Jump to content

Talk:Lightness: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Line 88: Line 88:


I think in standard terminology this isn't true, or at best only true for colour appearance models that don't account for the difference.
I think in standard terminology this isn't true, or at best only true for colour appearance models that don't account for the difference.

== Comment about the V versus Y bit ==

:FTA: ''Note.'' – Munsell's ''V'' runs from 0 to 10, while ''Y'' typically runs from 0 to 100 (often interpreted as a percentage). Typically, the relative luminance is normalized so that the "reference white" (say, [[magnesium oxide]]) has a tristimulus value of {{nowrap|1=''Y'' = 100}}. Since the reflectance of magnesium oxide (MgO) relative to the [[diffuser (optics)#Perfect reflecting diffuser|perfect reflecting diffuser]] is 97.5%, {{nowrap|1=''V'' = 10}} corresponds to {{nowrap|1=''Y'' = {{sfrac|100|97.5}}% ≈ 102.6}} if MgO is used as the reference.
Looking at figure 15 in Priest, Gibson & McNicholas 1920 where V² is plotted against Y with a MgCO₃ reference with a reflectivity of 0.983, it's clear that Munsell's greys are dead on a straight line through the origin. The authors offer the hypothesis that Munsell may have thought he was setting aperture areas on his photometer whereas in actuality he was setting aperture diameters, although they say the possibility that the quadratic relationship was intentional cannot be discounted because Munsell wouldn't have liked the look of a linear relationship. I personally feel that his wouldn't explain Munsell's wording in his atlas though. A key takeaway in either case is that Munsell's greys weren't visually judged, but determined using a photometer.

Studying figure 15 some more, the intersection of the trend line with the right vertical axis catches our eye. For V=10 we find Y=95.2% compared to the MgCO₃ reference, or only 93.6% of the reflectivity of an ideal reflector! This is only slightly lighter than the 90% white reference on a Kodak grey card, but it's clear from Munsell's text that V=10 was supposed to be the unachievable ideal reflector. Munsell must have made a calculation or calibration error of some sort.

For the bit of the article that I quoted and the material below it this has the implication that, at least in the 1915 edition there was a difference between how the V scale should have been versus how it actually was in published form, which then means that the calculation shown is wrong. Same applies to the formula below, which is I think based on a (reasonable) reading of the abstract of the source but not its actual findings. Checking the recommendations section at the end of the source it may well have been an aspirational thing, because the authors recommend setting V=10 as an absolute maximum in a future edition.

The snippet from the article could, if read the wrong way, also imply that Y needs to be corrected in the way described, or at least can be corrected that way, in all the cases listed below, and that MgO is the standard reference white in the models listed. I know this wasn't intended, but a reader in a hurry might not catch that. So I guess we should just check all the sources. In the case of a physical reference white with a known reflectivity it's even possible that it's been compensated for already, like is often done in photography with the 90% reference I mentioned above.

And I guess we need to find out if a newer version of Munsell's atlas was subjected to rigorous measurements to see if the problem has been fixed.

Revision as of 00:13, 30 May 2022

WikiProject iconColor Start‑class High‑importance
WikiProject iconThis article is supported by WikiProject Color, a project that provides a central approach to color-related subjects on Wikipedia. Help us improve articles to good and 1.0 standards; visit the wikiproject page for more details.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-importance on the project's importance scale.

merge from value

These describe the same color attribute, and "lightness" is the term which is coming to be used in modern models like CIELAB and CIECAM. The value article should be merged into this one, and then redirected here. --jacobolus (t) 20:02, 19 September 2007 (UTC)[reply]


Value is an extremely relevant term in drawing and painting, and it shows no signs of falling into disuse. I believe "lightness" has more industrial connotations, whereas "value" still applies to the fine arts. -bornon5, 31 October 2007 —Preceding unsigned comment added by Bornon5 (talkcontribs) 02:53, 1 November 2007 (UTC)[reply]

That's fine. The article can explain that both words are used for the concept, and the value article can redirect here. The point is that we have a single concept, so it's silly to duplicate the information about it on two different articles. The popularity of the term "value" comes mostly from Munsell's use, as far as I know. More recent models like CIELAB and CIECAM02 use the term "lightness". --jacobolus (t) 04:24, 1 November 2007 (UTC)[reply]
Comment. Is the term value used in painting to mean something not covered in the value article? If we mean that lightness=value=correlate of perceived brightness, I'm for merging them.--Adoniscik (talk) 14:58, 3 February 2008 (UTC)[reply]
Does value mean something different in painting than its use by Munsell? I'm not aware of what that definition is. --jacobolus (t) 22:10, 3 February 2008 (UTC)[reply]
I just checked a bunch of books, and they appear to agree that value is lightness or something reasonably equivalent. For example, this one. And this one pretty much says that artists use the Munsell system. Dicklyon (talk) 00:43, 4 February 2008 (UTC)[reply]

Any objection to the merge? Dicklyon (talk) 01:16, 4 February 2008 (UTC)[reply]

Objection. —Preceding unsigned comment added by 24.111.103.220 (talk) 06:15, 7 February 2008 (UTC)[reply]

I agree with the merger. However, HSV should be mentioned as an unusual case, as colors don't progress from black to white. SharkD (talk) 10:16, 7 February 2008 (UTC)[reply]

What is the diagram?

