!}} CME at Pharmacology Corner |url=https://pharmacologycorner.com/therapeutic-index/ |access-date=2024-07-15 |website=pharmacologycorner.com |language=en-US}}</ref>


The following examples are listed in reference to LD<sub>50</sub> values, in descending order, and accompanied by LC<sub>50</sub> values, {bracketed}, when appropriate.
The following examples are listed in reference to LD<sub>50</sub> values, in descending order, and accompanied by LC<sub>50</sub> values, {bracketed}, when appropriate.


{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-wa
! Substance
! Substance
! Animal, route
! Animal, route
Line 56: Line 48:
! class=unsortable| Reference
! class=unsortable| Reference
|-
|-
| [[Properties of water|Water]]
| [[Water intoxication|Water]] ({{chem2|H2O}})
| rat, oral
| rat, oral
| {{ntsh|90000}}90,000 mg/kg
| >{{ntsh|90000}}90,000&nbsp;mg/kg
| >90
|
| <ref>{{cite web url=http://www.sciencelab.com/msds.php?msdsId=9927321 |title=Material Safety Data Sheet Water MSDS |at=Section 11: Toxicological Information for the LD<sub>50</sub> verification |access-date=2012-05-09 |archive-url=https://web.archive.org/web/20120902122244/http://www.sciencelab.com/msds.php?msdsId=9927321 |archive-date=2012-09-02 |url-status=dead }}</ref>
| <ref>{{cite web|url=http://www.sciencelab.com/msds.php?msdsId=9927321 |title=Material Safety Data Sheet Water MSDS |at=Section 11: Toxicological Information for the LD<sub>50</sub> verification |access-date=2012-05-09 |archive-url=https://web.archive.org/web/20120902122244/http://www.sciencelab.com/msds.php?msdsId=9927321 |archive-date=2012-09-02 |url-status=dead }}</ref>
|-
|-
| [[Sucrose]] (table sugar)
| [[Sucrose]] (table sugar)
Line 67: Line 59:
| 29.7
| 29.7
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/SU/sucrose.html|title=Safety (MSDS) data for sucrose|url-status=dead|archive-url=https://web.archive.org/web/20110612032043/http://msds.chem.ox.ac.uk/SU/sucrose.html|archive-date=2011-06-12|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/SU/sucrose.html|title=Safety (MSDS) data for sucrose|url-status=dead|archive-url=https://web.archive.org/web/20110612032043/http://msds.chem.ox.ac.uk/SU/sucrose.html|archive-date=2011-06-12|website=ox.ac.uk}}</ref>
|-
| [[Corn syrup]]
| rat, oral
| {{ntsh|25800}}25,800&nbsp;mg/kg
| 25.8
| <ref>{{cite web|url=https://www.fishersci.com/store/msds?partNumber=S25339&productDescription=fisher-science-educationtrade-corn-syrup&vendorId=VN00115888&keyword=true&countryCode=US&language=en|title=Safety (MSDS) data for Corn Syrup|website=fishersci.com|access-date=2022-09-21|archive-date=2022-09-21|archive-url=https://web.archive.org/web/20220921201129/https://www.fishersci.com/store/msds?partNumber=S25339&productDescription=fisher-science-educationtrade-corn-syrup&vendorId=VN00115888&keyword=true&countryCode=US&language=en|url-status=live}}</ref>
|-
|-
| [[Glucose]] (blood sugar)
| [[Glucose]] (blood sugar)
Line 78: Line 76:
| {{ntsh|16600}}16,600&nbsp;mg/kg
| {{ntsh|16600}}16,600&nbsp;mg/kg
| 16.6
| 16.6
| <ref name="Walker00">{{cite journal | vauthors = Walker R, Lupien JR | title = The safety evaluation of monosodium glutamate | journal = The Journal of Nutrition | volume = 130 | issue = 4S Suppl | pages = 1049S–52S | date = April 2000 | pmid = 10736380 | doi = 10.1093/jn/130.4.1049S | doi-access = free }}</ref>
| <ref name="Walker00">{{cite journal | vauthors = Walker R, Lupien JR | title = The safety evaluation of monosodium glutamate | journal = The Journal of Nutrition | volume = 130 | issue = 4S Suppl | pages = 1049S-1052S | date = April 2000 | pmid = 10736380 | doi = 10.1093/jn/130.4.1049S | doi-access = free }}</ref>
|-
|-
| [[Stevioside]] (from [[stevia]])
| [[Stevioside]] (from [[stevia]])
Line 84: Line 82:
| {{ntsh|15000}}15,000&nbsp;mg/kg
| {{ntsh|15000}}15,000&nbsp;mg/kg
| 15
| 15
| <ref>{{cite journal | vauthors = Toskulkao C, Chaturat L, Temcharoen P, Glinsukon T | title = Acute toxicity of stevioside, a natural sweetener, and its metabolite, steviol, in several animal species | journal = Drug and Chemical Toxicology | volume = 20 | issue = 1–2 | pages = 31–44 | year = 1997 | pmid = 9183561 | doi = 10.3109/01480549709011077 }}</ref>
| <ref>{{cite journal | vauthors = Toskulkao C, Chaturat L, Temcharoen P, Glinsukon T | title = Acute toxicity of stevioside, a natural sweetener, and its metabolite, steviol, in several animal species | journal = Drug and Chemical Toxicology | volume = 20 | issue = 1-2 | pages = 31–44 | year = 1997 | pmid = 9183561 | doi = 10.3109/01480549709011077 }}</ref>
|-
|-
| [[Gasoline]] (Petrol)
| [[Gasoline]] (petrol)
| rat
| rat
| {{ntsh|14063}}14,063&nbsp;mg/kg
| {{ntsh|14063}}14,063&nbsp;mg/kg
| 14.0
| 14.0
| <ref>{{cite web | url=https://www.atsdr.cdc.gov/toxprofiles/tp72.pdf | title=TOXICOLOGICAL PROFILE FOR GASOLINE | date=June 1995 | publisher=U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry | pages=47 | access-date=2020-01-05 | archive-url=https://web.archive.org/web/20170515140517/https://www.atsdr.cdc.gov/toxprofiles/tp72.pdf | archive-date=2017-05-15 | url-status=dead }}</ref>
| <ref>{{cite web | url=https://www.atsdr.cdc.gov/toxprofiles/tp72.pdf | title=Toxicological profile for gasoline | date=June 1995 | publisher=U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry | pages=47 | access-date=2020-01-05 | archive-url=https://web.archive.org/web/20170515140517/https://www.atsdr.cdc.gov/toxprofiles/tp72.pdf | archive-date=2017-05-15 | url-status=dead }}</ref>
|-
|-
| [[Vitamin C]] (ascorbic acid)
| [[Vitamin C]] (ascorbic acid)
Line 96: Line 94:
| {{ntsh|11900}}11,900&nbsp;mg/kg
| {{ntsh|11900}}11,900&nbsp;mg/kg
| 11.9
| 11.9
| <ref>{{cite web|url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |archive-url=https://archive.today/20070209221915/http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |url-status=dead |archive-date=2007-02-09 |title=Safety (MSDS) data for ascorbic acid |accessdate=2007-02-21 |date=2005-10-09 |publisher=[[Oxford University]] }}</ref>
| <ref>{{cite web|url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |archive-url=https://archive.today/20070209221915/http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |url-status=dead |archive-date=2007-02-09 |title=Safety (MSDS) data for ascorbic acid |access-date=2007-02-21 |date=2005-10-09 |publisher=[[Oxford University]] }}</ref>
|-
|-
| [[Glyphosate]] (isopropylamine salt of)
| [[Glyphosate]] (isopropylamine salt of)
Line 102: Line 100:
| {{ntsh|10537}}10,537&nbsp;mg/kg
| {{ntsh|10537}}10,537&nbsp;mg/kg
| 10.537
| 10.537
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/38078#section=Non-Human-Toxicity-Values|title=Glyphosate-isopropylammonium|website=PubChem}}</ref>
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/38078#section=Non-Human-Toxicity-Values|title=Glyphosate-isopropylammonium|website=PubChem|access-date=2019-01-17|archive-date=2021-03-02|archive-url=https://web.archive.org/web/20210302061538/https://pubchem.ncbi.nlm.nih.gov/compound/38078#section=Non-Human-Toxicity-Values|url-status=live}}</ref>
|-
|-
| [[Lactose]] (milk sugar)
| [[Lactose]] (milk sugar)
Line 116: Line 114:
| <ref>{{cite web|url=https://www.spectrumchemical.com/MSDS/A6051.pdf|archive-url=https://web.archive.org/web/20161226221445/https://www.spectrumchemical.com/MSDS/A6051.pdf|url-status=dead|archive-date=2016-12-26|title=Material Safety Data Sheet: Aspartame|publisher=Spectrum}}</ref>
| <ref>{{cite web|url=https://www.spectrumchemical.com/MSDS/A6051.pdf|archive-url=https://web.archive.org/web/20161226221445/https://www.spectrumchemical.com/MSDS/A6051.pdf|url-status=dead|archive-date=2016-12-26|title=Material Safety Data Sheet: Aspartame|publisher=Spectrum}}</ref>
|-
|-
| [[Urea]]
| [[Urea]] ({{chem2|OC(NH2)2}})
| rat, oral
| rat, oral
| {{ntsh|8471}}8,471&nbsp;mg/kg
| {{ntsh|8471}}8,471&nbsp;mg/kg
| 8.471
| 8.471
| <ref>{{cite web |url=http://www.sciencelab.com/msds.php?msdsId=9927317 |title=Safety (MSDS) data for urea |accessdate=2015-03-06 |date=2015-03-06 |at=Section 11: Toxicological Information for the LD<sub>50</sub> verification |archive-url=https://web.archive.org/web/20150301225811/http://www.sciencelab.com/msds.php?msdsId=9927317 |archive-date=2015-03-01 |url-status=dead }}</ref>
| <ref>{{cite web |url=http://www.sciencelab.com/msds.php?msdsId=9927317 |title=Safety (MSDS) data for urea |access-date=2015-03-06 |date=2015-03-06 |at=Section 11: Toxicological Information for the LD<sub>50</sub> verification |archive-url=https://web.archive.org/web/20150301225811/http://www.sciencelab.com/msds.php?msdsId=9927317 |archive-date=2015-03-01 |url-status=dead }}</ref>
|-
|-
| [[Cyanuric acid]]
| [[Cyanuric acid]]
Line 128: Line 126:
| <ref name="Babayan">A.A. Babayan, A.V.Aleksandryan, "Toxicological characteristics of melamine cyanurate, melamine and cyanuric acid", Zhurnal Eksperimental'noi i Klinicheskoi Meditsiny, Vol.25, 345–9 (1985). Original article in Russian.</ref>
| <ref name="Babayan">A.A. Babayan, A.V.Aleksandryan, "Toxicological characteristics of melamine cyanurate, melamine and cyanuric acid", Zhurnal Eksperimental'noi i Klinicheskoi Meditsiny, Vol.25, 345–9 (1985). Original article in Russian.</ref>
|-
|-
| [[Cadmium sulfide]]
| [[Cadmium sulfide]] (CdS)
| rat, oral
| rat, oral
| {{ntsh|7080}}7,080&nbsp;mg/kg
| {{ntsh|7080}}7,080&nbsp;mg/kg
Line 134: Line 132:
| <ref>[http://www.alfa.com/content/msds/german/A14544.pdf Advanced Search – Alfa Aesar – A Johnson Matthey Company] {{Webarchive|url=https://web.archive.org/web/20150724053453/http://www.alfa.com/content/msds/german/A14544.pdf |date=2015-07-24 }}. Alfa.com. Retrieved on 2013-07-17.</ref>
| <ref>[http://www.alfa.com/content/msds/german/A14544.pdf Advanced Search – Alfa Aesar – A Johnson Matthey Company] {{Webarchive|url=https://web.archive.org/web/20150724053453/http://www.alfa.com/content/msds/german/A14544.pdf |date=2015-07-24 }}. Alfa.com. Retrieved on 2013-07-17.</ref>
|-
|-
| [[Ethanol]] (Grain alcohol)
| [[Ethanol]] ({{chem2|CH3CH2OH}})
| rat, oral
| rat, oral
| {{ntsh|7060}}7,060&nbsp;mg/kg
| {{ntsh|7060}}7,060&nbsp;mg/kg
Line 144: Line 142:
| {{ntsh|6860}}6,860&nbsp;mg/kg
| {{ntsh|6860}}6,860&nbsp;mg/kg
| 6.86
| 6.86
| <ref>{{Cite report|title=Mammalian Toxological Evaluation of DIMP and DCBP (Phase 3 – IMPA)|type=Final report|first=Francis J.|last=Mecler|date=May 1981|publisher=Litton Bionetics, Inc.|quote=The oral LD50 values for the test material, IMPA, were 7650 and 6070 mg/kg for male and female rats, respectively. |url=http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA107574 }}</ref>
| <ref>{{Cite report|title=Mammalian Toxological Evaluation of DIMP and DCBP (Phase 3 – IMPA)|type=Final report| vauthors = Mecler FJ |date=May 1981|publisher=Litton Bionetics, Inc.|quote=The oral LD50 values for the test material, IMPA, were 7650 and 6070 mg/kg for male and female rats, respectively.|url=http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA107574|archive-url=https://web.archive.org/web/20131004070929/http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA107574|url-status=dead|archive-date=October 4, 2013}}</ref>
|-
|-
| [[Melamine]]
| [[Melamine]]
Line 151: Line 149:
| 6
| 6
| <ref name="Babayan" />
| <ref name="Babayan" />
|-
| [[Methanol]]
| human, oral
| {{ntsh|5628}}810&nbsp;mg/kg
| 0.81
| <ref>{{cite web|url=http://www.antizol.com/mpoisono.htm|archive-url=https://web.archive.org/web/20111005043548/http://www.antizol.com/mpoisono.htm|url-status=dead|archive-date=2011-10-05|title=Methanol Poisoning Overview|author=|date=|website=antizol.com}}</ref>
|-
|-
| [[Taurine]]
| [[Taurine]]
Line 162: Line 154:
| {{ntsh|5000}}5,000&nbsp;mg/kg
| {{ntsh|5000}}5,000&nbsp;mg/kg
| 5
| 5
| <ref>{{cite web|url=http://datasheets.scbt.com/sc-202354.pdf|title=Safety data for taurine|author=|date=|website=scbt.com|access-date=2017-01-18|archive-url=https://web.archive.org/web/20170118214915/http://datasheets.scbt.com/sc-202354.pdf|archive-date=2017-01-18|url-status=dead}}</ref>
| <ref>{{cite web|url=http://datasheets.scbt.com/sc-202354.pdf|title=Safety data for taurine|website=scbt.com|access-date=2017-01-18|archive-url=https://web.archive.org/web/20170118214915/http://datasheets.scbt.com/sc-202354.pdf|archive-date=2017-01-18|url-status=dead}}</ref>
|-
|-
| [[Melamine cyanurate]]
| [[Melamine cyanurate]]
Line 176: Line 168:
| <ref>{{cite web|url=https://www.sciencelab.com/msds.php?msdsId=9927537|title=Safety (MSDS) data for fructose|website=sciencelab.com|access-date=2016-12-31|archive-url=https://web.archive.org/web/20170702044942/http://www.sciencelab.com/msds.php?msdsId=9927537|archive-date=2017-07-02|url-status=dead}}</ref>
| <ref>{{cite web|url=https://www.sciencelab.com/msds.php?msdsId=9927537|title=Safety (MSDS) data for fructose|website=sciencelab.com|access-date=2016-12-31|archive-url=https://web.archive.org/web/20170702044942/http://www.sciencelab.com/msds.php?msdsId=9927537|archive-date=2017-07-02|url-status=dead}}</ref>
|-
|-
| [[Sodium molybdate]]
| [[Sodium molybdate]] ({{chem2|Na2MoO4}})
| rat, oral
| rat, oral
| 4,000&nbsp;mg/kg
| 4,000&nbsp;mg/kg
Line 182: Line 174:
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/SO/sodium_molybdate.html|title=Safety (MSDS) data for sodium molybdate|url-status=dead|archive-url=https://web.archive.org/web/20110128034147/http://msds.chem.ox.ac.uk/SO/sodium_molybdate.html|archive-date=2011-01-28|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/SO/sodium_molybdate.html|title=Safety (MSDS) data for sodium molybdate|url-status=dead|archive-url=https://web.archive.org/web/20110128034147/http://msds.chem.ox.ac.uk/SO/sodium_molybdate.html|archive-date=2011-01-28|website=ox.ac.uk}}</ref>
|-
|-
| [[Sodium chloride]] (table salt)
| [[Salt poisoning|Sodium chloride]] (table salt)
| rat, oral
| rat, oral
| 3,000&nbsp;mg/kg
| 3,000&nbsp;mg/kg
Line 188: Line 180:
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/MSDS/SO/sodium_chloride.html|title=Safety (MSDS) data for sodium chloride|url-status=dead|archive-url=https://web.archive.org/web/20110607224738/http://msds.chem.ox.ac.uk/SO/sodium_chloride.html|archive-date=2011-06-07|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/MSDS/SO/sodium_chloride.html|title=Safety (MSDS) data for sodium chloride|url-status=dead|archive-url=https://web.archive.org/web/20110607224738/http://msds.chem.ox.ac.uk/SO/sodium_chloride.html|archive-date=2011-06-07|website=ox.ac.uk}}</ref>
|-
|-
| [[Paracetamol]] (acetaminophen)
| [[Aspirin]] (acetylsalicylic acid)
| rat, oral
| rat, oral
| 1,944&nbsp;mg/kg
| 1,944&nbsp;mg/kg
| 1.944
| 1.944
| <ref>{{cite web|website=Millipore Sigma|publisher=Merck KGaA|url=https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=P0300000&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3DParacetamol%26interface%3DProduct%2520Name%26N%3D0%2B%26mode%3Dmode%2520matchpartialmax%26lang%3Den%26region%3DUS%26focus%3DproductN%3D0%2520220003048%2520219853286%2520219853121|title=Safety (MSDS) data for paracetamol}}</ref>
| <ref>{{cite web|website=Millipore Sigma|publisher=Merck KGaA|url=https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=P0300000&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3DParacetamol%26interface%3DProduct%2520Name%26N%3D0%2B%26mode%3Dmode%2520matchpartialmax%26lang%3Den%26region%3DUS%26focus%3DproductN%3D0%2520220003048%2520219853286%2520219853121|title=Safety (MSDS) data for paracetamol|access-date=2020-01-06|archive-date=2021-03-02|archive-url=https://web.archive.org/web/20210302004449/https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&language=en&productNumber=P0300000&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3DParacetamol%26interface%3DProduct%2520Name%26N%3D0%2B%26mode%3Dmode%2520matchpartialmax%26lang%3Den%26region%3DUS%26focus%3DproductN%3D0%2520220003048%2520219853286%2520219853121|url-status=live}}</ref>
