Jump to content

Bisymmetric matrix: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m added wikilinks
Citation bot (talk | contribs)
Alter: volume. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 430/838
Line 30: Line 30:
}}</ref>
}}</ref>
*If ''A'' is a real bisymmetric matrix with distinct eigenvalues, then the matrices that [[commuting matrices|commute]] with ''A'' must be bisymmetric.<ref name=acta>{{cite journal | last = Yasuda | first = Mark | title = Some properties of commuting and anti-commuting m-involutions | journal = Acta Mathematica Scientia | volume = 32 | issue = 2 | pages = 631–644 | year = 2012| doi = 10.1016/S0252-9602(12)60044-7}}</ref>
*If ''A'' is a real bisymmetric matrix with distinct eigenvalues, then the matrices that [[commuting matrices|commute]] with ''A'' must be bisymmetric.<ref name=acta>{{cite journal | last = Yasuda | first = Mark | title = Some properties of commuting and anti-commuting m-involutions | journal = Acta Mathematica Scientia | volume = 32 | issue = 2 | pages = 631–644 | year = 2012| doi = 10.1016/S0252-9602(12)60044-7}}</ref>
*The [[inverse matrix|inverse]] of bisymmetric matrices can be represented by recurrence formulas.<ref>{{Cite journal|last=Wang|first=Yanfeng|last2=Lü|first2=Feng|last3=Lü|first3=Weiran|date=2018-01-10|title=The inverse of bisymmetric matrices|journal=Linear and Multilinear Algebra|volume=0|issue=3|pages=479–489|doi=10.1080/03081087.2017.1422688|issn=0308-1087}}</ref>
*The [[inverse matrix|inverse]] of bisymmetric matrices can be represented by recurrence formulas.<ref>{{Cite journal|last1=Wang|first1=Yanfeng|last2=Lü|first2=Feng|last3=Lü|first3=Weiran|date=2018-01-10|title=The inverse of bisymmetric matrices|journal=Linear and Multilinear Algebra|volume=67|issue=3|pages=479–489|doi=10.1080/03081087.2017.1422688|s2cid=125163794|issn=0308-1087}}</ref>


==References==
==References==

Revision as of 20:34, 17 October 2021

Symmetry pattern of a bisymmetric 5 × 5 matrix

In mathematics, a bisymmetric matrix is a square matrix that is symmetric about both of its main diagonals. More precisely, an n × n matrix A is bisymmetric if it satisfies both A = AT and AJ = JA where J is the n × n exchange matrix.

For example, any matrix of the form

is bisymmetric.

Properties

  • Bisymmetric matrices are both symmetric centrosymmetric and symmetric persymmetric.
  • The product of two bisymmetric matrices is a centrosymmetric matrix.
  • Real-valued bisymmetric matrices are precisely those symmetric matrices whose eigenvalues remain the same aside from possible sign changes following pre- or post-multiplication by the exchange matrix.[1]
  • If A is a real bisymmetric matrix with distinct eigenvalues, then the matrices that commute with A must be bisymmetric.[2]
  • The inverse of bisymmetric matrices can be represented by recurrence formulas.[3]

References

  1. ^ Tao, David; Yasuda, Mark (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM Journal on Matrix Analysis and Applications. 23 (3): 885–895. doi:10.1137/S0895479801386730.
  2. ^ Yasuda, Mark (2012). "Some properties of commuting and anti-commuting m-involutions". Acta Mathematica Scientia. 32 (2): 631–644. doi:10.1016/S0252-9602(12)60044-7.
  3. ^ Wang, Yanfeng; Lü, Feng; Lü, Weiran (2018-01-10). "The inverse of bisymmetric matrices". Linear and Multilinear Algebra. 67 (3): 479–489. doi:10.1080/03081087.2017.1422688. ISSN 0308-1087. S2CID 125163794.