Could someone please add caption text to the first image (ColorValue.jpg)? —Preceding unsigned comment added by 79.176.137.250 (talk) 16:48, 28 November 2008 (UTC)[reply]

Some problems with the previous version

"Various color models have an explicit term which places the color on a scale from utter black to pure white. The HSV color model and Munsell color model have an explicit value, while the HSL color model uses a related parameter called lightness instead."

The "explicit value" of HSV refers to something different; i.e. the value/color is not "on a scale from utter black to pure white." The HSL parameter lightness is the one that's closer to the Munsell system.

"In the HSV and Munsell color models, a color with a low value is nearly black, while one with a high value is the pure color."

This is not true of the Munsell system. HSV is the oddball here. It also contradicts the first sentence I quoted.

As for the rest of the article, it was in need of cleanup (forming paragraphs out of loose sentences, etc.) You were right in that I deleted a good bulk of stuff on accident. SharkD (talk) 06:19, 29 June 2009 (UTC)[reply]

Also, the rescaling of the second image is ugly; it's hardly legible. This is a software issue however. SharkD (talk) 06:27, 29 June 2009 (UTC)[reply]

Further, in the image, it might be a good idea to put the word "luminance" somewhere on the x-axis. It's explained in the caption, but it might not be enough. SharkD (talk) 06:33, 29 June 2009 (UTC)[reply]

Tone

Tone (disambiguation page) links to Lightness (color), but the article never uses the word "tone", and I don't think they're at all synonymous. Anyone care to clear it up? —Pengo 12:12, 20 July 2009 (UTC)[reply]

Tone is a term that was traditionally used in black-and-white photography for this concept, at least since the early 20th century. See tone mapping (not a great article, but a start). Or here is an old book example. And here is one that compares "Tone" to "Value" explicitly. Dicklyon (talk) 14:52, 20 July 2009 (UTC)[reply]
Also Tone reproduction is more about the traditional use in photography. Dicklyon (talk) 18:41, 20 July 2009 (UTC)[reply]
In art, tone is a synonym for value, perhaps more common in drawing, where dark tone is built up with manual application of a dark medium like graphite or charcoal, than in painting. Michael Z. 2012-04-22 19:19 z

Extremely convoluted article

I came here to learn about 'value' from the fine arts perspective.

The first section is hilariously wordy and inaccessible. "... is a representation of variation in the perception of a color or color space's brightness. It is one of the color appearance parameters of any color appearance model."

Would it be that absurd to just say: "It's how bright a color is."

Then, the rest of the article is just gibberish to someone, such as myself, from a fine arts background, and offers nothing of substance as to how value relates to or is used in the fine arts. This article is horrible and should be rewritten by someone who isn't copy pasting from a science textbook. — Preceding unsigned comment added by 45.47.156.179 (talk) 22:22, 30 October 2015 (UTC)[reply]

Um, yes, it would be absurd or, more to the point, simply wrong. Lightness does not equal brightness in color theory. I’m not saying the article can’t be improved – it most certainly can. But not in this way … If anything, you need more words to clearly point out the difference between lightness and brightness, as it is obviously easy to confuse them. --Uli Zappe (talk) 07:48, 11 November 2015 (UTC)[reply]

For the expert, I presume the article has much to say. For the laymen, as with so many Wikipedia articles, it is all but valueless. Perhaps that is the intent, though I would hope not. I appreciate the need for experts to express full concepts, and that they do so voluntarily is admirable. It would be even more admirable if the expert would then create a complementary article understandable by those not in the field. One does this, primarily, by avoiding undefined terms. Use the words and concepts understood by the audience and build from there, defining as one goes. Examples and illustrations in this context are very helpful. Education is not the spewing of words. It is the transmission and duplication, at receipt, of concepts. One hopes, despite evidence to the contrary, that this is the goal of Wikipedia contributors.

Ridiculous youtube reference (Brightness vs. Lightness)

The reference [1] (Brightness vs. Lightness) is to a YouTube video that describes what a guy believes that the Photoshop settings of brightness and lightness mean.