|-
|-
| [[Delta-9-tetrahydrocannabinol]] (THC)
| [[Delta-9-tetrahydrocannabinol]] (THC)
Line 198: Line 190:
| 1,270&nbsp;mg/kg
| 1,270&nbsp;mg/kg
| 1.27
| 1.27
| <ref>{{cite journal | doi = 10.1016/0041-008X(74)90126-4 | pmid=4852457 | volume=28 | issue=1 | title=Inhalation, parenteral and oral LD50 values of Δ9-tetrahydrocannabinol in Fischer rats | journal=Toxicology and Applied Pharmacology | pages=18–27| year=1974 | last1=Rosenkrantz | first1=Harris | last2=Heyman | first2=Irwin A. | last3=Braude | first3=Monique C. }}</ref>
| <ref>{{cite journal | vauthors = Rosenkrantz H, Heyman IA, Braude MC | title = Inhalation, parenteral and oral LD50 values of delta 9-tetrahydrocannabinol in Fischer rats | journal = Toxicology and Applied Pharmacology | volume = 28 | issue = 1 | pages = 18–27 | date = April 1974 | pmid = 4852457 | doi = 10.1016/0041-008X(74)90126-4 }}</ref>
|-
|-
| [[Cannabidiol]] (CBD)
| [[Cannabidiol]] (CBD)
Line 204: Line 196:
| 980&nbsp;mg/kg
| 980&nbsp;mg/kg
| 0.98
| 0.98
| <ref>{{cite web|url=http://www.chemblink.com/MSDS/MSDSFiles/13956-29-1_Clear%20Synth.pdf|title=MSDS of CBD|author=|date=|website=chemblink.com|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161226150441/http://www.chemblink.com/MSDS/MSDSFiles/13956-29-1_Clear%20Synth.pdf|archive-date=2016-12-26|url-status=dead}}</ref>
| <ref>{{cite web|url=http://www.chemblink.com/MSDS/MSDSFiles/13956-29-1_Clear%20Synth.pdf|title=MSDS of CBD|website=chemblink.com|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161226150441/http://www.chemblink.com/MSDS/MSDSFiles/13956-29-1_Clear%20Synth.pdf|archive-date=2016-12-26|url-status=dead}}</ref>
|-
| [[Methanol toxicity|Methanol]] ({{chem2|CH3OH}})
| human, oral
| {{ntsh|5628}}810&nbsp;mg/kg
| 0.81
| <ref>{{cite web|url=http://www.antizol.com/mpoisono.htm|archive-url=https://web.archive.org/web/20111005043548/http://www.antizol.com/mpoisono.htm|url-status=dead|archive-date=2011-10-05|title=Methanol Poisoning Overview|website=antizol.com}}</ref>
|-
|[[TNT|Trinitrotoluene]] (TNT)
|rat, oral
|790&nbsp;mg/kg
|0.790
|
|-
|-
| Metallic [[Arsenic]]
| [[Arsenic poisoning|Arsenic]] (As)
| rat, oral
| rat, oral
| 763&nbsp;mg/kg
| 763&nbsp;mg/kg
| 0.763
| 0.763
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/5359596#section=Non-Human-Toxicity-Values|title=Arsenic|website=PubChem}}</ref>
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/5359596#section=Non-Human-Toxicity-Values|title=Arsenic|website=PubChem|access-date=2020-01-06|archive-date=2021-05-12|archive-url=https://web.archive.org/web/20210512235921/https://pubchem.ncbi.nlm.nih.gov/compound/5359596#section=Non-Human-Toxicity-Values|url-status=live}}</ref>
|-
|-
| [[Ibuprofen]]
| [[Ibuprofen]]
Line 216: Line 220:
| 636&nbsp;mg/kg
| 636&nbsp;mg/kg
| 0.636
| 0.636
| <ref>{{cite web|url=https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3099|title=IBUPROFEN - National Library of Medicine HSDB Database|author=|date=|website=toxnet.nlm.nih.gov}}</ref>
| <ref>{{cite web|url=https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3099|title=Ibuprofen National Library of Medicine HSDB Database|website=toxnet.nlm.nih.gov|access-date=2016-12-26|archive-date=2018-08-04|archive-url=https://web.archive.org/web/20180804014036/https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3099|url-status=live}}</ref>
|-
|-
| [[Formaldehyde]]
| [[Formaldehyde]] ({{chem2|CH2O}})
| rat, oral
| rat, oral
| 600–800&nbsp;mg/kg
| 600–800&nbsp;mg/kg
Line 224: Line 228:
| <ref>{{cite web|url=http://www.inchem.org/documents/sids/sids/FORMALDEHYDE.pdf|title=Formaldehyde SIDS Initial Assessment Report|website=inchem.org|access-date=2016-12-26|archive-url=https://web.archive.org/web/20180613195125/http://www.inchem.org/documents/sids/sids/formaldehyde.pdf|archive-date=2018-06-13|url-status=dead}}</ref>
| <ref>{{cite web|url=http://www.inchem.org/documents/sids/sids/FORMALDEHYDE.pdf|title=Formaldehyde SIDS Initial Assessment Report|website=inchem.org|access-date=2016-12-26|archive-url=https://web.archive.org/web/20180613195125/http://www.inchem.org/documents/sids/sids/formaldehyde.pdf|archive-date=2018-06-13|url-status=dead}}</ref>
|-
|-
| [[Solanine]] main alkaloid in the several plants in [[Solanaceae]] amongst them [[Solanum tuberosum]]
| [[Solanine]] (main alkaloid in the several plants in ''[[Solanaceae]]'' amongst them ''[[Solanum tuberosum]]'')
| rat, oral (2.8 mg/kg human, oral)
| rat, oral (2.8&nbsp;mg/kg human, oral)
| {{ntsh|590}}590&nbsp;mg/kg
| {{ntsh|590}}590&nbsp;mg/kg
| 0.590
| 0.590
| <ref>{{cite web|url=https://chem.nlm.nih.gov/chemidplus/rn/20562-02-1|title=SOLANINE - National Library of Medicine HSDB Database|author=|date=|website=toxnet.nlm.nih.gov}}</ref>
| <ref>{{cite web|url=https://chem.nlm.nih.gov/chemidplus/rn/20562-02-1|title=Solanine National Library of Medicine HSDB Database|website=toxnet.nlm.nih.gov|access-date=2019-01-17|archive-date=2021-01-19|archive-url=https://web.archive.org/web/20210119060749/https://chem.nlm.nih.gov/chemidplus/rn/20562-02-1|url-status=live}}</ref>
|-
|-
| [[ADBAC|Alkyl dimethyl benzalkonium chloride]] (ADBAC)
| [[ADBAC|Alkyl dimethyl benzalkonium chloride]] (ADBAC)
Line 241: Line 245:
|url=http://www.epa.gov/oppsrrd1/REDs/adbac_red.pdf
|url=http://www.epa.gov/oppsrrd1/REDs/adbac_red.pdf
|pages=114
|pages=114
|accessdate=2009-03-31
|access-date=2009-03-31
|url-status=dead
|url-status=dead
|archiveurl=https://web.archive.org/web/20091024165642/http://www.epa.gov/oppsrrd1/REDs/adbac_red.pdf
|archive-url=https://web.archive.org/web/20091024165642/http://www.epa.gov/oppsrrd1/REDs/adbac_red.pdf
|archivedate=2009-10-24
|archive-date=2009-10-24
}}</ref>
}}</ref>
|-
|-
Line 257: Line 261:
| 280&nbsp;mg/kg
| 280&nbsp;mg/kg
| 0.280
| 0.280
| <ref>{{Cite book|url=https://books.google.com/books?id=WPWsZNvOqVAC&pg=PA211|title=Handbook of Mushroom Poisoning: Diagnosis and Treatment|first1=Barry H.|last1=Rumack|first2=David G.|last2=Spoerke|date=27 September 1994|publisher=CRC Press|via=Google Books|isbn=9780849301940}}</ref>
| <ref>{{Cite book|url=https://books.google.com/books?id=WPWsZNvOqVAC&pg=PA211|title=Handbook of Mushroom Poisoning: Diagnosis and Treatment| vauthors = Rumack BH, Spoerke DJ |date=27 September 1994|publisher=CRC Press|via=Google Books|isbn=978-0-8493-0194-0}}</ref>
|-
|-
| [[Hydrochloric acid]]
| [[Hydrochloric acid]] (HCl)
| rat, oral
| rat, oral
| 238–277&nbsp;mg/kg
| 238–277&nbsp;mg/kg
| 0.238
| 0.238
| <ref>{{cite web|url=https://www.fishersci.com/shop/msdsproxy?productName=SA49&productDescription=HCL+ACID+SOL+CONC+10N+CR+100ML&catNo=SA49+&vendorId=VN00033897&storeId=10652|title=Safety (MSDS) data for hydrochloric acid|author=|date=|website=fishersci.com|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161226145426/https://www.fishersci.com/shop/msdsproxy?productName=SA49&productDescription=HCL+ACID+SOL+CONC+10N+CR+100ML&catNo=SA49+&vendorId=VN00033897&storeId=10652|archive-date=2016-12-26|url-status=dead}}</ref>
| <ref>{{cite web |url=https://fscimage.fishersci.com/msds/11155.htm |title=Material Safety Data Sheet: Hydrochloric acid 32-38% solution |date=1 April 2008 |publisher=Fisher |access-date=24 December 2020 |archive-date=6 May 2021 |archive-url=https://web.archive.org/web/20210506124743/http://fscimage.fishersci.com/msds/11155.htm |url-status=live }}</ref>
|-
|-
| [[Ketamine]]
| [[Ketamine]]
Line 269: Line 273:
| 229&nbsp;mg/kg
| 229&nbsp;mg/kg
| 0.229
| 0.229
| <ref>{{cite web|url=https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ketamine_508.pdf|title=Ketamine|author=|date=|website=nih.gov}}</ref>
| <ref>{{cite web|url=https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ketamine_508.pdf|title=Ketamine|website=nih.gov|access-date=2016-12-26|archive-date=2021-03-20|archive-url=https://web.archive.org/web/20210320091848/https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ketamine_508.pdf|url-status=live}}</ref>
|-
|-
| [[Paracetamol poisoning|Paracetamol]] (acetaminophen)
| [[Aspirin]] (acetylsalicylic acid)
| rat, oral
| rat, oral
| 200&nbsp;mg/kg
| 200&nbsp;mg/kg
Line 281: Line 285:
| 192&nbsp;mg/kg
| 192&nbsp;mg/kg
| 0.192
| 0.192
| <ref>{{cite journal|vauthors=Boyd EM|title=The acute oral toxicity of caffeine|journal=Toxicology and Applied Pharmacology|volume=1|issue=3|date=May 1959|pages=250–257|doi=10.1016/0041-008X(59)90109-7|pmid=13659532}}</ref>
| <ref>{{cite journal | vauthors = Boyd EM | title = The acute oral toxicity of caffeine | journal = Toxicology and Applied Pharmacology | volume = 1 | issue = 3 | pages = 250–257 | date = May 1959 | pmid = 13659532 | doi = 10.1016/0041-008X(59)90109-7 }}</ref>
|-
|-
| [[Arsenic trisulfide]]
| [[Arsenic trisulfide]] ({{chem2|As2S3}})
| rat, oral
| rat, oral
| 185–6,400&nbsp;mg/kg
| 185–6,400&nbsp;mg/kg
| 0.185–6.4
| 0.185–6.4
| <ref>{{cite web|url=http://www.valero.com/V_MSDS/SpentMetalCatalyst901.pdf|archiveurl=https://web.archive.org/web/20110928045935/http://www.valero.com/V_MSDS/SpentMetalCatalyst901.pdf|archivedate=2011-09-28|title=Material Safety Data Sheet – Spent Metal Catalyst}}</ref>
| <ref>{{cite web|url=http://www.valero.com/V_MSDS/SpentMetalCatalyst901.pdf|archive-url=https://web.archive.org/web/20110928045935/http://www.valero.com/V_MSDS/SpentMetalCatalyst901.pdf|archive-date=2011-09-28|title=Material Safety Data Sheet – Spent Metal Catalyst}}</ref>
|-
|-
| [[Sodium nitrite]]
| [[Sodium nitrite]] ({{chem2|NaNO2}})
| rat, oral
| rat, oral
| 180&nbsp;mg/kg
| 180&nbsp;mg/kg
Line 299: Line 303:
| 160&nbsp;mg/kg
| 160&nbsp;mg/kg
| 0.18
| 0.18
| <ref>{{cite journal | vauthors = Gable RS | title = Acute toxic effects of club drugs | journal = Journal of Psychoactive Drugs | volume = 36 | issue = 3 | pages = 303–13 | date = September 2004 | pmid = 15559678 | doi = 10.1080/02791072.2004.10400031 | s2cid = 30689421 }}</ref>
| <ref>{{cite journal | vauthors = Gable RS | title = Acute toxic effects of club drugs | journal = Journal of Psychoactive Drugs | volume = 36 | issue = 3 | pages = 303–313 | date = September 2004 | pmid = 15559678 | doi = 10.1080/02791072.2004.10400031 | s2cid = 30689421 }}</ref>
|-
|-
| [[Uranyl acetate dihydrate]]
| [[Uranyl acetate dihydrate]] ({{chem2|UO2(CH3COO)2}})
| mouse, oral
| mouse, oral
| 136&nbsp;mg/kg
| 136&nbsp;mg/kg
| 0.136
| 0.136
| <ref name=Depluranium4>{{cite web|url=https://www.who.int/ionizing_radiation/pub_meet/en/Depluranium4.pdf|title=Chemical toxicity of uranium|author=|date=|website=who.int}}</ref>
| <ref name=Depluranium4>{{cite web|url=https://www.who.int/ionizing_radiation/pub_meet/en/Depluranium4.pdf|title=Chemical toxicity of uranium|website=who.int|access-date=2020-10-05|archive-date=2021-03-09|archive-url=https://web.archive.org/web/20210309174346/https://www.who.int/ionizing_radiation/pub_meet/en/Depluranium4.pdf|url-status=live}}</ref>
|-
|-
| [[Dichlorodiphenyltrichloroethane]] (DDT)
| [[Dichlorodiphenyltrichloroethane]] (DDT)
Line 311: Line 315:
| 135&nbsp;mg/kg
| 135&nbsp;mg/kg
| 0.135
| 0.135
| <ref>{{cite book|editor-first1=Paul |editor-last1=Müller|editor-first2=Samuel William |editor-last2=Simmons|title=DDT: The Insecticide Dichlorodiphenyltrichloroethane and Its Significance / Das Insektizid Dichlordiphenyltrichloräthan und Seine Bedeutung: Human and Veterinary Medicine|url={{google books |plainurl=y |id=R2WfBgAAQBAJ|page=9}}|date=21 December 2013|publisher=Springer-Verlag|isbn=978-3-0348-6809-9 | volume = 2 | pages = 9–247 | chapter = Pharmacology and toxicology of DDT| last = Hayes |first=WJ | name-list-format = vanc | origyear = 1959 }}</ref>
| <ref>{{cite book |doi=10.1007/978-3-0348-6809-9_3 |chapter=Dose-Mortality Relationships in Animals |title=DDT: The Insecticide Dichlorodiphenyltrichloroethane and Its Significance / Das Insektizid Dichlordiphenyltrichloräthan und Seine Bedeutung |year=1959 | vauthors = Hayes WJ, Simmons SW, Knipling EF |pages=18–40 |isbn=978-3-0348-6796-2 }}</ref>
|-
|-
| [[Uranium]]
| [[Uranium]] (U)
| mice, oral
| mice, oral
| {{ntsh|114}}114&nbsp;mg/kg (estimated)
| {{ntsh|114}}114&nbsp;mg/kg (estimated)
Line 323: Line 327:
| 100&nbsp;mg/kg
| 100&nbsp;mg/kg
| 0.1
| 0.1
| <ref>{{cite web|url=http://www.drugbank.ca/drugs/DB00612|title=Bisoprolol|author=|date=|website=www.drugbank.ca}}</ref>
| <ref>{{cite web|url=http://www.drugbank.ca/drugs/DB00612|title=Bisoprolol|website=www.drugbank.ca|access-date=2012-06-13|archive-date=2020-06-17|archive-url=https://web.archive.org/web/20200617011336/https://www.drugbank.ca/drugs/DB00612|url-status=live}}</ref>
|-
|-
| [[Cocaine]]
| [[Cocaine]]
Line 329: Line 333:
| 96&nbsp;mg/kg
| 96&nbsp;mg/kg
| 0.096
| 0.096
| <ref>{{cite web|url=https://www.drugbank.ca/drugs/DB00907|title=Cocaine|author=|date=|website=www.drugbank.ca|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161120184636/http://www.drugbank.ca/drugs/DB00907|archive-date=2016-11-20|url-status=dead}}</ref>
| <ref>{{cite web|url=https://www.drugbank.ca/drugs/DB00907|title=Cocaine|website=www.drugbank.ca|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161120184636/http://www.drugbank.ca/drugs/DB00907|archive-date=2016-11-20|url-status=dead}}</ref>
|-
|-
| [[Cobalt(II) chloride]]
| [[Cobalt(II) chloride]] ({{chem2|CoCl2}})
| rat, oral
| rat, oral
| 80&nbsp;mg/kg
| 80&nbsp;mg/kg
Line 337: Line 341:
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/CO/cobalt_II_chloride.html|title=Safety (MSDS) data for cobalt (II) chloride|url-status=dead|archive-url=https://web.archive.org/web/20110407222057/http://msds.chem.ox.ac.uk/CO/cobalt_II_chloride.html|archive-date=2011-04-07|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/CO/cobalt_II_chloride.html|title=Safety (MSDS) data for cobalt (II) chloride|url-status=dead|archive-url=https://web.archive.org/web/20110407222057/http://msds.chem.ox.ac.uk/CO/cobalt_II_chloride.html|archive-date=2011-04-07|website=ox.ac.uk}}</ref>
|-
|-
| [[Cadmium oxide]]
| [[Cadmium oxide]] (CdO)
| rat, oral
| rat, oral
| 72&nbsp;mg/kg
| 72&nbsp;mg/kg
| 0.072
| 0.072
| <ref>[http://assets.chemportals.merck.de/documents/sds/emd/deu/de/1020/102015.pdf Safety (MSDS) data for cadmium oxide]</ref>
| <ref>[http://assets.chemportals.merck.de/documents/sds/emd/deu/de/1020/102015.pdf Safety (MSDS) data for cadmium oxide]{{Dead link|date=December 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
|-
|-
| [[Thiopental sodium]] (used in [[lethal injection]])
| [[Thiopental sodium]] (used in [[lethal injection]])
Line 347: Line 351:
| 64&nbsp;mg/kg
| 64&nbsp;mg/kg
| 0.064
| 0.064
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/thiopental_sodium#section=Non-Human-Toxicity-Values|title=Thiopental sodium|website=Pubchem}}</ref>
| <ref>{{cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/thiopental_sodium#section=Non-Human-Toxicity-Values|title=Thiopental sodium|website=Pubchem|access-date=2017-01-06|archive-date=2021-01-26|archive-url=https://web.archive.org/web/20210126200735/https://pubchem.ncbi.nlm.nih.gov/compound/thiopental_sodium#section=Non-Human-Toxicity-Values|url-status=live}}</ref>
|-
|-
| [[Demeton-S-methyl]]
| [[Demeton-S-methyl]]
Line 353: Line 357:
| 60&nbsp;mg/kg
| 60&nbsp;mg/kg
| 0.060
| 0.060
| <ref>{{cite web|url=http://pmep.cce.cornell.edu/profiles/extoxnet/carbaryl-dicrotophos/demeton-s-methyl-ext.html|title=Demeton-s-methyl|author=|date=September 1995|website=EXTOXNET}}</ref>
| <ref>{{cite web|url=http://pmep.cce.cornell.edu/profiles/extoxnet/carbaryl-dicrotophos/demeton-s-methyl-ext.html|title=Demeton-s-methyl|date=September 1995|website=Extoxnet|access-date=2019-07-21|archive-date=2019-06-04|archive-url=https://web.archive.org/web/20190604152733/http://pmep.cce.cornell.edu/profiles/extoxnet/carbaryl-dicrotophos/demeton-s-methyl-ext.html|url-status=live}}</ref>
|-
|-
| [[Methamphetamine]]
| [[Methamphetamine]]
Line 359: Line 363:
| 57&nbsp;mg/kg
| 57&nbsp;mg/kg
| 0.057
| 0.057
| <ref>{{Cite book | pmc= 3145326 | pmid=19897075 | doi=10.1016/S0074-7742(09)88004-5 | volume=88 | title=Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities | vauthors=Kiyatkin EA, Sharma HS | journal=Int Rev Neurobiol | pages=65–100| year=2009 | series=International Review of Neurobiology | isbn=9780123745040 }}</ref>
| <ref>{{cite book |doi=10.1016/S0074-7742(09)88004-5 |chapter=Acute Methamphetamine Intoxication |title=New Concepts of Psychostimulant Induced Neurotoxicity |series=International Review of Neurobiology |year=2009 | vauthors = Kiyatkin EA, Sharma HS |volume=88 |pages=65–100 |pmid=19897075 |pmc=3145326 |isbn=978-0-12-374504-0 }}</ref>
|-
|-
| [[Sodium fluoride]]
| [[Sodium fluoride]] (NaF)
| rat, oral
| rat, oral
| 52&nbsp;mg/kg
| 52&nbsp;mg/kg
| 0.052
| 0.052
| <ref>{{cite web|url=http://hazard.com/msds/mf/baker/baker/files/s3722.htm|title=SODIUM FLUORIDE|author=|date=|website=hazard.com|access-date=2011-07-31|archive-url=https://web.archive.org/web/20110928025825/http://hazard.com/msds/mf/baker/baker/files/s3722.htm|archive-date=2011-09-28|url-status=dead}}</ref>
| <ref>{{cite web|url=http://hazard.com/msds/mf/baker/baker/files/s3722.htm|title=Sodium fluoride|website=hazard.com|access-date=2011-07-31|archive-url=https://web.archive.org/web/20110928025825/http://hazard.com/msds/mf/baker/baker/files/s3722.htm|archive-date=2011-09-28|url-status=usurped}}</ref>
|-
|-
| [[Nicotine]]
| [[Nicotine]]
| rat, oral
| mouse and rat, oral
human, smoking
| 50&nbsp;mg/kg
| 50&nbsp;mg/kg
| 0.05
| 0.05
| <ref name=Mayer>{{cite journal | vauthors = Mayer B | title = How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century | journal = Archives of Toxicology | volume = 88 | issue = 1 | pages = 5–7 | date = January 2014 | pmid = 24091634 | pmc = 3880486 | doi = 10.1007/s00204-013-1127-0 }}</ref>
| <ref name=Mayer/>
|-
|-
| [[Pentaborane]]
| [[Pentaborane]]
Line 377: Line 382:
| 50&nbsp;mg/kg
| 50&nbsp;mg/kg
| 0.05
| 0.05
| <ref>{{cite web|url=http://cameochemicals.noaa.gov/chris/PTB.pdf|title=Pentaborane chemical and safety data|author=|date=|website=noaa.gov}}</ref>
| <ref>{{cite web|url=http://cameochemicals.noaa.gov/chris/PTB.pdf|title=Pentaborane chemical and safety data|website=noaa.gov|access-date=2011-09-30|archive-date=2013-05-23|archive-url=https://web.archive.org/web/20130523073131/http://cameochemicals.noaa.gov/chris/PTB.pdf|url-status=live}}</ref>
|-
|-
| [[Capsaicin]]
| [[Capsaicin]]
Line 383: Line 388:
| 47.2&nbsp;mg/kg
| 47.2&nbsp;mg/kg
| 0.0472
| 0.0472
| <ref>{{cite web |url=http://www.sciencelab.com/xMSDS-Capsaicin_Natural-9923296 |title=Capsaicin Material Safety Data Sheet |accessdate=2007-07-13 |publisher=sciencelab.com |year=2007 |format=PDF |archive-url=https://web.archive.org/web/20070929083820/http://www.sciencelab.com/xMSDS-Capsaicin_Natural-9923296 |archive-date=2007-09-29 |url-status=dead }}</ref>
| <ref>{{cite web |url=http://www.sciencelab.com/xMSDS-Capsaicin_Natural-9923296 |title=Capsaicin Material Safety Data Sheet |access-date=2007-07-13 |publisher=sciencelab.com |year=2007 |format=PDF |archive-url=https://web.archive.org/web/20070929083820/http://www.sciencelab.com/xMSDS-Capsaicin_Natural-9923296 |archive-date=2007-09-29 |url-status=dead }}</ref>
|-
|-
| [[Vitamin D3]] (cholecalciferol)
| [[Vitamin D3]] (cholecalciferol)
Line 389: Line 394:
| 37&nbsp;mg/kg
| 37&nbsp;mg/kg
| 0.037
| 0.037
| <ref>{{cite web|url=http://www.hmdb.ca/system/metabolites/msds/000/000/792/original/HMDB00876.pdf?1358463052|title=MSDS for cholecalciferol crystalline|author=|date=|website=hmdb.ca|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161226145455/http://www.hmdb.ca/system/metabolites/msds/000/000/792/original/HMDB00876.pdf?1358463052|archive-date=2016-12-26|url-status=dead}}</ref>
| <ref>{{cite web|url=http://www.hmdb.ca/system/metabolites/msds/000/000/792/original/HMDB00876.pdf?1358463052|title=MSDS for cholecalciferol crystalline|website=hmdb.ca|access-date=2016-12-26|archive-url=https://web.archive.org/web/20161226145455/http://www.hmdb.ca/system/metabolites/msds/000/000/792/original/HMDB00876.pdf?1358463052|archive-date=2016-12-26|url-status=dead}}</ref>
|-
|-
| [[Piperidine]] (from [[black pepper]])
| [[Piperidine]] (from [[black pepper]])
Line 395: Line 400:
| 30&nbsp;mg/kg
| 30&nbsp;mg/kg
| 0.030
| 0.030
| <ref>{{cite web|url=https://www.fishersci.com/shop/msdsproxy?productName=AC433840010&productDescription=PIPERIDINE%252C+PURIFIED+BY+1LTPI&catNo=AC433840010&vendorId=VN00032119&storeId=10652|title=MSDS for piperidine (pepper)|author=|date=|website=fishersci.com|access-date=2016-12-26|archive-url=https://web.archive.org/web/20180804014129/https://www.fishersci.com/shop/msdsproxy?productName=AC433840010&productDescription=PIPERIDINE%252C+PURIFIED+BY+1LTPI&catNo=AC433840010&vendorId=VN00032119&storeId=10652|archive-date=2018-08-04|url-status=dead}}</ref>
| <ref>{{cite web |url=https://fscimage.fishersci.com/msds/18940.htm |title=Material Safety Data Sheet: Piperidine |date=29 October 2007 |publisher=Fisher |access-date=24 December 2020 |archive-date=4 March 2016 |archive-url=https://web.archive.org/web/20160304203049/https://fscimage.fishersci.com/msds/18940.htm |url-status=live }}</ref>
|-
|-
| [[Heroin]] (diamorphine)
| [[Heroin]] (diamorphine)
Line 401: Line 406:
| 21.8&nbsp;mg/kg
| 21.8&nbsp;mg/kg
| 0.0218
| 0.0218
| <ref>{{cite web|url=http://www.inchem.org/documents/pims/pharm/pim261f.htm|title=Diamorphine (PIM 261F, French)|author=|date=|website=www.inchem.org|access-date=2016-12-26|archive-url=https://web.archive.org/web/20160502211029/http://www.inchem.org/documents/pims/pharm/pim261f.htm|archive-date=2016-05-02|url-status=dead}}</ref>
| <ref>{{cite web|url=http://www.inchem.org/documents/pims/pharm/pim261f.htm|title=Diamorphine (PIM 261F, French)|website=www.inchem.org|access-date=2016-12-26|archive-url=https://web.archive.org/web/20160502211029/http://www.inchem.org/documents/pims/pharm/pim261f.htm|archive-date=2016-05-02|url-status=dead}}</ref>
|-
|-
| [[Lysergic acid diethylamide]] (LSD)
| [[Lysergic acid diethylamide]] (LSD)
Line 407: Line 412:
| 16.5&nbsp;mg/kg
| 16.5&nbsp;mg/kg
| 0.0165
| 0.0165
| <ref>[http://www.erowid.org/chemicals/lsd/lsd_death.shtml Erowid LSD (Acid) Vault : Fatalities / Deaths]. Erowid.org. Retrieved on 2013-07-17.</ref>
| <ref>[http://www.erowid.org/chemicals/lsd/lsd_death.shtml Erowid LSD (Acid) Vault : Fatalities / Deaths] {{Webarchive|url=https://web.archive.org/web/20210630093733/https://www.erowid.org/chemicals/lsd/lsd_death.shtml |date=2021-06-30 }}. Erowid.org. Retrieved on 2013-07-17.</ref>
|-
|-
| [[Arsenic trioxide]]
| [[Arsenic trioxide]] ({{chem2|As2O3}})
| rat, oral
| rat, oral
| 14&nbsp;mg/kg
| 14&nbsp;mg/kg
Line 415: Line 420:
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AR/arsenic_III_oxide.html|title=Safety (MSDS) data for arsenic trioxide|url-status=dead|archive-url=https://web.archive.org/web/20100309164500/http://msds.chem.ox.ac.uk/AR/arsenic_III_oxide.html|archive-date=2010-03-09|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AR/arsenic_III_oxide.html|title=Safety (MSDS) data for arsenic trioxide|url-status=dead|archive-url=https://web.archive.org/web/20100309164500/http://msds.chem.ox.ac.uk/AR/arsenic_III_oxide.html|archive-date=2010-03-09|website=ox.ac.uk}}</ref>
|-
|-
| Metallic [[Arsenic]]
| Metallic [[arsenic]] (As)
| rat, [[intraperitoneal]]
| rat, [[intraperitoneal]]
| 13&nbsp;mg/kg
| 13&nbsp;mg/kg
Line 421: Line 426:
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AR/arsenic.html|title=Safety (MSDS) data for metallic arsenic|url-status=dead|archive-url=https://web.archive.org/web/20110114204809/http://msds.chem.ox.ac.uk/AR/arsenic.html|archive-date=2011-01-14|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AR/arsenic.html|title=Safety (MSDS) data for metallic arsenic|url-status=dead|archive-url=https://web.archive.org/web/20110114204809/http://msds.chem.ox.ac.uk/AR/arsenic.html|archive-date=2011-01-14|website=ox.ac.uk}}</ref>
|-
|-
| [[Sodium cyanide]]
| [[Sodium cyanide]] (NaCN)
| rat, oral
| rat, oral
| 6.4&nbsp;mg/kg
| 6.4&nbsp;mg/kg
Line 431: Line 436:
| 4.3&nbsp;mg/kg
| 4.3&nbsp;mg/kg
| 0.0043
| 0.0043
| <ref>{{cite web|url=https://www.researchgate.net/file.PostFileLoader.html?id=55280ed4cf57d70b0a8b45af&assetKey=AS%3A273754658148357%401442279604492|title=Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion}}</ref>
| <ref>{{cite web|url=https://www.researchgate.net/file.PostFileLoader.html?id=55280ed4cf57d70b0a8b45af&assetKey=AS%3A273754658148357%401442279604492|title=Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion|access-date=2016-12-27|archive-date=2016-12-28|archive-url=https://web.archive.org/web/20161228195033/https://www.researchgate.net/file.PostFileLoader.html?id=55280ed4cf57d70b0a8b45af&assetKey=AS%3A273754658148357%401442279604492|url-status=live}}</ref>
|-
|-
| [[Hydrogen cyanide]]
| [[Hydrogen cyanide]] (HCN)
| mouse, oral
| mouse, oral
| 3.7&nbsp;mg/kg
| 3.7&nbsp;mg/kg
Line 443: Line 448:
| 3.39&nbsp;mg/kg
| 3.39&nbsp;mg/kg
| 0.00339
| 0.00339
| <ref>{{cite web|url=https://www.who.int/medicines/access/controlled-substances/Critical_Review_Carfentanil.pdf|title=Critical Review Carfentanil|accessdate=2019-01-31}}</ref>
| <ref>{{cite web|url=https://www.who.int/medicines/access/controlled-substances/Critical_Review_Carfentanil.pdf|title=Critical Review Carfentanil|access-date=2019-01-31|archive-date=2020-11-12|archive-url=https://web.archive.org/web/20201112031048/https://www.who.int/medicines/access/controlled-substances/Critical_Review_Carfentanil.pdf|url-status=live}}</ref>
|-
|-
| [[Nicotine]]
| [[Nicotine]] (from various ''[[Solanaceae]] genera'')
| mice, oral
| mice, oral
| 3.3&nbsp;mg/kg
| 3.3&nbsp;mg/kg
Line 451: Line 456:
| <ref name=Mayer/>
| <ref name=Mayer/>
|-
|-
| [[White phosphorus]]
| [[White phosphorus]] (P)
| rat, oral
| rat, oral
| 3.03&nbsp;mg/kg
| 3.03&nbsp;mg/kg
| 0.00303
| 0.00303
| <ref>{{cite web|url=http://www.atsdr.cdc.gov/toxprofiles/tp103-c2.pdf|title=Hexachloroethane|accessdate=2014-01-03}}</ref>
| <ref>{{cite web|url=http://www.atsdr.cdc.gov/toxprofiles/tp103-c2.pdf|title=Hexachloroethane|access-date=2014-01-03|archive-date=2006-06-30|archive-url=https://web.archive.org/web/20060630161253/http://www.atsdr.cdc.gov/toxprofiles/tp103-c2.pdf|url-status=live}}</ref>
|-
|-
| [[Strychnine]]
| [[Strychnine]] (from ''[[Strychnos nux-vomica]]'')
| human, oral
| human, oral
| 1–2&nbsp;mg/kg (estimated)
| 1–2&nbsp;mg/kg (estimated)
| 0.001–0.002
| 0.001–0.002
| <ref>[http://www.inchem.org/documents/pims/chemical/pim507.htm INCHEM: Chemical Safety Information from Intergovernmental Organizations: Strychnine].</ref>
| <ref>[http://www.inchem.org/documents/pims/chemical/pim507.htm INCHEM: Chemical Safety Information from Intergovernmental Organizations: Strychnine] {{Webarchive|url=https://web.archive.org/web/20150103231725/http://www.inchem.org/documents/pims/chemical/pim507.htm |date=2015-01-03 }}.</ref>
|-
|-
| [[Aconitine]] (from ''[[Aconitum napellus]]'' and related species)
| [[Mercury(II) chloride]]
| human, oral
| {{ntsh|.080}}1–2&nbsp;mg/kg
| 0.001–0.002
| <ref>{{cite journal | vauthors = Gao X, Hu J, Zhang X, Zuo Y, Wang Y, Zhu S | title = Research progress of aconitine toxicity and forensic analysis of aconitine poisoning | journal = Forensic Sciences Research | volume = 5 | issue = 1 | pages = 25–31 | date = 2018-04-09 | pmid = 32490307 | pmc = 7241456 | doi = 10.1080/20961790.2018.1452346 }}</ref>
|-
| [[Mercury(II) chloride]] ({{chem2|HgCl2}})
| rat, oral
| rat, oral
| 1&nbsp;mg/kg
| 1&nbsp;mg/kg
| 0.001
| 0.001
| <ref>{{cite web|url=http://www.labchem.com/tools/msds/msds/LC16590.pdf|title=Mercuric Chloride Safety Data Sheet|page=6|website=LabChem|access-date=2020-01-06|archive-url=https://web.archive.org/web/20191126231854/http://www.labchem.com/tools/msds/msds/LC16590.pdf|archive-date=2019-11-26|url-status=dead}}</ref>
| <ref>{{cite web|url=http://www.labchem.com/tools/msds/msds/LC16590.pdf|title=Mercuric Chloride Safety Data Sheet|page=6|website=LabChem|access-date=2020-01-06|archive-url=https://web.archive.org/web/20191126231854/http://www.labchem.com/tools/msds/msds/LC16590.pdf|archive-date=2019-11-26|url-status=dead}}</ref>
|-
| [[Nicotine]]
| human, oral
| 0.8&nbsp;mg/kg (estimated)
| 0.0008
| <ref name=Mayer>{{cite journal | vauthors = Mayer B | title = How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century | journal = Archives of Toxicology | volume = 88 | issue = 1 | pages = 5–7 | date = January 2014 | pmid = 24091634 | pmc = 3880486 | doi = 10.1007/s00204-013-1127-0 }}</ref>
|-
|-
| [[Cantharidin]] (from [[blister beetle]]s)
| [[Cantharidin]] (from [[blister beetle]]s)
| human, oral
| human, oral
| 500&nbsp;µg/kg
| 500&nbsp;μg/kg
| 0.0005
| 0.0005
| <ref>{{Cite book| vauthors = Meister RT, Sine C |title=Crop Protection Handbook | volume = 99 |publisher=Meister Pub Co |year=2013 |isbn=978-1892829269 |location=Willoughby, Ohio |pages=664 }}</ref>
|
|-
|-
| [[Aflatoxin|Aflatoxin B1]] (from ''Aspergillus flavus'' mold)
| [[Aflatoxin|Aflatoxin B1]] (from ''[[Aspergillus flavus]]'' mold)
| rat, oral
| rat, oral
| 480&nbsp;µg/kg
| 480&nbsp;μg/kg
| 0.00048
| 0.00048
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AF/aflatoxin_B1|title=Safety (MSDS) data for aflatoxin B1|url-status=dead|archive-url=https://web.archive.org/web/20100811121705/http://msds.chem.ox.ac.uk/AF/aflatoxin_B1.html|archive-date=2010-08-11|website=ox.ac.uk}}</ref>
| <ref>{{cite web|url=http://msds.chem.ox.ac.uk/AF/aflatoxin_B1|title=Safety (MSDS) data for aflatoxin B1|url-status=dead|archive-url=https://web.archive.org/web/20100811121705/http://msds.chem.ox.ac.uk/AF/aflatoxin_B1.html|archive-date=2010-08-11|website=ox.ac.uk}}</ref>
|-
|-
| [[Plutonium]]
| [[Plutonium]] (Pu)
| dog, intravenous
| dog, intravenous
| 320&nbsp;µg/kg
| 320&nbsp;μg/kg
| 0.00032
| 0.00032
| <ref>{{cite journal|url=https://fas.org/sgp/othergov/doe/lanl/pubs/00818013.pdf|journal=[[Los Alamos Science]] |title= Plutonium and Health &mdash; How great is the risk?|first1=George L.|last1=Voelz|first2=Ileana G.|last2=Buican|issue=26|pages=74–89|date=2000}}</ref>
| <ref>{{cite journal|url=https://fas.org/sgp/othergov/doe/lanl/pubs/00818013.pdf|journal=[[Los Alamos Science]]|title=Plutonium and Health &mdash; How great is the risk?|vauthors=Voelz GL, Buican IG|issue=26|pages=74–89|date=2000|access-date=2016-12-26|archive-date=2021-01-18|archive-url=https://web.archive.org/web/20210118020351/https://fas.org/sgp/othergov/doe/lanl/pubs/00818013.pdf|url-status=live}}</ref>
|-
| [[Amatoxin]] (from ''Amanita phalloides'' mushrooms)
| rat
| 300-700&nbsp;µg/kg
| 0.0007