It's ridiculous, there are already several accepted discording definitions of lightness and brightness in the various fields, we really missed the photoshop one.

It discredits the whole articles of Lightness and Brightness, those who originally wrote them have no idea about these things and managed to add confusion to an area that was already fill with confusion to the brim.

(BTW I'm not really an expert, don't ask me to fix it; maybe until a real expert comes the best thing would be to delete these articles altogether)

Gabrolf (talk) 14:53, 26 January 2017 (UTC)[reply]

"Lightness means brightness of an area judged relative to the brightness of a similarly illuminated area that appears to be white or highly transmitting. Lightness should not be confused with brightness.[1]" Lightness means brightness [but] should not be confused with brightness. That's confusing. — Preceding unsigned comment added by Gitchygoomy (talkcontribs) 07:56, 17 March 2017 (UTC)[reply]

It's confusing to you because you're skipping the part of the sentence that explains the difference: ‘judged ... transmitting.’ — Preceding unsigned comment added by 77.61.180.106 (talk) 01:39, 19 June 2021 (UTC)[reply]

An approximately 18% grey card, ...

I don't like this paragraph. It seems to suggest that grey cards are commonly calibrated at 18.42% but I'm not sure that's true, or even possible. At the very least, I've found a data sheet for a Kodak grey card and it considers a tolerance of 1% ‘very tight’; the figures it gives for the front and back are 18% and 90% and the calibration graphs show that the actual reflectance is somewhat wavelength-dependent.

Furthermore, this section is about work done in the seventies. But the first mention I could find of a grey card in the photographic sense is from 1939 (Curtis) and of a standardised one from 1940 (Neutralowe). Possibly an article from 1938 (Haskell) might also count, but I feel he's using the card in a different way and it doesn't fully qualify. The first ‘modern’ middle grey was published in 1915 (Munsell) although arguably the concept was much older, e.g. Mayer 1758. Point is, even though it makes sense to introduce these terms in an article about lightness, it makes no sense to introduce them in this particular section.

In colorimetry and color theory, lightness, ..., is a representation of a color's brightness.

I think in standard terminology this isn't true, or at best only true for colour appearance models that don't account for the difference.

Comment about the V versus Y bit

FTA: Note. – Munsell's V runs from 0 to 10, while Y typically runs from 0 to 100 (often interpreted as a percentage). Typically, the relative luminance is normalized so that the "reference white" (say, magnesium oxide) has a tristimulus value of Y = 100. Since the reflectance of magnesium oxide (MgO) relative to the perfect reflecting diffuser is 97.5%, V = 10 corresponds to Y = 100/97.5% ≈ 102.6 if MgO is used as the reference.

Looking at figure 15 in Priest, Gibson & McNicholas 1920 where V² is plotted against Y with a MgCO₃ reference with a reflectivity of 0.983, it's clear that Munsell's greys are dead on a straight line through the origin. The authors offer the hypothesis that Munsell may have thought he was setting aperture areas on his photometer whereas in actuality he was setting aperture diameters, although they say the possibility that the quadratic relationship was intentional cannot be discounted because Munsell wouldn't have liked the look of a linear relationship. I personally feel that his wouldn't explain Munsell's wording in his atlas though. A key takeaway in either case is that Munsell's greys weren't visually judged, but determined using a photometer.

Studying figure 15 some more, the intersection of the trend line with the right vertical axis catches our eye. For V=10 we find Y=95.2% compared to the MgCO₃ reference, or only 93.6% of the reflectivity of an ideal reflector! This is only slightly lighter than the 90% white reference on a Kodak grey card, but it's clear from Munsell's text that V=10 was supposed to be the unachievable ideal reflector. Munsell must have made a calculation or calibration error of some sort.

For the bit of the article that I quoted and the material below it this has the implication that, at least in the 1915 edition there was a difference between how the V scale should have been versus how it actually was in published form, which then means that the calculation shown is wrong. Same applies to the formula below, which is I think based on a (reasonable) reading of the abstract of the source but not its actual findings. Checking the recommendations section at the end of the source it may well have been an aspirational thing, because the authors recommend setting V=10 as an absolute maximum in a future edition.

The snippet from the article could, if read the wrong way, also imply that Y needs to be corrected in the way described, or at least can be corrected that way, in all the cases listed below, and that MgO is the standard reference white in the models listed. I know this wasn't intended, but a reader in a hurry might not catch that. So I guess we should just check all the sources. In the case of a physical reference white with a known reflectivity it's even possible that it's been compensated for already, like is often done in photography with the 90% reference I mentioned above.

And I guess we need to find out if a newer version of Munsell's atlas was subjected to rigorous measurements to see if the problem has been fixed.