| <ref>{{Cite book|url=https://books.google.com/books?id=n8SV9iM6kT0C&q=Amatoxin+ld50&pg=PA131|title=Handbook of Biologically Active Peptides|first1=Abba|last1=Kastin|first2=Abba J.|last2=Kastin|date=28 April 2011|publisher=Elsevier|via=Google Books|isbn=9780080463797}}</ref>
|-
| [[Tetrodotoxin]] (TTX, from [[blue-ringed octopus]])
| mice, oral
| 334&nbsp;µg/kg
| 0.000334
| <ref>{{cite web | title = Material Safety Data Sheet Tetrodotoxin ACC# 01139 | url = https://fscimage.fishersci.com/msds/01139.htm | publisher = Acros Organics N.V. | access-date = 2016-12-27 | archive-url = https://web.archive.org/web/20160303204640/https://fscimage.fishersci.com/msds/01139.htm | archive-date = 2016-03-03 | url-status = dead }}</ref>
|-
| [[Fentanyl]]
| monkey
| 300 µg/kg
| 0.0003
| <ref>{{cite web|url=https://www.drugbank.ca/drugs/DB00813|title=Fentanyl|author=|date=|website=www.drugbank.ca|access-date=2017-09-29|archive-url=https://web.archive.org/web/20170711073330/https://www.drugbank.ca/drugs/DB00813|archive-date=2017-07-11|url-status=dead}}</ref>
|-
|-
| [[Bufotoxin]] (from [[Bufo]] [[toad]]s)
| [[Bufotoxin]] (from [[Bufo]] [[toad]]s)
| cat, intravenous
| cat, intravenous
| {{ntsh|.300}}300&nbsp;µg/kg
| {{ntsh|.300}}300&nbsp;μg/kg
| 0.0003
| 0.0003
| <ref>{{cite web|url=https://chem.nlm.nih.gov/chemidplus/rn/464-81-3|title=Bufotoxin|work=ChemIDplus|publisher=U.S. National Library of Medicine}}</ref>
| <ref>{{cite web|url=https://chem.nlm.nih.gov/chemidplus/rn/464-81-3|title=Bufotoxin|work=ChemIDplus|publisher=U.S. National Library of Medicine|access-date=2016-12-27|archive-date=2021-01-19|archive-url=https://web.archive.org/web/20210119064413/https://chem.nlm.nih.gov/chemidplus/rn/464-81-3|url-status=live}}</ref>
|-
| [[Brodifacoum]]
| rat, oral
| 270&nbsp;μg/kg
| 0.00027
| <ref>{{cite web|url=http://www.inchem.org/documents/pims/chemical/pim077.htm |title=Brodifacoum (PDS) |publisher=Inchem.org |access-date=2017-12-05 |url-status=live |archive-url=https://web.archive.org/web/20131213084637/http://www.inchem.org/documents/pds/pds/pest57_e.htm |archive-date=2013-12-13 }}</ref>
|-
|-
| [[Caesium-137]]
| [[Caesium-137]] ({{chem|137|Cs}})
| mouse, parenternal
| mouse, parenteral
| {{ntsh|.215}}21.5&nbsp;µCi/g
| {{ntsh|.215}}21.5&nbsp;μCi/g
| 0.000245
| 0.000245
| <ref>{{cite book|name-list-format=vanc|last=Moskalev|first=Yu. I.|chapter=Biological Effects of Cesium-137|editor-last=Lebedinskiĭ|editor-first=A. V.|editor-last2=Moskalev|editor-first2=Yu. I.|title=Distribution, Biological Effects, and Migration of Radioactive Isotopes|series=Translation Series|publisher=United States Atomic Energy Commission|id=AEC-tr-7512|page=220|publication-date=April 1974|date=1961|chapter-url=https://books.google.com/books?id=K4wPAQAAMAAJ&pg=PA220|url=https://books.google.com/books?id=K4wPAQAAMAAJ}} [(21.5&nbsp;µCi/g) × (1000&nbsp;g/kg) × (0.0114&nbsp;µg/µCi) = 245&nbsp;µg/kg]</ref>
| <ref>{{cite book | vauthors = Moskalev YI |chapter=Biological Effects of Cesium-137| veditors = Lebedinskiĭ AV, Moskalev YI |title=Distribution, Biological Effects, and Migration of Radioactive Isotopes|series=Translation Series|publisher=United States Atomic Energy Commission|id=AEC-tr-7512|page=220|publication-date=April 1974|date=1961|chapter-url=https://books.google.com/books?id=K4wPAQAAMAAJ&pg=PA220|url=https://books.google.com/books?id=K4wPAQAAMAAJ}} [(21.5&nbsp;μCi/g) × (1000&nbsp;g/kg) × (0.0114&nbsp;μg/μCi) = 245&nbsp;μg/kg]</ref>
|-
|[[Sodium fluoroacetate]] ({{chem2|CH2FCOONa}})
|rat, oral
|220&nbsp;μg/kg
|0.00022
|<ref>{{Cite book| vauthors = Meister R, Since C |title=Crop Protection Handbook 2013 |publisher=Meister Pub Co|year=2013|isbn=9781892829269|location=Willoughby, Ohio|pages=664}}</ref>
|-
|[[Chlorine trifluoride]] (ClF<sub>3</sub>)
|mouse, absorption through skin
|178&nbsp;μg/kg
|0.000178
|<ref>{{Cite web |date=2018-11-02 |title=CDC - Immediately Dangerous to Life or Health Concentrations (IDLH): Chlorine trifluoride - NIOSH Publications and Products |url=https://www.cdc.gov/niosh/idlh/7790912.html |access-date=2022-07-13 |website=www.cdc.gov |language=en-us |archive-date=2022-07-11 |archive-url=https://web.archive.org/web/20220711073705/https://www.cdc.gov/niosh/idlh/7790912.html |url-status=live }}</ref>
|-
|-
| [[Sarin]]
| [[Sarin]]
| mouse, subcutaneous injection
| mouse, subcutaneous injection
| {{ntsh|.172}}172&nbsp;µg/kg
| {{ntsh|.172}}172&nbsp;μg/kg
| 0.000172
| 0.000172
| <ref>{{cite journal | vauthors = Inns RH, Tuckwell NJ, Bright JE, Marrs TC | title = Histochemical demonstration of calcium accumulation in muscle fibres after experimental organophosphate poisoning | journal = Human & Experimental Toxicology | volume = 9 | issue = 4 | pages = 245–50 | date = July 1990 | pmid = 2390321 | doi = 10.1177/096032719000900407 | s2cid = 20713579 }}</ref>
| <ref>{{cite journal | vauthors = Inns RH, Tuckwell NJ, Bright JE, Marrs TC | title = Histochemical demonstration of calcium accumulation in muscle fibres after experimental organophosphate poisoning | journal = Human & Experimental Toxicology | volume = 9 | issue = 4 | pages = 245–250 | date = July 1990 | pmid = 2390321 | doi = 10.1177/096032719000900407 | s2cid = 20713579 }}</ref>
|-
|-
| [[Robustoxin]] (from [[Sydney funnel-web spider]])
| [[Robustoxin]] (from [[Sydney funnel-web spider]])
| mice
| mice
| {{ntsh|.150}}150&nbsp;µg/kg
| {{ntsh|.150}}150&nbsp;μg/kg
| 0.000150
| 0.000150
| <ref>{{cite journal | vauthors = Sheumack DD, Baldo BA, Carroll PR, Hampson F, Howden ME, Skorulis A | title = A comparative study of properties and toxic constituents of funnel web spider (Atrax) venoms | journal = Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology | volume = 78 | issue = 1 | pages = 55–68 | year = 1984 | pmid = 6146485 | doi = 10.1016/0742-8413(84)90048-3 }}</ref>
| <ref>{{cite journal | vauthors = Sheumack DD, Baldo BA, Carroll PR, Hampson F, Howden ME, Skorulis A | title = A comparative study of properties and toxic constituents of funnel web spider (Atrax) venoms | journal = Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology | volume = 78 | issue = 1 | pages = 55–68 | year = 1984 | pmid = 6146485 | doi = 10.1016/0742-8413(84)90048-3 }}</ref>
Line 537: Line 542:
| [[VX (nerve agent)|VX]]
| [[VX (nerve agent)|VX]]
| human, oral, inhalation, absorption through skin/eyes
| human, oral, inhalation, absorption through skin/eyes
| {{ntsh|.14}}140&nbsp;µg/kg (estimated)
| {{ntsh|.14}}140&nbsp;μg/kg (estimated)
| 0.00014
| 0.00014
| <ref>{{cite journal|last1=Munro|first1=N.|title=Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection|journal=[[Environmental Health Perspectives]]|date=Jan 1994|pmid=9719666|pmc=1567233|volume=102|issue=1|pages=18–38|doi=10.1289/ehp.9410218}}</ref>
| <ref>{{cite journal | vauthors = Munro N | title = Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection | journal = Environmental Health Perspectives | volume = 102 | issue = 1 | pages = 18–38 | date = January 1994 | pmid = 9719666 | pmc = 1567233 | doi = 10.1289/ehp.9410218 }}</ref>
|-
|-
| Venom of the [[Brazilian wandering spider]]
| Venom of the [[Brazilian wandering spider]]
| rat, subcutaneous
| rat, subcutaneous
| {{ntsh|.134}}134&nbsp;µg/kg
| {{ntsh|.134}}134&nbsp;μg/kg
| 0.000134
| 0.000134
| <ref>''Venomous Animals and their Venoms'', vol. III, ed. Wolfgang Bücherl and Eleanor Buckley</ref>
| <ref>''Venomous Animals and their Venoms'', vol. III, ed. Wolfgang Bücherl and Eleanor Buckley</ref>
|-
|-
| [[Amatoxin]] (from ''[[Amanita phalloides]]'' mushrooms)
| [[Aconitine]] main alkaloid in [[Aconitum napellus]] and related species
| human, oral
| rat, intraveneous
| {{ntsh|.080}}80&nbsp;µg/kg
| 100&nbsp;μg/kg
| 0.000080
| 0.0001
| <ref>{{cite journal | vauthors = Hallen HE, Luo H, Scott-Craig JS, Walton JD | title = Gene family encoding the major toxins of lethal Amanita mushrooms | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 104 | issue = 48 | pages = 19097–19101 | date = November 2007 | pmid = 18025465 | pmc = 2141914 | doi = 10.1073/pnas.0707340104 }}</ref><ref>{{cite book | vauthors = Madore F, Bouchard J | chapter = Plasmapheresis in Acute Intoxication and Poisoning |date=2019 | title = Critical Care Nephrology |pages=595–600.e3 |publisher=Elsevier |language=en |doi=10.1016/b978-0-323-44942-7.00100-x |isbn=978-0-323-44942-7 }}</ref>
| <ref>{{cite web|url=https://chem.nlm.nih.gov/chemidplus/sid/0000302272|title=ACONITINE - National Library of Medicine HSDB Database|author=|date=|website=toxnet.nlm.nih.gov}}</ref>
|-
|[[Dimethylmercury]] ({{chem2|Hg(CH3)2}})
|human, transdermal
|{{ntsh|.080}}50&nbsp;μg/kg
|0.000050
|<ref>{{cite journal | vauthors = Blayney MB | title = The need for empirically derived permeation data for personal protective equipment: the death of Dr. Karen E. Wetterhahn | journal = Applied Occupational and Environmental Hygiene | volume = 16 | issue = 2 | pages = 233–236 | date = February 2001 | pmid = 11217716 | doi = 10.1080/104732201460389 }}</ref>
|-
|[[TBPO]] (t-Butyl-bicyclophosphate)
|mouse, intravenous
|36&nbsp;μg/kg
|0.000036
|<ref name="pmid452023">{{cite journal | vauthors = Milbrath DS, Engel JL, Verkade JG, Casida JE | title = Structure--toxicity relationships of 1-substituted-4-alkyl-2,6,7-trioxabicyclo[2.2.2.]octanes | journal = Toxicology and Applied Pharmacology | volume = 47 | issue = 2 | pages = 287–293 | date = February 1979 | pmid = 452023 | doi = 10.1016/0041-008x(79)90323-5 }}</ref>
|-
| [[Fentanyl]]
| monkey
| 30&nbsp;μg/kg
| 0.00003
| <ref>{{cite web|url=https://www.drugbank.ca/drugs/DB00813|title=Fentanyl|website=www.drugbank.ca|access-date=2017-09-29|archive-url=https://web.archive.org/web/20170711073330/https://www.drugbank.ca/drugs/DB00813|archive-date=2017-07-11|url-status=dead}}</ref>
|-
|-
| Venom of the [[Inland Taipan]] (Australian snake)
| Venom of the [[Inland Taipan]] (Australian snake)
| rat, subcutaneous
| rat, subcutaneous
| {{ntsh|.025}}25&nbsp;µg/kg
| {{ntsh|.025}}25&nbsp;μg/kg
| 0.000025
| 0.000025
| <ref>[http://www.seanthomas.net/oldsite/ld50tot.html LD50 for various snakes] {{webarchive|url=https://web.archive.org/web/20120201062634/http://www.seanthomas.net/oldsite/ld50tot.html |date=2012-02-01 }}. Seanthomas.net. Retrieved on 2013-07-17.</ref>
| <ref>[http://www.seanthomas.net/oldsite/ld50tot.html LD50 for various snakes] {{webarchive|url=https://web.archive.org/web/20120201062634/http://www.seanthomas.net/oldsite/ld50tot.html |date=2012-02-01 }}. Seanthomas.net. Retrieved on 2013-07-17.</ref>
Line 561: Line 584:
| [[Ricin]] (from [[castor oil plant]])
| [[Ricin]] (from [[castor oil plant]])
| rat, intraperitoneal <br /> rat, oral
| rat, intraperitoneal <br /> rat, oral
| {{ntsh|.022}}22 μg/kg <br /> 20–30&nbsp;mg/kg
| {{ntsh|.022}}22&nbsp;μg/kg <br /> 20–30&nbsp;mg/kg
| 0.000022 <br /> 0.02
| 0.000022 <br /> 0.02
| <ref>[http://www.efsa.europa.eu/en/efsajournal/pub/726 {{Webarchive|url=https://web.archive.org/web/20151018063252/http://www.efsa.europa.eu/en/efsajournal/pub/726 |date=2015-10-18 }} EFSA – Scientific Opinion of the CONTAM Panel: Ricin (from Ricinus communis) as undesirable substances in animal feed [1&#93; - Scientific Opinion of the Panel on Contaminants in the Food Chain]. Efsa.europa.eu. Retrieved on 2013-07-17.</ref>
| <ref>{{cite journal |title=Ricin (from ''Ricinus communis'') as undesirable substances in animal feed - Scientific Opinion of the Panel on Contaminants in the Food Chain |journal=EFSA Journal |year=2008 |volume=6 |issue=9 |page=726 |doi=10.2903/j.efsa.2008.726 |citeseerx=10.1.1.333.8413 }}</ref>
|-
|-
| [[2,3,7,8-Tetrachlorodibenzodioxin]] (TCDD, in [[Agent Orange]])
| [[2,3,7,8-Tetrachlorodibenzodioxin]] (TCDD, in [[Agent Orange]])
| rat, oral
| rat, oral
| {{ntsh|.02}}20&nbsp;µg/kg
| {{ntsh|.02}}20&nbsp;μg/kg
| 0.00002
| 0.00002
|
|
|-
| [[Tetrodotoxin]] from the [[blue-ringed octopus]]
| intravenous
| {{ntsh|.0082}}8.2&nbsp;μg/kg
| 0.0000082
| <ref>{{cite journal | vauthors = Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Arnich N, Benford D, Botana L, Viviani B, Arcella D, Binaglia M, Horvath Z, Steinkellner H, van Manen M, Petersen A | title = Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods | journal = EFSA Journal. European Food Safety Authority | volume = 15 | issue = 4 | pages = e04752 | date = April 2017 | pmid = 32625458 | pmc = 7010203 | doi = 10.2903/j.efsa.2017.4752 | s2cid = 54043321 | doi-access = free }}</ref>
|-
|-
| CrTX-A (from ''[[Carybdea rastonii]]'' [[box jellyfish]] [[venom]])
| CrTX-A (from ''[[Carybdea rastonii]]'' [[box jellyfish]] [[venom]])
| crayfish, intraperitoneal
| crayfish, intraperitoneal
| {{ntsh|.005}}5&nbsp;µg/kg
| {{ntsh|.005}}5&nbsp;μg/kg
| 0.000005
| 0.000005
| <ref>{{cite journal |last1=Nagai |first1=Hiroshi | name-list-format = vanc |title=Recent Progress in Jellyfish Toxin Study |journal = Journal of Health Science |volume=49 |issue=5 |year=2003 |pages=337–340 |issn=1344-9702 |doi=10.1248/jhs.49.337 |doi-access=free }}</ref>
| <ref>{{cite journal | vauthors = Nagai H |title=Recent Progress in Jellyfish Toxin Study |journal=Journal of Health Science |date=2003 |volume=49 |issue=5 |pages=337–340 |doi=10.1248/jhs.49.337 |doi-access=free }}</ref>
|-
|-
| [[Latrotoxin]] (from [[Latrodectus|widow spider]] [[venom]])
| [[Latrotoxin]] (from [[Latrodectus|widow spider]] [[venom]])
| mice
| mice
| {{ntsh|.0043}}4.3&nbsp;µg/kg
| {{ntsh|.0043}}4.3&nbsp;μg/kg
| 0.0000043
| 0.0000043
| <ref>{{Cite web |url=http://biology.unm.edu/toolson/biotox/presentations_2013/ALPHA-LATROTOXIN%20POWERPOINT.pptx |title=Archived copy |access-date=2016-12-26 |archive-url=https://web.archive.org/web/20161226221309/http://biology.unm.edu/toolson/biotox/presentations_2013/ALPHA-LATROTOXIN%20POWERPOINT.pptx |archive-date=2016-12-26 |url-status=dead }}</ref>
| <ref>{{Cite web |url=http://biology.unm.edu/toolson/biotox/presentations_2013/ALPHA-LATROTOXIN%20POWERPOINT.pptx |title=Black Widow Venom (α-Latrotoxin) | vauthors = Henderson N, Wright K, Morgan D, Tantum P |format=pptx |access-date=2016-12-26 |archive-url=https://web.archive.org/web/20161226221309/http://biology.unm.edu/toolson/biotox/presentations_2013/ALPHA-LATROTOXIN%20POWERPOINT.pptx |archive-date=2016-12-26 |url-status=dead }}</ref>{{self-published inline|date=December 2020}}
|-
|[[Epibatidine]] (from ''[[Epipedobates anthonyi]]'' poison dart frog)
|mouse, intravenous
|1.46-13.98&nbsp;μg/kg
|0.00000146
|<ref>{{cite journal | vauthors = Sihver W, Långström B, Nordberg A | title = Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain | journal = Acta Neurologica Scandinavica. Supplementum | volume = 176 | issue = s176 | pages = 27–33 | date = 2000 | pmid = 11261802 | doi = 10.1034/j.1600-0404.2000.00304.x | s2cid = 23541883 | doi-access = free }}</ref>
|-
|-
| [[Batrachotoxin]] (from [[poison dart frog]])
| [[Batrachotoxin]] (from [[poison dart frog]])
| human, sub-cutaneous injection
| human, sub-cutaneous injection
| {{ntsh|.002}}2–7&nbsp;µg/kg (estimated)
| {{ntsh|.002}}2–7&nbsp;μg/kg (estimated)
| 0.000002
| 0.000002
| <ref>{{cite web|url=http://www.asanltr.com/newsletter/02-2/articles/Neurotoxins.htm|title=Brief Review of Natural Nonprotein Neurotoxins|author=|date=|website=asanltr.com}}</ref>
| <ref name=":0">{{cite journal | vauthors = Patocka J, Streda L |year=2002 |title=Brief review of natural nonprotein neurotoxins |journal=ASA Newsletter |volume=2 |issue=2 |pages=16–24 }}</ref>
|-
|-
|[[Abrin]] (from [[rosary pea]])
|[[Abrin]] (from [[rosary pea]])
Line 594: Line 629:


human, oral
human, oral
|0.7&nbsp;µg/kg
|0.7&nbsp;μg/kg
3.3&nbsp;µg/kg
3.3&nbsp;μg/kg


10–1000&nbsp;µg/kg
10–1000&nbsp;μg/kg
|0.0000007
|0.0000007
0.0000033
0.0000033


0.00001–0.001
0.00001–0.001
|{{Citation needed|date=June 2024}}
|
|-
|[[Saxitoxin]] (from certain marine [[dinoflagellate]]s)
|human, intravenously
human, oral
|0.6&nbsp;μg/kg
5.7&nbsp;μg/kg
|0.0000006
0.0000057
|<ref name=":0" />
|-
| Pacific [[Ciguatoxin]]-1 (from [[Ciguatera|ciguateric fish]])
| mice, intraperitoneal
| 250&nbsp;ng{{ntsh|.00025}}/kg
| 0.00000025
|<ref>{{cite journal | vauthors = Caillaud A, de la Iglesia P, Darius HT, Pauillac S, Aligizaki K, Fraga S, Chinain M, Diogène J | title = Update on methodologies available for ciguatoxin determination: perspectives to confront the onset of ciguatera fish poisoning in Europe | journal = Marine Drugs | volume = 8 | issue = 6 | pages = 1838–1907 | date = June 2010 | pmid = 20631873 | pmc = 2901828 | doi = 10.3390/md8061838 | doi-access = free }}</ref>
|-
|[[Palytoxin]] (from ''[[Palythoa]]'' coral)
|mouse, intravenous
|45&nbsp;ng/kg
2.3–31.5&nbsp;μg/kg
|0.000000045
0.0000023
|<ref>{{cite journal | vauthors = Ramos V, Vasconcelos V | title = Palytoxin and analogs: biological and ecological effects | journal = Marine Drugs | volume = 8 | issue = 7 | pages = 2021–2037 | date = June 2010 | pmid = 20714422 | pmc = 2920541 | doi = 10.3390/md8072021 | doi-access = free }}</ref>
|-
|-
| [[Maitotoxin]] (from [[Ciguatera|ciguateric fish]])
| [[Maitotoxin]] (from [[Ciguatera|ciguateric fish]])
| mouse, [[intraperitoneal]]
| mouse, [[intraperitoneal]]
| 130 ng{{ntsh|.00013}}/kg
| 50&nbsp;ng{{ntsh|.00005}}/kg
| 0.00000013
| 0.00000005
|<ref>{{cite web | url=https://pubchem.ncbi.nlm.nih.gov/compound/maitotoxin | publisher=[[National Center for Biotechnology Information]] | title=PubChem Compound Summary for CID 71460273, Maitotoxin | work=[[PubChem]] | access-date=2020-12-25 | archive-date=2020-11-01 | archive-url=https://web.archive.org/web/20201101135722/https://pubchem.ncbi.nlm.nih.gov/compound/Maitotoxin | url-status=live }}</ref>
| <ref>{{cite journal | vauthors = Yokoyama A, Murata M, Oshima Y, Iwashita T, Yasumoto T | title = Some chemical properties of maitotoxin, a putative calcium channel agonist isolated from a marine dinoflagellate | journal = Journal of Biochemistry | volume = 104 | issue = 2 | pages = 184–7 | date = August 1988 | pmid = 3182760 | doi = 10.1093/oxfordjournals.jbchem.a122438 }}</ref>
|-
|-
| [[Polonium-210]]
| [[Polonium-210]] ({{chem|210|Po}})
| human<!-- double check reference -->, inhalation
| human<!-- double check reference -->, inhalation
| {{ntsh|.00001}}10&nbsp;ng/kg (estimated)
| {{ntsh|.00001}}10&nbsp;ng/kg (estimated)
Line 616: Line 674:
| <ref>[http://agrippina.deakin.edu.au/occ-hyg/sbc312/sbc312-07/SBC312-Topic2-07.htm Topic 2 Toxic Chemicals and Toxic Effects] {{webarchive|url=https://web.archive.org/web/20070929131217/http://agrippina.deakin.edu.au/occ-hyg/sbc312/sbc312-07/SBC312-Topic2-07.htm |date=2007-09-29 }}</ref>
| <ref>[http://agrippina.deakin.edu.au/occ-hyg/sbc312/sbc312-07/SBC312-Topic2-07.htm Topic 2 Toxic Chemicals and Toxic Effects] {{webarchive|url=https://web.archive.org/web/20070929131217/http://agrippina.deakin.edu.au/occ-hyg/sbc312/sbc312-07/SBC312-Topic2-07.htm |date=2007-09-29 }}</ref>
|-
|-
| [[Diphtheria toxin]]
| [[Diphtheria toxin]] (from ''[[Corynebacterium]]'')
| mice
| mice
| {{ntsh|.00001}}10&nbsp;ng/kg
| {{ntsh|.00001}}10&nbsp;ng/kg
| 0.00000001
| 0.00000001
| <ref name="biology.unm.edu">{{Cite web |url=http://biology.unm.edu/toolson/biotox/representative_LD50_values.pdf |title=Archived copy |access-date=2016-12-26 |archive-url=https://web.archive.org/web/20150412045434/http://biology.unm.edu/toolson/biotox/representative_LD50_values.pdf |archive-date=2015-04-12 |url-status=dead }}</ref>
| <ref name="biology.unm.edu">{{Cite web |url=http://biology.unm.edu/toolson/biotox/representative_LD50_values.pdf |title=Representative LD<sub>50</sub> Values | vauthors = Toolson E |access-date=2016-12-26 |archive-url=https://web.archive.org/web/20150412045434/http://biology.unm.edu/toolson/biotox/representative_LD50_values.pdf |archive-date=2015-04-12 |url-status=dead }}</ref>
|-
|-
| [[Shiga toxin]] (from [[dysentery]])
| [[Shiga toxin]] (from ''[[Shigella]]'' bacteria)
| mice
| mice
| {{ntsh|.000002}}2&nbsp;ng/kg
| {{ntsh|.000002}}2&nbsp;ng/kg
Line 628: Line 686:
| <ref name="biology.unm.edu"/>
| <ref name="biology.unm.edu"/>
|-
|-
| [[Tetanospasmin]] (tetanus toxin)
| [[Tetanospasmin]] (from ''[[Clostridium tetani]]'')
| mice
| mice
| {{ntsh|.000002}}2&nbsp;ng/kg
| {{ntsh|.000002}}2&nbsp;ng/kg
Line 634: Line 692:
| <ref name="biology.unm.edu"/>
| <ref name="biology.unm.edu"/>
|-
|-
| [[Botulinum toxin]] (Botox)
| [[Botulinum toxin]] (from ''[[Clostridium botulinum]]'')
| human, oral, injection, inhalation
| human, oral, injection, inhalation
| {{ntsh|.000001}}1&nbsp;ng/kg (estimated)
| {{ntsh|.000001}}1&nbsp;ng/kg (estimated)
| 0.000000001
| 0.000000001
| <ref>{{cite book |first1=Diane O. |last1=Fleming |first2=Debra Long |last2=Hunt |name-list-format=vanc |title=Biological Safety: principles and practices |publisher=ASM Press |location=Washington, DC |year=2000 |page=[https://archive.org/details/biologicalsafety0000unse_3rdedition/page/267 267] |isbn=978-1-55581-180-8 |url=https://archive.org/details/biologicalsafety0000unse_3rdedition/page/267 }}</ref>
| <ref>{{cite book | vauthors = Fleming DO, Hunt DL |title=Biological Safety: principles and practices |publisher=ASM Press |location=Washington, DC |year=2000 |page=[https://archive.org/details/biologicalsafety0000unse_3rdedition/page/267 267] |isbn=978-1-55581-180-8 |url=https://archive.org/details/biologicalsafety0000unse_3rdedition/page/267 }}</ref>
|-
|-
| [[Ionizing radiation]]
| [[Ionizing radiation]]
| human, irradiation
| human, irradiation
| 5 [[Gray (unit)|Gy]]
| 3–5&nbsp;[[Gray (unit)|Gy]] (Gray)
| —
|
|<ref>{{cite web|url=https://www.euronuclear.org/info/encyclopedia/l/lethal-dose.htm|title=Lethal dose|first1=Winfried|last1=Koelzer|date=2013|website=www.euronuclear.org|accessdate=2018-09-15|archive-url=https://web.archive.org/web/20180804014252/https://www.euronuclear.org/info/encyclopedia/l/lethal-dose.htm|archive-date=2018-08-04|url-status=dead}}</ref>
|<ref>{{cite journal | vauthors = Ryan JL | title = Ionizing radiation: the good, the bad, and the ugly | journal = The Journal of Investigative Dermatology | volume = 132 | issue = 3 Pt 2 | pages = 985–993 | date = March 2012 | pmid = 22217743 | pmc = 3779131 | doi = 10.1038/jid.2011.411 }}</ref><ref>{{cite web |date=2013 |title=Lethal dose |url=https://www.euronuclear.org/info/encyclopedia/l/lethal-dose.htm |url-status=dead |archive-url=https://web.archive.org/web/20180804014252/https://www.euronuclear.org/info/encyclopedia/l/lethal-dose.htm |archive-date=2018-08-04 |access-date=2018-09-15 |website=www.euronuclear.org |vauthors=Winfried K}}</ref><ref>{{Cite web |date=2022-12-13 |title=Radiation Exposure - Dose and Dose Rate (the Gray & Sievert) |url=https://ionactive.co.uk/resource-hub/guidance/radiation-exposure-dose-and-dose-rate-the-gray-sievert |access-date=2024-07-27 |website=Ionactive}}</ref>
|}
|}


== Poison scale ==
== Poison scale ==
[[File:Poison-Scale-long.jpg|thumb|700px|Lethal doses in a logarithmic scale | Lethal doses LD<sub>50</sub>-values in a logarithmic scale <ref>{{cite journal | author= Strey, Karsten | title = Die Gifte-Skala | journal = Chemie in Unserer Zeit | volume=53 | issue = 6 | pages = 386–399 | date = December 2019 | doi = 10.1002/ciuz.201900828 }}</ref>]]
[[File:Poison-Scale-long.jpg|thumb|700px| Negative values of the [[decimal logarithm]] of the median lethal dose LD<sub>50</sub> ({{math|&minus;log<sub>10</sub>(LD<sub>50</sub>)}}) on a linearized toxicity scale encompassing 11 orders of magnitude. Water occupies the lowest toxicity position (1) while the toxicity scale is dominated by the [[botulinum toxin]] (12).<ref>{{cite journal | vauthors= Strey, Karsten | title = Die Gifte-Skala | journal = Chemie in unserer Zeit | volume=53 | issue = 6 | pages = 386–399 | date = December 2019 | doi = 10.1002/ciuz.201900828 | s2cid = 199067092 }}</ref>]]


The LD<sub>50</sub> values have a very wide range. The [[botulinum toxin]] as the most toxic substance known has an LD<sub>50</sub> value of 1 ng / kg, while the most non-toxic substance [[water]] has an LD<sub>50</sub> value of more than 90 g / kg. That's a difference of about 1 in 100 billion or 11 orders of magnitude. As with all measured values that differ by many orders of magnitude, a logarithmic view is advisable. Well-known examples are the indication of the earthquake strength using the [[Richter scale]], the [[pH value]], as a measure for the acidic or basic character of an aqueous solution or of [[Sound pressure#Sound pressure level|loudness]] in [[decibel]]s .
The LD<sub>50</sub> values have a very wide range. The [[botulinum toxin]] as the most toxic substance known has an LD<sub>50</sub> value of 1&nbsp;ng/kg, while the most non-toxic substance [[water]] has an LD<sub>50</sub> value of more than 90&nbsp;g/kg; a difference of about 1 in 100 billion, or 11 orders of magnitude. As with all measured values that differ by many orders of magnitude, a logarithmic view is advisable. Well-known examples are the indication of the earthquake strength using the [[Richter scale]], the [[pH value]], as a measure for the acidic or basic character of an aqueous solution or of [[Sound pressure#Sound pressure level|loudness]] in [[decibel]]s.
In this case, the negative decimal logarithm of the LD<sub>50</sub> values, which is standardized in kg per kg body weight, is considered.
In this case, the negative decimal logarithm of the LD<sub>50</sub> values, which is standardized in kg per kg body weight, is considered {{math|&minus;log<sub>10</sub>(LD<sub>50</sub>)}}.
: − log<sub>10</sub>LD<sub>50</sub> (kg/kg) = value


The dimensionless value found can be entered in a toxin scale. Water as the most important <ref>{{cite web|url=https://www1.health.gov.au/internet/publications/publishing.nsf/Content/ohp-enhealth-manual-atsi-cnt-l~ohp-enhealth-manual-atsi-cnt-l-ch6~ohp-enhealth-manual-atsi-cnt-l-ch6.1|title=The importance of water|accessdate=14 October 2020}}</ref> substance is neatly 1 in the negative logarithmic toxin scale.
The dimensionless value found can be entered in a toxin scale. Water as the baseline substance is neatly 1 in the negative logarithmic toxin scale.


== Animal rights concerns ==
== Animal rights concerns ==
[[Animal rights|Animal-rights]] and [[Animal welfare|animal-welfare]] groups, such as Animal Rights International,<ref>[http://www.ari-online.org/main.html Thirty-Two Years of Measurable Change] {{webarchive|url=https://web.archive.org/web/20070211201203/http://www.ari-online.org/main.html |date=2007-02-11 }}</ref> have campaigned against LD<sub>50</sub> testing on animals. Several countries, including the [[United Kingdom|UK]], have taken steps to ban the oral LD<sub>50</sub>, and the [[Organisation for Economic Co-operation and Development]] (OECD) abolished the requirement for the oral test in 2001 (see Test Guideline 401, ''Trends in Pharmacological Sciences'' Vol 22, February 22, 2001).
[[Animal rights|Animal-rights]] and [[Animal welfare|animal-welfare]] groups, such as Animal Rights International,<ref>[http://www.ari-online.org/main.html Thirty-Two Years of Measurable Change] {{webarchive|url=https://web.archive.org/web/20070211201203/http://www.ari-online.org/main.html |date=2007-02-11 }}</ref> have campaigned against LD<sub>50</sub> testing on animals. Several countries, including the [[United Kingdom|UK]], have taken steps to ban the oral LD<sub>50</sub>, and the [[Organisation for Economic Co-operation and Development]] (OECD) abolished the requirement for the oral test in 2001 (see Test Guideline 401, ''Trends in Pharmacological Sciences'' Vol 22, February 22, 2001).

== Procedures ==
A number of procedures have been defined to derive the LD<sub>50</sub>. The earliest was the 1927 "conventional" procedure by Trevan, which requires 40 or more animals. The [[fixed-dose procedure]], proposed in 1984, estimates a level of toxicity by feeding at defined doses and looking for signs of toxicity (without requiring death).<ref>{{cite journal | vauthors = van den Heuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJ, Pelling D, Tomlinson NJ, Walker AP | title = The international validation of a fixed-dose procedure as an alternative to the classical LD50 test | journal = Food and Chemical Toxicology | volume = 28 | issue = 7 | pages = 469–482 | date = July 1990 | pmid = 2210519 | doi = 10.1016/0278-6915(90)90117-6 }}</ref> The [[up-and-down procedure]], proposed in 1985, yields an LD<sub>50</sub> value while dosing only one animal at a time.<ref>{{cite journal | vauthors = Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA | title = Comparison of the up-and-down, conventional LD<sub>50</sub>, and fixed-dose acute toxicity procedures | journal = Food and Chemical Toxicology | volume = 33 | issue = 3 | pages = 223–231 | date = March 1995 | pmid = 7896233 | doi = 10.1016/0278-6915(94)00136-c }}</ref><ref>{{cite journal | vauthors = Lichtman AH | title = The up-and-down method substantially reduces the number of animals required to determine antinociceptive ED50 values | journal = Journal of Pharmacological and Toxicological Methods | volume = 40 | issue = 2 | pages = 81–85 | date = August 1998 | pmid = 10100496 | doi = 10.1016/s1056-8719(98)00041-0 }}</ref>


== See also ==
== See also ==
* [[Animal testing]]
* [[Animal testing]]
* [[Reed-Muench method]]
* [[Reed-Muench method]]
*[[The dose makes the poison]] ([[Latin language|Latin]]: '''''sola dosis facit venenum)''''', the toxicology adage that high quantities of any substance is lethal, such as water.
* [[The dose makes the poison]] the toxicology adage that high quantities of any substance is lethal


=== Other measures of toxicity ===
=== Other measures of toxicity ===
Line 670: Line 730:
* [[Therapeutic index]]
* [[Therapeutic index]]
* [[Protective index]]
* [[Protective index]]
* [[Fixed Dose Procedure]] to estimate LD50
* [[Median toxic dose]] (TD50)
* [[Median toxic dose]] (TD50)
* Lowest published toxic concentration (TCLo)
* [[Lowest published lethal dose]] (LDLo)
* [[Lowest published lethal dose]] (LDLo)
* [[EC50|EC<sub>50</sub>]] (half maximal effective concentration)
* [[EC50|EC<sub>50</sub>]] (half maximal effective concentration)
Line 680: Line 738:
* [[No-observed-adverse-effect level]] (NOAEL)
* [[No-observed-adverse-effect level]] (NOAEL)
* [[Lowest-observed-adverse-effect level]] (LOAEL)
* [[Lowest-observed-adverse-effect level]] (LOAEL)
* [[Up-and-down procedure]]
{{div col end}}
{{div col end}}


=== Related measures ===
=== Related measures ===
* [[TCID50|TCID<sub>50</sub>]] Tissue Culture Infective Dosage
* [[TCID50|TCID<sub>50</sub>]] Tissue Culture Infective Dosage
* EID<sub>50</sub> Egg Infective Dosage
* ELD<sub>50</sub> Egg Lethal Dosage
* [[Plaque forming units]] (pfu)
* [[Plaque forming units]] (pfu)


== References ==
== References ==
{{reflist|30em}}
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite journal | vauthors = Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA | title = Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures | journal = Food and Chemical Toxicology | volume = 33 | issue = 3 | pages = 223–231 | date = March 1995 | pmid = 7896233 | doi = 10.1016/0278-6915(94)00136-C }}
{{refend}}


== External links ==
== External links ==
* [http://www.ccohs.ca/oshanswers/chemicals/ld50.html Canadian Centre for Occupational Health and Safety]
* [http://www.ccohs.ca/oshanswers/chemicals/ld50.html Canadian Centre for Occupational Health and Safety] {{Webarchive|url=https://web.archive.org/web/20150626013647/http://www.ccohs.ca/oshanswers/chemicals/ld50.html |date=2015-06-26 }}
* {{cite journal | vauthors = Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA | title = Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures | journal = Food and Chemical Toxicology | volume = 33 | issue = 3 | pages = 223–31 | date = March 1995 | pmid = 7896233 | doi = 10.1016/0278-6915(94)00136-C }}


{{Pharmacology}}
{{Pharmacology}}
Line 700: Line 759:


{{DEFAULTSORT:Median Lethal Dose}}
{{DEFAULTSORT:Median Lethal Dose}}
[[Category:Causes of death]]
[[Category:Animal testing]]
[[Category:Animal testing]]
[[Category:Toxicology]]
[[Category:Concentration indicators]]
[[Category:Mathematics in medicine]]
[[Category:Mathematics in medicine]]
[[Category:Toxicology]]

Latest revision as of 05:16, 15 December 2024

In toxicology, the median lethal dose, LD50 (abbreviation for "lethal dose, 50%"), LC50 (lethal concentration, 50%) or LCt50 is a toxic unit that measures the lethal dose of a given substance.[1] The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test duration. LD50 figures are frequently used as a general indicator of a substance's acute toxicity. A lower LD50 is indicative of higher toxicity.

The term LD50 is generally attributed to John William Trevan.[2] The test was created by J. W. Trevan in 1927.[3] The term semilethal dose is occasionally used in the same sense, in particular with translations of foreign language text, but can also refer to a sublethal dose. LD50 is usually determined by tests on animals such as laboratory mice. In 2011, the U.S. Food and Drug Administration approved alternative methods to LD50 for testing the cosmetic drug Botox without animal tests.[4][5]

Conventions

[edit]

The LD50 is usually expressed as the mass of substance administered per unit mass of test subject, typically as milligrams of substance per kilogram of body mass, sometimes also stated as nanograms (suitable for botulinum), micrograms, or grams (suitable for paracetamol) per kilogram. Stating it this way allows the relative toxicity of different substances to be compared and normalizes for the variation in the size of the animals exposed (although toxicity does not always scale simply with body mass). For substances in the environment, such as poisonous vapors or substances in water that are toxic to fish, the concentration in the environment (per cubic metre or per litre) is used, giving a value of LC50. But in this case, the exposure time is important (see below).

The choice of 50% lethality as a benchmark avoids the potential for ambiguity of making measurements in the extremes and reduces the amount of testing required. However, this also means that LD50 is not the lethal dose for all subjects; some may be killed by much less, while others survive doses far higher than the LD50. Measures such as "LD1" and "LD99" (dosage required to kill 1% or 99%, respectively, of the test population) are occasionally used for specific purposes.[6]

Lethal dosage often varies depending on the method of administration; for instance, many substances are less toxic when administered orally than when intravenously administered. For this reason, LD50 figures are often qualified with the mode of administration, e.g., "LD50 i.v."

The related quantities LD50/30 or LD50/60 are used to refer to a dose that without treatment will be lethal to 50% of the population within (respectively) 30 or 60 days. These measures are used more commonly within radiation health physics, for ionizing radiation, as survival beyond 60 days usually results in recovery.

A comparable measurement is LCt50, which relates to lethal dosage from exposure, where C is concentration and t is time. It is often expressed in terms of mg-min/m3. ICt50 is the dose that will cause incapacitation rather than death. These measures are commonly used to indicate the comparative efficacy of chemical warfare agents, and dosages are typically qualified by rates of breathing (e.g., resting = 10 L/min) for inhalation, or degree of clothing for skin penetration. The concept of Ct was first proposed by Fritz Haber and is sometimes referred to as Haber's law, which assumes that exposure to 1 minute of 100 mg/m3 is equivalent to 10 minutes of 10 mg/m3 (1 × 100 = 100, as does 10 × 10 = 100).

Some chemicals, such as hydrogen cyanide, are rapidly detoxified by the human body, and do not follow Haber's law. In these cases, the lethal concentration may be given simply as LC50 and qualified by a duration of exposure (e.g., 10 minutes). The material safety data sheets for toxic substances frequently use this form of the term even if the substance does follow Haber's law.

For disease-causing organisms, there is also a measure known as the median infective dose and dosage. The median infective dose (ID50) is the number of organisms received by a person or test animal qualified by the route of administration (e.g., 1,200 org/man per oral). Because of the difficulties in counting actual organisms in a dose, infective doses may be expressed in terms of biological assay, such as the number of LD50s to some test animal. In biological warfare infective dosage is the number of infective doses per cubic metre of air times the number of minutes of exposure (e.g., ICt50 is 100 medium doses - min/m3).

Limitation

[edit]

As a measure of toxicity, LD50 is somewhat unreliable and results may vary greatly between testing facilities due to factors such as the genetic characteristics of the sample population, animal species tested, environmental factors and mode of administration.[7]

There can be wide variability between species as well; what is relatively safe for rats may very well be extremely toxic for humans (cf. paracetamol toxicity), and vice versa. For example, chocolate, comparatively harmless to humans, is known to be toxic to many animals. When used to test venom from venomous creatures, such as snakes, LD50 results may be misleading due to the physiological differences between mice, rats, and humans. Many venomous snakes are specialized predators on mice, and their venom may be adapted specifically to incapacitate mice; and mongooses may be exceptionally resistant. While most mammals have a very similar physiology, LD50 results may or may not have equal bearing upon every mammal species, such as humans, etc.

Examples

[edit]

Note: Comparing substances (especially drugs) to each other by LD50 can be misleading in many cases due (in part) to differences in effective dose (ED50). Therefore, it is more useful to compare such substances by therapeutic index, which is simply the ratio of LD50 to ED50.[8]

The following examples are listed in reference to LD50 values, in descending order, and accompanied by LC50 values, {bracketed}, when appropriate.

Substance Animal, route LD50
{LC50}
LD50 : g/kg
{LC50 : g/L}
standardised
Reference
Water (H2O) rat, oral >90,000 mg/kg >90 [9]
Sucrose (table sugar) rat, oral 29,700 mg/kg 29.7 [10]
Corn syrup rat, oral 25,800 mg/kg 25.8 [11]
Glucose (blood sugar) rat, oral 25,800 mg/kg 25.8 [12]
Monosodium glutamate (MSG) rat, oral 16,600 mg/kg 16.6 [13]
Stevioside (from stevia) mice and rats, oral 15,000 mg/kg 15 [14]
Gasoline (petrol) rat 14,063 mg/kg 14.0 [15]
Vitamin C (ascorbic acid) rat, oral 11,900 mg/kg 11.9 [16]
Glyphosate (isopropylamine salt of) rat, oral 10,537 mg/kg 10.537 [17]
Lactose (milk sugar) rat, oral 10,000 mg/kg 10 [18]
Aspartame mice, oral 10,000 mg/kg 10 [19]
Urea (OC(NH2)2) rat, oral 8,471 mg/kg 8.471 [20]
Cyanuric acid rat, oral 7,700 mg/kg 7.7 [21]
Cadmium sulfide (CdS) rat, oral 7,080 mg/kg 7.08 [22]
Ethanol (CH3CH2OH) rat, oral 7,060 mg/kg 7.06 [23]
Sodium isopropyl methylphosphonic acid (IMPA, metabolite of sarin) rat, oral 6,860 mg/kg 6.86 [24]
Melamine rat, oral 6,000 mg/kg 6 [21]
Taurine rat, oral 5,000 mg/kg 5 [25]
Melamine cyanurate rat, oral 4,100 mg/kg 4.1 [21]
Fructose (fruit sugar) rat, oral 4,000 mg/kg 4 [26]
Sodium molybdate (Na2MoO4) rat, oral 4,000 mg/kg 4 [27]
Sodium chloride (table salt) rat, oral 3,000 mg/kg 3 [28]
Aspirin (acetylsalicylic acid) rat, oral 1,944 mg/kg 1.944 [29]
Delta-9-tetrahydrocannabinol (THC) rat, oral 1,270 mg/kg 1.27 [30]
Cannabidiol (CBD) rat, oral 980 mg/kg 0.98 [31]
Methanol (CH3OH) human, oral 810 mg/kg 0.81 [32]
Trinitrotoluene (TNT) rat, oral 790 mg/kg 0.790
Arsenic (As) rat, oral 763 mg/kg 0.763 [33]
Ibuprofen rat, oral 636 mg/kg 0.636 [34]
Formaldehyde (CH2O) rat, oral 600–800 mg/kg 0.6 [35]
Solanine (main alkaloid in the several plants in Solanaceae amongst them Solanum tuberosum) rat, oral (2.8 mg/kg human, oral) 590 mg/kg 0.590 [36]
Alkyl dimethyl benzalkonium chloride (ADBAC) rat, oral
fish, immersion
aquatic invertebrates, immersion
304.5 mg/kg
{0.28 mg/L}
{0.059 mg/L}
0.3045
{0.00028}
{0.000059}
[37]
Coumarin (benzopyrone, from Cinnamomum aromaticum and other plants) rat, oral 293 mg/kg 0.293 [38]
Psilocybin (from magic mushrooms) mouse, oral 280 mg/kg 0.280 [39]
Hydrochloric acid (HCl) rat, oral 238–277 mg/kg 0.238 [40]
Ketamine rat, intraperitoneal 229 mg/kg 0.229 [41]
Paracetamol (acetaminophen) rat, oral 200 mg/kg 0.2 [42]
Caffeine rat, oral 192 mg/kg 0.192 [43]
Arsenic trisulfide (As2S3) rat, oral 185–6,400 mg/kg 0.185–6.4 [44]
Sodium nitrite (NaNO2) rat, oral 180 mg/kg 0.18 [45]
Methylenedioxymethamphetamine (MDMA, ecstasy) rat, oral 160 mg/kg 0.18 [46]
Uranyl acetate dihydrate (UO2(CH3COO)2) mouse, oral 136 mg/kg 0.136 [47]
Dichlorodiphenyltrichloroethane (DDT) mouse, oral 135 mg/kg 0.135 [48]
Uranium (U) mice, oral 114 mg/kg (estimated) 0.114 [47]
Bisoprolol mouse, oral 100 mg/kg 0.1 [49]
Cocaine mouse, oral 96 mg/kg 0.096 [50]
Cobalt(II) chloride (CoCl2) rat, oral 80 mg/kg 0.08 [51]
Cadmium oxide (CdO) rat, oral 72 mg/kg 0.072 [52]
Thiopental sodium (used in lethal injection) rat, oral 64 mg/kg 0.064 [53]
Demeton-S-methyl rat, oral 60 mg/kg 0.060 [54]
Methamphetamine rat, intraperitoneal 57 mg/kg 0.057 [55]
Sodium fluoride (NaF) rat, oral 52 mg/kg 0.052 [56]
Nicotine mouse and rat, oral

human, smoking

50 mg/kg 0.05 [57]
Pentaborane human, oral 50 mg/kg 0.05 [58]
Capsaicin mouse, oral 47.2 mg/kg 0.0472 [59]
Vitamin D3 (cholecalciferol) rat, oral 37 mg/kg 0.037 [60]
Piperidine (from black pepper) rat, oral 30 mg/kg 0.030 [61]
Heroin (diamorphine) mouse, intravenous 21.8 mg/kg 0.0218 [62]
Lysergic acid diethylamide (LSD) rat, intravenous 16.5 mg/kg 0.0165 [63]
Arsenic trioxide (As2O3) rat, oral 14 mg/kg 0.014 [64]
Metallic arsenic (As) rat, intraperitoneal 13 mg/kg 0.013 [65]
Sodium cyanide (NaCN) rat, oral 6.4 mg/kg 0.0064 [66]
Chlorotoxin (CTX, from scorpions) mice 4.3 mg/kg 0.0043 [67]
Hydrogen cyanide (HCN) mouse, oral 3.7 mg/kg 0.0037 [68]
Carfentanil rat, intravenous 3.39 mg/kg 0.00339 [69]
Nicotine (from various Solanaceae genera) mice, oral 3.3 mg/kg 0.0033 [57]
White phosphorus (P) rat, oral 3.03 mg/kg 0.00303 [70]
Strychnine (from Strychnos nux-vomica) human, oral 1–2 mg/kg (estimated) 0.001–0.002 [71]
Aconitine (from Aconitum napellus and related species) human, oral 1–2 mg/kg 0.001–0.002 [72]
Mercury(II) chloride (HgCl2) rat, oral 1 mg/kg 0.001 [73]
Cantharidin (from blister beetles) human, oral 500 μg/kg 0.0005 [74]
Aflatoxin B1 (from Aspergillus flavus mold) rat, oral 480 μg/kg 0.00048 [75]
Plutonium (Pu) dog, intravenous 320 μg/kg 0.00032 [76]
Bufotoxin (from Bufo toads) cat, intravenous 300 μg/kg 0.0003 [77]
Brodifacoum rat, oral 270 μg/kg 0.00027 [78]
Caesium-137 (137
Cs
)
mouse, parenteral 21.5 μCi/g 0.000245 [79]
Sodium fluoroacetate (CH2FCOONa) rat, oral 220 μg/kg 0.00022 [80]
Chlorine trifluoride (ClF3) mouse, absorption through skin 178 μg/kg 0.000178 [81]
Sarin mouse, subcutaneous injection 172 μg/kg 0.000172 [82]
Robustoxin (from Sydney funnel-web spider) mice 150 μg/kg 0.000150 [83]
VX human, oral, inhalation, absorption through skin/eyes 140 μg/kg (estimated) 0.00014 [84]
Venom of the Brazilian wandering spider rat, subcutaneous 134 μg/kg 0.000134 [85]
Amatoxin (from Amanita phalloides mushrooms) human, oral 100 μg/kg 0.0001 [86][87]
Dimethylmercury (Hg(CH3)2) human, transdermal 50 μg/kg 0.000050 [88]
TBPO (t-Butyl-bicyclophosphate) mouse, intravenous 36 μg/kg 0.000036 [89]
Fentanyl monkey 30 μg/kg 0.00003 [90]
Venom of the Inland Taipan (Australian snake) rat, subcutaneous 25 μg/kg 0.000025 [91]
Ricin (from castor oil plant) rat, intraperitoneal
rat, oral
22 μg/kg
20–30 mg/kg
0.000022
0.02
[92]
2,3,7,8-Tetrachlorodibenzodioxin (TCDD, in Agent Orange) rat, oral 20 μg/kg 0.00002
Tetrodotoxin from the blue-ringed octopus intravenous 8.2 μg/kg 0.0000082 [93]
CrTX-A (from Carybdea rastonii box jellyfish venom) crayfish, intraperitoneal 5 μg/kg 0.000005 [94]
Latrotoxin (from widow spider venom) mice 4.3 μg/kg 0.0000043 [95][self-published source?]
Epibatidine (from Epipedobates anthonyi poison dart frog) mouse, intravenous 1.46-13.98 μg/kg 0.00000146 [96]
Batrachotoxin (from poison dart frog) human, sub-cutaneous injection 2–7 μg/kg (estimated) 0.000002 [97]
Abrin (from rosary pea) mice, intravenously

human, inhalation

human, oral

0.7 μg/kg

3.3 μg/kg

10–1000 μg/kg

0.0000007

0.0000033

0.00001–0.001

[citation needed]
Saxitoxin (from certain marine dinoflagellates) human, intravenously

human, oral

0.6 μg/kg

5.7 μg/kg

0.0000006

0.0000057

[97]
Pacific Ciguatoxin-1 (from ciguateric fish) mice, intraperitoneal 250 ng/kg 0.00000025 [98]
Palytoxin (from Palythoa coral) mouse, intravenous 45 ng/kg

2.3–31.5 μg/kg

0.000000045

0.0000023

[99]
Maitotoxin (from ciguateric fish) mouse, intraperitoneal 50 ng/kg 0.00000005 [100]
Polonium-210 (210
Po
)
human, inhalation 10 ng/kg (estimated) 0.00000001 [101]
Diphtheria toxin (from Corynebacterium) mice 10 ng/kg 0.00000001 [102]
Shiga toxin (from Shigella bacteria) mice 2 ng/kg 0.000000002 [102]
Tetanospasmin (from Clostridium tetani) mice 2 ng/kg 0.000000002 [102]
Botulinum toxin (from Clostridium botulinum) human, oral, injection, inhalation 1 ng/kg (estimated) 0.000000001 [103]
Ionizing radiation human, irradiation 3–5 Gy (Gray) [104][105][106]

Poison scale

[edit]
Negative values of the decimal logarithm of the median lethal dose LD50 (−log10(LD50)) on a linearized toxicity scale encompassing 11 orders of magnitude. Water occupies the lowest toxicity position (1) while the toxicity scale is dominated by the botulinum toxin (12).[107]

The LD50 values have a very wide range. The botulinum toxin as the most toxic substance known has an LD50 value of 1 ng/kg, while the most non-toxic substance water has an LD50 value of more than 90 g/kg; a difference of about 1 in 100 billion, or 11 orders of magnitude. As with all measured values that differ by many orders of magnitude, a logarithmic view is advisable. Well-known examples are the indication of the earthquake strength using the Richter scale, the pH value, as a measure for the acidic or basic character of an aqueous solution or of loudness in decibels. In this case, the negative decimal logarithm of the LD50 values, which is standardized in kg per kg body weight, is considered −log10(LD50).

The dimensionless value found can be entered in a toxin scale. Water as the baseline substance is neatly 1 in the negative logarithmic toxin scale.

Animal rights concerns

[edit]

Animal-rights and animal-welfare groups, such as Animal Rights International,[108] have campaigned against LD50 testing on animals. Several countries, including the UK, have taken steps to ban the oral LD50, and the Organisation for Economic Co-operation and Development (OECD) abolished the requirement for the oral test in 2001 (see Test Guideline 401, Trends in Pharmacological Sciences Vol 22, February 22, 2001).

Procedures

[edit]

A number of procedures have been defined to derive the LD50. The earliest was the 1927 "conventional" procedure by Trevan, which requires 40 or more animals. The fixed-dose procedure, proposed in 1984, estimates a level of toxicity by feeding at defined doses and looking for signs of toxicity (without requiring death).[109] The up-and-down procedure, proposed in 1985, yields an LD50 value while dosing only one animal at a time.[110][111]

See also

[edit]

Other measures of toxicity

[edit]
[edit]

References

[edit]
  1. ^ "Absolute lethal dose (LD100)". IUPAC Gold Book. International Union of Pure and Applied Chemistry. Archived from the original on 2019-07-01. Retrieved 2019-07-01.
  2. ^ "John William Trevan, 1887-1956". Biographical Memoirs of Fellows of the Royal Society. 3: 273–288. 1957. doi:10.1098/rsbm.1957.0019. ISSN 0080-4606. Archived from the original on 2020-03-28. Retrieved 2024-03-31.
  3. ^ "What is a LD50 and LC50?". OSH Answers Fact Sheets. Canadian Centre for Occupational Health and Safety. 5 October 2021. Archived from the original on 26 June 2015. Retrieved 15 July 2006.
  4. ^ "Allergan Receives FDA Approval for First-of-Its-Kind, Fully in vitro, Cell-Based Assay for BOTOX and BOTOX Cosmetic (onabotulinumtoxinA)". Allergan Web site. 24 June 2011. Archived from the original on 26 June 2011. Retrieved 2012-08-15.
  5. ^ Gaul GM (12 April 2008). "In U.S., Few Alternatives To Testing On Animals". Washington Post. Archived from the original on 2012-11-12. Retrieved 2011-06-26.
  6. ^ Doris V. Sweet, ed. (July 1997). "Registry of Toxic Effects of Chemical Substances (RTECS) / Comprehensive Guide to the RTECS" (PDF). U.S. Department of Health and Human Services. DHHS (NIOSH) Publication No. 97-119. Archived from the original (PDF) on 2013-05-16.
  7. ^ Ernest Hodgson (2004). A Textbook of Modern Toxicology. Wiley-Interscience (3rd ed.).[page needed]
  8. ^ "Therapeutic index | CME at Pharmacology Corner". pharmacologycorner.com. 2011-01-26. Retrieved 2024-07-15.
  9. ^ "Material Safety Data Sheet Water MSDS". Section 11: Toxicological Information for the LD50 verification. Archived from the original on 2012-09-02. Retrieved 2012-05-09.
  10. ^ "Safety (MSDS) data for sucrose". ox.ac.uk. Archived from the original on 2011-06-12.
  11. ^ "Safety (MSDS) data for Corn Syrup". fishersci.com. Archived from the original on 2022-09-21. Retrieved 2022-09-21.
  12. ^ "Safety (MSDS) data for glucose" (PDF). utoronto.ca. Archived from the original (PDF) on 2017-01-01. Retrieved 2016-12-31.
  13. ^ Walker R, Lupien JR (April 2000). "The safety evaluation of monosodium glutamate". The Journal of Nutrition. 130 (4S Suppl): 1049S–1052S. doi:10.1093/jn/130.4.1049S. PMID 10736380.
  14. ^ Toskulkao C, Chaturat L, Temcharoen P, Glinsukon T (1997). "Acute toxicity of stevioside, a natural sweetener, and its metabolite, steviol, in several animal species". Drug and Chemical Toxicology. 20 (1–2): 31–44. doi:10.3109/01480549709011077. PMID 9183561.
  15. ^ "Toxicological profile for gasoline" (PDF). U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry. June 1995. p. 47. Archived from the original (PDF) on 2017-05-15. Retrieved 2020-01-05.
  16. ^ "Safety (MSDS) data for ascorbic acid". Oxford University. 2005-10-09. Archived from the original on 2007-02-09. Retrieved 2007-02-21.
  17. ^ "Glyphosate-isopropylammonium". PubChem. Archived from the original on 2021-03-02. Retrieved 2019-01-17.
  18. ^ "Safety (MSDS) data for Lactose" (PDF). Archived from the original (PDF) on 2016-08-03. Retrieved 2016-12-31.
  19. ^ "Material Safety Data Sheet: Aspartame" (PDF). Spectrum. Archived from the original (PDF) on 2016-12-26.
  20. ^ "Safety (MSDS) data for urea". 2015-03-06. Section 11: Toxicological Information for the LD50 verification. Archived from the original on 2015-03-01. Retrieved 2015-03-06.
  21. ^ a b c A.A. Babayan, A.V.Aleksandryan, "Toxicological characteristics of melamine cyanurate, melamine and cyanuric acid", Zhurnal Eksperimental'noi i Klinicheskoi Meditsiny, Vol.25, 345–9 (1985). Original article in Russian.
  22. ^ Advanced Search – Alfa Aesar – A Johnson Matthey Company Archived 2015-07-24 at the Wayback Machine. Alfa.com. Retrieved on 2013-07-17.
  23. ^ "Safety (MSDS) data for ethyl alcohol". ox.ac.uk. Archived from the original on 2011-07-14.
  24. ^ Mecler FJ (May 1981). Mammalian Toxological Evaluation of DIMP and DCBP (Phase 3 – IMPA) (Final report). Litton Bionetics, Inc. Archived from the original on October 4, 2013. The oral LD50 values for the test material, IMPA, were 7650 and 6070 mg/kg for male and female rats, respectively.
  25. ^ "Safety data for taurine" (PDF). scbt.com. Archived from the original (PDF) on 2017-01-18. Retrieved 2017-01-18.
  26. ^ "Safety (MSDS) data for fructose". sciencelab.com. Archived from the original on 2017-07-02. Retrieved 2016-12-31.
  27. ^ "Safety (MSDS) data for sodium molybdate". ox.ac.uk. Archived from the original on 2011-01-28.
  28. ^ "Safety (MSDS) data for sodium chloride". ox.ac.uk. Archived from the original on 2011-06-07.
  29. ^ "Safety (MSDS) data for paracetamol". Millipore Sigma. Merck KGaA. Archived from the original on 2021-03-02. Retrieved 2020-01-06.
  30. ^ Rosenkrantz H, Heyman IA, Braude MC (April 1974). "Inhalation, parenteral and oral LD50 values of delta 9-tetrahydrocannabinol in Fischer rats". Toxicology and Applied Pharmacology. 28 (1): 18–27. doi:10.1016/0041-008X(74)90126-4. PMID 4852457.
  31. ^ "MSDS of CBD" (PDF). chemblink.com. Archived from the original (PDF) on 2016-12-26. Retrieved 2016-12-26.
  32. ^ "Methanol Poisoning Overview". antizol.com. Archived from the original on 2011-10-05.
  33. ^ "Arsenic". PubChem. Archived from the original on 2021-05-12. Retrieved 2020-01-06.
  34. ^ "Ibuprofen – National Library of Medicine HSDB Database". toxnet.nlm.nih.gov. Archived from the original on 2018-08-04. Retrieved 2016-12-26.
  35. ^ "Formaldehyde SIDS Initial Assessment Report" (PDF). inchem.org. Archived from the original (PDF) on 2018-06-13. Retrieved 2016-12-26.
  36. ^ "Solanine – National Library of Medicine HSDB Database". toxnet.nlm.nih.gov. Archived from the original on 2021-01-19. Retrieved 2019-01-17.
  37. ^ Frank T. Sanders, ed. (August 2006). Reregistration Eligibility Decision for Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC) (PDF) (Report). U.S. Environmental Protection Agency Office of Prevention, Pesticides, and Toxic Substances. p. 114. Archived from the original (PDF) on 2009-10-24. Retrieved 2009-03-31.
  38. ^ Coumarin Material Safety Data Sheet (MSDS) Archived 2004-10-21 at the Wayback Machine
  39. ^ Rumack BH, Spoerke DJ (27 September 1994). Handbook of Mushroom Poisoning: Diagnosis and Treatment. CRC Press. ISBN 978-0-8493-0194-0 – via Google Books.
  40. ^ "Material Safety Data Sheet: Hydrochloric acid 32-38% solution". Fisher. 1 April 2008. Archived from the original on 6 May 2021. Retrieved 24 December 2020.
  41. ^ "Ketamine" (PDF). nih.gov. Archived (PDF) from the original on 2021-03-20. Retrieved 2016-12-26.
  42. ^ "Safety (MSDS) data for acetylsalicylic acid". ox.ac.uk. Archived from the original on 2011-07-16.
  43. ^ Boyd EM (May 1959). "The acute oral toxicity of caffeine". Toxicology and Applied Pharmacology. 1 (3): 250–257. doi:10.1016/0041-008X(59)90109-7. PMID 13659532.
  44. ^ "Material Safety Data Sheet – Spent Metal Catalyst" (PDF). Archived from the original (PDF) on 2011-09-28.
  45. ^ "Safety (MSDS) data for sodium nitrite". ox.ac.uk.[dead link]
  46. ^ Gable RS (September 2004). "Acute toxic effects of club drugs". Journal of Psychoactive Drugs. 36 (3): 303–313. doi:10.1080/02791072.2004.10400031. PMID 15559678. S2CID 30689421.
  47. ^ a b "Chemical toxicity of uranium" (PDF). who.int. Archived (PDF) from the original on 2021-03-09. Retrieved 2020-10-05.
  48. ^ Hayes WJ, Simmons SW, Knipling EF (1959). "Dose-Mortality Relationships in Animals". DDT: The Insecticide Dichlorodiphenyltrichloroethane and Its Significance / Das Insektizid Dichlordiphenyltrichloräthan und Seine Bedeutung. pp. 18–40. doi:10.1007/978-3-0348-6809-9_3. ISBN 978-3-0348-6796-2.
  49. ^ "Bisoprolol". www.drugbank.ca. Archived from the original on 2020-06-17. Retrieved 2012-06-13.
  50. ^ "Cocaine". www.drugbank.ca. Archived from the original on 2016-11-20. Retrieved 2016-12-26.
  51. ^ "Safety (MSDS) data for cobalt (II) chloride". ox.ac.uk. Archived from the original on 2011-04-07.
  52. ^ Safety (MSDS) data for cadmium oxide[permanent dead link]
  53. ^ "Thiopental sodium". Pubchem. Archived from the original on 2021-01-26. Retrieved 2017-01-06.
  54. ^ "Demeton-s-methyl". Extoxnet. September 1995. Archived from the original on 2019-06-04. Retrieved 2019-07-21.
  55. ^ Kiyatkin EA, Sharma HS (2009). "Acute Methamphetamine Intoxication". New Concepts of Psychostimulant Induced Neurotoxicity. International Review of Neurobiology. Vol. 88. pp. 65–100. doi:10.1016/S0074-7742(09)88004-5. ISBN 978-0-12-374504-0. PMC 3145326. PMID 19897075.
  56. ^ "Sodium fluoride". hazard.com. Archived from the original on 2011-09-28. Retrieved 2011-07-31.{{cite web}}: CS1 maint: unfit URL (link)
  57. ^ a b Mayer B (January 2014). "How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century". Archives of Toxicology. 88 (1): 5–7. doi:10.1007/s00204-013-1127-0. PMC 3880486. PMID 24091634.
  58. ^ "Pentaborane chemical and safety data" (PDF). noaa.gov. Archived (PDF) from the original on 2013-05-23. Retrieved 2011-09-30.
  59. ^ "Capsaicin Material Safety Data Sheet". sciencelab.com. 2007. Archived from the original (PDF) on 2007-09-29. Retrieved 2007-07-13.
  60. ^ "MSDS for cholecalciferol crystalline" (PDF). hmdb.ca. Archived from the original (PDF) on 2016-12-26. Retrieved 2016-12-26.
  61. ^ "Material Safety Data Sheet: Piperidine". Fisher. 29 October 2007. Archived from the original on 4 March 2016. Retrieved 24 December 2020.
  62. ^ "Diamorphine (PIM 261F, French)". www.inchem.org. Archived from the original on 2016-05-02. Retrieved 2016-12-26.
  63. ^ Erowid LSD (Acid) Vault : Fatalities / Deaths Archived 2021-06-30 at the Wayback Machine. Erowid.org. Retrieved on 2013-07-17.
  64. ^ "Safety (MSDS) data for arsenic trioxide". ox.ac.uk. Archived from the original on 2010-03-09.
  65. ^ "Safety (MSDS) data for metallic arsenic". ox.ac.uk. Archived from the original on 2011-01-14.
  66. ^ "Safety (MSDS) data for sodium cyanide". ox.ac.uk. Archived from the original on 2009-01-13.
  67. ^ "Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion". Archived from the original on 2016-12-28. Retrieved 2016-12-27.
  68. ^ "Safety (MSDS) data for hydrogen cyanide" (PDF). orica.com. Archived from the original (PDF) on 2016-12-26. Retrieved 2016-12-26.
  69. ^ "Critical Review Carfentanil" (PDF). Archived (PDF) from the original on 2020-11-12. Retrieved 2019-01-31.
  70. ^ "Hexachloroethane" (PDF). Archived (PDF) from the original on 2006-06-30. Retrieved 2014-01-03.
  71. ^ INCHEM: Chemical Safety Information from Intergovernmental Organizations: Strychnine Archived 2015-01-03 at the Wayback Machine.
  72. ^ Gao X, Hu J, Zhang X, Zuo Y, Wang Y, Zhu S (2018-04-09). "Research progress of aconitine toxicity and forensic analysis of aconitine poisoning". Forensic Sciences Research. 5 (1): 25–31. doi:10.1080/20961790.2018.1452346. PMC 7241456. PMID 32490307.
  73. ^ "Mercuric Chloride Safety Data Sheet" (PDF). LabChem. p. 6. Archived from the original (PDF) on 2019-11-26. Retrieved 2020-01-06.
  74. ^ Meister RT, Sine C (2013). Crop Protection Handbook. Vol. 99. Willoughby, Ohio: Meister Pub Co. p. 664. ISBN 978-1892829269.
  75. ^ "Safety (MSDS) data for aflatoxin B1". ox.ac.uk. Archived from the original on 2010-08-11.
  76. ^ Voelz GL, Buican IG (2000). "Plutonium and Health — How great is the risk?" (PDF). Los Alamos Science (26): 74–89. Archived (PDF) from the original on 2021-01-18. Retrieved 2016-12-26.
  77. ^ "Bufotoxin". ChemIDplus. U.S. National Library of Medicine. Archived from the original on 2021-01-19. Retrieved 2016-12-27.
  78. ^ "Brodifacoum (PDS)". Inchem.org. Archived from the original on 2013-12-13. Retrieved 2017-12-05.
  79. ^ Moskalev YI (1961). "Biological Effects of Cesium-137". In Lebedinskiĭ AV, Moskalev YI (eds.). Distribution, Biological Effects, and Migration of Radioactive Isotopes. Translation Series. United States Atomic Energy Commission (published April 1974). p. 220. AEC-tr-7512. [(21.5 μCi/g) × (1000 g/kg) × (0.0114 μg/μCi) = 245 μg/kg]
  80. ^ Meister R, Since C (2013). Crop Protection Handbook 2013. Willoughby, Ohio: Meister Pub Co. p. 664. ISBN 9781892829269.
  81. ^ "CDC - Immediately Dangerous to Life or Health Concentrations (IDLH): Chlorine trifluoride - NIOSH Publications and Products". www.cdc.gov. 2018-11-02. Archived from the original on 2022-07-11. Retrieved 2022-07-13.
  82. ^ Inns RH, Tuckwell NJ, Bright JE, Marrs TC (July 1990). "Histochemical demonstration of calcium accumulation in muscle fibres after experimental organophosphate poisoning". Human & Experimental Toxicology. 9 (4): 245–250. doi:10.1177/096032719000900407. PMID 2390321. S2CID 20713579.
  83. ^ Sheumack DD, Baldo BA, Carroll PR, Hampson F, Howden ME, Skorulis A (1984). "A comparative study of properties and toxic constituents of funnel web spider (Atrax) venoms". Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology. 78 (1): 55–68. doi:10.1016/0742-8413(84)90048-3. PMID 6146485.
  84. ^ Munro N (January 1994). "Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: implications for public protection". Environmental Health Perspectives. 102 (1): 18–38. doi:10.1289/ehp.9410218. PMC 1567233. PMID 9719666.
  85. ^ Venomous Animals and their Venoms, vol. III, ed. Wolfgang Bücherl and Eleanor Buckley
  86. ^ Hallen HE, Luo H, Scott-Craig JS, Walton JD (November 2007). "Gene family encoding the major toxins of lethal Amanita mushrooms". Proceedings of the National Academy of Sciences of the United States of America. 104 (48): 19097–19101. doi:10.1073/pnas.0707340104. PMC 2141914. PMID 18025465.
  87. ^ Madore F, Bouchard J (2019). "Plasmapheresis in Acute Intoxication and Poisoning". Critical Care Nephrology. Elsevier. pp. 595–600.e3. doi:10.1016/b978-0-323-44942-7.00100-x. ISBN 978-0-323-44942-7.
  88. ^ Blayney MB (February 2001). "The need for empirically derived permeation data for personal protective equipment: the death of Dr. Karen E. Wetterhahn". Applied Occupational and Environmental Hygiene. 16 (2): 233–236. doi:10.1080/104732201460389. PMID 11217716.
  89. ^ Milbrath DS, Engel JL, Verkade JG, Casida JE (February 1979). "Structure--toxicity relationships of 1-substituted-4-alkyl-2,6,7-trioxabicyclo[2.2.2.]octanes". Toxicology and Applied Pharmacology. 47 (2): 287–293. doi:10.1016/0041-008x(79)90323-5. PMID 452023.
  90. ^ "Fentanyl". www.drugbank.ca. Archived from the original on 2017-07-11. Retrieved 2017-09-29.
  91. ^ LD50 for various snakes Archived 2012-02-01 at the Wayback Machine. Seanthomas.net. Retrieved on 2013-07-17.
  92. ^ "Ricin (from Ricinus communis) as undesirable substances in animal feed - Scientific Opinion of the Panel on Contaminants in the Food Chain". EFSA Journal. 6 (9): 726. 2008. CiteSeerX 10.1.1.333.8413. doi:10.2903/j.efsa.2008.726.
  93. ^ Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, et al. (April 2017). "Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods". EFSA Journal. European Food Safety Authority. 15 (4): e04752. doi:10.2903/j.efsa.2017.4752. PMC 7010203. PMID 32625458. S2CID 54043321.
  94. ^ Nagai H (2003). "Recent Progress in Jellyfish Toxin Study". Journal of Health Science. 49 (5): 337–340. doi:10.1248/jhs.49.337.
  95. ^ Henderson N, Wright K, Morgan D, Tantum P. "Black Widow Venom (α-Latrotoxin)". Archived from the original (pptx) on 2016-12-26. Retrieved 2016-12-26.
  96. ^ Sihver W, Långström B, Nordberg A (2000). "Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain". Acta Neurologica Scandinavica. Supplementum. 176 (s176): 27–33. doi:10.1034/j.1600-0404.2000.00304.x. PMID 11261802. S2CID 23541883.
  97. ^ a b Patocka J, Streda L (2002). "Brief review of natural nonprotein neurotoxins". ASA Newsletter. 2 (2): 16–24.
  98. ^ Caillaud A, de la Iglesia P, Darius HT, Pauillac S, Aligizaki K, Fraga S, et al. (June 2010). "Update on methodologies available for ciguatoxin determination: perspectives to confront the onset of ciguatera fish poisoning in Europe". Marine Drugs. 8 (6): 1838–1907. doi:10.3390/md8061838. PMC 2901828. PMID 20631873.
  99. ^ Ramos V, Vasconcelos V (June 2010). "Palytoxin and analogs: biological and ecological effects". Marine Drugs. 8 (7): 2021–2037. doi:10.3390/md8072021. PMC 2920541. PMID 20714422.
  100. ^ "PubChem Compound Summary for CID 71460273, Maitotoxin". PubChem. National Center for Biotechnology Information. Archived from the original on 2020-11-01. Retrieved 2020-12-25.
  101. ^ Topic 2 Toxic Chemicals and Toxic Effects Archived 2007-09-29 at the Wayback Machine
  102. ^ a b c Toolson E. "Representative LD50 Values" (PDF). Archived from the original (PDF) on 2015-04-12. Retrieved 2016-12-26.
  103. ^ Fleming DO, Hunt DL (2000). Biological Safety: principles and practices. Washington, DC: ASM Press. p. 267. ISBN 978-1-55581-180-8.
  104. ^ Ryan JL (March 2012). "Ionizing radiation: the good, the bad, and the ugly". The Journal of Investigative Dermatology. 132 (3 Pt 2): 985–993. doi:10.1038/jid.2011.411. PMC 3779131. PMID 22217743.
  105. ^ Winfried K (2013). "Lethal dose". www.euronuclear.org. Archived from the original on 2018-08-04. Retrieved 2018-09-15.
  106. ^ "Radiation Exposure - Dose and Dose Rate (the Gray & Sievert)". Ionactive. 2022-12-13. Retrieved 2024-07-27.
  107. ^ Strey, Karsten (December 2019). "Die Gifte-Skala". Chemie in unserer Zeit. 53 (6): 386–399. doi:10.1002/ciuz.201900828. S2CID 199067092.
  108. ^ Thirty-Two Years of Measurable Change Archived 2007-02-11 at the Wayback Machine
  109. ^ van den Heuvel MJ, Clark DG, Fielder RJ, Koundakjian PP, Oliver GJ, Pelling D, et al. (July 1990). "The international validation of a fixed-dose procedure as an alternative to the classical LD50 test". Food and Chemical Toxicology. 28 (7): 469–482. doi:10.1016/0278-6915(90)90117-6. PMID 2210519.
  110. ^ Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, et al. (March 1995). "Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures". Food and Chemical Toxicology. 33 (3): 223–231. doi:10.1016/0278-6915(94)00136-c. PMID 7896233.
  111. ^ Lichtman AH (August 1998). "The up-and-down method substantially reduces the number of animals required to determine antinociceptive ED50 values". Journal of Pharmacological and Toxicological Methods. 40 (2): 81–85. doi:10.1016/s1056-8719(98)00041-0. PMID 10100496.

Further reading

[edit]
  • Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, et al. (March 1995). "Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures". Food and Chemical Toxicology. 33 (3): 223–231. doi:10.1016/0278-6915(94)00136-C. PMID 7896233.
[edit]